1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * journal.c 4 * 5 * Defines functions of journalling api 6 * 7 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/highmem.h> 14 #include <linux/kthread.h> 15 #include <linux/time.h> 16 #include <linux/random.h> 17 #include <linux/delay.h> 18 19 #include <cluster/masklog.h> 20 21 #include "ocfs2.h" 22 23 #include "alloc.h" 24 #include "blockcheck.h" 25 #include "dir.h" 26 #include "dlmglue.h" 27 #include "extent_map.h" 28 #include "heartbeat.h" 29 #include "inode.h" 30 #include "journal.h" 31 #include "localalloc.h" 32 #include "slot_map.h" 33 #include "super.h" 34 #include "sysfile.h" 35 #include "uptodate.h" 36 #include "quota.h" 37 #include "file.h" 38 #include "namei.h" 39 40 #include "buffer_head_io.h" 41 #include "ocfs2_trace.h" 42 43 DEFINE_SPINLOCK(trans_inc_lock); 44 45 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 46 47 static int ocfs2_force_read_journal(struct inode *inode); 48 static int ocfs2_recover_node(struct ocfs2_super *osb, 49 int node_num, int slot_num); 50 static int __ocfs2_recovery_thread(void *arg); 51 static int ocfs2_commit_cache(struct ocfs2_super *osb); 52 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 53 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 54 int dirty, int replayed); 55 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 56 int slot_num); 57 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 58 int slot, 59 enum ocfs2_orphan_reco_type orphan_reco_type); 60 static int ocfs2_commit_thread(void *arg); 61 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 62 int slot_num, 63 struct ocfs2_dinode *la_dinode, 64 struct ocfs2_dinode *tl_dinode, 65 struct ocfs2_quota_recovery *qrec, 66 enum ocfs2_orphan_reco_type orphan_reco_type); 67 68 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 69 { 70 return __ocfs2_wait_on_mount(osb, 0); 71 } 72 73 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 74 { 75 return __ocfs2_wait_on_mount(osb, 1); 76 } 77 78 /* 79 * This replay_map is to track online/offline slots, so we could recover 80 * offline slots during recovery and mount 81 */ 82 83 enum ocfs2_replay_state { 84 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 85 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 86 REPLAY_DONE /* Replay was already queued */ 87 }; 88 89 struct ocfs2_replay_map { 90 unsigned int rm_slots; 91 enum ocfs2_replay_state rm_state; 92 unsigned char rm_replay_slots[]; 93 }; 94 95 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 96 { 97 if (!osb->replay_map) 98 return; 99 100 /* If we've already queued the replay, we don't have any more to do */ 101 if (osb->replay_map->rm_state == REPLAY_DONE) 102 return; 103 104 osb->replay_map->rm_state = state; 105 } 106 107 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 108 { 109 struct ocfs2_replay_map *replay_map; 110 int i, node_num; 111 112 /* If replay map is already set, we don't do it again */ 113 if (osb->replay_map) 114 return 0; 115 116 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 117 (osb->max_slots * sizeof(char)), GFP_KERNEL); 118 119 if (!replay_map) { 120 mlog_errno(-ENOMEM); 121 return -ENOMEM; 122 } 123 124 spin_lock(&osb->osb_lock); 125 126 replay_map->rm_slots = osb->max_slots; 127 replay_map->rm_state = REPLAY_UNNEEDED; 128 129 /* set rm_replay_slots for offline slot(s) */ 130 for (i = 0; i < replay_map->rm_slots; i++) { 131 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 132 replay_map->rm_replay_slots[i] = 1; 133 } 134 135 osb->replay_map = replay_map; 136 spin_unlock(&osb->osb_lock); 137 return 0; 138 } 139 140 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 141 enum ocfs2_orphan_reco_type orphan_reco_type) 142 { 143 struct ocfs2_replay_map *replay_map = osb->replay_map; 144 int i; 145 146 if (!replay_map) 147 return; 148 149 if (replay_map->rm_state != REPLAY_NEEDED) 150 return; 151 152 for (i = 0; i < replay_map->rm_slots; i++) 153 if (replay_map->rm_replay_slots[i]) 154 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 155 NULL, NULL, 156 orphan_reco_type); 157 replay_map->rm_state = REPLAY_DONE; 158 } 159 160 static void ocfs2_free_replay_slots(struct ocfs2_super *osb) 161 { 162 struct ocfs2_replay_map *replay_map = osb->replay_map; 163 164 if (!osb->replay_map) 165 return; 166 167 kfree(replay_map); 168 osb->replay_map = NULL; 169 } 170 171 int ocfs2_recovery_init(struct ocfs2_super *osb) 172 { 173 struct ocfs2_recovery_map *rm; 174 175 mutex_init(&osb->recovery_lock); 176 osb->disable_recovery = 0; 177 osb->recovery_thread_task = NULL; 178 init_waitqueue_head(&osb->recovery_event); 179 180 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 181 osb->max_slots * sizeof(unsigned int), 182 GFP_KERNEL); 183 if (!rm) { 184 mlog_errno(-ENOMEM); 185 return -ENOMEM; 186 } 187 188 rm->rm_entries = (unsigned int *)((char *)rm + 189 sizeof(struct ocfs2_recovery_map)); 190 osb->recovery_map = rm; 191 192 return 0; 193 } 194 195 /* we can't grab the goofy sem lock from inside wait_event, so we use 196 * memory barriers to make sure that we'll see the null task before 197 * being woken up */ 198 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 199 { 200 mb(); 201 return osb->recovery_thread_task != NULL; 202 } 203 204 void ocfs2_recovery_exit(struct ocfs2_super *osb) 205 { 206 struct ocfs2_recovery_map *rm; 207 208 /* disable any new recovery threads and wait for any currently 209 * running ones to exit. Do this before setting the vol_state. */ 210 mutex_lock(&osb->recovery_lock); 211 osb->disable_recovery = 1; 212 mutex_unlock(&osb->recovery_lock); 213 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 214 215 /* At this point, we know that no more recovery threads can be 216 * launched, so wait for any recovery completion work to 217 * complete. */ 218 if (osb->ocfs2_wq) 219 flush_workqueue(osb->ocfs2_wq); 220 221 /* 222 * Now that recovery is shut down, and the osb is about to be 223 * freed, the osb_lock is not taken here. 224 */ 225 rm = osb->recovery_map; 226 /* XXX: Should we bug if there are dirty entries? */ 227 228 kfree(rm); 229 } 230 231 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 232 unsigned int node_num) 233 { 234 int i; 235 struct ocfs2_recovery_map *rm = osb->recovery_map; 236 237 assert_spin_locked(&osb->osb_lock); 238 239 for (i = 0; i < rm->rm_used; i++) { 240 if (rm->rm_entries[i] == node_num) 241 return 1; 242 } 243 244 return 0; 245 } 246 247 /* Behaves like test-and-set. Returns the previous value */ 248 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 249 unsigned int node_num) 250 { 251 struct ocfs2_recovery_map *rm = osb->recovery_map; 252 253 spin_lock(&osb->osb_lock); 254 if (__ocfs2_recovery_map_test(osb, node_num)) { 255 spin_unlock(&osb->osb_lock); 256 return 1; 257 } 258 259 /* XXX: Can this be exploited? Not from o2dlm... */ 260 BUG_ON(rm->rm_used >= osb->max_slots); 261 262 rm->rm_entries[rm->rm_used] = node_num; 263 rm->rm_used++; 264 spin_unlock(&osb->osb_lock); 265 266 return 0; 267 } 268 269 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 270 unsigned int node_num) 271 { 272 int i; 273 struct ocfs2_recovery_map *rm = osb->recovery_map; 274 275 spin_lock(&osb->osb_lock); 276 277 for (i = 0; i < rm->rm_used; i++) { 278 if (rm->rm_entries[i] == node_num) 279 break; 280 } 281 282 if (i < rm->rm_used) { 283 /* XXX: be careful with the pointer math */ 284 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 285 (rm->rm_used - i - 1) * sizeof(unsigned int)); 286 rm->rm_used--; 287 } 288 289 spin_unlock(&osb->osb_lock); 290 } 291 292 static int ocfs2_commit_cache(struct ocfs2_super *osb) 293 { 294 int status = 0; 295 unsigned int flushed; 296 struct ocfs2_journal *journal = NULL; 297 298 journal = osb->journal; 299 300 /* Flush all pending commits and checkpoint the journal. */ 301 down_write(&journal->j_trans_barrier); 302 303 flushed = atomic_read(&journal->j_num_trans); 304 trace_ocfs2_commit_cache_begin(flushed); 305 if (flushed == 0) { 306 up_write(&journal->j_trans_barrier); 307 goto finally; 308 } 309 310 jbd2_journal_lock_updates(journal->j_journal); 311 status = jbd2_journal_flush(journal->j_journal, 0); 312 jbd2_journal_unlock_updates(journal->j_journal); 313 if (status < 0) { 314 up_write(&journal->j_trans_barrier); 315 mlog_errno(status); 316 goto finally; 317 } 318 319 ocfs2_inc_trans_id(journal); 320 321 flushed = atomic_read(&journal->j_num_trans); 322 atomic_set(&journal->j_num_trans, 0); 323 up_write(&journal->j_trans_barrier); 324 325 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 326 327 ocfs2_wake_downconvert_thread(osb); 328 wake_up(&journal->j_checkpointed); 329 finally: 330 return status; 331 } 332 333 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 334 { 335 journal_t *journal = osb->journal->j_journal; 336 handle_t *handle; 337 338 BUG_ON(!osb || !osb->journal->j_journal); 339 340 if (ocfs2_is_hard_readonly(osb)) 341 return ERR_PTR(-EROFS); 342 343 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 344 BUG_ON(max_buffs <= 0); 345 346 /* Nested transaction? Just return the handle... */ 347 if (journal_current_handle()) 348 return jbd2_journal_start(journal, max_buffs); 349 350 sb_start_intwrite(osb->sb); 351 352 down_read(&osb->journal->j_trans_barrier); 353 354 handle = jbd2_journal_start(journal, max_buffs); 355 if (IS_ERR(handle)) { 356 up_read(&osb->journal->j_trans_barrier); 357 sb_end_intwrite(osb->sb); 358 359 mlog_errno(PTR_ERR(handle)); 360 361 if (is_journal_aborted(journal)) { 362 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 363 handle = ERR_PTR(-EROFS); 364 } 365 } else { 366 if (!ocfs2_mount_local(osb)) 367 atomic_inc(&(osb->journal->j_num_trans)); 368 } 369 370 return handle; 371 } 372 373 int ocfs2_commit_trans(struct ocfs2_super *osb, 374 handle_t *handle) 375 { 376 int ret, nested; 377 struct ocfs2_journal *journal = osb->journal; 378 379 BUG_ON(!handle); 380 381 nested = handle->h_ref > 1; 382 ret = jbd2_journal_stop(handle); 383 if (ret < 0) 384 mlog_errno(ret); 385 386 if (!nested) { 387 up_read(&journal->j_trans_barrier); 388 sb_end_intwrite(osb->sb); 389 } 390 391 return ret; 392 } 393 394 /* 395 * 'nblocks' is what you want to add to the current transaction. 396 * 397 * This might call jbd2_journal_restart() which will commit dirty buffers 398 * and then restart the transaction. Before calling 399 * ocfs2_extend_trans(), any changed blocks should have been 400 * dirtied. After calling it, all blocks which need to be changed must 401 * go through another set of journal_access/journal_dirty calls. 402 * 403 * WARNING: This will not release any semaphores or disk locks taken 404 * during the transaction, so make sure they were taken *before* 405 * start_trans or we'll have ordering deadlocks. 406 * 407 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 408 * good because transaction ids haven't yet been recorded on the 409 * cluster locks associated with this handle. 410 */ 411 int ocfs2_extend_trans(handle_t *handle, int nblocks) 412 { 413 int status, old_nblocks; 414 415 BUG_ON(!handle); 416 BUG_ON(nblocks < 0); 417 418 if (!nblocks) 419 return 0; 420 421 old_nblocks = jbd2_handle_buffer_credits(handle); 422 423 trace_ocfs2_extend_trans(old_nblocks, nblocks); 424 425 #ifdef CONFIG_OCFS2_DEBUG_FS 426 status = 1; 427 #else 428 status = jbd2_journal_extend(handle, nblocks, 0); 429 if (status < 0) { 430 mlog_errno(status); 431 goto bail; 432 } 433 #endif 434 435 if (status > 0) { 436 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 437 status = jbd2_journal_restart(handle, 438 old_nblocks + nblocks); 439 if (status < 0) { 440 mlog_errno(status); 441 goto bail; 442 } 443 } 444 445 status = 0; 446 bail: 447 return status; 448 } 449 450 /* 451 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 452 * If that fails, restart the transaction & regain write access for the 453 * buffer head which is used for metadata modifications. 454 * Taken from Ext4: extend_or_restart_transaction() 455 */ 456 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 457 { 458 int status, old_nblks; 459 460 BUG_ON(!handle); 461 462 old_nblks = jbd2_handle_buffer_credits(handle); 463 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 464 465 if (old_nblks < thresh) 466 return 0; 467 468 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0); 469 if (status < 0) { 470 mlog_errno(status); 471 goto bail; 472 } 473 474 if (status > 0) { 475 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 476 if (status < 0) 477 mlog_errno(status); 478 } 479 480 bail: 481 return status; 482 } 483 484 485 struct ocfs2_triggers { 486 struct jbd2_buffer_trigger_type ot_triggers; 487 int ot_offset; 488 }; 489 490 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 491 { 492 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 493 } 494 495 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 496 struct buffer_head *bh, 497 void *data, size_t size) 498 { 499 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 500 501 /* 502 * We aren't guaranteed to have the superblock here, so we 503 * must unconditionally compute the ecc data. 504 * __ocfs2_journal_access() will only set the triggers if 505 * metaecc is enabled. 506 */ 507 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 508 } 509 510 /* 511 * Quota blocks have their own trigger because the struct ocfs2_block_check 512 * offset depends on the blocksize. 513 */ 514 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 515 struct buffer_head *bh, 516 void *data, size_t size) 517 { 518 struct ocfs2_disk_dqtrailer *dqt = 519 ocfs2_block_dqtrailer(size, data); 520 521 /* 522 * We aren't guaranteed to have the superblock here, so we 523 * must unconditionally compute the ecc data. 524 * __ocfs2_journal_access() will only set the triggers if 525 * metaecc is enabled. 526 */ 527 ocfs2_block_check_compute(data, size, &dqt->dq_check); 528 } 529 530 /* 531 * Directory blocks also have their own trigger because the 532 * struct ocfs2_block_check offset depends on the blocksize. 533 */ 534 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 535 struct buffer_head *bh, 536 void *data, size_t size) 537 { 538 struct ocfs2_dir_block_trailer *trailer = 539 ocfs2_dir_trailer_from_size(size, data); 540 541 /* 542 * We aren't guaranteed to have the superblock here, so we 543 * must unconditionally compute the ecc data. 544 * __ocfs2_journal_access() will only set the triggers if 545 * metaecc is enabled. 546 */ 547 ocfs2_block_check_compute(data, size, &trailer->db_check); 548 } 549 550 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 551 struct buffer_head *bh) 552 { 553 mlog(ML_ERROR, 554 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 555 "bh->b_blocknr = %llu\n", 556 (unsigned long)bh, 557 (unsigned long long)bh->b_blocknr); 558 559 ocfs2_error(bh->b_bdev->bd_super, 560 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 561 } 562 563 static struct ocfs2_triggers di_triggers = { 564 .ot_triggers = { 565 .t_frozen = ocfs2_frozen_trigger, 566 .t_abort = ocfs2_abort_trigger, 567 }, 568 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 569 }; 570 571 static struct ocfs2_triggers eb_triggers = { 572 .ot_triggers = { 573 .t_frozen = ocfs2_frozen_trigger, 574 .t_abort = ocfs2_abort_trigger, 575 }, 576 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 577 }; 578 579 static struct ocfs2_triggers rb_triggers = { 580 .ot_triggers = { 581 .t_frozen = ocfs2_frozen_trigger, 582 .t_abort = ocfs2_abort_trigger, 583 }, 584 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 585 }; 586 587 static struct ocfs2_triggers gd_triggers = { 588 .ot_triggers = { 589 .t_frozen = ocfs2_frozen_trigger, 590 .t_abort = ocfs2_abort_trigger, 591 }, 592 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 593 }; 594 595 static struct ocfs2_triggers db_triggers = { 596 .ot_triggers = { 597 .t_frozen = ocfs2_db_frozen_trigger, 598 .t_abort = ocfs2_abort_trigger, 599 }, 600 }; 601 602 static struct ocfs2_triggers xb_triggers = { 603 .ot_triggers = { 604 .t_frozen = ocfs2_frozen_trigger, 605 .t_abort = ocfs2_abort_trigger, 606 }, 607 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 608 }; 609 610 static struct ocfs2_triggers dq_triggers = { 611 .ot_triggers = { 612 .t_frozen = ocfs2_dq_frozen_trigger, 613 .t_abort = ocfs2_abort_trigger, 614 }, 615 }; 616 617 static struct ocfs2_triggers dr_triggers = { 618 .ot_triggers = { 619 .t_frozen = ocfs2_frozen_trigger, 620 .t_abort = ocfs2_abort_trigger, 621 }, 622 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 623 }; 624 625 static struct ocfs2_triggers dl_triggers = { 626 .ot_triggers = { 627 .t_frozen = ocfs2_frozen_trigger, 628 .t_abort = ocfs2_abort_trigger, 629 }, 630 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 631 }; 632 633 static int __ocfs2_journal_access(handle_t *handle, 634 struct ocfs2_caching_info *ci, 635 struct buffer_head *bh, 636 struct ocfs2_triggers *triggers, 637 int type) 638 { 639 int status; 640 struct ocfs2_super *osb = 641 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 642 643 BUG_ON(!ci || !ci->ci_ops); 644 BUG_ON(!handle); 645 BUG_ON(!bh); 646 647 trace_ocfs2_journal_access( 648 (unsigned long long)ocfs2_metadata_cache_owner(ci), 649 (unsigned long long)bh->b_blocknr, type, bh->b_size); 650 651 /* we can safely remove this assertion after testing. */ 652 if (!buffer_uptodate(bh)) { 653 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 654 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 655 (unsigned long long)bh->b_blocknr, bh->b_state); 656 657 lock_buffer(bh); 658 /* 659 * A previous transaction with a couple of buffer heads fail 660 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 661 * For current transaction, the bh is just among those error 662 * bhs which previous transaction handle. We can't just clear 663 * its BH_Write_EIO and reuse directly, since other bhs are 664 * not written to disk yet and that will cause metadata 665 * inconsistency. So we should set fs read-only to avoid 666 * further damage. 667 */ 668 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 669 unlock_buffer(bh); 670 return ocfs2_error(osb->sb, "A previous attempt to " 671 "write this buffer head failed\n"); 672 } 673 unlock_buffer(bh); 674 } 675 676 /* Set the current transaction information on the ci so 677 * that the locking code knows whether it can drop it's locks 678 * on this ci or not. We're protected from the commit 679 * thread updating the current transaction id until 680 * ocfs2_commit_trans() because ocfs2_start_trans() took 681 * j_trans_barrier for us. */ 682 ocfs2_set_ci_lock_trans(osb->journal, ci); 683 684 ocfs2_metadata_cache_io_lock(ci); 685 switch (type) { 686 case OCFS2_JOURNAL_ACCESS_CREATE: 687 case OCFS2_JOURNAL_ACCESS_WRITE: 688 status = jbd2_journal_get_write_access(handle, bh); 689 break; 690 691 case OCFS2_JOURNAL_ACCESS_UNDO: 692 status = jbd2_journal_get_undo_access(handle, bh); 693 break; 694 695 default: 696 status = -EINVAL; 697 mlog(ML_ERROR, "Unknown access type!\n"); 698 } 699 if (!status && ocfs2_meta_ecc(osb) && triggers) 700 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 701 ocfs2_metadata_cache_io_unlock(ci); 702 703 if (status < 0) 704 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 705 status, type); 706 707 return status; 708 } 709 710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 711 struct buffer_head *bh, int type) 712 { 713 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 714 } 715 716 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 717 struct buffer_head *bh, int type) 718 { 719 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 720 } 721 722 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 723 struct buffer_head *bh, int type) 724 { 725 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 726 type); 727 } 728 729 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 730 struct buffer_head *bh, int type) 731 { 732 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 733 } 734 735 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 736 struct buffer_head *bh, int type) 737 { 738 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 739 } 740 741 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 742 struct buffer_head *bh, int type) 743 { 744 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 745 } 746 747 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 748 struct buffer_head *bh, int type) 749 { 750 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 751 } 752 753 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 754 struct buffer_head *bh, int type) 755 { 756 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 757 } 758 759 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 760 struct buffer_head *bh, int type) 761 { 762 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 763 } 764 765 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 766 struct buffer_head *bh, int type) 767 { 768 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 769 } 770 771 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 772 { 773 int status; 774 775 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 776 777 status = jbd2_journal_dirty_metadata(handle, bh); 778 if (status) { 779 mlog_errno(status); 780 if (!is_handle_aborted(handle)) { 781 journal_t *journal = handle->h_transaction->t_journal; 782 struct super_block *sb = bh->b_bdev->bd_super; 783 784 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " 785 "Aborting transaction and journal.\n"); 786 handle->h_err = status; 787 jbd2_journal_abort_handle(handle); 788 jbd2_journal_abort(journal, status); 789 ocfs2_abort(sb, "Journal already aborted.\n"); 790 } 791 } 792 } 793 794 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 795 796 void ocfs2_set_journal_params(struct ocfs2_super *osb) 797 { 798 journal_t *journal = osb->journal->j_journal; 799 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 800 801 if (osb->osb_commit_interval) 802 commit_interval = osb->osb_commit_interval; 803 804 write_lock(&journal->j_state_lock); 805 journal->j_commit_interval = commit_interval; 806 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 807 journal->j_flags |= JBD2_BARRIER; 808 else 809 journal->j_flags &= ~JBD2_BARRIER; 810 write_unlock(&journal->j_state_lock); 811 } 812 813 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty) 814 { 815 int status = -1; 816 struct inode *inode = NULL; /* the journal inode */ 817 journal_t *j_journal = NULL; 818 struct ocfs2_journal *journal = NULL; 819 struct ocfs2_dinode *di = NULL; 820 struct buffer_head *bh = NULL; 821 int inode_lock = 0; 822 823 /* initialize our journal structure */ 824 journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL); 825 if (!journal) { 826 mlog(ML_ERROR, "unable to alloc journal\n"); 827 status = -ENOMEM; 828 goto done; 829 } 830 osb->journal = journal; 831 journal->j_osb = osb; 832 833 atomic_set(&journal->j_num_trans, 0); 834 init_rwsem(&journal->j_trans_barrier); 835 init_waitqueue_head(&journal->j_checkpointed); 836 spin_lock_init(&journal->j_lock); 837 journal->j_trans_id = 1UL; 838 INIT_LIST_HEAD(&journal->j_la_cleanups); 839 INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery); 840 journal->j_state = OCFS2_JOURNAL_FREE; 841 842 /* already have the inode for our journal */ 843 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 844 osb->slot_num); 845 if (inode == NULL) { 846 status = -EACCES; 847 mlog_errno(status); 848 goto done; 849 } 850 if (is_bad_inode(inode)) { 851 mlog(ML_ERROR, "access error (bad inode)\n"); 852 iput(inode); 853 inode = NULL; 854 status = -EACCES; 855 goto done; 856 } 857 858 SET_INODE_JOURNAL(inode); 859 OCFS2_I(inode)->ip_open_count++; 860 861 /* Skip recovery waits here - journal inode metadata never 862 * changes in a live cluster so it can be considered an 863 * exception to the rule. */ 864 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 865 if (status < 0) { 866 if (status != -ERESTARTSYS) 867 mlog(ML_ERROR, "Could not get lock on journal!\n"); 868 goto done; 869 } 870 871 inode_lock = 1; 872 di = (struct ocfs2_dinode *)bh->b_data; 873 874 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 875 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 876 i_size_read(inode)); 877 status = -EINVAL; 878 goto done; 879 } 880 881 trace_ocfs2_journal_init(i_size_read(inode), 882 (unsigned long long)inode->i_blocks, 883 OCFS2_I(inode)->ip_clusters); 884 885 /* call the kernels journal init function now */ 886 j_journal = jbd2_journal_init_inode(inode); 887 if (j_journal == NULL) { 888 mlog(ML_ERROR, "Linux journal layer error\n"); 889 status = -EINVAL; 890 goto done; 891 } 892 893 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len); 894 895 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 896 OCFS2_JOURNAL_DIRTY_FL); 897 898 journal->j_journal = j_journal; 899 journal->j_journal->j_submit_inode_data_buffers = 900 jbd2_journal_submit_inode_data_buffers; 901 journal->j_journal->j_finish_inode_data_buffers = 902 jbd2_journal_finish_inode_data_buffers; 903 journal->j_inode = inode; 904 journal->j_bh = bh; 905 906 ocfs2_set_journal_params(osb); 907 908 journal->j_state = OCFS2_JOURNAL_LOADED; 909 910 status = 0; 911 done: 912 if (status < 0) { 913 if (inode_lock) 914 ocfs2_inode_unlock(inode, 1); 915 brelse(bh); 916 if (inode) { 917 OCFS2_I(inode)->ip_open_count--; 918 iput(inode); 919 } 920 } 921 922 return status; 923 } 924 925 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 926 { 927 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 928 } 929 930 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 931 { 932 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 933 } 934 935 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 936 int dirty, int replayed) 937 { 938 int status; 939 unsigned int flags; 940 struct ocfs2_journal *journal = osb->journal; 941 struct buffer_head *bh = journal->j_bh; 942 struct ocfs2_dinode *fe; 943 944 fe = (struct ocfs2_dinode *)bh->b_data; 945 946 /* The journal bh on the osb always comes from ocfs2_journal_init() 947 * and was validated there inside ocfs2_inode_lock_full(). It's a 948 * code bug if we mess it up. */ 949 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 950 951 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 952 if (dirty) 953 flags |= OCFS2_JOURNAL_DIRTY_FL; 954 else 955 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 956 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 957 958 if (replayed) 959 ocfs2_bump_recovery_generation(fe); 960 961 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 962 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 963 if (status < 0) 964 mlog_errno(status); 965 966 return status; 967 } 968 969 /* 970 * If the journal has been kmalloc'd it needs to be freed after this 971 * call. 972 */ 973 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 974 { 975 struct ocfs2_journal *journal = NULL; 976 int status = 0; 977 struct inode *inode = NULL; 978 int num_running_trans = 0; 979 980 BUG_ON(!osb); 981 982 journal = osb->journal; 983 if (!journal) 984 goto done; 985 986 inode = journal->j_inode; 987 988 if (journal->j_state != OCFS2_JOURNAL_LOADED) 989 goto done; 990 991 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 992 if (!igrab(inode)) 993 BUG(); 994 995 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 996 trace_ocfs2_journal_shutdown(num_running_trans); 997 998 /* Do a commit_cache here. It will flush our journal, *and* 999 * release any locks that are still held. 1000 * set the SHUTDOWN flag and release the trans lock. 1001 * the commit thread will take the trans lock for us below. */ 1002 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 1003 1004 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 1005 * drop the trans_lock (which we want to hold until we 1006 * completely destroy the journal. */ 1007 if (osb->commit_task) { 1008 /* Wait for the commit thread */ 1009 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 1010 kthread_stop(osb->commit_task); 1011 osb->commit_task = NULL; 1012 } 1013 1014 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 1015 1016 if (ocfs2_mount_local(osb)) { 1017 jbd2_journal_lock_updates(journal->j_journal); 1018 status = jbd2_journal_flush(journal->j_journal, 0); 1019 jbd2_journal_unlock_updates(journal->j_journal); 1020 if (status < 0) 1021 mlog_errno(status); 1022 } 1023 1024 /* Shutdown the kernel journal system */ 1025 if (!jbd2_journal_destroy(journal->j_journal) && !status) { 1026 /* 1027 * Do not toggle if flush was unsuccessful otherwise 1028 * will leave dirty metadata in a "clean" journal 1029 */ 1030 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1031 if (status < 0) 1032 mlog_errno(status); 1033 } 1034 journal->j_journal = NULL; 1035 1036 OCFS2_I(inode)->ip_open_count--; 1037 1038 /* unlock our journal */ 1039 ocfs2_inode_unlock(inode, 1); 1040 1041 brelse(journal->j_bh); 1042 journal->j_bh = NULL; 1043 1044 journal->j_state = OCFS2_JOURNAL_FREE; 1045 1046 done: 1047 iput(inode); 1048 kfree(journal); 1049 osb->journal = NULL; 1050 } 1051 1052 static void ocfs2_clear_journal_error(struct super_block *sb, 1053 journal_t *journal, 1054 int slot) 1055 { 1056 int olderr; 1057 1058 olderr = jbd2_journal_errno(journal); 1059 if (olderr) { 1060 mlog(ML_ERROR, "File system error %d recorded in " 1061 "journal %u.\n", olderr, slot); 1062 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1063 sb->s_id); 1064 1065 jbd2_journal_ack_err(journal); 1066 jbd2_journal_clear_err(journal); 1067 } 1068 } 1069 1070 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1071 { 1072 int status = 0; 1073 struct ocfs2_super *osb; 1074 1075 BUG_ON(!journal); 1076 1077 osb = journal->j_osb; 1078 1079 status = jbd2_journal_load(journal->j_journal); 1080 if (status < 0) { 1081 mlog(ML_ERROR, "Failed to load journal!\n"); 1082 goto done; 1083 } 1084 1085 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1086 1087 if (replayed) { 1088 jbd2_journal_lock_updates(journal->j_journal); 1089 status = jbd2_journal_flush(journal->j_journal, 0); 1090 jbd2_journal_unlock_updates(journal->j_journal); 1091 if (status < 0) 1092 mlog_errno(status); 1093 } 1094 1095 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1096 if (status < 0) { 1097 mlog_errno(status); 1098 goto done; 1099 } 1100 1101 /* Launch the commit thread */ 1102 if (!local) { 1103 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1104 "ocfs2cmt-%s", osb->uuid_str); 1105 if (IS_ERR(osb->commit_task)) { 1106 status = PTR_ERR(osb->commit_task); 1107 osb->commit_task = NULL; 1108 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1109 "error=%d", status); 1110 goto done; 1111 } 1112 } else 1113 osb->commit_task = NULL; 1114 1115 done: 1116 return status; 1117 } 1118 1119 1120 /* 'full' flag tells us whether we clear out all blocks or if we just 1121 * mark the journal clean */ 1122 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1123 { 1124 int status; 1125 1126 BUG_ON(!journal); 1127 1128 status = jbd2_journal_wipe(journal->j_journal, full); 1129 if (status < 0) { 1130 mlog_errno(status); 1131 goto bail; 1132 } 1133 1134 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1135 if (status < 0) 1136 mlog_errno(status); 1137 1138 bail: 1139 return status; 1140 } 1141 1142 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1143 { 1144 int empty; 1145 struct ocfs2_recovery_map *rm = osb->recovery_map; 1146 1147 spin_lock(&osb->osb_lock); 1148 empty = (rm->rm_used == 0); 1149 spin_unlock(&osb->osb_lock); 1150 1151 return empty; 1152 } 1153 1154 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1155 { 1156 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1157 } 1158 1159 /* 1160 * JBD Might read a cached version of another nodes journal file. We 1161 * don't want this as this file changes often and we get no 1162 * notification on those changes. The only way to be sure that we've 1163 * got the most up to date version of those blocks then is to force 1164 * read them off disk. Just searching through the buffer cache won't 1165 * work as there may be pages backing this file which are still marked 1166 * up to date. We know things can't change on this file underneath us 1167 * as we have the lock by now :) 1168 */ 1169 static int ocfs2_force_read_journal(struct inode *inode) 1170 { 1171 int status = 0; 1172 int i; 1173 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1174 struct buffer_head *bh = NULL; 1175 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1176 1177 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1178 v_blkno = 0; 1179 while (v_blkno < num_blocks) { 1180 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1181 &p_blkno, &p_blocks, NULL); 1182 if (status < 0) { 1183 mlog_errno(status); 1184 goto bail; 1185 } 1186 1187 for (i = 0; i < p_blocks; i++, p_blkno++) { 1188 bh = __find_get_block(osb->sb->s_bdev, p_blkno, 1189 osb->sb->s_blocksize); 1190 /* block not cached. */ 1191 if (!bh) 1192 continue; 1193 1194 brelse(bh); 1195 bh = NULL; 1196 /* We are reading journal data which should not 1197 * be put in the uptodate cache. 1198 */ 1199 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1200 if (status < 0) { 1201 mlog_errno(status); 1202 goto bail; 1203 } 1204 1205 brelse(bh); 1206 bh = NULL; 1207 } 1208 1209 v_blkno += p_blocks; 1210 } 1211 1212 bail: 1213 return status; 1214 } 1215 1216 struct ocfs2_la_recovery_item { 1217 struct list_head lri_list; 1218 int lri_slot; 1219 struct ocfs2_dinode *lri_la_dinode; 1220 struct ocfs2_dinode *lri_tl_dinode; 1221 struct ocfs2_quota_recovery *lri_qrec; 1222 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1223 }; 1224 1225 /* Does the second half of the recovery process. By this point, the 1226 * node is marked clean and can actually be considered recovered, 1227 * hence it's no longer in the recovery map, but there's still some 1228 * cleanup we can do which shouldn't happen within the recovery thread 1229 * as locking in that context becomes very difficult if we are to take 1230 * recovering nodes into account. 1231 * 1232 * NOTE: This function can and will sleep on recovery of other nodes 1233 * during cluster locking, just like any other ocfs2 process. 1234 */ 1235 void ocfs2_complete_recovery(struct work_struct *work) 1236 { 1237 int ret = 0; 1238 struct ocfs2_journal *journal = 1239 container_of(work, struct ocfs2_journal, j_recovery_work); 1240 struct ocfs2_super *osb = journal->j_osb; 1241 struct ocfs2_dinode *la_dinode, *tl_dinode; 1242 struct ocfs2_la_recovery_item *item, *n; 1243 struct ocfs2_quota_recovery *qrec; 1244 enum ocfs2_orphan_reco_type orphan_reco_type; 1245 LIST_HEAD(tmp_la_list); 1246 1247 trace_ocfs2_complete_recovery( 1248 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1249 1250 spin_lock(&journal->j_lock); 1251 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1252 spin_unlock(&journal->j_lock); 1253 1254 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1255 list_del_init(&item->lri_list); 1256 1257 ocfs2_wait_on_quotas(osb); 1258 1259 la_dinode = item->lri_la_dinode; 1260 tl_dinode = item->lri_tl_dinode; 1261 qrec = item->lri_qrec; 1262 orphan_reco_type = item->lri_orphan_reco_type; 1263 1264 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1265 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1266 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1267 qrec); 1268 1269 if (la_dinode) { 1270 ret = ocfs2_complete_local_alloc_recovery(osb, 1271 la_dinode); 1272 if (ret < 0) 1273 mlog_errno(ret); 1274 1275 kfree(la_dinode); 1276 } 1277 1278 if (tl_dinode) { 1279 ret = ocfs2_complete_truncate_log_recovery(osb, 1280 tl_dinode); 1281 if (ret < 0) 1282 mlog_errno(ret); 1283 1284 kfree(tl_dinode); 1285 } 1286 1287 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1288 orphan_reco_type); 1289 if (ret < 0) 1290 mlog_errno(ret); 1291 1292 if (qrec) { 1293 ret = ocfs2_finish_quota_recovery(osb, qrec, 1294 item->lri_slot); 1295 if (ret < 0) 1296 mlog_errno(ret); 1297 /* Recovery info is already freed now */ 1298 } 1299 1300 kfree(item); 1301 } 1302 1303 trace_ocfs2_complete_recovery_end(ret); 1304 } 1305 1306 /* NOTE: This function always eats your references to la_dinode and 1307 * tl_dinode, either manually on error, or by passing them to 1308 * ocfs2_complete_recovery */ 1309 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1310 int slot_num, 1311 struct ocfs2_dinode *la_dinode, 1312 struct ocfs2_dinode *tl_dinode, 1313 struct ocfs2_quota_recovery *qrec, 1314 enum ocfs2_orphan_reco_type orphan_reco_type) 1315 { 1316 struct ocfs2_la_recovery_item *item; 1317 1318 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1319 if (!item) { 1320 /* Though we wish to avoid it, we are in fact safe in 1321 * skipping local alloc cleanup as fsck.ocfs2 is more 1322 * than capable of reclaiming unused space. */ 1323 kfree(la_dinode); 1324 kfree(tl_dinode); 1325 1326 if (qrec) 1327 ocfs2_free_quota_recovery(qrec); 1328 1329 mlog_errno(-ENOMEM); 1330 return; 1331 } 1332 1333 INIT_LIST_HEAD(&item->lri_list); 1334 item->lri_la_dinode = la_dinode; 1335 item->lri_slot = slot_num; 1336 item->lri_tl_dinode = tl_dinode; 1337 item->lri_qrec = qrec; 1338 item->lri_orphan_reco_type = orphan_reco_type; 1339 1340 spin_lock(&journal->j_lock); 1341 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1342 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1343 spin_unlock(&journal->j_lock); 1344 } 1345 1346 /* Called by the mount code to queue recovery the last part of 1347 * recovery for it's own and offline slot(s). */ 1348 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1349 { 1350 struct ocfs2_journal *journal = osb->journal; 1351 1352 if (ocfs2_is_hard_readonly(osb)) 1353 return; 1354 1355 /* No need to queue up our truncate_log as regular cleanup will catch 1356 * that */ 1357 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1358 osb->local_alloc_copy, NULL, NULL, 1359 ORPHAN_NEED_TRUNCATE); 1360 ocfs2_schedule_truncate_log_flush(osb, 0); 1361 1362 osb->local_alloc_copy = NULL; 1363 1364 /* queue to recover orphan slots for all offline slots */ 1365 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1366 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1367 ocfs2_free_replay_slots(osb); 1368 } 1369 1370 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1371 { 1372 if (osb->quota_rec) { 1373 ocfs2_queue_recovery_completion(osb->journal, 1374 osb->slot_num, 1375 NULL, 1376 NULL, 1377 osb->quota_rec, 1378 ORPHAN_NEED_TRUNCATE); 1379 osb->quota_rec = NULL; 1380 } 1381 } 1382 1383 static int __ocfs2_recovery_thread(void *arg) 1384 { 1385 int status, node_num, slot_num; 1386 struct ocfs2_super *osb = arg; 1387 struct ocfs2_recovery_map *rm = osb->recovery_map; 1388 int *rm_quota = NULL; 1389 int rm_quota_used = 0, i; 1390 struct ocfs2_quota_recovery *qrec; 1391 1392 /* Whether the quota supported. */ 1393 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1394 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1395 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1396 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1397 1398 status = ocfs2_wait_on_mount(osb); 1399 if (status < 0) { 1400 goto bail; 1401 } 1402 1403 if (quota_enabled) { 1404 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1405 if (!rm_quota) { 1406 status = -ENOMEM; 1407 goto bail; 1408 } 1409 } 1410 restart: 1411 status = ocfs2_super_lock(osb, 1); 1412 if (status < 0) { 1413 mlog_errno(status); 1414 goto bail; 1415 } 1416 1417 status = ocfs2_compute_replay_slots(osb); 1418 if (status < 0) 1419 mlog_errno(status); 1420 1421 /* queue recovery for our own slot */ 1422 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1423 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1424 1425 spin_lock(&osb->osb_lock); 1426 while (rm->rm_used) { 1427 /* It's always safe to remove entry zero, as we won't 1428 * clear it until ocfs2_recover_node() has succeeded. */ 1429 node_num = rm->rm_entries[0]; 1430 spin_unlock(&osb->osb_lock); 1431 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1432 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1433 if (slot_num == -ENOENT) { 1434 status = 0; 1435 goto skip_recovery; 1436 } 1437 1438 /* It is a bit subtle with quota recovery. We cannot do it 1439 * immediately because we have to obtain cluster locks from 1440 * quota files and we also don't want to just skip it because 1441 * then quota usage would be out of sync until some node takes 1442 * the slot. So we remember which nodes need quota recovery 1443 * and when everything else is done, we recover quotas. */ 1444 if (quota_enabled) { 1445 for (i = 0; i < rm_quota_used 1446 && rm_quota[i] != slot_num; i++) 1447 ; 1448 1449 if (i == rm_quota_used) 1450 rm_quota[rm_quota_used++] = slot_num; 1451 } 1452 1453 status = ocfs2_recover_node(osb, node_num, slot_num); 1454 skip_recovery: 1455 if (!status) { 1456 ocfs2_recovery_map_clear(osb, node_num); 1457 } else { 1458 mlog(ML_ERROR, 1459 "Error %d recovering node %d on device (%u,%u)!\n", 1460 status, node_num, 1461 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1462 mlog(ML_ERROR, "Volume requires unmount.\n"); 1463 } 1464 1465 spin_lock(&osb->osb_lock); 1466 } 1467 spin_unlock(&osb->osb_lock); 1468 trace_ocfs2_recovery_thread_end(status); 1469 1470 /* Refresh all journal recovery generations from disk */ 1471 status = ocfs2_check_journals_nolocks(osb); 1472 status = (status == -EROFS) ? 0 : status; 1473 if (status < 0) 1474 mlog_errno(status); 1475 1476 /* Now it is right time to recover quotas... We have to do this under 1477 * superblock lock so that no one can start using the slot (and crash) 1478 * before we recover it */ 1479 if (quota_enabled) { 1480 for (i = 0; i < rm_quota_used; i++) { 1481 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1482 if (IS_ERR(qrec)) { 1483 status = PTR_ERR(qrec); 1484 mlog_errno(status); 1485 continue; 1486 } 1487 ocfs2_queue_recovery_completion(osb->journal, 1488 rm_quota[i], 1489 NULL, NULL, qrec, 1490 ORPHAN_NEED_TRUNCATE); 1491 } 1492 } 1493 1494 ocfs2_super_unlock(osb, 1); 1495 1496 /* queue recovery for offline slots */ 1497 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1498 1499 bail: 1500 mutex_lock(&osb->recovery_lock); 1501 if (!status && !ocfs2_recovery_completed(osb)) { 1502 mutex_unlock(&osb->recovery_lock); 1503 goto restart; 1504 } 1505 1506 ocfs2_free_replay_slots(osb); 1507 osb->recovery_thread_task = NULL; 1508 mb(); /* sync with ocfs2_recovery_thread_running */ 1509 wake_up(&osb->recovery_event); 1510 1511 mutex_unlock(&osb->recovery_lock); 1512 1513 if (quota_enabled) 1514 kfree(rm_quota); 1515 1516 return status; 1517 } 1518 1519 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1520 { 1521 mutex_lock(&osb->recovery_lock); 1522 1523 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1524 osb->disable_recovery, osb->recovery_thread_task, 1525 osb->disable_recovery ? 1526 -1 : ocfs2_recovery_map_set(osb, node_num)); 1527 1528 if (osb->disable_recovery) 1529 goto out; 1530 1531 if (osb->recovery_thread_task) 1532 goto out; 1533 1534 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1535 "ocfs2rec-%s", osb->uuid_str); 1536 if (IS_ERR(osb->recovery_thread_task)) { 1537 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1538 osb->recovery_thread_task = NULL; 1539 } 1540 1541 out: 1542 mutex_unlock(&osb->recovery_lock); 1543 wake_up(&osb->recovery_event); 1544 } 1545 1546 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1547 int slot_num, 1548 struct buffer_head **bh, 1549 struct inode **ret_inode) 1550 { 1551 int status = -EACCES; 1552 struct inode *inode = NULL; 1553 1554 BUG_ON(slot_num >= osb->max_slots); 1555 1556 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1557 slot_num); 1558 if (!inode || is_bad_inode(inode)) { 1559 mlog_errno(status); 1560 goto bail; 1561 } 1562 SET_INODE_JOURNAL(inode); 1563 1564 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1565 if (status < 0) { 1566 mlog_errno(status); 1567 goto bail; 1568 } 1569 1570 status = 0; 1571 1572 bail: 1573 if (inode) { 1574 if (status || !ret_inode) 1575 iput(inode); 1576 else 1577 *ret_inode = inode; 1578 } 1579 return status; 1580 } 1581 1582 /* Does the actual journal replay and marks the journal inode as 1583 * clean. Will only replay if the journal inode is marked dirty. */ 1584 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1585 int node_num, 1586 int slot_num) 1587 { 1588 int status; 1589 int got_lock = 0; 1590 unsigned int flags; 1591 struct inode *inode = NULL; 1592 struct ocfs2_dinode *fe; 1593 journal_t *journal = NULL; 1594 struct buffer_head *bh = NULL; 1595 u32 slot_reco_gen; 1596 1597 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1598 if (status) { 1599 mlog_errno(status); 1600 goto done; 1601 } 1602 1603 fe = (struct ocfs2_dinode *)bh->b_data; 1604 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1605 brelse(bh); 1606 bh = NULL; 1607 1608 /* 1609 * As the fs recovery is asynchronous, there is a small chance that 1610 * another node mounted (and recovered) the slot before the recovery 1611 * thread could get the lock. To handle that, we dirty read the journal 1612 * inode for that slot to get the recovery generation. If it is 1613 * different than what we expected, the slot has been recovered. 1614 * If not, it needs recovery. 1615 */ 1616 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1617 trace_ocfs2_replay_journal_recovered(slot_num, 1618 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1619 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1620 status = -EBUSY; 1621 goto done; 1622 } 1623 1624 /* Continue with recovery as the journal has not yet been recovered */ 1625 1626 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1627 if (status < 0) { 1628 trace_ocfs2_replay_journal_lock_err(status); 1629 if (status != -ERESTARTSYS) 1630 mlog(ML_ERROR, "Could not lock journal!\n"); 1631 goto done; 1632 } 1633 got_lock = 1; 1634 1635 fe = (struct ocfs2_dinode *) bh->b_data; 1636 1637 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1638 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1639 1640 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1641 trace_ocfs2_replay_journal_skip(node_num); 1642 /* Refresh recovery generation for the slot */ 1643 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1644 goto done; 1645 } 1646 1647 /* we need to run complete recovery for offline orphan slots */ 1648 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1649 1650 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1651 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1652 MINOR(osb->sb->s_dev)); 1653 1654 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1655 1656 status = ocfs2_force_read_journal(inode); 1657 if (status < 0) { 1658 mlog_errno(status); 1659 goto done; 1660 } 1661 1662 journal = jbd2_journal_init_inode(inode); 1663 if (journal == NULL) { 1664 mlog(ML_ERROR, "Linux journal layer error\n"); 1665 status = -EIO; 1666 goto done; 1667 } 1668 1669 status = jbd2_journal_load(journal); 1670 if (status < 0) { 1671 mlog_errno(status); 1672 BUG_ON(!igrab(inode)); 1673 jbd2_journal_destroy(journal); 1674 goto done; 1675 } 1676 1677 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1678 1679 /* wipe the journal */ 1680 jbd2_journal_lock_updates(journal); 1681 status = jbd2_journal_flush(journal, 0); 1682 jbd2_journal_unlock_updates(journal); 1683 if (status < 0) 1684 mlog_errno(status); 1685 1686 /* This will mark the node clean */ 1687 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1688 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1689 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1690 1691 /* Increment recovery generation to indicate successful recovery */ 1692 ocfs2_bump_recovery_generation(fe); 1693 osb->slot_recovery_generations[slot_num] = 1694 ocfs2_get_recovery_generation(fe); 1695 1696 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1697 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1698 if (status < 0) 1699 mlog_errno(status); 1700 1701 BUG_ON(!igrab(inode)); 1702 1703 jbd2_journal_destroy(journal); 1704 1705 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1706 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1707 MINOR(osb->sb->s_dev)); 1708 done: 1709 /* drop the lock on this nodes journal */ 1710 if (got_lock) 1711 ocfs2_inode_unlock(inode, 1); 1712 1713 iput(inode); 1714 brelse(bh); 1715 1716 return status; 1717 } 1718 1719 /* 1720 * Do the most important parts of node recovery: 1721 * - Replay it's journal 1722 * - Stamp a clean local allocator file 1723 * - Stamp a clean truncate log 1724 * - Mark the node clean 1725 * 1726 * If this function completes without error, a node in OCFS2 can be 1727 * said to have been safely recovered. As a result, failure during the 1728 * second part of a nodes recovery process (local alloc recovery) is 1729 * far less concerning. 1730 */ 1731 static int ocfs2_recover_node(struct ocfs2_super *osb, 1732 int node_num, int slot_num) 1733 { 1734 int status = 0; 1735 struct ocfs2_dinode *la_copy = NULL; 1736 struct ocfs2_dinode *tl_copy = NULL; 1737 1738 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1739 1740 /* Should not ever be called to recover ourselves -- in that 1741 * case we should've called ocfs2_journal_load instead. */ 1742 BUG_ON(osb->node_num == node_num); 1743 1744 status = ocfs2_replay_journal(osb, node_num, slot_num); 1745 if (status < 0) { 1746 if (status == -EBUSY) { 1747 trace_ocfs2_recover_node_skip(slot_num, node_num); 1748 status = 0; 1749 goto done; 1750 } 1751 mlog_errno(status); 1752 goto done; 1753 } 1754 1755 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1756 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1757 if (status < 0) { 1758 mlog_errno(status); 1759 goto done; 1760 } 1761 1762 /* An error from begin_truncate_log_recovery is not 1763 * serious enough to warrant halting the rest of 1764 * recovery. */ 1765 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1766 if (status < 0) 1767 mlog_errno(status); 1768 1769 /* Likewise, this would be a strange but ultimately not so 1770 * harmful place to get an error... */ 1771 status = ocfs2_clear_slot(osb, slot_num); 1772 if (status < 0) 1773 mlog_errno(status); 1774 1775 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1776 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1777 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1778 1779 status = 0; 1780 done: 1781 1782 return status; 1783 } 1784 1785 /* Test node liveness by trylocking his journal. If we get the lock, 1786 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1787 * still alive (we couldn't get the lock) and < 0 on error. */ 1788 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1789 int slot_num) 1790 { 1791 int status, flags; 1792 struct inode *inode = NULL; 1793 1794 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1795 slot_num); 1796 if (inode == NULL) { 1797 mlog(ML_ERROR, "access error\n"); 1798 status = -EACCES; 1799 goto bail; 1800 } 1801 if (is_bad_inode(inode)) { 1802 mlog(ML_ERROR, "access error (bad inode)\n"); 1803 iput(inode); 1804 inode = NULL; 1805 status = -EACCES; 1806 goto bail; 1807 } 1808 SET_INODE_JOURNAL(inode); 1809 1810 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1811 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1812 if (status < 0) { 1813 if (status != -EAGAIN) 1814 mlog_errno(status); 1815 goto bail; 1816 } 1817 1818 ocfs2_inode_unlock(inode, 1); 1819 bail: 1820 iput(inode); 1821 1822 return status; 1823 } 1824 1825 /* Call this underneath ocfs2_super_lock. It also assumes that the 1826 * slot info struct has been updated from disk. */ 1827 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1828 { 1829 unsigned int node_num; 1830 int status, i; 1831 u32 gen; 1832 struct buffer_head *bh = NULL; 1833 struct ocfs2_dinode *di; 1834 1835 /* This is called with the super block cluster lock, so we 1836 * know that the slot map can't change underneath us. */ 1837 1838 for (i = 0; i < osb->max_slots; i++) { 1839 /* Read journal inode to get the recovery generation */ 1840 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1841 if (status) { 1842 mlog_errno(status); 1843 goto bail; 1844 } 1845 di = (struct ocfs2_dinode *)bh->b_data; 1846 gen = ocfs2_get_recovery_generation(di); 1847 brelse(bh); 1848 bh = NULL; 1849 1850 spin_lock(&osb->osb_lock); 1851 osb->slot_recovery_generations[i] = gen; 1852 1853 trace_ocfs2_mark_dead_nodes(i, 1854 osb->slot_recovery_generations[i]); 1855 1856 if (i == osb->slot_num) { 1857 spin_unlock(&osb->osb_lock); 1858 continue; 1859 } 1860 1861 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1862 if (status == -ENOENT) { 1863 spin_unlock(&osb->osb_lock); 1864 continue; 1865 } 1866 1867 if (__ocfs2_recovery_map_test(osb, node_num)) { 1868 spin_unlock(&osb->osb_lock); 1869 continue; 1870 } 1871 spin_unlock(&osb->osb_lock); 1872 1873 /* Ok, we have a slot occupied by another node which 1874 * is not in the recovery map. We trylock his journal 1875 * file here to test if he's alive. */ 1876 status = ocfs2_trylock_journal(osb, i); 1877 if (!status) { 1878 /* Since we're called from mount, we know that 1879 * the recovery thread can't race us on 1880 * setting / checking the recovery bits. */ 1881 ocfs2_recovery_thread(osb, node_num); 1882 } else if ((status < 0) && (status != -EAGAIN)) { 1883 mlog_errno(status); 1884 goto bail; 1885 } 1886 } 1887 1888 status = 0; 1889 bail: 1890 return status; 1891 } 1892 1893 /* 1894 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1895 * randomness to the timeout to minimize multple nodes firing the timer at the 1896 * same time. 1897 */ 1898 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1899 { 1900 unsigned long time; 1901 1902 get_random_bytes(&time, sizeof(time)); 1903 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1904 return msecs_to_jiffies(time); 1905 } 1906 1907 /* 1908 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1909 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1910 * is done to catch any orphans that are left over in orphan directories. 1911 * 1912 * It scans all slots, even ones that are in use. It does so to handle the 1913 * case described below: 1914 * 1915 * Node 1 has an inode it was using. The dentry went away due to memory 1916 * pressure. Node 1 closes the inode, but it's on the free list. The node 1917 * has the open lock. 1918 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1919 * but node 1 has no dentry and doesn't get the message. It trylocks the 1920 * open lock, sees that another node has a PR, and does nothing. 1921 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1922 * open lock, sees the PR still, and does nothing. 1923 * Basically, we have to trigger an orphan iput on node 1. The only way 1924 * for this to happen is if node 1 runs node 2's orphan dir. 1925 * 1926 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1927 * seconds. It gets an EX lock on os_lockres and checks sequence number 1928 * stored in LVB. If the sequence number has changed, it means some other 1929 * node has done the scan. This node skips the scan and tracks the 1930 * sequence number. If the sequence number didn't change, it means a scan 1931 * hasn't happened. The node queues a scan and increments the 1932 * sequence number in the LVB. 1933 */ 1934 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1935 { 1936 struct ocfs2_orphan_scan *os; 1937 int status, i; 1938 u32 seqno = 0; 1939 1940 os = &osb->osb_orphan_scan; 1941 1942 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1943 goto out; 1944 1945 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1946 atomic_read(&os->os_state)); 1947 1948 status = ocfs2_orphan_scan_lock(osb, &seqno); 1949 if (status < 0) { 1950 if (status != -EAGAIN) 1951 mlog_errno(status); 1952 goto out; 1953 } 1954 1955 /* Do no queue the tasks if the volume is being umounted */ 1956 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1957 goto unlock; 1958 1959 if (os->os_seqno != seqno) { 1960 os->os_seqno = seqno; 1961 goto unlock; 1962 } 1963 1964 for (i = 0; i < osb->max_slots; i++) 1965 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1966 NULL, ORPHAN_NO_NEED_TRUNCATE); 1967 /* 1968 * We queued a recovery on orphan slots, increment the sequence 1969 * number and update LVB so other node will skip the scan for a while 1970 */ 1971 seqno++; 1972 os->os_count++; 1973 os->os_scantime = ktime_get_seconds(); 1974 unlock: 1975 ocfs2_orphan_scan_unlock(osb, seqno); 1976 out: 1977 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 1978 atomic_read(&os->os_state)); 1979 return; 1980 } 1981 1982 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1983 static void ocfs2_orphan_scan_work(struct work_struct *work) 1984 { 1985 struct ocfs2_orphan_scan *os; 1986 struct ocfs2_super *osb; 1987 1988 os = container_of(work, struct ocfs2_orphan_scan, 1989 os_orphan_scan_work.work); 1990 osb = os->os_osb; 1991 1992 mutex_lock(&os->os_lock); 1993 ocfs2_queue_orphan_scan(osb); 1994 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 1995 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 1996 ocfs2_orphan_scan_timeout()); 1997 mutex_unlock(&os->os_lock); 1998 } 1999 2000 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 2001 { 2002 struct ocfs2_orphan_scan *os; 2003 2004 os = &osb->osb_orphan_scan; 2005 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 2006 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2007 mutex_lock(&os->os_lock); 2008 cancel_delayed_work(&os->os_orphan_scan_work); 2009 mutex_unlock(&os->os_lock); 2010 } 2011 } 2012 2013 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 2014 { 2015 struct ocfs2_orphan_scan *os; 2016 2017 os = &osb->osb_orphan_scan; 2018 os->os_osb = osb; 2019 os->os_count = 0; 2020 os->os_seqno = 0; 2021 mutex_init(&os->os_lock); 2022 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2023 } 2024 2025 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2026 { 2027 struct ocfs2_orphan_scan *os; 2028 2029 os = &osb->osb_orphan_scan; 2030 os->os_scantime = ktime_get_seconds(); 2031 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2032 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2033 else { 2034 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2035 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2036 ocfs2_orphan_scan_timeout()); 2037 } 2038 } 2039 2040 struct ocfs2_orphan_filldir_priv { 2041 struct dir_context ctx; 2042 struct inode *head; 2043 struct ocfs2_super *osb; 2044 enum ocfs2_orphan_reco_type orphan_reco_type; 2045 }; 2046 2047 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2048 int name_len, loff_t pos, u64 ino, 2049 unsigned type) 2050 { 2051 struct ocfs2_orphan_filldir_priv *p = 2052 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2053 struct inode *iter; 2054 2055 if (name_len == 1 && !strncmp(".", name, 1)) 2056 return 0; 2057 if (name_len == 2 && !strncmp("..", name, 2)) 2058 return 0; 2059 2060 /* do not include dio entry in case of orphan scan */ 2061 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2062 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2063 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2064 return 0; 2065 2066 /* Skip bad inodes so that recovery can continue */ 2067 iter = ocfs2_iget(p->osb, ino, 2068 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2069 if (IS_ERR(iter)) 2070 return 0; 2071 2072 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2073 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2074 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2075 2076 /* Skip inodes which are already added to recover list, since dio may 2077 * happen concurrently with unlink/rename */ 2078 if (OCFS2_I(iter)->ip_next_orphan) { 2079 iput(iter); 2080 return 0; 2081 } 2082 2083 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2084 /* No locking is required for the next_orphan queue as there 2085 * is only ever a single process doing orphan recovery. */ 2086 OCFS2_I(iter)->ip_next_orphan = p->head; 2087 p->head = iter; 2088 2089 return 0; 2090 } 2091 2092 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2093 int slot, 2094 struct inode **head, 2095 enum ocfs2_orphan_reco_type orphan_reco_type) 2096 { 2097 int status; 2098 struct inode *orphan_dir_inode = NULL; 2099 struct ocfs2_orphan_filldir_priv priv = { 2100 .ctx.actor = ocfs2_orphan_filldir, 2101 .osb = osb, 2102 .head = *head, 2103 .orphan_reco_type = orphan_reco_type 2104 }; 2105 2106 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2107 ORPHAN_DIR_SYSTEM_INODE, 2108 slot); 2109 if (!orphan_dir_inode) { 2110 status = -ENOENT; 2111 mlog_errno(status); 2112 return status; 2113 } 2114 2115 inode_lock(orphan_dir_inode); 2116 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2117 if (status < 0) { 2118 mlog_errno(status); 2119 goto out; 2120 } 2121 2122 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2123 if (status) { 2124 mlog_errno(status); 2125 goto out_cluster; 2126 } 2127 2128 *head = priv.head; 2129 2130 out_cluster: 2131 ocfs2_inode_unlock(orphan_dir_inode, 0); 2132 out: 2133 inode_unlock(orphan_dir_inode); 2134 iput(orphan_dir_inode); 2135 return status; 2136 } 2137 2138 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2139 int slot) 2140 { 2141 int ret; 2142 2143 spin_lock(&osb->osb_lock); 2144 ret = !osb->osb_orphan_wipes[slot]; 2145 spin_unlock(&osb->osb_lock); 2146 return ret; 2147 } 2148 2149 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2150 int slot) 2151 { 2152 spin_lock(&osb->osb_lock); 2153 /* Mark ourselves such that new processes in delete_inode() 2154 * know to quit early. */ 2155 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2156 while (osb->osb_orphan_wipes[slot]) { 2157 /* If any processes are already in the middle of an 2158 * orphan wipe on this dir, then we need to wait for 2159 * them. */ 2160 spin_unlock(&osb->osb_lock); 2161 wait_event_interruptible(osb->osb_wipe_event, 2162 ocfs2_orphan_recovery_can_continue(osb, slot)); 2163 spin_lock(&osb->osb_lock); 2164 } 2165 spin_unlock(&osb->osb_lock); 2166 } 2167 2168 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2169 int slot) 2170 { 2171 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2172 } 2173 2174 /* 2175 * Orphan recovery. Each mounted node has it's own orphan dir which we 2176 * must run during recovery. Our strategy here is to build a list of 2177 * the inodes in the orphan dir and iget/iput them. The VFS does 2178 * (most) of the rest of the work. 2179 * 2180 * Orphan recovery can happen at any time, not just mount so we have a 2181 * couple of extra considerations. 2182 * 2183 * - We grab as many inodes as we can under the orphan dir lock - 2184 * doing iget() outside the orphan dir risks getting a reference on 2185 * an invalid inode. 2186 * - We must be sure not to deadlock with other processes on the 2187 * system wanting to run delete_inode(). This can happen when they go 2188 * to lock the orphan dir and the orphan recovery process attempts to 2189 * iget() inside the orphan dir lock. This can be avoided by 2190 * advertising our state to ocfs2_delete_inode(). 2191 */ 2192 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2193 int slot, 2194 enum ocfs2_orphan_reco_type orphan_reco_type) 2195 { 2196 int ret = 0; 2197 struct inode *inode = NULL; 2198 struct inode *iter; 2199 struct ocfs2_inode_info *oi; 2200 struct buffer_head *di_bh = NULL; 2201 struct ocfs2_dinode *di = NULL; 2202 2203 trace_ocfs2_recover_orphans(slot); 2204 2205 ocfs2_mark_recovering_orphan_dir(osb, slot); 2206 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2207 ocfs2_clear_recovering_orphan_dir(osb, slot); 2208 2209 /* Error here should be noted, but we want to continue with as 2210 * many queued inodes as we've got. */ 2211 if (ret) 2212 mlog_errno(ret); 2213 2214 while (inode) { 2215 oi = OCFS2_I(inode); 2216 trace_ocfs2_recover_orphans_iput( 2217 (unsigned long long)oi->ip_blkno); 2218 2219 iter = oi->ip_next_orphan; 2220 oi->ip_next_orphan = NULL; 2221 2222 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2223 inode_lock(inode); 2224 ret = ocfs2_rw_lock(inode, 1); 2225 if (ret < 0) { 2226 mlog_errno(ret); 2227 goto unlock_mutex; 2228 } 2229 /* 2230 * We need to take and drop the inode lock to 2231 * force read inode from disk. 2232 */ 2233 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2234 if (ret) { 2235 mlog_errno(ret); 2236 goto unlock_rw; 2237 } 2238 2239 di = (struct ocfs2_dinode *)di_bh->b_data; 2240 2241 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2242 ret = ocfs2_truncate_file(inode, di_bh, 2243 i_size_read(inode)); 2244 if (ret < 0) { 2245 if (ret != -ENOSPC) 2246 mlog_errno(ret); 2247 goto unlock_inode; 2248 } 2249 2250 ret = ocfs2_del_inode_from_orphan(osb, inode, 2251 di_bh, 0, 0); 2252 if (ret) 2253 mlog_errno(ret); 2254 } 2255 unlock_inode: 2256 ocfs2_inode_unlock(inode, 1); 2257 brelse(di_bh); 2258 di_bh = NULL; 2259 unlock_rw: 2260 ocfs2_rw_unlock(inode, 1); 2261 unlock_mutex: 2262 inode_unlock(inode); 2263 2264 /* clear dio flag in ocfs2_inode_info */ 2265 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2266 } else { 2267 spin_lock(&oi->ip_lock); 2268 /* Set the proper information to get us going into 2269 * ocfs2_delete_inode. */ 2270 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2271 spin_unlock(&oi->ip_lock); 2272 } 2273 2274 iput(inode); 2275 inode = iter; 2276 } 2277 2278 return ret; 2279 } 2280 2281 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2282 { 2283 /* This check is good because ocfs2 will wait on our recovery 2284 * thread before changing it to something other than MOUNTED 2285 * or DISABLED. */ 2286 wait_event(osb->osb_mount_event, 2287 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2288 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2289 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2290 2291 /* If there's an error on mount, then we may never get to the 2292 * MOUNTED flag, but this is set right before 2293 * dismount_volume() so we can trust it. */ 2294 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2295 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2296 mlog(0, "mount error, exiting!\n"); 2297 return -EBUSY; 2298 } 2299 2300 return 0; 2301 } 2302 2303 static int ocfs2_commit_thread(void *arg) 2304 { 2305 int status; 2306 struct ocfs2_super *osb = arg; 2307 struct ocfs2_journal *journal = osb->journal; 2308 2309 /* we can trust j_num_trans here because _should_stop() is only set in 2310 * shutdown and nobody other than ourselves should be able to start 2311 * transactions. committing on shutdown might take a few iterations 2312 * as final transactions put deleted inodes on the list */ 2313 while (!(kthread_should_stop() && 2314 atomic_read(&journal->j_num_trans) == 0)) { 2315 2316 wait_event_interruptible(osb->checkpoint_event, 2317 atomic_read(&journal->j_num_trans) 2318 || kthread_should_stop()); 2319 2320 status = ocfs2_commit_cache(osb); 2321 if (status < 0) { 2322 static unsigned long abort_warn_time; 2323 2324 /* Warn about this once per minute */ 2325 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2326 mlog(ML_ERROR, "status = %d, journal is " 2327 "already aborted.\n", status); 2328 /* 2329 * After ocfs2_commit_cache() fails, j_num_trans has a 2330 * non-zero value. Sleep here to avoid a busy-wait 2331 * loop. 2332 */ 2333 msleep_interruptible(1000); 2334 } 2335 2336 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2337 mlog(ML_KTHREAD, 2338 "commit_thread: %u transactions pending on " 2339 "shutdown\n", 2340 atomic_read(&journal->j_num_trans)); 2341 } 2342 } 2343 2344 return 0; 2345 } 2346 2347 /* Reads all the journal inodes without taking any cluster locks. Used 2348 * for hard readonly access to determine whether any journal requires 2349 * recovery. Also used to refresh the recovery generation numbers after 2350 * a journal has been recovered by another node. 2351 */ 2352 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2353 { 2354 int ret = 0; 2355 unsigned int slot; 2356 struct buffer_head *di_bh = NULL; 2357 struct ocfs2_dinode *di; 2358 int journal_dirty = 0; 2359 2360 for(slot = 0; slot < osb->max_slots; slot++) { 2361 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2362 if (ret) { 2363 mlog_errno(ret); 2364 goto out; 2365 } 2366 2367 di = (struct ocfs2_dinode *) di_bh->b_data; 2368 2369 osb->slot_recovery_generations[slot] = 2370 ocfs2_get_recovery_generation(di); 2371 2372 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2373 OCFS2_JOURNAL_DIRTY_FL) 2374 journal_dirty = 1; 2375 2376 brelse(di_bh); 2377 di_bh = NULL; 2378 } 2379 2380 out: 2381 if (journal_dirty) 2382 ret = -EROFS; 2383 return ret; 2384 } 2385