xref: /openbmc/linux/fs/ocfs2/journal.c (revision c0e297dc)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34 
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55 
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58 
59 DEFINE_SPINLOCK(trans_inc_lock);
60 
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62 
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 			      int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 				      int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 				 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 				 int slot,
75 				 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 					    int slot_num,
79 					    struct ocfs2_dinode *la_dinode,
80 					    struct ocfs2_dinode *tl_dinode,
81 					    struct ocfs2_quota_recovery *qrec,
82 					    enum ocfs2_orphan_reco_type orphan_reco_type);
83 
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86 	return __ocfs2_wait_on_mount(osb, 0);
87 }
88 
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91 	return __ocfs2_wait_on_mount(osb, 1);
92 }
93 
94 /*
95  * This replay_map is to track online/offline slots, so we could recover
96  * offline slots during recovery and mount
97  */
98 
99 enum ocfs2_replay_state {
100 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
101 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
102 	REPLAY_DONE 		/* Replay was already queued */
103 };
104 
105 struct ocfs2_replay_map {
106 	unsigned int rm_slots;
107 	enum ocfs2_replay_state rm_state;
108 	unsigned char rm_replay_slots[0];
109 };
110 
111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113 	if (!osb->replay_map)
114 		return;
115 
116 	/* If we've already queued the replay, we don't have any more to do */
117 	if (osb->replay_map->rm_state == REPLAY_DONE)
118 		return;
119 
120 	osb->replay_map->rm_state = state;
121 }
122 
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125 	struct ocfs2_replay_map *replay_map;
126 	int i, node_num;
127 
128 	/* If replay map is already set, we don't do it again */
129 	if (osb->replay_map)
130 		return 0;
131 
132 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
134 
135 	if (!replay_map) {
136 		mlog_errno(-ENOMEM);
137 		return -ENOMEM;
138 	}
139 
140 	spin_lock(&osb->osb_lock);
141 
142 	replay_map->rm_slots = osb->max_slots;
143 	replay_map->rm_state = REPLAY_UNNEEDED;
144 
145 	/* set rm_replay_slots for offline slot(s) */
146 	for (i = 0; i < replay_map->rm_slots; i++) {
147 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 			replay_map->rm_replay_slots[i] = 1;
149 	}
150 
151 	osb->replay_map = replay_map;
152 	spin_unlock(&osb->osb_lock);
153 	return 0;
154 }
155 
156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 		enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159 	struct ocfs2_replay_map *replay_map = osb->replay_map;
160 	int i;
161 
162 	if (!replay_map)
163 		return;
164 
165 	if (replay_map->rm_state != REPLAY_NEEDED)
166 		return;
167 
168 	for (i = 0; i < replay_map->rm_slots; i++)
169 		if (replay_map->rm_replay_slots[i])
170 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 							NULL, NULL,
172 							orphan_reco_type);
173 	replay_map->rm_state = REPLAY_DONE;
174 }
175 
176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178 	struct ocfs2_replay_map *replay_map = osb->replay_map;
179 
180 	if (!osb->replay_map)
181 		return;
182 
183 	kfree(replay_map);
184 	osb->replay_map = NULL;
185 }
186 
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189 	struct ocfs2_recovery_map *rm;
190 
191 	mutex_init(&osb->recovery_lock);
192 	osb->disable_recovery = 0;
193 	osb->recovery_thread_task = NULL;
194 	init_waitqueue_head(&osb->recovery_event);
195 
196 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 		     osb->max_slots * sizeof(unsigned int),
198 		     GFP_KERNEL);
199 	if (!rm) {
200 		mlog_errno(-ENOMEM);
201 		return -ENOMEM;
202 	}
203 
204 	rm->rm_entries = (unsigned int *)((char *)rm +
205 					  sizeof(struct ocfs2_recovery_map));
206 	osb->recovery_map = rm;
207 
208 	return 0;
209 }
210 
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212  * memory barriers to make sure that we'll see the null task before
213  * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216 	mb();
217 	return osb->recovery_thread_task != NULL;
218 }
219 
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222 	struct ocfs2_recovery_map *rm;
223 
224 	/* disable any new recovery threads and wait for any currently
225 	 * running ones to exit. Do this before setting the vol_state. */
226 	mutex_lock(&osb->recovery_lock);
227 	osb->disable_recovery = 1;
228 	mutex_unlock(&osb->recovery_lock);
229 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230 
231 	/* At this point, we know that no more recovery threads can be
232 	 * launched, so wait for any recovery completion work to
233 	 * complete. */
234 	flush_workqueue(ocfs2_wq);
235 
236 	/*
237 	 * Now that recovery is shut down, and the osb is about to be
238 	 * freed,  the osb_lock is not taken here.
239 	 */
240 	rm = osb->recovery_map;
241 	/* XXX: Should we bug if there are dirty entries? */
242 
243 	kfree(rm);
244 }
245 
246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247 				     unsigned int node_num)
248 {
249 	int i;
250 	struct ocfs2_recovery_map *rm = osb->recovery_map;
251 
252 	assert_spin_locked(&osb->osb_lock);
253 
254 	for (i = 0; i < rm->rm_used; i++) {
255 		if (rm->rm_entries[i] == node_num)
256 			return 1;
257 	}
258 
259 	return 0;
260 }
261 
262 /* Behaves like test-and-set.  Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264 				  unsigned int node_num)
265 {
266 	struct ocfs2_recovery_map *rm = osb->recovery_map;
267 
268 	spin_lock(&osb->osb_lock);
269 	if (__ocfs2_recovery_map_test(osb, node_num)) {
270 		spin_unlock(&osb->osb_lock);
271 		return 1;
272 	}
273 
274 	/* XXX: Can this be exploited? Not from o2dlm... */
275 	BUG_ON(rm->rm_used >= osb->max_slots);
276 
277 	rm->rm_entries[rm->rm_used] = node_num;
278 	rm->rm_used++;
279 	spin_unlock(&osb->osb_lock);
280 
281 	return 0;
282 }
283 
284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285 				     unsigned int node_num)
286 {
287 	int i;
288 	struct ocfs2_recovery_map *rm = osb->recovery_map;
289 
290 	spin_lock(&osb->osb_lock);
291 
292 	for (i = 0; i < rm->rm_used; i++) {
293 		if (rm->rm_entries[i] == node_num)
294 			break;
295 	}
296 
297 	if (i < rm->rm_used) {
298 		/* XXX: be careful with the pointer math */
299 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300 			(rm->rm_used - i - 1) * sizeof(unsigned int));
301 		rm->rm_used--;
302 	}
303 
304 	spin_unlock(&osb->osb_lock);
305 }
306 
307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
308 {
309 	int status = 0;
310 	unsigned int flushed;
311 	struct ocfs2_journal *journal = NULL;
312 
313 	journal = osb->journal;
314 
315 	/* Flush all pending commits and checkpoint the journal. */
316 	down_write(&journal->j_trans_barrier);
317 
318 	flushed = atomic_read(&journal->j_num_trans);
319 	trace_ocfs2_commit_cache_begin(flushed);
320 	if (flushed == 0) {
321 		up_write(&journal->j_trans_barrier);
322 		goto finally;
323 	}
324 
325 	jbd2_journal_lock_updates(journal->j_journal);
326 	status = jbd2_journal_flush(journal->j_journal);
327 	jbd2_journal_unlock_updates(journal->j_journal);
328 	if (status < 0) {
329 		up_write(&journal->j_trans_barrier);
330 		mlog_errno(status);
331 		goto finally;
332 	}
333 
334 	ocfs2_inc_trans_id(journal);
335 
336 	flushed = atomic_read(&journal->j_num_trans);
337 	atomic_set(&journal->j_num_trans, 0);
338 	up_write(&journal->j_trans_barrier);
339 
340 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
341 
342 	ocfs2_wake_downconvert_thread(osb);
343 	wake_up(&journal->j_checkpointed);
344 finally:
345 	return status;
346 }
347 
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350 	journal_t *journal = osb->journal->j_journal;
351 	handle_t *handle;
352 
353 	BUG_ON(!osb || !osb->journal->j_journal);
354 
355 	if (ocfs2_is_hard_readonly(osb))
356 		return ERR_PTR(-EROFS);
357 
358 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 	BUG_ON(max_buffs <= 0);
360 
361 	/* Nested transaction? Just return the handle... */
362 	if (journal_current_handle())
363 		return jbd2_journal_start(journal, max_buffs);
364 
365 	sb_start_intwrite(osb->sb);
366 
367 	down_read(&osb->journal->j_trans_barrier);
368 
369 	handle = jbd2_journal_start(journal, max_buffs);
370 	if (IS_ERR(handle)) {
371 		up_read(&osb->journal->j_trans_barrier);
372 		sb_end_intwrite(osb->sb);
373 
374 		mlog_errno(PTR_ERR(handle));
375 
376 		if (is_journal_aborted(journal)) {
377 			ocfs2_abort(osb->sb, "Detected aborted journal");
378 			handle = ERR_PTR(-EROFS);
379 		}
380 	} else {
381 		if (!ocfs2_mount_local(osb))
382 			atomic_inc(&(osb->journal->j_num_trans));
383 	}
384 
385 	return handle;
386 }
387 
388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389 		       handle_t *handle)
390 {
391 	int ret, nested;
392 	struct ocfs2_journal *journal = osb->journal;
393 
394 	BUG_ON(!handle);
395 
396 	nested = handle->h_ref > 1;
397 	ret = jbd2_journal_stop(handle);
398 	if (ret < 0)
399 		mlog_errno(ret);
400 
401 	if (!nested) {
402 		up_read(&journal->j_trans_barrier);
403 		sb_end_intwrite(osb->sb);
404 	}
405 
406 	return ret;
407 }
408 
409 /*
410  * 'nblocks' is what you want to add to the current transaction.
411  *
412  * This might call jbd2_journal_restart() which will commit dirty buffers
413  * and then restart the transaction. Before calling
414  * ocfs2_extend_trans(), any changed blocks should have been
415  * dirtied. After calling it, all blocks which need to be changed must
416  * go through another set of journal_access/journal_dirty calls.
417  *
418  * WARNING: This will not release any semaphores or disk locks taken
419  * during the transaction, so make sure they were taken *before*
420  * start_trans or we'll have ordering deadlocks.
421  *
422  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423  * good because transaction ids haven't yet been recorded on the
424  * cluster locks associated with this handle.
425  */
426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
427 {
428 	int status, old_nblocks;
429 
430 	BUG_ON(!handle);
431 	BUG_ON(nblocks < 0);
432 
433 	if (!nblocks)
434 		return 0;
435 
436 	old_nblocks = handle->h_buffer_credits;
437 
438 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
439 
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441 	status = 1;
442 #else
443 	status = jbd2_journal_extend(handle, nblocks);
444 	if (status < 0) {
445 		mlog_errno(status);
446 		goto bail;
447 	}
448 #endif
449 
450 	if (status > 0) {
451 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452 		status = jbd2_journal_restart(handle,
453 					      old_nblocks + nblocks);
454 		if (status < 0) {
455 			mlog_errno(status);
456 			goto bail;
457 		}
458 	}
459 
460 	status = 0;
461 bail:
462 	return status;
463 }
464 
465 /*
466  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467  * If that fails, restart the transaction & regain write access for the
468  * buffer head which is used for metadata modifications.
469  * Taken from Ext4: extend_or_restart_transaction()
470  */
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473 	int status, old_nblks;
474 
475 	BUG_ON(!handle);
476 
477 	old_nblks = handle->h_buffer_credits;
478 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479 
480 	if (old_nblks < thresh)
481 		return 0;
482 
483 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484 	if (status < 0) {
485 		mlog_errno(status);
486 		goto bail;
487 	}
488 
489 	if (status > 0) {
490 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 		if (status < 0)
492 			mlog_errno(status);
493 	}
494 
495 bail:
496 	return status;
497 }
498 
499 
500 struct ocfs2_triggers {
501 	struct jbd2_buffer_trigger_type	ot_triggers;
502 	int				ot_offset;
503 };
504 
505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
506 {
507 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
508 }
509 
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 				 struct buffer_head *bh,
512 				 void *data, size_t size)
513 {
514 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
515 
516 	/*
517 	 * We aren't guaranteed to have the superblock here, so we
518 	 * must unconditionally compute the ecc data.
519 	 * __ocfs2_journal_access() will only set the triggers if
520 	 * metaecc is enabled.
521 	 */
522 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
523 }
524 
525 /*
526  * Quota blocks have their own trigger because the struct ocfs2_block_check
527  * offset depends on the blocksize.
528  */
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530 				 struct buffer_head *bh,
531 				 void *data, size_t size)
532 {
533 	struct ocfs2_disk_dqtrailer *dqt =
534 		ocfs2_block_dqtrailer(size, data);
535 
536 	/*
537 	 * We aren't guaranteed to have the superblock here, so we
538 	 * must unconditionally compute the ecc data.
539 	 * __ocfs2_journal_access() will only set the triggers if
540 	 * metaecc is enabled.
541 	 */
542 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
543 }
544 
545 /*
546  * Directory blocks also have their own trigger because the
547  * struct ocfs2_block_check offset depends on the blocksize.
548  */
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550 				 struct buffer_head *bh,
551 				 void *data, size_t size)
552 {
553 	struct ocfs2_dir_block_trailer *trailer =
554 		ocfs2_dir_trailer_from_size(size, data);
555 
556 	/*
557 	 * We aren't guaranteed to have the superblock here, so we
558 	 * must unconditionally compute the ecc data.
559 	 * __ocfs2_journal_access() will only set the triggers if
560 	 * metaecc is enabled.
561 	 */
562 	ocfs2_block_check_compute(data, size, &trailer->db_check);
563 }
564 
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566 				struct buffer_head *bh)
567 {
568 	mlog(ML_ERROR,
569 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
570 	     "bh->b_blocknr = %llu\n",
571 	     (unsigned long)bh,
572 	     (unsigned long long)bh->b_blocknr);
573 
574 	ocfs2_error(bh->b_bdev->bd_super,
575 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
576 }
577 
578 static struct ocfs2_triggers di_triggers = {
579 	.ot_triggers = {
580 		.t_frozen = ocfs2_frozen_trigger,
581 		.t_abort = ocfs2_abort_trigger,
582 	},
583 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
584 };
585 
586 static struct ocfs2_triggers eb_triggers = {
587 	.ot_triggers = {
588 		.t_frozen = ocfs2_frozen_trigger,
589 		.t_abort = ocfs2_abort_trigger,
590 	},
591 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
592 };
593 
594 static struct ocfs2_triggers rb_triggers = {
595 	.ot_triggers = {
596 		.t_frozen = ocfs2_frozen_trigger,
597 		.t_abort = ocfs2_abort_trigger,
598 	},
599 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
600 };
601 
602 static struct ocfs2_triggers gd_triggers = {
603 	.ot_triggers = {
604 		.t_frozen = ocfs2_frozen_trigger,
605 		.t_abort = ocfs2_abort_trigger,
606 	},
607 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
608 };
609 
610 static struct ocfs2_triggers db_triggers = {
611 	.ot_triggers = {
612 		.t_frozen = ocfs2_db_frozen_trigger,
613 		.t_abort = ocfs2_abort_trigger,
614 	},
615 };
616 
617 static struct ocfs2_triggers xb_triggers = {
618 	.ot_triggers = {
619 		.t_frozen = ocfs2_frozen_trigger,
620 		.t_abort = ocfs2_abort_trigger,
621 	},
622 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
623 };
624 
625 static struct ocfs2_triggers dq_triggers = {
626 	.ot_triggers = {
627 		.t_frozen = ocfs2_dq_frozen_trigger,
628 		.t_abort = ocfs2_abort_trigger,
629 	},
630 };
631 
632 static struct ocfs2_triggers dr_triggers = {
633 	.ot_triggers = {
634 		.t_frozen = ocfs2_frozen_trigger,
635 		.t_abort = ocfs2_abort_trigger,
636 	},
637 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
638 };
639 
640 static struct ocfs2_triggers dl_triggers = {
641 	.ot_triggers = {
642 		.t_frozen = ocfs2_frozen_trigger,
643 		.t_abort = ocfs2_abort_trigger,
644 	},
645 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
646 };
647 
648 static int __ocfs2_journal_access(handle_t *handle,
649 				  struct ocfs2_caching_info *ci,
650 				  struct buffer_head *bh,
651 				  struct ocfs2_triggers *triggers,
652 				  int type)
653 {
654 	int status;
655 	struct ocfs2_super *osb =
656 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
657 
658 	BUG_ON(!ci || !ci->ci_ops);
659 	BUG_ON(!handle);
660 	BUG_ON(!bh);
661 
662 	trace_ocfs2_journal_access(
663 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
664 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
665 
666 	/* we can safely remove this assertion after testing. */
667 	if (!buffer_uptodate(bh)) {
668 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
669 		mlog(ML_ERROR, "b_blocknr=%llu\n",
670 		     (unsigned long long)bh->b_blocknr);
671 		BUG();
672 	}
673 
674 	/* Set the current transaction information on the ci so
675 	 * that the locking code knows whether it can drop it's locks
676 	 * on this ci or not. We're protected from the commit
677 	 * thread updating the current transaction id until
678 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
679 	 * j_trans_barrier for us. */
680 	ocfs2_set_ci_lock_trans(osb->journal, ci);
681 
682 	ocfs2_metadata_cache_io_lock(ci);
683 	switch (type) {
684 	case OCFS2_JOURNAL_ACCESS_CREATE:
685 	case OCFS2_JOURNAL_ACCESS_WRITE:
686 		status = jbd2_journal_get_write_access(handle, bh);
687 		break;
688 
689 	case OCFS2_JOURNAL_ACCESS_UNDO:
690 		status = jbd2_journal_get_undo_access(handle, bh);
691 		break;
692 
693 	default:
694 		status = -EINVAL;
695 		mlog(ML_ERROR, "Unknown access type!\n");
696 	}
697 	if (!status && ocfs2_meta_ecc(osb) && triggers)
698 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
699 	ocfs2_metadata_cache_io_unlock(ci);
700 
701 	if (status < 0)
702 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
703 		     status, type);
704 
705 	return status;
706 }
707 
708 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
709 			    struct buffer_head *bh, int type)
710 {
711 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
712 }
713 
714 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
715 			    struct buffer_head *bh, int type)
716 {
717 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
718 }
719 
720 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
721 			    struct buffer_head *bh, int type)
722 {
723 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
724 				      type);
725 }
726 
727 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
728 			    struct buffer_head *bh, int type)
729 {
730 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
731 }
732 
733 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
734 			    struct buffer_head *bh, int type)
735 {
736 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
737 }
738 
739 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
740 			    struct buffer_head *bh, int type)
741 {
742 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
743 }
744 
745 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
746 			    struct buffer_head *bh, int type)
747 {
748 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
749 }
750 
751 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
752 			    struct buffer_head *bh, int type)
753 {
754 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
755 }
756 
757 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
758 			    struct buffer_head *bh, int type)
759 {
760 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
761 }
762 
763 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
764 			 struct buffer_head *bh, int type)
765 {
766 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
767 }
768 
769 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
770 {
771 	int status;
772 
773 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
774 
775 	status = jbd2_journal_dirty_metadata(handle, bh);
776 	if (status) {
777 		mlog_errno(status);
778 		if (!is_handle_aborted(handle)) {
779 			journal_t *journal = handle->h_transaction->t_journal;
780 			struct super_block *sb = bh->b_bdev->bd_super;
781 
782 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
783 					"Aborting transaction and journal.\n");
784 			handle->h_err = status;
785 			jbd2_journal_abort_handle(handle);
786 			jbd2_journal_abort(journal, status);
787 			ocfs2_abort(sb, "Journal already aborted.\n");
788 		}
789 	}
790 }
791 
792 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
793 
794 void ocfs2_set_journal_params(struct ocfs2_super *osb)
795 {
796 	journal_t *journal = osb->journal->j_journal;
797 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
798 
799 	if (osb->osb_commit_interval)
800 		commit_interval = osb->osb_commit_interval;
801 
802 	write_lock(&journal->j_state_lock);
803 	journal->j_commit_interval = commit_interval;
804 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
805 		journal->j_flags |= JBD2_BARRIER;
806 	else
807 		journal->j_flags &= ~JBD2_BARRIER;
808 	write_unlock(&journal->j_state_lock);
809 }
810 
811 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
812 {
813 	int status = -1;
814 	struct inode *inode = NULL; /* the journal inode */
815 	journal_t *j_journal = NULL;
816 	struct ocfs2_dinode *di = NULL;
817 	struct buffer_head *bh = NULL;
818 	struct ocfs2_super *osb;
819 	int inode_lock = 0;
820 
821 	BUG_ON(!journal);
822 
823 	osb = journal->j_osb;
824 
825 	/* already have the inode for our journal */
826 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
827 					    osb->slot_num);
828 	if (inode == NULL) {
829 		status = -EACCES;
830 		mlog_errno(status);
831 		goto done;
832 	}
833 	if (is_bad_inode(inode)) {
834 		mlog(ML_ERROR, "access error (bad inode)\n");
835 		iput(inode);
836 		inode = NULL;
837 		status = -EACCES;
838 		goto done;
839 	}
840 
841 	SET_INODE_JOURNAL(inode);
842 	OCFS2_I(inode)->ip_open_count++;
843 
844 	/* Skip recovery waits here - journal inode metadata never
845 	 * changes in a live cluster so it can be considered an
846 	 * exception to the rule. */
847 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
848 	if (status < 0) {
849 		if (status != -ERESTARTSYS)
850 			mlog(ML_ERROR, "Could not get lock on journal!\n");
851 		goto done;
852 	}
853 
854 	inode_lock = 1;
855 	di = (struct ocfs2_dinode *)bh->b_data;
856 
857 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
858 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
859 		     i_size_read(inode));
860 		status = -EINVAL;
861 		goto done;
862 	}
863 
864 	trace_ocfs2_journal_init(i_size_read(inode),
865 				 (unsigned long long)inode->i_blocks,
866 				 OCFS2_I(inode)->ip_clusters);
867 
868 	/* call the kernels journal init function now */
869 	j_journal = jbd2_journal_init_inode(inode);
870 	if (j_journal == NULL) {
871 		mlog(ML_ERROR, "Linux journal layer error\n");
872 		status = -EINVAL;
873 		goto done;
874 	}
875 
876 	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
877 
878 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
879 		  OCFS2_JOURNAL_DIRTY_FL);
880 
881 	journal->j_journal = j_journal;
882 	journal->j_inode = inode;
883 	journal->j_bh = bh;
884 
885 	ocfs2_set_journal_params(osb);
886 
887 	journal->j_state = OCFS2_JOURNAL_LOADED;
888 
889 	status = 0;
890 done:
891 	if (status < 0) {
892 		if (inode_lock)
893 			ocfs2_inode_unlock(inode, 1);
894 		brelse(bh);
895 		if (inode) {
896 			OCFS2_I(inode)->ip_open_count--;
897 			iput(inode);
898 		}
899 	}
900 
901 	return status;
902 }
903 
904 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
905 {
906 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
907 }
908 
909 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
910 {
911 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
912 }
913 
914 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
915 				      int dirty, int replayed)
916 {
917 	int status;
918 	unsigned int flags;
919 	struct ocfs2_journal *journal = osb->journal;
920 	struct buffer_head *bh = journal->j_bh;
921 	struct ocfs2_dinode *fe;
922 
923 	fe = (struct ocfs2_dinode *)bh->b_data;
924 
925 	/* The journal bh on the osb always comes from ocfs2_journal_init()
926 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
927 	 * code bug if we mess it up. */
928 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
929 
930 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
931 	if (dirty)
932 		flags |= OCFS2_JOURNAL_DIRTY_FL;
933 	else
934 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
935 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
936 
937 	if (replayed)
938 		ocfs2_bump_recovery_generation(fe);
939 
940 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
941 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
942 	if (status < 0)
943 		mlog_errno(status);
944 
945 	return status;
946 }
947 
948 /*
949  * If the journal has been kmalloc'd it needs to be freed after this
950  * call.
951  */
952 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
953 {
954 	struct ocfs2_journal *journal = NULL;
955 	int status = 0;
956 	struct inode *inode = NULL;
957 	int num_running_trans = 0;
958 
959 	BUG_ON(!osb);
960 
961 	journal = osb->journal;
962 	if (!journal)
963 		goto done;
964 
965 	inode = journal->j_inode;
966 
967 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
968 		goto done;
969 
970 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
971 	if (!igrab(inode))
972 		BUG();
973 
974 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
975 	trace_ocfs2_journal_shutdown(num_running_trans);
976 
977 	/* Do a commit_cache here. It will flush our journal, *and*
978 	 * release any locks that are still held.
979 	 * set the SHUTDOWN flag and release the trans lock.
980 	 * the commit thread will take the trans lock for us below. */
981 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
982 
983 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
984 	 * drop the trans_lock (which we want to hold until we
985 	 * completely destroy the journal. */
986 	if (osb->commit_task) {
987 		/* Wait for the commit thread */
988 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
989 		kthread_stop(osb->commit_task);
990 		osb->commit_task = NULL;
991 	}
992 
993 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
994 
995 	if (ocfs2_mount_local(osb)) {
996 		jbd2_journal_lock_updates(journal->j_journal);
997 		status = jbd2_journal_flush(journal->j_journal);
998 		jbd2_journal_unlock_updates(journal->j_journal);
999 		if (status < 0)
1000 			mlog_errno(status);
1001 	}
1002 
1003 	if (status == 0) {
1004 		/*
1005 		 * Do not toggle if flush was unsuccessful otherwise
1006 		 * will leave dirty metadata in a "clean" journal
1007 		 */
1008 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1009 		if (status < 0)
1010 			mlog_errno(status);
1011 	}
1012 
1013 	/* Shutdown the kernel journal system */
1014 	jbd2_journal_destroy(journal->j_journal);
1015 	journal->j_journal = NULL;
1016 
1017 	OCFS2_I(inode)->ip_open_count--;
1018 
1019 	/* unlock our journal */
1020 	ocfs2_inode_unlock(inode, 1);
1021 
1022 	brelse(journal->j_bh);
1023 	journal->j_bh = NULL;
1024 
1025 	journal->j_state = OCFS2_JOURNAL_FREE;
1026 
1027 //	up_write(&journal->j_trans_barrier);
1028 done:
1029 	if (inode)
1030 		iput(inode);
1031 }
1032 
1033 static void ocfs2_clear_journal_error(struct super_block *sb,
1034 				      journal_t *journal,
1035 				      int slot)
1036 {
1037 	int olderr;
1038 
1039 	olderr = jbd2_journal_errno(journal);
1040 	if (olderr) {
1041 		mlog(ML_ERROR, "File system error %d recorded in "
1042 		     "journal %u.\n", olderr, slot);
1043 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1044 		     sb->s_id);
1045 
1046 		jbd2_journal_ack_err(journal);
1047 		jbd2_journal_clear_err(journal);
1048 	}
1049 }
1050 
1051 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1052 {
1053 	int status = 0;
1054 	struct ocfs2_super *osb;
1055 
1056 	BUG_ON(!journal);
1057 
1058 	osb = journal->j_osb;
1059 
1060 	status = jbd2_journal_load(journal->j_journal);
1061 	if (status < 0) {
1062 		mlog(ML_ERROR, "Failed to load journal!\n");
1063 		goto done;
1064 	}
1065 
1066 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1067 
1068 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1069 	if (status < 0) {
1070 		mlog_errno(status);
1071 		goto done;
1072 	}
1073 
1074 	/* Launch the commit thread */
1075 	if (!local) {
1076 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1077 					       "ocfs2cmt");
1078 		if (IS_ERR(osb->commit_task)) {
1079 			status = PTR_ERR(osb->commit_task);
1080 			osb->commit_task = NULL;
1081 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1082 			     "error=%d", status);
1083 			goto done;
1084 		}
1085 	} else
1086 		osb->commit_task = NULL;
1087 
1088 done:
1089 	return status;
1090 }
1091 
1092 
1093 /* 'full' flag tells us whether we clear out all blocks or if we just
1094  * mark the journal clean */
1095 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1096 {
1097 	int status;
1098 
1099 	BUG_ON(!journal);
1100 
1101 	status = jbd2_journal_wipe(journal->j_journal, full);
1102 	if (status < 0) {
1103 		mlog_errno(status);
1104 		goto bail;
1105 	}
1106 
1107 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1108 	if (status < 0)
1109 		mlog_errno(status);
1110 
1111 bail:
1112 	return status;
1113 }
1114 
1115 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1116 {
1117 	int empty;
1118 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1119 
1120 	spin_lock(&osb->osb_lock);
1121 	empty = (rm->rm_used == 0);
1122 	spin_unlock(&osb->osb_lock);
1123 
1124 	return empty;
1125 }
1126 
1127 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1128 {
1129 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1130 }
1131 
1132 /*
1133  * JBD Might read a cached version of another nodes journal file. We
1134  * don't want this as this file changes often and we get no
1135  * notification on those changes. The only way to be sure that we've
1136  * got the most up to date version of those blocks then is to force
1137  * read them off disk. Just searching through the buffer cache won't
1138  * work as there may be pages backing this file which are still marked
1139  * up to date. We know things can't change on this file underneath us
1140  * as we have the lock by now :)
1141  */
1142 static int ocfs2_force_read_journal(struct inode *inode)
1143 {
1144 	int status = 0;
1145 	int i;
1146 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1147 #define CONCURRENT_JOURNAL_FILL 32ULL
1148 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1149 
1150 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1151 
1152 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1153 	v_blkno = 0;
1154 	while (v_blkno < num_blocks) {
1155 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1156 						     &p_blkno, &p_blocks, NULL);
1157 		if (status < 0) {
1158 			mlog_errno(status);
1159 			goto bail;
1160 		}
1161 
1162 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1163 			p_blocks = CONCURRENT_JOURNAL_FILL;
1164 
1165 		/* We are reading journal data which should not
1166 		 * be put in the uptodate cache */
1167 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1168 						p_blkno, p_blocks, bhs);
1169 		if (status < 0) {
1170 			mlog_errno(status);
1171 			goto bail;
1172 		}
1173 
1174 		for(i = 0; i < p_blocks; i++) {
1175 			brelse(bhs[i]);
1176 			bhs[i] = NULL;
1177 		}
1178 
1179 		v_blkno += p_blocks;
1180 	}
1181 
1182 bail:
1183 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1184 		brelse(bhs[i]);
1185 	return status;
1186 }
1187 
1188 struct ocfs2_la_recovery_item {
1189 	struct list_head	lri_list;
1190 	int			lri_slot;
1191 	struct ocfs2_dinode	*lri_la_dinode;
1192 	struct ocfs2_dinode	*lri_tl_dinode;
1193 	struct ocfs2_quota_recovery *lri_qrec;
1194 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1195 };
1196 
1197 /* Does the second half of the recovery process. By this point, the
1198  * node is marked clean and can actually be considered recovered,
1199  * hence it's no longer in the recovery map, but there's still some
1200  * cleanup we can do which shouldn't happen within the recovery thread
1201  * as locking in that context becomes very difficult if we are to take
1202  * recovering nodes into account.
1203  *
1204  * NOTE: This function can and will sleep on recovery of other nodes
1205  * during cluster locking, just like any other ocfs2 process.
1206  */
1207 void ocfs2_complete_recovery(struct work_struct *work)
1208 {
1209 	int ret = 0;
1210 	struct ocfs2_journal *journal =
1211 		container_of(work, struct ocfs2_journal, j_recovery_work);
1212 	struct ocfs2_super *osb = journal->j_osb;
1213 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1214 	struct ocfs2_la_recovery_item *item, *n;
1215 	struct ocfs2_quota_recovery *qrec;
1216 	enum ocfs2_orphan_reco_type orphan_reco_type;
1217 	LIST_HEAD(tmp_la_list);
1218 
1219 	trace_ocfs2_complete_recovery(
1220 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1221 
1222 	spin_lock(&journal->j_lock);
1223 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1224 	spin_unlock(&journal->j_lock);
1225 
1226 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1227 		list_del_init(&item->lri_list);
1228 
1229 		ocfs2_wait_on_quotas(osb);
1230 
1231 		la_dinode = item->lri_la_dinode;
1232 		tl_dinode = item->lri_tl_dinode;
1233 		qrec = item->lri_qrec;
1234 		orphan_reco_type = item->lri_orphan_reco_type;
1235 
1236 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1237 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1238 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1239 			qrec);
1240 
1241 		if (la_dinode) {
1242 			ret = ocfs2_complete_local_alloc_recovery(osb,
1243 								  la_dinode);
1244 			if (ret < 0)
1245 				mlog_errno(ret);
1246 
1247 			kfree(la_dinode);
1248 		}
1249 
1250 		if (tl_dinode) {
1251 			ret = ocfs2_complete_truncate_log_recovery(osb,
1252 								   tl_dinode);
1253 			if (ret < 0)
1254 				mlog_errno(ret);
1255 
1256 			kfree(tl_dinode);
1257 		}
1258 
1259 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1260 				orphan_reco_type);
1261 		if (ret < 0)
1262 			mlog_errno(ret);
1263 
1264 		if (qrec) {
1265 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1266 							  item->lri_slot);
1267 			if (ret < 0)
1268 				mlog_errno(ret);
1269 			/* Recovery info is already freed now */
1270 		}
1271 
1272 		kfree(item);
1273 	}
1274 
1275 	trace_ocfs2_complete_recovery_end(ret);
1276 }
1277 
1278 /* NOTE: This function always eats your references to la_dinode and
1279  * tl_dinode, either manually on error, or by passing them to
1280  * ocfs2_complete_recovery */
1281 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1282 					    int slot_num,
1283 					    struct ocfs2_dinode *la_dinode,
1284 					    struct ocfs2_dinode *tl_dinode,
1285 					    struct ocfs2_quota_recovery *qrec,
1286 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1287 {
1288 	struct ocfs2_la_recovery_item *item;
1289 
1290 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1291 	if (!item) {
1292 		/* Though we wish to avoid it, we are in fact safe in
1293 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1294 		 * than capable of reclaiming unused space. */
1295 		kfree(la_dinode);
1296 		kfree(tl_dinode);
1297 
1298 		if (qrec)
1299 			ocfs2_free_quota_recovery(qrec);
1300 
1301 		mlog_errno(-ENOMEM);
1302 		return;
1303 	}
1304 
1305 	INIT_LIST_HEAD(&item->lri_list);
1306 	item->lri_la_dinode = la_dinode;
1307 	item->lri_slot = slot_num;
1308 	item->lri_tl_dinode = tl_dinode;
1309 	item->lri_qrec = qrec;
1310 	item->lri_orphan_reco_type = orphan_reco_type;
1311 
1312 	spin_lock(&journal->j_lock);
1313 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1314 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1315 	spin_unlock(&journal->j_lock);
1316 }
1317 
1318 /* Called by the mount code to queue recovery the last part of
1319  * recovery for it's own and offline slot(s). */
1320 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1321 {
1322 	struct ocfs2_journal *journal = osb->journal;
1323 
1324 	if (ocfs2_is_hard_readonly(osb))
1325 		return;
1326 
1327 	/* No need to queue up our truncate_log as regular cleanup will catch
1328 	 * that */
1329 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1330 					osb->local_alloc_copy, NULL, NULL,
1331 					ORPHAN_NEED_TRUNCATE);
1332 	ocfs2_schedule_truncate_log_flush(osb, 0);
1333 
1334 	osb->local_alloc_copy = NULL;
1335 	osb->dirty = 0;
1336 
1337 	/* queue to recover orphan slots for all offline slots */
1338 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1339 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1340 	ocfs2_free_replay_slots(osb);
1341 }
1342 
1343 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1344 {
1345 	if (osb->quota_rec) {
1346 		ocfs2_queue_recovery_completion(osb->journal,
1347 						osb->slot_num,
1348 						NULL,
1349 						NULL,
1350 						osb->quota_rec,
1351 						ORPHAN_NEED_TRUNCATE);
1352 		osb->quota_rec = NULL;
1353 	}
1354 }
1355 
1356 static int __ocfs2_recovery_thread(void *arg)
1357 {
1358 	int status, node_num, slot_num;
1359 	struct ocfs2_super *osb = arg;
1360 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1361 	int *rm_quota = NULL;
1362 	int rm_quota_used = 0, i;
1363 	struct ocfs2_quota_recovery *qrec;
1364 
1365 	status = ocfs2_wait_on_mount(osb);
1366 	if (status < 0) {
1367 		goto bail;
1368 	}
1369 
1370 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1371 	if (!rm_quota) {
1372 		status = -ENOMEM;
1373 		goto bail;
1374 	}
1375 restart:
1376 	status = ocfs2_super_lock(osb, 1);
1377 	if (status < 0) {
1378 		mlog_errno(status);
1379 		goto bail;
1380 	}
1381 
1382 	status = ocfs2_compute_replay_slots(osb);
1383 	if (status < 0)
1384 		mlog_errno(status);
1385 
1386 	/* queue recovery for our own slot */
1387 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1388 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1389 
1390 	spin_lock(&osb->osb_lock);
1391 	while (rm->rm_used) {
1392 		/* It's always safe to remove entry zero, as we won't
1393 		 * clear it until ocfs2_recover_node() has succeeded. */
1394 		node_num = rm->rm_entries[0];
1395 		spin_unlock(&osb->osb_lock);
1396 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1397 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1398 		if (slot_num == -ENOENT) {
1399 			status = 0;
1400 			goto skip_recovery;
1401 		}
1402 
1403 		/* It is a bit subtle with quota recovery. We cannot do it
1404 		 * immediately because we have to obtain cluster locks from
1405 		 * quota files and we also don't want to just skip it because
1406 		 * then quota usage would be out of sync until some node takes
1407 		 * the slot. So we remember which nodes need quota recovery
1408 		 * and when everything else is done, we recover quotas. */
1409 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1410 		if (i == rm_quota_used)
1411 			rm_quota[rm_quota_used++] = slot_num;
1412 
1413 		status = ocfs2_recover_node(osb, node_num, slot_num);
1414 skip_recovery:
1415 		if (!status) {
1416 			ocfs2_recovery_map_clear(osb, node_num);
1417 		} else {
1418 			mlog(ML_ERROR,
1419 			     "Error %d recovering node %d on device (%u,%u)!\n",
1420 			     status, node_num,
1421 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1422 			mlog(ML_ERROR, "Volume requires unmount.\n");
1423 		}
1424 
1425 		spin_lock(&osb->osb_lock);
1426 	}
1427 	spin_unlock(&osb->osb_lock);
1428 	trace_ocfs2_recovery_thread_end(status);
1429 
1430 	/* Refresh all journal recovery generations from disk */
1431 	status = ocfs2_check_journals_nolocks(osb);
1432 	status = (status == -EROFS) ? 0 : status;
1433 	if (status < 0)
1434 		mlog_errno(status);
1435 
1436 	/* Now it is right time to recover quotas... We have to do this under
1437 	 * superblock lock so that no one can start using the slot (and crash)
1438 	 * before we recover it */
1439 	for (i = 0; i < rm_quota_used; i++) {
1440 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1441 		if (IS_ERR(qrec)) {
1442 			status = PTR_ERR(qrec);
1443 			mlog_errno(status);
1444 			continue;
1445 		}
1446 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1447 						NULL, NULL, qrec,
1448 						ORPHAN_NEED_TRUNCATE);
1449 	}
1450 
1451 	ocfs2_super_unlock(osb, 1);
1452 
1453 	/* queue recovery for offline slots */
1454 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1455 
1456 bail:
1457 	mutex_lock(&osb->recovery_lock);
1458 	if (!status && !ocfs2_recovery_completed(osb)) {
1459 		mutex_unlock(&osb->recovery_lock);
1460 		goto restart;
1461 	}
1462 
1463 	ocfs2_free_replay_slots(osb);
1464 	osb->recovery_thread_task = NULL;
1465 	mb(); /* sync with ocfs2_recovery_thread_running */
1466 	wake_up(&osb->recovery_event);
1467 
1468 	mutex_unlock(&osb->recovery_lock);
1469 
1470 	kfree(rm_quota);
1471 
1472 	/* no one is callint kthread_stop() for us so the kthread() api
1473 	 * requires that we call do_exit().  And it isn't exported, but
1474 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1475 	complete_and_exit(NULL, status);
1476 }
1477 
1478 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1479 {
1480 	mutex_lock(&osb->recovery_lock);
1481 
1482 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1483 		osb->disable_recovery, osb->recovery_thread_task,
1484 		osb->disable_recovery ?
1485 		-1 : ocfs2_recovery_map_set(osb, node_num));
1486 
1487 	if (osb->disable_recovery)
1488 		goto out;
1489 
1490 	if (osb->recovery_thread_task)
1491 		goto out;
1492 
1493 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1494 						 "ocfs2rec");
1495 	if (IS_ERR(osb->recovery_thread_task)) {
1496 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1497 		osb->recovery_thread_task = NULL;
1498 	}
1499 
1500 out:
1501 	mutex_unlock(&osb->recovery_lock);
1502 	wake_up(&osb->recovery_event);
1503 }
1504 
1505 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1506 				    int slot_num,
1507 				    struct buffer_head **bh,
1508 				    struct inode **ret_inode)
1509 {
1510 	int status = -EACCES;
1511 	struct inode *inode = NULL;
1512 
1513 	BUG_ON(slot_num >= osb->max_slots);
1514 
1515 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1516 					    slot_num);
1517 	if (!inode || is_bad_inode(inode)) {
1518 		mlog_errno(status);
1519 		goto bail;
1520 	}
1521 	SET_INODE_JOURNAL(inode);
1522 
1523 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1524 	if (status < 0) {
1525 		mlog_errno(status);
1526 		goto bail;
1527 	}
1528 
1529 	status = 0;
1530 
1531 bail:
1532 	if (inode) {
1533 		if (status || !ret_inode)
1534 			iput(inode);
1535 		else
1536 			*ret_inode = inode;
1537 	}
1538 	return status;
1539 }
1540 
1541 /* Does the actual journal replay and marks the journal inode as
1542  * clean. Will only replay if the journal inode is marked dirty. */
1543 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1544 				int node_num,
1545 				int slot_num)
1546 {
1547 	int status;
1548 	int got_lock = 0;
1549 	unsigned int flags;
1550 	struct inode *inode = NULL;
1551 	struct ocfs2_dinode *fe;
1552 	journal_t *journal = NULL;
1553 	struct buffer_head *bh = NULL;
1554 	u32 slot_reco_gen;
1555 
1556 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1557 	if (status) {
1558 		mlog_errno(status);
1559 		goto done;
1560 	}
1561 
1562 	fe = (struct ocfs2_dinode *)bh->b_data;
1563 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1564 	brelse(bh);
1565 	bh = NULL;
1566 
1567 	/*
1568 	 * As the fs recovery is asynchronous, there is a small chance that
1569 	 * another node mounted (and recovered) the slot before the recovery
1570 	 * thread could get the lock. To handle that, we dirty read the journal
1571 	 * inode for that slot to get the recovery generation. If it is
1572 	 * different than what we expected, the slot has been recovered.
1573 	 * If not, it needs recovery.
1574 	 */
1575 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1576 		trace_ocfs2_replay_journal_recovered(slot_num,
1577 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1578 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1579 		status = -EBUSY;
1580 		goto done;
1581 	}
1582 
1583 	/* Continue with recovery as the journal has not yet been recovered */
1584 
1585 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1586 	if (status < 0) {
1587 		trace_ocfs2_replay_journal_lock_err(status);
1588 		if (status != -ERESTARTSYS)
1589 			mlog(ML_ERROR, "Could not lock journal!\n");
1590 		goto done;
1591 	}
1592 	got_lock = 1;
1593 
1594 	fe = (struct ocfs2_dinode *) bh->b_data;
1595 
1596 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1597 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1598 
1599 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1600 		trace_ocfs2_replay_journal_skip(node_num);
1601 		/* Refresh recovery generation for the slot */
1602 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1603 		goto done;
1604 	}
1605 
1606 	/* we need to run complete recovery for offline orphan slots */
1607 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1608 
1609 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1610 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1611 	       MINOR(osb->sb->s_dev));
1612 
1613 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1614 
1615 	status = ocfs2_force_read_journal(inode);
1616 	if (status < 0) {
1617 		mlog_errno(status);
1618 		goto done;
1619 	}
1620 
1621 	journal = jbd2_journal_init_inode(inode);
1622 	if (journal == NULL) {
1623 		mlog(ML_ERROR, "Linux journal layer error\n");
1624 		status = -EIO;
1625 		goto done;
1626 	}
1627 
1628 	status = jbd2_journal_load(journal);
1629 	if (status < 0) {
1630 		mlog_errno(status);
1631 		if (!igrab(inode))
1632 			BUG();
1633 		jbd2_journal_destroy(journal);
1634 		goto done;
1635 	}
1636 
1637 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1638 
1639 	/* wipe the journal */
1640 	jbd2_journal_lock_updates(journal);
1641 	status = jbd2_journal_flush(journal);
1642 	jbd2_journal_unlock_updates(journal);
1643 	if (status < 0)
1644 		mlog_errno(status);
1645 
1646 	/* This will mark the node clean */
1647 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1648 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1649 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1650 
1651 	/* Increment recovery generation to indicate successful recovery */
1652 	ocfs2_bump_recovery_generation(fe);
1653 	osb->slot_recovery_generations[slot_num] =
1654 					ocfs2_get_recovery_generation(fe);
1655 
1656 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1657 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1658 	if (status < 0)
1659 		mlog_errno(status);
1660 
1661 	if (!igrab(inode))
1662 		BUG();
1663 
1664 	jbd2_journal_destroy(journal);
1665 
1666 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1667 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1668 	       MINOR(osb->sb->s_dev));
1669 done:
1670 	/* drop the lock on this nodes journal */
1671 	if (got_lock)
1672 		ocfs2_inode_unlock(inode, 1);
1673 
1674 	if (inode)
1675 		iput(inode);
1676 
1677 	brelse(bh);
1678 
1679 	return status;
1680 }
1681 
1682 /*
1683  * Do the most important parts of node recovery:
1684  *  - Replay it's journal
1685  *  - Stamp a clean local allocator file
1686  *  - Stamp a clean truncate log
1687  *  - Mark the node clean
1688  *
1689  * If this function completes without error, a node in OCFS2 can be
1690  * said to have been safely recovered. As a result, failure during the
1691  * second part of a nodes recovery process (local alloc recovery) is
1692  * far less concerning.
1693  */
1694 static int ocfs2_recover_node(struct ocfs2_super *osb,
1695 			      int node_num, int slot_num)
1696 {
1697 	int status = 0;
1698 	struct ocfs2_dinode *la_copy = NULL;
1699 	struct ocfs2_dinode *tl_copy = NULL;
1700 
1701 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1702 
1703 	/* Should not ever be called to recover ourselves -- in that
1704 	 * case we should've called ocfs2_journal_load instead. */
1705 	BUG_ON(osb->node_num == node_num);
1706 
1707 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1708 	if (status < 0) {
1709 		if (status == -EBUSY) {
1710 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1711 			status = 0;
1712 			goto done;
1713 		}
1714 		mlog_errno(status);
1715 		goto done;
1716 	}
1717 
1718 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1719 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1720 	if (status < 0) {
1721 		mlog_errno(status);
1722 		goto done;
1723 	}
1724 
1725 	/* An error from begin_truncate_log_recovery is not
1726 	 * serious enough to warrant halting the rest of
1727 	 * recovery. */
1728 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1729 	if (status < 0)
1730 		mlog_errno(status);
1731 
1732 	/* Likewise, this would be a strange but ultimately not so
1733 	 * harmful place to get an error... */
1734 	status = ocfs2_clear_slot(osb, slot_num);
1735 	if (status < 0)
1736 		mlog_errno(status);
1737 
1738 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1739 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1740 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1741 
1742 	status = 0;
1743 done:
1744 
1745 	return status;
1746 }
1747 
1748 /* Test node liveness by trylocking his journal. If we get the lock,
1749  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1750  * still alive (we couldn't get the lock) and < 0 on error. */
1751 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1752 				 int slot_num)
1753 {
1754 	int status, flags;
1755 	struct inode *inode = NULL;
1756 
1757 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1758 					    slot_num);
1759 	if (inode == NULL) {
1760 		mlog(ML_ERROR, "access error\n");
1761 		status = -EACCES;
1762 		goto bail;
1763 	}
1764 	if (is_bad_inode(inode)) {
1765 		mlog(ML_ERROR, "access error (bad inode)\n");
1766 		iput(inode);
1767 		inode = NULL;
1768 		status = -EACCES;
1769 		goto bail;
1770 	}
1771 	SET_INODE_JOURNAL(inode);
1772 
1773 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1774 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1775 	if (status < 0) {
1776 		if (status != -EAGAIN)
1777 			mlog_errno(status);
1778 		goto bail;
1779 	}
1780 
1781 	ocfs2_inode_unlock(inode, 1);
1782 bail:
1783 	if (inode)
1784 		iput(inode);
1785 
1786 	return status;
1787 }
1788 
1789 /* Call this underneath ocfs2_super_lock. It also assumes that the
1790  * slot info struct has been updated from disk. */
1791 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1792 {
1793 	unsigned int node_num;
1794 	int status, i;
1795 	u32 gen;
1796 	struct buffer_head *bh = NULL;
1797 	struct ocfs2_dinode *di;
1798 
1799 	/* This is called with the super block cluster lock, so we
1800 	 * know that the slot map can't change underneath us. */
1801 
1802 	for (i = 0; i < osb->max_slots; i++) {
1803 		/* Read journal inode to get the recovery generation */
1804 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1805 		if (status) {
1806 			mlog_errno(status);
1807 			goto bail;
1808 		}
1809 		di = (struct ocfs2_dinode *)bh->b_data;
1810 		gen = ocfs2_get_recovery_generation(di);
1811 		brelse(bh);
1812 		bh = NULL;
1813 
1814 		spin_lock(&osb->osb_lock);
1815 		osb->slot_recovery_generations[i] = gen;
1816 
1817 		trace_ocfs2_mark_dead_nodes(i,
1818 					    osb->slot_recovery_generations[i]);
1819 
1820 		if (i == osb->slot_num) {
1821 			spin_unlock(&osb->osb_lock);
1822 			continue;
1823 		}
1824 
1825 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1826 		if (status == -ENOENT) {
1827 			spin_unlock(&osb->osb_lock);
1828 			continue;
1829 		}
1830 
1831 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1832 			spin_unlock(&osb->osb_lock);
1833 			continue;
1834 		}
1835 		spin_unlock(&osb->osb_lock);
1836 
1837 		/* Ok, we have a slot occupied by another node which
1838 		 * is not in the recovery map. We trylock his journal
1839 		 * file here to test if he's alive. */
1840 		status = ocfs2_trylock_journal(osb, i);
1841 		if (!status) {
1842 			/* Since we're called from mount, we know that
1843 			 * the recovery thread can't race us on
1844 			 * setting / checking the recovery bits. */
1845 			ocfs2_recovery_thread(osb, node_num);
1846 		} else if ((status < 0) && (status != -EAGAIN)) {
1847 			mlog_errno(status);
1848 			goto bail;
1849 		}
1850 	}
1851 
1852 	status = 0;
1853 bail:
1854 	return status;
1855 }
1856 
1857 /*
1858  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1859  * randomness to the timeout to minimize multple nodes firing the timer at the
1860  * same time.
1861  */
1862 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1863 {
1864 	unsigned long time;
1865 
1866 	get_random_bytes(&time, sizeof(time));
1867 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1868 	return msecs_to_jiffies(time);
1869 }
1870 
1871 /*
1872  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1873  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1874  * is done to catch any orphans that are left over in orphan directories.
1875  *
1876  * It scans all slots, even ones that are in use. It does so to handle the
1877  * case described below:
1878  *
1879  *   Node 1 has an inode it was using. The dentry went away due to memory
1880  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1881  *   has the open lock.
1882  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1883  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1884  *   open lock, sees that another node has a PR, and does nothing.
1885  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1886  *   open lock, sees the PR still, and does nothing.
1887  *   Basically, we have to trigger an orphan iput on node 1. The only way
1888  *   for this to happen is if node 1 runs node 2's orphan dir.
1889  *
1890  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1891  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1892  * stored in LVB. If the sequence number has changed, it means some other
1893  * node has done the scan.  This node skips the scan and tracks the
1894  * sequence number.  If the sequence number didn't change, it means a scan
1895  * hasn't happened.  The node queues a scan and increments the
1896  * sequence number in the LVB.
1897  */
1898 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1899 {
1900 	struct ocfs2_orphan_scan *os;
1901 	int status, i;
1902 	u32 seqno = 0;
1903 
1904 	os = &osb->osb_orphan_scan;
1905 
1906 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1907 		goto out;
1908 
1909 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1910 					    atomic_read(&os->os_state));
1911 
1912 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1913 	if (status < 0) {
1914 		if (status != -EAGAIN)
1915 			mlog_errno(status);
1916 		goto out;
1917 	}
1918 
1919 	/* Do no queue the tasks if the volume is being umounted */
1920 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1921 		goto unlock;
1922 
1923 	if (os->os_seqno != seqno) {
1924 		os->os_seqno = seqno;
1925 		goto unlock;
1926 	}
1927 
1928 	for (i = 0; i < osb->max_slots; i++)
1929 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1930 						NULL, ORPHAN_NO_NEED_TRUNCATE);
1931 	/*
1932 	 * We queued a recovery on orphan slots, increment the sequence
1933 	 * number and update LVB so other node will skip the scan for a while
1934 	 */
1935 	seqno++;
1936 	os->os_count++;
1937 	os->os_scantime = CURRENT_TIME;
1938 unlock:
1939 	ocfs2_orphan_scan_unlock(osb, seqno);
1940 out:
1941 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1942 					  atomic_read(&os->os_state));
1943 	return;
1944 }
1945 
1946 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1947 static void ocfs2_orphan_scan_work(struct work_struct *work)
1948 {
1949 	struct ocfs2_orphan_scan *os;
1950 	struct ocfs2_super *osb;
1951 
1952 	os = container_of(work, struct ocfs2_orphan_scan,
1953 			  os_orphan_scan_work.work);
1954 	osb = os->os_osb;
1955 
1956 	mutex_lock(&os->os_lock);
1957 	ocfs2_queue_orphan_scan(osb);
1958 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1959 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1960 				      ocfs2_orphan_scan_timeout());
1961 	mutex_unlock(&os->os_lock);
1962 }
1963 
1964 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1965 {
1966 	struct ocfs2_orphan_scan *os;
1967 
1968 	os = &osb->osb_orphan_scan;
1969 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1970 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1971 		mutex_lock(&os->os_lock);
1972 		cancel_delayed_work(&os->os_orphan_scan_work);
1973 		mutex_unlock(&os->os_lock);
1974 	}
1975 }
1976 
1977 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1978 {
1979 	struct ocfs2_orphan_scan *os;
1980 
1981 	os = &osb->osb_orphan_scan;
1982 	os->os_osb = osb;
1983 	os->os_count = 0;
1984 	os->os_seqno = 0;
1985 	mutex_init(&os->os_lock);
1986 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1987 }
1988 
1989 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1990 {
1991 	struct ocfs2_orphan_scan *os;
1992 
1993 	os = &osb->osb_orphan_scan;
1994 	os->os_scantime = CURRENT_TIME;
1995 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1996 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1997 	else {
1998 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1999 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
2000 				   ocfs2_orphan_scan_timeout());
2001 	}
2002 }
2003 
2004 struct ocfs2_orphan_filldir_priv {
2005 	struct dir_context	ctx;
2006 	struct inode		*head;
2007 	struct ocfs2_super	*osb;
2008 };
2009 
2010 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2011 				int name_len, loff_t pos, u64 ino,
2012 				unsigned type)
2013 {
2014 	struct ocfs2_orphan_filldir_priv *p =
2015 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2016 	struct inode *iter;
2017 
2018 	if (name_len == 1 && !strncmp(".", name, 1))
2019 		return 0;
2020 	if (name_len == 2 && !strncmp("..", name, 2))
2021 		return 0;
2022 
2023 	/* Skip bad inodes so that recovery can continue */
2024 	iter = ocfs2_iget(p->osb, ino,
2025 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2026 	if (IS_ERR(iter))
2027 		return 0;
2028 
2029 	/* Skip inodes which are already added to recover list, since dio may
2030 	 * happen concurrently with unlink/rename */
2031 	if (OCFS2_I(iter)->ip_next_orphan) {
2032 		iput(iter);
2033 		return 0;
2034 	}
2035 
2036 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2037 	/* No locking is required for the next_orphan queue as there
2038 	 * is only ever a single process doing orphan recovery. */
2039 	OCFS2_I(iter)->ip_next_orphan = p->head;
2040 	p->head = iter;
2041 
2042 	return 0;
2043 }
2044 
2045 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2046 			       int slot,
2047 			       struct inode **head)
2048 {
2049 	int status;
2050 	struct inode *orphan_dir_inode = NULL;
2051 	struct ocfs2_orphan_filldir_priv priv = {
2052 		.ctx.actor = ocfs2_orphan_filldir,
2053 		.osb = osb,
2054 		.head = *head
2055 	};
2056 
2057 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2058 						       ORPHAN_DIR_SYSTEM_INODE,
2059 						       slot);
2060 	if  (!orphan_dir_inode) {
2061 		status = -ENOENT;
2062 		mlog_errno(status);
2063 		return status;
2064 	}
2065 
2066 	mutex_lock(&orphan_dir_inode->i_mutex);
2067 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2068 	if (status < 0) {
2069 		mlog_errno(status);
2070 		goto out;
2071 	}
2072 
2073 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2074 	if (status) {
2075 		mlog_errno(status);
2076 		goto out_cluster;
2077 	}
2078 
2079 	*head = priv.head;
2080 
2081 out_cluster:
2082 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2083 out:
2084 	mutex_unlock(&orphan_dir_inode->i_mutex);
2085 	iput(orphan_dir_inode);
2086 	return status;
2087 }
2088 
2089 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2090 					      int slot)
2091 {
2092 	int ret;
2093 
2094 	spin_lock(&osb->osb_lock);
2095 	ret = !osb->osb_orphan_wipes[slot];
2096 	spin_unlock(&osb->osb_lock);
2097 	return ret;
2098 }
2099 
2100 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2101 					     int slot)
2102 {
2103 	spin_lock(&osb->osb_lock);
2104 	/* Mark ourselves such that new processes in delete_inode()
2105 	 * know to quit early. */
2106 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2107 	while (osb->osb_orphan_wipes[slot]) {
2108 		/* If any processes are already in the middle of an
2109 		 * orphan wipe on this dir, then we need to wait for
2110 		 * them. */
2111 		spin_unlock(&osb->osb_lock);
2112 		wait_event_interruptible(osb->osb_wipe_event,
2113 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2114 		spin_lock(&osb->osb_lock);
2115 	}
2116 	spin_unlock(&osb->osb_lock);
2117 }
2118 
2119 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2120 					      int slot)
2121 {
2122 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2123 }
2124 
2125 /*
2126  * Orphan recovery. Each mounted node has it's own orphan dir which we
2127  * must run during recovery. Our strategy here is to build a list of
2128  * the inodes in the orphan dir and iget/iput them. The VFS does
2129  * (most) of the rest of the work.
2130  *
2131  * Orphan recovery can happen at any time, not just mount so we have a
2132  * couple of extra considerations.
2133  *
2134  * - We grab as many inodes as we can under the orphan dir lock -
2135  *   doing iget() outside the orphan dir risks getting a reference on
2136  *   an invalid inode.
2137  * - We must be sure not to deadlock with other processes on the
2138  *   system wanting to run delete_inode(). This can happen when they go
2139  *   to lock the orphan dir and the orphan recovery process attempts to
2140  *   iget() inside the orphan dir lock. This can be avoided by
2141  *   advertising our state to ocfs2_delete_inode().
2142  */
2143 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2144 				 int slot,
2145 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2146 {
2147 	int ret = 0;
2148 	struct inode *inode = NULL;
2149 	struct inode *iter;
2150 	struct ocfs2_inode_info *oi;
2151 	struct buffer_head *di_bh = NULL;
2152 	struct ocfs2_dinode *di = NULL;
2153 
2154 	trace_ocfs2_recover_orphans(slot);
2155 
2156 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2157 	ret = ocfs2_queue_orphans(osb, slot, &inode);
2158 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2159 
2160 	/* Error here should be noted, but we want to continue with as
2161 	 * many queued inodes as we've got. */
2162 	if (ret)
2163 		mlog_errno(ret);
2164 
2165 	while (inode) {
2166 		oi = OCFS2_I(inode);
2167 		trace_ocfs2_recover_orphans_iput(
2168 					(unsigned long long)oi->ip_blkno);
2169 
2170 		iter = oi->ip_next_orphan;
2171 		oi->ip_next_orphan = NULL;
2172 
2173 		ret = ocfs2_rw_lock(inode, 1);
2174 		if (ret < 0) {
2175 			mlog_errno(ret);
2176 			goto next;
2177 		}
2178 		/*
2179 		 * We need to take and drop the inode lock to
2180 		 * force read inode from disk.
2181 		 */
2182 		ret = ocfs2_inode_lock(inode, &di_bh, 1);
2183 		if (ret) {
2184 			mlog_errno(ret);
2185 			goto unlock_rw;
2186 		}
2187 
2188 		di = (struct ocfs2_dinode *)di_bh->b_data;
2189 
2190 		if (inode->i_nlink == 0) {
2191 			spin_lock(&oi->ip_lock);
2192 			/* Set the proper information to get us going into
2193 			 * ocfs2_delete_inode. */
2194 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2195 			spin_unlock(&oi->ip_lock);
2196 		} else if ((orphan_reco_type == ORPHAN_NEED_TRUNCATE) &&
2197 				(di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL))) {
2198 			ret = ocfs2_truncate_file(inode, di_bh,
2199 					i_size_read(inode));
2200 			if (ret < 0) {
2201 				if (ret != -ENOSPC)
2202 					mlog_errno(ret);
2203 				goto unlock_inode;
2204 			}
2205 
2206 			ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 0, 0);
2207 			if (ret)
2208 				mlog_errno(ret);
2209 
2210 			wake_up(&OCFS2_I(inode)->append_dio_wq);
2211 		} /* else if ORPHAN_NO_NEED_TRUNCATE, do nothing */
2212 unlock_inode:
2213 		ocfs2_inode_unlock(inode, 1);
2214 unlock_rw:
2215 		ocfs2_rw_unlock(inode, 1);
2216 next:
2217 		iput(inode);
2218 		brelse(di_bh);
2219 		di_bh = NULL;
2220 		inode = iter;
2221 	}
2222 
2223 	return ret;
2224 }
2225 
2226 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2227 {
2228 	/* This check is good because ocfs2 will wait on our recovery
2229 	 * thread before changing it to something other than MOUNTED
2230 	 * or DISABLED. */
2231 	wait_event(osb->osb_mount_event,
2232 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2233 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2234 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2235 
2236 	/* If there's an error on mount, then we may never get to the
2237 	 * MOUNTED flag, but this is set right before
2238 	 * dismount_volume() so we can trust it. */
2239 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2240 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2241 		mlog(0, "mount error, exiting!\n");
2242 		return -EBUSY;
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 static int ocfs2_commit_thread(void *arg)
2249 {
2250 	int status;
2251 	struct ocfs2_super *osb = arg;
2252 	struct ocfs2_journal *journal = osb->journal;
2253 
2254 	/* we can trust j_num_trans here because _should_stop() is only set in
2255 	 * shutdown and nobody other than ourselves should be able to start
2256 	 * transactions.  committing on shutdown might take a few iterations
2257 	 * as final transactions put deleted inodes on the list */
2258 	while (!(kthread_should_stop() &&
2259 		 atomic_read(&journal->j_num_trans) == 0)) {
2260 
2261 		wait_event_interruptible(osb->checkpoint_event,
2262 					 atomic_read(&journal->j_num_trans)
2263 					 || kthread_should_stop());
2264 
2265 		status = ocfs2_commit_cache(osb);
2266 		if (status < 0) {
2267 			static unsigned long abort_warn_time;
2268 
2269 			/* Warn about this once per minute */
2270 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2271 				mlog(ML_ERROR, "status = %d, journal is "
2272 						"already aborted.\n", status);
2273 			/*
2274 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2275 			 * non-zero value.  Sleep here to avoid a busy-wait
2276 			 * loop.
2277 			 */
2278 			msleep_interruptible(1000);
2279 		}
2280 
2281 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2282 			mlog(ML_KTHREAD,
2283 			     "commit_thread: %u transactions pending on "
2284 			     "shutdown\n",
2285 			     atomic_read(&journal->j_num_trans));
2286 		}
2287 	}
2288 
2289 	return 0;
2290 }
2291 
2292 /* Reads all the journal inodes without taking any cluster locks. Used
2293  * for hard readonly access to determine whether any journal requires
2294  * recovery. Also used to refresh the recovery generation numbers after
2295  * a journal has been recovered by another node.
2296  */
2297 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2298 {
2299 	int ret = 0;
2300 	unsigned int slot;
2301 	struct buffer_head *di_bh = NULL;
2302 	struct ocfs2_dinode *di;
2303 	int journal_dirty = 0;
2304 
2305 	for(slot = 0; slot < osb->max_slots; slot++) {
2306 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2307 		if (ret) {
2308 			mlog_errno(ret);
2309 			goto out;
2310 		}
2311 
2312 		di = (struct ocfs2_dinode *) di_bh->b_data;
2313 
2314 		osb->slot_recovery_generations[slot] =
2315 					ocfs2_get_recovery_generation(di);
2316 
2317 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2318 		    OCFS2_JOURNAL_DIRTY_FL)
2319 			journal_dirty = 1;
2320 
2321 		brelse(di_bh);
2322 		di_bh = NULL;
2323 	}
2324 
2325 out:
2326 	if (journal_dirty)
2327 		ret = -EROFS;
2328 	return ret;
2329 }
2330