1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 #include <linux/time.h> 32 #include <linux/random.h> 33 #include <linux/delay.h> 34 35 #include <cluster/masklog.h> 36 37 #include "ocfs2.h" 38 39 #include "alloc.h" 40 #include "blockcheck.h" 41 #include "dir.h" 42 #include "dlmglue.h" 43 #include "extent_map.h" 44 #include "heartbeat.h" 45 #include "inode.h" 46 #include "journal.h" 47 #include "localalloc.h" 48 #include "slot_map.h" 49 #include "super.h" 50 #include "sysfile.h" 51 #include "uptodate.h" 52 #include "quota.h" 53 #include "file.h" 54 #include "namei.h" 55 56 #include "buffer_head_io.h" 57 #include "ocfs2_trace.h" 58 59 DEFINE_SPINLOCK(trans_inc_lock); 60 61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 62 63 static int ocfs2_force_read_journal(struct inode *inode); 64 static int ocfs2_recover_node(struct ocfs2_super *osb, 65 int node_num, int slot_num); 66 static int __ocfs2_recovery_thread(void *arg); 67 static int ocfs2_commit_cache(struct ocfs2_super *osb); 68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 70 int dirty, int replayed); 71 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 72 int slot_num); 73 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 74 int slot, 75 enum ocfs2_orphan_reco_type orphan_reco_type); 76 static int ocfs2_commit_thread(void *arg); 77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 78 int slot_num, 79 struct ocfs2_dinode *la_dinode, 80 struct ocfs2_dinode *tl_dinode, 81 struct ocfs2_quota_recovery *qrec, 82 enum ocfs2_orphan_reco_type orphan_reco_type); 83 84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 85 { 86 return __ocfs2_wait_on_mount(osb, 0); 87 } 88 89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 90 { 91 return __ocfs2_wait_on_mount(osb, 1); 92 } 93 94 /* 95 * This replay_map is to track online/offline slots, so we could recover 96 * offline slots during recovery and mount 97 */ 98 99 enum ocfs2_replay_state { 100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 102 REPLAY_DONE /* Replay was already queued */ 103 }; 104 105 struct ocfs2_replay_map { 106 unsigned int rm_slots; 107 enum ocfs2_replay_state rm_state; 108 unsigned char rm_replay_slots[0]; 109 }; 110 111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 112 { 113 if (!osb->replay_map) 114 return; 115 116 /* If we've already queued the replay, we don't have any more to do */ 117 if (osb->replay_map->rm_state == REPLAY_DONE) 118 return; 119 120 osb->replay_map->rm_state = state; 121 } 122 123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 124 { 125 struct ocfs2_replay_map *replay_map; 126 int i, node_num; 127 128 /* If replay map is already set, we don't do it again */ 129 if (osb->replay_map) 130 return 0; 131 132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 133 (osb->max_slots * sizeof(char)), GFP_KERNEL); 134 135 if (!replay_map) { 136 mlog_errno(-ENOMEM); 137 return -ENOMEM; 138 } 139 140 spin_lock(&osb->osb_lock); 141 142 replay_map->rm_slots = osb->max_slots; 143 replay_map->rm_state = REPLAY_UNNEEDED; 144 145 /* set rm_replay_slots for offline slot(s) */ 146 for (i = 0; i < replay_map->rm_slots; i++) { 147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 148 replay_map->rm_replay_slots[i] = 1; 149 } 150 151 osb->replay_map = replay_map; 152 spin_unlock(&osb->osb_lock); 153 return 0; 154 } 155 156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 157 enum ocfs2_orphan_reco_type orphan_reco_type) 158 { 159 struct ocfs2_replay_map *replay_map = osb->replay_map; 160 int i; 161 162 if (!replay_map) 163 return; 164 165 if (replay_map->rm_state != REPLAY_NEEDED) 166 return; 167 168 for (i = 0; i < replay_map->rm_slots; i++) 169 if (replay_map->rm_replay_slots[i]) 170 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 171 NULL, NULL, 172 orphan_reco_type); 173 replay_map->rm_state = REPLAY_DONE; 174 } 175 176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb) 177 { 178 struct ocfs2_replay_map *replay_map = osb->replay_map; 179 180 if (!osb->replay_map) 181 return; 182 183 kfree(replay_map); 184 osb->replay_map = NULL; 185 } 186 187 int ocfs2_recovery_init(struct ocfs2_super *osb) 188 { 189 struct ocfs2_recovery_map *rm; 190 191 mutex_init(&osb->recovery_lock); 192 osb->disable_recovery = 0; 193 osb->recovery_thread_task = NULL; 194 init_waitqueue_head(&osb->recovery_event); 195 196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 197 osb->max_slots * sizeof(unsigned int), 198 GFP_KERNEL); 199 if (!rm) { 200 mlog_errno(-ENOMEM); 201 return -ENOMEM; 202 } 203 204 rm->rm_entries = (unsigned int *)((char *)rm + 205 sizeof(struct ocfs2_recovery_map)); 206 osb->recovery_map = rm; 207 208 return 0; 209 } 210 211 /* we can't grab the goofy sem lock from inside wait_event, so we use 212 * memory barriers to make sure that we'll see the null task before 213 * being woken up */ 214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 215 { 216 mb(); 217 return osb->recovery_thread_task != NULL; 218 } 219 220 void ocfs2_recovery_exit(struct ocfs2_super *osb) 221 { 222 struct ocfs2_recovery_map *rm; 223 224 /* disable any new recovery threads and wait for any currently 225 * running ones to exit. Do this before setting the vol_state. */ 226 mutex_lock(&osb->recovery_lock); 227 osb->disable_recovery = 1; 228 mutex_unlock(&osb->recovery_lock); 229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 230 231 /* At this point, we know that no more recovery threads can be 232 * launched, so wait for any recovery completion work to 233 * complete. */ 234 flush_workqueue(ocfs2_wq); 235 236 /* 237 * Now that recovery is shut down, and the osb is about to be 238 * freed, the osb_lock is not taken here. 239 */ 240 rm = osb->recovery_map; 241 /* XXX: Should we bug if there are dirty entries? */ 242 243 kfree(rm); 244 } 245 246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 247 unsigned int node_num) 248 { 249 int i; 250 struct ocfs2_recovery_map *rm = osb->recovery_map; 251 252 assert_spin_locked(&osb->osb_lock); 253 254 for (i = 0; i < rm->rm_used; i++) { 255 if (rm->rm_entries[i] == node_num) 256 return 1; 257 } 258 259 return 0; 260 } 261 262 /* Behaves like test-and-set. Returns the previous value */ 263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 264 unsigned int node_num) 265 { 266 struct ocfs2_recovery_map *rm = osb->recovery_map; 267 268 spin_lock(&osb->osb_lock); 269 if (__ocfs2_recovery_map_test(osb, node_num)) { 270 spin_unlock(&osb->osb_lock); 271 return 1; 272 } 273 274 /* XXX: Can this be exploited? Not from o2dlm... */ 275 BUG_ON(rm->rm_used >= osb->max_slots); 276 277 rm->rm_entries[rm->rm_used] = node_num; 278 rm->rm_used++; 279 spin_unlock(&osb->osb_lock); 280 281 return 0; 282 } 283 284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 285 unsigned int node_num) 286 { 287 int i; 288 struct ocfs2_recovery_map *rm = osb->recovery_map; 289 290 spin_lock(&osb->osb_lock); 291 292 for (i = 0; i < rm->rm_used; i++) { 293 if (rm->rm_entries[i] == node_num) 294 break; 295 } 296 297 if (i < rm->rm_used) { 298 /* XXX: be careful with the pointer math */ 299 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 300 (rm->rm_used - i - 1) * sizeof(unsigned int)); 301 rm->rm_used--; 302 } 303 304 spin_unlock(&osb->osb_lock); 305 } 306 307 static int ocfs2_commit_cache(struct ocfs2_super *osb) 308 { 309 int status = 0; 310 unsigned int flushed; 311 struct ocfs2_journal *journal = NULL; 312 313 journal = osb->journal; 314 315 /* Flush all pending commits and checkpoint the journal. */ 316 down_write(&journal->j_trans_barrier); 317 318 flushed = atomic_read(&journal->j_num_trans); 319 trace_ocfs2_commit_cache_begin(flushed); 320 if (flushed == 0) { 321 up_write(&journal->j_trans_barrier); 322 goto finally; 323 } 324 325 jbd2_journal_lock_updates(journal->j_journal); 326 status = jbd2_journal_flush(journal->j_journal); 327 jbd2_journal_unlock_updates(journal->j_journal); 328 if (status < 0) { 329 up_write(&journal->j_trans_barrier); 330 mlog_errno(status); 331 goto finally; 332 } 333 334 ocfs2_inc_trans_id(journal); 335 336 flushed = atomic_read(&journal->j_num_trans); 337 atomic_set(&journal->j_num_trans, 0); 338 up_write(&journal->j_trans_barrier); 339 340 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 341 342 ocfs2_wake_downconvert_thread(osb); 343 wake_up(&journal->j_checkpointed); 344 finally: 345 return status; 346 } 347 348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 349 { 350 journal_t *journal = osb->journal->j_journal; 351 handle_t *handle; 352 353 BUG_ON(!osb || !osb->journal->j_journal); 354 355 if (ocfs2_is_hard_readonly(osb)) 356 return ERR_PTR(-EROFS); 357 358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 359 BUG_ON(max_buffs <= 0); 360 361 /* Nested transaction? Just return the handle... */ 362 if (journal_current_handle()) 363 return jbd2_journal_start(journal, max_buffs); 364 365 sb_start_intwrite(osb->sb); 366 367 down_read(&osb->journal->j_trans_barrier); 368 369 handle = jbd2_journal_start(journal, max_buffs); 370 if (IS_ERR(handle)) { 371 up_read(&osb->journal->j_trans_barrier); 372 sb_end_intwrite(osb->sb); 373 374 mlog_errno(PTR_ERR(handle)); 375 376 if (is_journal_aborted(journal)) { 377 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 378 handle = ERR_PTR(-EROFS); 379 } 380 } else { 381 if (!ocfs2_mount_local(osb)) 382 atomic_inc(&(osb->journal->j_num_trans)); 383 } 384 385 return handle; 386 } 387 388 int ocfs2_commit_trans(struct ocfs2_super *osb, 389 handle_t *handle) 390 { 391 int ret, nested; 392 struct ocfs2_journal *journal = osb->journal; 393 394 BUG_ON(!handle); 395 396 nested = handle->h_ref > 1; 397 ret = jbd2_journal_stop(handle); 398 if (ret < 0) 399 mlog_errno(ret); 400 401 if (!nested) { 402 up_read(&journal->j_trans_barrier); 403 sb_end_intwrite(osb->sb); 404 } 405 406 return ret; 407 } 408 409 /* 410 * 'nblocks' is what you want to add to the current transaction. 411 * 412 * This might call jbd2_journal_restart() which will commit dirty buffers 413 * and then restart the transaction. Before calling 414 * ocfs2_extend_trans(), any changed blocks should have been 415 * dirtied. After calling it, all blocks which need to be changed must 416 * go through another set of journal_access/journal_dirty calls. 417 * 418 * WARNING: This will not release any semaphores or disk locks taken 419 * during the transaction, so make sure they were taken *before* 420 * start_trans or we'll have ordering deadlocks. 421 * 422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 423 * good because transaction ids haven't yet been recorded on the 424 * cluster locks associated with this handle. 425 */ 426 int ocfs2_extend_trans(handle_t *handle, int nblocks) 427 { 428 int status, old_nblocks; 429 430 BUG_ON(!handle); 431 BUG_ON(nblocks < 0); 432 433 if (!nblocks) 434 return 0; 435 436 old_nblocks = handle->h_buffer_credits; 437 438 trace_ocfs2_extend_trans(old_nblocks, nblocks); 439 440 #ifdef CONFIG_OCFS2_DEBUG_FS 441 status = 1; 442 #else 443 status = jbd2_journal_extend(handle, nblocks); 444 if (status < 0) { 445 mlog_errno(status); 446 goto bail; 447 } 448 #endif 449 450 if (status > 0) { 451 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 452 status = jbd2_journal_restart(handle, 453 old_nblocks + nblocks); 454 if (status < 0) { 455 mlog_errno(status); 456 goto bail; 457 } 458 } 459 460 status = 0; 461 bail: 462 return status; 463 } 464 465 /* 466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 467 * If that fails, restart the transaction & regain write access for the 468 * buffer head which is used for metadata modifications. 469 * Taken from Ext4: extend_or_restart_transaction() 470 */ 471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 472 { 473 int status, old_nblks; 474 475 BUG_ON(!handle); 476 477 old_nblks = handle->h_buffer_credits; 478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 479 480 if (old_nblks < thresh) 481 return 0; 482 483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA); 484 if (status < 0) { 485 mlog_errno(status); 486 goto bail; 487 } 488 489 if (status > 0) { 490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 491 if (status < 0) 492 mlog_errno(status); 493 } 494 495 bail: 496 return status; 497 } 498 499 500 struct ocfs2_triggers { 501 struct jbd2_buffer_trigger_type ot_triggers; 502 int ot_offset; 503 }; 504 505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 506 { 507 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 508 } 509 510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 511 struct buffer_head *bh, 512 void *data, size_t size) 513 { 514 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 515 516 /* 517 * We aren't guaranteed to have the superblock here, so we 518 * must unconditionally compute the ecc data. 519 * __ocfs2_journal_access() will only set the triggers if 520 * metaecc is enabled. 521 */ 522 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 523 } 524 525 /* 526 * Quota blocks have their own trigger because the struct ocfs2_block_check 527 * offset depends on the blocksize. 528 */ 529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 530 struct buffer_head *bh, 531 void *data, size_t size) 532 { 533 struct ocfs2_disk_dqtrailer *dqt = 534 ocfs2_block_dqtrailer(size, data); 535 536 /* 537 * We aren't guaranteed to have the superblock here, so we 538 * must unconditionally compute the ecc data. 539 * __ocfs2_journal_access() will only set the triggers if 540 * metaecc is enabled. 541 */ 542 ocfs2_block_check_compute(data, size, &dqt->dq_check); 543 } 544 545 /* 546 * Directory blocks also have their own trigger because the 547 * struct ocfs2_block_check offset depends on the blocksize. 548 */ 549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 550 struct buffer_head *bh, 551 void *data, size_t size) 552 { 553 struct ocfs2_dir_block_trailer *trailer = 554 ocfs2_dir_trailer_from_size(size, data); 555 556 /* 557 * We aren't guaranteed to have the superblock here, so we 558 * must unconditionally compute the ecc data. 559 * __ocfs2_journal_access() will only set the triggers if 560 * metaecc is enabled. 561 */ 562 ocfs2_block_check_compute(data, size, &trailer->db_check); 563 } 564 565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 566 struct buffer_head *bh) 567 { 568 mlog(ML_ERROR, 569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 570 "bh->b_blocknr = %llu\n", 571 (unsigned long)bh, 572 (unsigned long long)bh->b_blocknr); 573 574 ocfs2_error(bh->b_bdev->bd_super, 575 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 576 } 577 578 static struct ocfs2_triggers di_triggers = { 579 .ot_triggers = { 580 .t_frozen = ocfs2_frozen_trigger, 581 .t_abort = ocfs2_abort_trigger, 582 }, 583 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 584 }; 585 586 static struct ocfs2_triggers eb_triggers = { 587 .ot_triggers = { 588 .t_frozen = ocfs2_frozen_trigger, 589 .t_abort = ocfs2_abort_trigger, 590 }, 591 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 592 }; 593 594 static struct ocfs2_triggers rb_triggers = { 595 .ot_triggers = { 596 .t_frozen = ocfs2_frozen_trigger, 597 .t_abort = ocfs2_abort_trigger, 598 }, 599 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 600 }; 601 602 static struct ocfs2_triggers gd_triggers = { 603 .ot_triggers = { 604 .t_frozen = ocfs2_frozen_trigger, 605 .t_abort = ocfs2_abort_trigger, 606 }, 607 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 608 }; 609 610 static struct ocfs2_triggers db_triggers = { 611 .ot_triggers = { 612 .t_frozen = ocfs2_db_frozen_trigger, 613 .t_abort = ocfs2_abort_trigger, 614 }, 615 }; 616 617 static struct ocfs2_triggers xb_triggers = { 618 .ot_triggers = { 619 .t_frozen = ocfs2_frozen_trigger, 620 .t_abort = ocfs2_abort_trigger, 621 }, 622 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 623 }; 624 625 static struct ocfs2_triggers dq_triggers = { 626 .ot_triggers = { 627 .t_frozen = ocfs2_dq_frozen_trigger, 628 .t_abort = ocfs2_abort_trigger, 629 }, 630 }; 631 632 static struct ocfs2_triggers dr_triggers = { 633 .ot_triggers = { 634 .t_frozen = ocfs2_frozen_trigger, 635 .t_abort = ocfs2_abort_trigger, 636 }, 637 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 638 }; 639 640 static struct ocfs2_triggers dl_triggers = { 641 .ot_triggers = { 642 .t_frozen = ocfs2_frozen_trigger, 643 .t_abort = ocfs2_abort_trigger, 644 }, 645 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 646 }; 647 648 static int __ocfs2_journal_access(handle_t *handle, 649 struct ocfs2_caching_info *ci, 650 struct buffer_head *bh, 651 struct ocfs2_triggers *triggers, 652 int type) 653 { 654 int status; 655 struct ocfs2_super *osb = 656 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 657 658 BUG_ON(!ci || !ci->ci_ops); 659 BUG_ON(!handle); 660 BUG_ON(!bh); 661 662 trace_ocfs2_journal_access( 663 (unsigned long long)ocfs2_metadata_cache_owner(ci), 664 (unsigned long long)bh->b_blocknr, type, bh->b_size); 665 666 /* we can safely remove this assertion after testing. */ 667 if (!buffer_uptodate(bh)) { 668 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 669 mlog(ML_ERROR, "b_blocknr=%llu\n", 670 (unsigned long long)bh->b_blocknr); 671 672 lock_buffer(bh); 673 /* 674 * A previous attempt to write this buffer head failed. 675 * Nothing we can do but to retry the write and hope for 676 * the best. 677 */ 678 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 679 clear_buffer_write_io_error(bh); 680 set_buffer_uptodate(bh); 681 } 682 683 if (!buffer_uptodate(bh)) { 684 unlock_buffer(bh); 685 return -EIO; 686 } 687 unlock_buffer(bh); 688 } 689 690 /* Set the current transaction information on the ci so 691 * that the locking code knows whether it can drop it's locks 692 * on this ci or not. We're protected from the commit 693 * thread updating the current transaction id until 694 * ocfs2_commit_trans() because ocfs2_start_trans() took 695 * j_trans_barrier for us. */ 696 ocfs2_set_ci_lock_trans(osb->journal, ci); 697 698 ocfs2_metadata_cache_io_lock(ci); 699 switch (type) { 700 case OCFS2_JOURNAL_ACCESS_CREATE: 701 case OCFS2_JOURNAL_ACCESS_WRITE: 702 status = jbd2_journal_get_write_access(handle, bh); 703 break; 704 705 case OCFS2_JOURNAL_ACCESS_UNDO: 706 status = jbd2_journal_get_undo_access(handle, bh); 707 break; 708 709 default: 710 status = -EINVAL; 711 mlog(ML_ERROR, "Unknown access type!\n"); 712 } 713 if (!status && ocfs2_meta_ecc(osb) && triggers) 714 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 715 ocfs2_metadata_cache_io_unlock(ci); 716 717 if (status < 0) 718 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 719 status, type); 720 721 return status; 722 } 723 724 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 725 struct buffer_head *bh, int type) 726 { 727 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 728 } 729 730 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 731 struct buffer_head *bh, int type) 732 { 733 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 734 } 735 736 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 737 struct buffer_head *bh, int type) 738 { 739 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 740 type); 741 } 742 743 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 744 struct buffer_head *bh, int type) 745 { 746 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 747 } 748 749 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 750 struct buffer_head *bh, int type) 751 { 752 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 753 } 754 755 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 756 struct buffer_head *bh, int type) 757 { 758 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 759 } 760 761 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 762 struct buffer_head *bh, int type) 763 { 764 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 765 } 766 767 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 768 struct buffer_head *bh, int type) 769 { 770 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 771 } 772 773 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 774 struct buffer_head *bh, int type) 775 { 776 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 777 } 778 779 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 780 struct buffer_head *bh, int type) 781 { 782 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 783 } 784 785 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 786 { 787 int status; 788 789 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 790 791 status = jbd2_journal_dirty_metadata(handle, bh); 792 if (status) { 793 mlog_errno(status); 794 if (!is_handle_aborted(handle)) { 795 journal_t *journal = handle->h_transaction->t_journal; 796 struct super_block *sb = bh->b_bdev->bd_super; 797 798 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " 799 "Aborting transaction and journal.\n"); 800 handle->h_err = status; 801 jbd2_journal_abort_handle(handle); 802 jbd2_journal_abort(journal, status); 803 ocfs2_abort(sb, "Journal already aborted.\n"); 804 } 805 } 806 } 807 808 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 809 810 void ocfs2_set_journal_params(struct ocfs2_super *osb) 811 { 812 journal_t *journal = osb->journal->j_journal; 813 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 814 815 if (osb->osb_commit_interval) 816 commit_interval = osb->osb_commit_interval; 817 818 write_lock(&journal->j_state_lock); 819 journal->j_commit_interval = commit_interval; 820 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 821 journal->j_flags |= JBD2_BARRIER; 822 else 823 journal->j_flags &= ~JBD2_BARRIER; 824 write_unlock(&journal->j_state_lock); 825 } 826 827 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 828 { 829 int status = -1; 830 struct inode *inode = NULL; /* the journal inode */ 831 journal_t *j_journal = NULL; 832 struct ocfs2_dinode *di = NULL; 833 struct buffer_head *bh = NULL; 834 struct ocfs2_super *osb; 835 int inode_lock = 0; 836 837 BUG_ON(!journal); 838 839 osb = journal->j_osb; 840 841 /* already have the inode for our journal */ 842 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 843 osb->slot_num); 844 if (inode == NULL) { 845 status = -EACCES; 846 mlog_errno(status); 847 goto done; 848 } 849 if (is_bad_inode(inode)) { 850 mlog(ML_ERROR, "access error (bad inode)\n"); 851 iput(inode); 852 inode = NULL; 853 status = -EACCES; 854 goto done; 855 } 856 857 SET_INODE_JOURNAL(inode); 858 OCFS2_I(inode)->ip_open_count++; 859 860 /* Skip recovery waits here - journal inode metadata never 861 * changes in a live cluster so it can be considered an 862 * exception to the rule. */ 863 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 864 if (status < 0) { 865 if (status != -ERESTARTSYS) 866 mlog(ML_ERROR, "Could not get lock on journal!\n"); 867 goto done; 868 } 869 870 inode_lock = 1; 871 di = (struct ocfs2_dinode *)bh->b_data; 872 873 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 874 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 875 i_size_read(inode)); 876 status = -EINVAL; 877 goto done; 878 } 879 880 trace_ocfs2_journal_init(i_size_read(inode), 881 (unsigned long long)inode->i_blocks, 882 OCFS2_I(inode)->ip_clusters); 883 884 /* call the kernels journal init function now */ 885 j_journal = jbd2_journal_init_inode(inode); 886 if (j_journal == NULL) { 887 mlog(ML_ERROR, "Linux journal layer error\n"); 888 status = -EINVAL; 889 goto done; 890 } 891 892 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen); 893 894 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 895 OCFS2_JOURNAL_DIRTY_FL); 896 897 journal->j_journal = j_journal; 898 journal->j_inode = inode; 899 journal->j_bh = bh; 900 901 ocfs2_set_journal_params(osb); 902 903 journal->j_state = OCFS2_JOURNAL_LOADED; 904 905 status = 0; 906 done: 907 if (status < 0) { 908 if (inode_lock) 909 ocfs2_inode_unlock(inode, 1); 910 brelse(bh); 911 if (inode) { 912 OCFS2_I(inode)->ip_open_count--; 913 iput(inode); 914 } 915 } 916 917 return status; 918 } 919 920 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 921 { 922 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 923 } 924 925 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 926 { 927 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 928 } 929 930 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 931 int dirty, int replayed) 932 { 933 int status; 934 unsigned int flags; 935 struct ocfs2_journal *journal = osb->journal; 936 struct buffer_head *bh = journal->j_bh; 937 struct ocfs2_dinode *fe; 938 939 fe = (struct ocfs2_dinode *)bh->b_data; 940 941 /* The journal bh on the osb always comes from ocfs2_journal_init() 942 * and was validated there inside ocfs2_inode_lock_full(). It's a 943 * code bug if we mess it up. */ 944 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 945 946 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 947 if (dirty) 948 flags |= OCFS2_JOURNAL_DIRTY_FL; 949 else 950 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 951 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 952 953 if (replayed) 954 ocfs2_bump_recovery_generation(fe); 955 956 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 957 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 958 if (status < 0) 959 mlog_errno(status); 960 961 return status; 962 } 963 964 /* 965 * If the journal has been kmalloc'd it needs to be freed after this 966 * call. 967 */ 968 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 969 { 970 struct ocfs2_journal *journal = NULL; 971 int status = 0; 972 struct inode *inode = NULL; 973 int num_running_trans = 0; 974 975 BUG_ON(!osb); 976 977 journal = osb->journal; 978 if (!journal) 979 goto done; 980 981 inode = journal->j_inode; 982 983 if (journal->j_state != OCFS2_JOURNAL_LOADED) 984 goto done; 985 986 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 987 if (!igrab(inode)) 988 BUG(); 989 990 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 991 trace_ocfs2_journal_shutdown(num_running_trans); 992 993 /* Do a commit_cache here. It will flush our journal, *and* 994 * release any locks that are still held. 995 * set the SHUTDOWN flag and release the trans lock. 996 * the commit thread will take the trans lock for us below. */ 997 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 998 999 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 1000 * drop the trans_lock (which we want to hold until we 1001 * completely destroy the journal. */ 1002 if (osb->commit_task) { 1003 /* Wait for the commit thread */ 1004 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 1005 kthread_stop(osb->commit_task); 1006 osb->commit_task = NULL; 1007 } 1008 1009 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 1010 1011 if (ocfs2_mount_local(osb)) { 1012 jbd2_journal_lock_updates(journal->j_journal); 1013 status = jbd2_journal_flush(journal->j_journal); 1014 jbd2_journal_unlock_updates(journal->j_journal); 1015 if (status < 0) 1016 mlog_errno(status); 1017 } 1018 1019 if (status == 0) { 1020 /* 1021 * Do not toggle if flush was unsuccessful otherwise 1022 * will leave dirty metadata in a "clean" journal 1023 */ 1024 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1025 if (status < 0) 1026 mlog_errno(status); 1027 } 1028 1029 /* Shutdown the kernel journal system */ 1030 jbd2_journal_destroy(journal->j_journal); 1031 journal->j_journal = NULL; 1032 1033 OCFS2_I(inode)->ip_open_count--; 1034 1035 /* unlock our journal */ 1036 ocfs2_inode_unlock(inode, 1); 1037 1038 brelse(journal->j_bh); 1039 journal->j_bh = NULL; 1040 1041 journal->j_state = OCFS2_JOURNAL_FREE; 1042 1043 // up_write(&journal->j_trans_barrier); 1044 done: 1045 if (inode) 1046 iput(inode); 1047 } 1048 1049 static void ocfs2_clear_journal_error(struct super_block *sb, 1050 journal_t *journal, 1051 int slot) 1052 { 1053 int olderr; 1054 1055 olderr = jbd2_journal_errno(journal); 1056 if (olderr) { 1057 mlog(ML_ERROR, "File system error %d recorded in " 1058 "journal %u.\n", olderr, slot); 1059 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1060 sb->s_id); 1061 1062 jbd2_journal_ack_err(journal); 1063 jbd2_journal_clear_err(journal); 1064 } 1065 } 1066 1067 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1068 { 1069 int status = 0; 1070 struct ocfs2_super *osb; 1071 1072 BUG_ON(!journal); 1073 1074 osb = journal->j_osb; 1075 1076 status = jbd2_journal_load(journal->j_journal); 1077 if (status < 0) { 1078 mlog(ML_ERROR, "Failed to load journal!\n"); 1079 goto done; 1080 } 1081 1082 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1083 1084 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1085 if (status < 0) { 1086 mlog_errno(status); 1087 goto done; 1088 } 1089 1090 /* Launch the commit thread */ 1091 if (!local) { 1092 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1093 "ocfs2cmt"); 1094 if (IS_ERR(osb->commit_task)) { 1095 status = PTR_ERR(osb->commit_task); 1096 osb->commit_task = NULL; 1097 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1098 "error=%d", status); 1099 goto done; 1100 } 1101 } else 1102 osb->commit_task = NULL; 1103 1104 done: 1105 return status; 1106 } 1107 1108 1109 /* 'full' flag tells us whether we clear out all blocks or if we just 1110 * mark the journal clean */ 1111 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1112 { 1113 int status; 1114 1115 BUG_ON(!journal); 1116 1117 status = jbd2_journal_wipe(journal->j_journal, full); 1118 if (status < 0) { 1119 mlog_errno(status); 1120 goto bail; 1121 } 1122 1123 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1124 if (status < 0) 1125 mlog_errno(status); 1126 1127 bail: 1128 return status; 1129 } 1130 1131 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1132 { 1133 int empty; 1134 struct ocfs2_recovery_map *rm = osb->recovery_map; 1135 1136 spin_lock(&osb->osb_lock); 1137 empty = (rm->rm_used == 0); 1138 spin_unlock(&osb->osb_lock); 1139 1140 return empty; 1141 } 1142 1143 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1144 { 1145 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1146 } 1147 1148 /* 1149 * JBD Might read a cached version of another nodes journal file. We 1150 * don't want this as this file changes often and we get no 1151 * notification on those changes. The only way to be sure that we've 1152 * got the most up to date version of those blocks then is to force 1153 * read them off disk. Just searching through the buffer cache won't 1154 * work as there may be pages backing this file which are still marked 1155 * up to date. We know things can't change on this file underneath us 1156 * as we have the lock by now :) 1157 */ 1158 static int ocfs2_force_read_journal(struct inode *inode) 1159 { 1160 int status = 0; 1161 int i; 1162 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1163 #define CONCURRENT_JOURNAL_FILL 32ULL 1164 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 1165 1166 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 1167 1168 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1169 v_blkno = 0; 1170 while (v_blkno < num_blocks) { 1171 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1172 &p_blkno, &p_blocks, NULL); 1173 if (status < 0) { 1174 mlog_errno(status); 1175 goto bail; 1176 } 1177 1178 if (p_blocks > CONCURRENT_JOURNAL_FILL) 1179 p_blocks = CONCURRENT_JOURNAL_FILL; 1180 1181 /* We are reading journal data which should not 1182 * be put in the uptodate cache */ 1183 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb), 1184 p_blkno, p_blocks, bhs); 1185 if (status < 0) { 1186 mlog_errno(status); 1187 goto bail; 1188 } 1189 1190 for(i = 0; i < p_blocks; i++) { 1191 brelse(bhs[i]); 1192 bhs[i] = NULL; 1193 } 1194 1195 v_blkno += p_blocks; 1196 } 1197 1198 bail: 1199 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 1200 brelse(bhs[i]); 1201 return status; 1202 } 1203 1204 struct ocfs2_la_recovery_item { 1205 struct list_head lri_list; 1206 int lri_slot; 1207 struct ocfs2_dinode *lri_la_dinode; 1208 struct ocfs2_dinode *lri_tl_dinode; 1209 struct ocfs2_quota_recovery *lri_qrec; 1210 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1211 }; 1212 1213 /* Does the second half of the recovery process. By this point, the 1214 * node is marked clean and can actually be considered recovered, 1215 * hence it's no longer in the recovery map, but there's still some 1216 * cleanup we can do which shouldn't happen within the recovery thread 1217 * as locking in that context becomes very difficult if we are to take 1218 * recovering nodes into account. 1219 * 1220 * NOTE: This function can and will sleep on recovery of other nodes 1221 * during cluster locking, just like any other ocfs2 process. 1222 */ 1223 void ocfs2_complete_recovery(struct work_struct *work) 1224 { 1225 int ret = 0; 1226 struct ocfs2_journal *journal = 1227 container_of(work, struct ocfs2_journal, j_recovery_work); 1228 struct ocfs2_super *osb = journal->j_osb; 1229 struct ocfs2_dinode *la_dinode, *tl_dinode; 1230 struct ocfs2_la_recovery_item *item, *n; 1231 struct ocfs2_quota_recovery *qrec; 1232 enum ocfs2_orphan_reco_type orphan_reco_type; 1233 LIST_HEAD(tmp_la_list); 1234 1235 trace_ocfs2_complete_recovery( 1236 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1237 1238 spin_lock(&journal->j_lock); 1239 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1240 spin_unlock(&journal->j_lock); 1241 1242 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1243 list_del_init(&item->lri_list); 1244 1245 ocfs2_wait_on_quotas(osb); 1246 1247 la_dinode = item->lri_la_dinode; 1248 tl_dinode = item->lri_tl_dinode; 1249 qrec = item->lri_qrec; 1250 orphan_reco_type = item->lri_orphan_reco_type; 1251 1252 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1253 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1254 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1255 qrec); 1256 1257 if (la_dinode) { 1258 ret = ocfs2_complete_local_alloc_recovery(osb, 1259 la_dinode); 1260 if (ret < 0) 1261 mlog_errno(ret); 1262 1263 kfree(la_dinode); 1264 } 1265 1266 if (tl_dinode) { 1267 ret = ocfs2_complete_truncate_log_recovery(osb, 1268 tl_dinode); 1269 if (ret < 0) 1270 mlog_errno(ret); 1271 1272 kfree(tl_dinode); 1273 } 1274 1275 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1276 orphan_reco_type); 1277 if (ret < 0) 1278 mlog_errno(ret); 1279 1280 if (qrec) { 1281 ret = ocfs2_finish_quota_recovery(osb, qrec, 1282 item->lri_slot); 1283 if (ret < 0) 1284 mlog_errno(ret); 1285 /* Recovery info is already freed now */ 1286 } 1287 1288 kfree(item); 1289 } 1290 1291 trace_ocfs2_complete_recovery_end(ret); 1292 } 1293 1294 /* NOTE: This function always eats your references to la_dinode and 1295 * tl_dinode, either manually on error, or by passing them to 1296 * ocfs2_complete_recovery */ 1297 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1298 int slot_num, 1299 struct ocfs2_dinode *la_dinode, 1300 struct ocfs2_dinode *tl_dinode, 1301 struct ocfs2_quota_recovery *qrec, 1302 enum ocfs2_orphan_reco_type orphan_reco_type) 1303 { 1304 struct ocfs2_la_recovery_item *item; 1305 1306 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1307 if (!item) { 1308 /* Though we wish to avoid it, we are in fact safe in 1309 * skipping local alloc cleanup as fsck.ocfs2 is more 1310 * than capable of reclaiming unused space. */ 1311 kfree(la_dinode); 1312 kfree(tl_dinode); 1313 1314 if (qrec) 1315 ocfs2_free_quota_recovery(qrec); 1316 1317 mlog_errno(-ENOMEM); 1318 return; 1319 } 1320 1321 INIT_LIST_HEAD(&item->lri_list); 1322 item->lri_la_dinode = la_dinode; 1323 item->lri_slot = slot_num; 1324 item->lri_tl_dinode = tl_dinode; 1325 item->lri_qrec = qrec; 1326 item->lri_orphan_reco_type = orphan_reco_type; 1327 1328 spin_lock(&journal->j_lock); 1329 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1330 queue_work(ocfs2_wq, &journal->j_recovery_work); 1331 spin_unlock(&journal->j_lock); 1332 } 1333 1334 /* Called by the mount code to queue recovery the last part of 1335 * recovery for it's own and offline slot(s). */ 1336 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1337 { 1338 struct ocfs2_journal *journal = osb->journal; 1339 1340 if (ocfs2_is_hard_readonly(osb)) 1341 return; 1342 1343 /* No need to queue up our truncate_log as regular cleanup will catch 1344 * that */ 1345 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1346 osb->local_alloc_copy, NULL, NULL, 1347 ORPHAN_NEED_TRUNCATE); 1348 ocfs2_schedule_truncate_log_flush(osb, 0); 1349 1350 osb->local_alloc_copy = NULL; 1351 osb->dirty = 0; 1352 1353 /* queue to recover orphan slots for all offline slots */ 1354 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1355 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1356 ocfs2_free_replay_slots(osb); 1357 } 1358 1359 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1360 { 1361 if (osb->quota_rec) { 1362 ocfs2_queue_recovery_completion(osb->journal, 1363 osb->slot_num, 1364 NULL, 1365 NULL, 1366 osb->quota_rec, 1367 ORPHAN_NEED_TRUNCATE); 1368 osb->quota_rec = NULL; 1369 } 1370 } 1371 1372 static int __ocfs2_recovery_thread(void *arg) 1373 { 1374 int status, node_num, slot_num; 1375 struct ocfs2_super *osb = arg; 1376 struct ocfs2_recovery_map *rm = osb->recovery_map; 1377 int *rm_quota = NULL; 1378 int rm_quota_used = 0, i; 1379 struct ocfs2_quota_recovery *qrec; 1380 1381 status = ocfs2_wait_on_mount(osb); 1382 if (status < 0) { 1383 goto bail; 1384 } 1385 1386 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS); 1387 if (!rm_quota) { 1388 status = -ENOMEM; 1389 goto bail; 1390 } 1391 restart: 1392 status = ocfs2_super_lock(osb, 1); 1393 if (status < 0) { 1394 mlog_errno(status); 1395 goto bail; 1396 } 1397 1398 status = ocfs2_compute_replay_slots(osb); 1399 if (status < 0) 1400 mlog_errno(status); 1401 1402 /* queue recovery for our own slot */ 1403 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1404 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1405 1406 spin_lock(&osb->osb_lock); 1407 while (rm->rm_used) { 1408 /* It's always safe to remove entry zero, as we won't 1409 * clear it until ocfs2_recover_node() has succeeded. */ 1410 node_num = rm->rm_entries[0]; 1411 spin_unlock(&osb->osb_lock); 1412 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1413 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1414 if (slot_num == -ENOENT) { 1415 status = 0; 1416 goto skip_recovery; 1417 } 1418 1419 /* It is a bit subtle with quota recovery. We cannot do it 1420 * immediately because we have to obtain cluster locks from 1421 * quota files and we also don't want to just skip it because 1422 * then quota usage would be out of sync until some node takes 1423 * the slot. So we remember which nodes need quota recovery 1424 * and when everything else is done, we recover quotas. */ 1425 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++); 1426 if (i == rm_quota_used) 1427 rm_quota[rm_quota_used++] = slot_num; 1428 1429 status = ocfs2_recover_node(osb, node_num, slot_num); 1430 skip_recovery: 1431 if (!status) { 1432 ocfs2_recovery_map_clear(osb, node_num); 1433 } else { 1434 mlog(ML_ERROR, 1435 "Error %d recovering node %d on device (%u,%u)!\n", 1436 status, node_num, 1437 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1438 mlog(ML_ERROR, "Volume requires unmount.\n"); 1439 } 1440 1441 spin_lock(&osb->osb_lock); 1442 } 1443 spin_unlock(&osb->osb_lock); 1444 trace_ocfs2_recovery_thread_end(status); 1445 1446 /* Refresh all journal recovery generations from disk */ 1447 status = ocfs2_check_journals_nolocks(osb); 1448 status = (status == -EROFS) ? 0 : status; 1449 if (status < 0) 1450 mlog_errno(status); 1451 1452 /* Now it is right time to recover quotas... We have to do this under 1453 * superblock lock so that no one can start using the slot (and crash) 1454 * before we recover it */ 1455 for (i = 0; i < rm_quota_used; i++) { 1456 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1457 if (IS_ERR(qrec)) { 1458 status = PTR_ERR(qrec); 1459 mlog_errno(status); 1460 continue; 1461 } 1462 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i], 1463 NULL, NULL, qrec, 1464 ORPHAN_NEED_TRUNCATE); 1465 } 1466 1467 ocfs2_super_unlock(osb, 1); 1468 1469 /* queue recovery for offline slots */ 1470 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1471 1472 bail: 1473 mutex_lock(&osb->recovery_lock); 1474 if (!status && !ocfs2_recovery_completed(osb)) { 1475 mutex_unlock(&osb->recovery_lock); 1476 goto restart; 1477 } 1478 1479 ocfs2_free_replay_slots(osb); 1480 osb->recovery_thread_task = NULL; 1481 mb(); /* sync with ocfs2_recovery_thread_running */ 1482 wake_up(&osb->recovery_event); 1483 1484 mutex_unlock(&osb->recovery_lock); 1485 1486 kfree(rm_quota); 1487 1488 /* no one is callint kthread_stop() for us so the kthread() api 1489 * requires that we call do_exit(). And it isn't exported, but 1490 * complete_and_exit() seems to be a minimal wrapper around it. */ 1491 complete_and_exit(NULL, status); 1492 } 1493 1494 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1495 { 1496 mutex_lock(&osb->recovery_lock); 1497 1498 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1499 osb->disable_recovery, osb->recovery_thread_task, 1500 osb->disable_recovery ? 1501 -1 : ocfs2_recovery_map_set(osb, node_num)); 1502 1503 if (osb->disable_recovery) 1504 goto out; 1505 1506 if (osb->recovery_thread_task) 1507 goto out; 1508 1509 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1510 "ocfs2rec"); 1511 if (IS_ERR(osb->recovery_thread_task)) { 1512 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1513 osb->recovery_thread_task = NULL; 1514 } 1515 1516 out: 1517 mutex_unlock(&osb->recovery_lock); 1518 wake_up(&osb->recovery_event); 1519 } 1520 1521 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1522 int slot_num, 1523 struct buffer_head **bh, 1524 struct inode **ret_inode) 1525 { 1526 int status = -EACCES; 1527 struct inode *inode = NULL; 1528 1529 BUG_ON(slot_num >= osb->max_slots); 1530 1531 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1532 slot_num); 1533 if (!inode || is_bad_inode(inode)) { 1534 mlog_errno(status); 1535 goto bail; 1536 } 1537 SET_INODE_JOURNAL(inode); 1538 1539 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1540 if (status < 0) { 1541 mlog_errno(status); 1542 goto bail; 1543 } 1544 1545 status = 0; 1546 1547 bail: 1548 if (inode) { 1549 if (status || !ret_inode) 1550 iput(inode); 1551 else 1552 *ret_inode = inode; 1553 } 1554 return status; 1555 } 1556 1557 /* Does the actual journal replay and marks the journal inode as 1558 * clean. Will only replay if the journal inode is marked dirty. */ 1559 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1560 int node_num, 1561 int slot_num) 1562 { 1563 int status; 1564 int got_lock = 0; 1565 unsigned int flags; 1566 struct inode *inode = NULL; 1567 struct ocfs2_dinode *fe; 1568 journal_t *journal = NULL; 1569 struct buffer_head *bh = NULL; 1570 u32 slot_reco_gen; 1571 1572 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1573 if (status) { 1574 mlog_errno(status); 1575 goto done; 1576 } 1577 1578 fe = (struct ocfs2_dinode *)bh->b_data; 1579 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1580 brelse(bh); 1581 bh = NULL; 1582 1583 /* 1584 * As the fs recovery is asynchronous, there is a small chance that 1585 * another node mounted (and recovered) the slot before the recovery 1586 * thread could get the lock. To handle that, we dirty read the journal 1587 * inode for that slot to get the recovery generation. If it is 1588 * different than what we expected, the slot has been recovered. 1589 * If not, it needs recovery. 1590 */ 1591 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1592 trace_ocfs2_replay_journal_recovered(slot_num, 1593 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1594 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1595 status = -EBUSY; 1596 goto done; 1597 } 1598 1599 /* Continue with recovery as the journal has not yet been recovered */ 1600 1601 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1602 if (status < 0) { 1603 trace_ocfs2_replay_journal_lock_err(status); 1604 if (status != -ERESTARTSYS) 1605 mlog(ML_ERROR, "Could not lock journal!\n"); 1606 goto done; 1607 } 1608 got_lock = 1; 1609 1610 fe = (struct ocfs2_dinode *) bh->b_data; 1611 1612 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1613 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1614 1615 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1616 trace_ocfs2_replay_journal_skip(node_num); 1617 /* Refresh recovery generation for the slot */ 1618 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1619 goto done; 1620 } 1621 1622 /* we need to run complete recovery for offline orphan slots */ 1623 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1624 1625 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1626 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1627 MINOR(osb->sb->s_dev)); 1628 1629 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1630 1631 status = ocfs2_force_read_journal(inode); 1632 if (status < 0) { 1633 mlog_errno(status); 1634 goto done; 1635 } 1636 1637 journal = jbd2_journal_init_inode(inode); 1638 if (journal == NULL) { 1639 mlog(ML_ERROR, "Linux journal layer error\n"); 1640 status = -EIO; 1641 goto done; 1642 } 1643 1644 status = jbd2_journal_load(journal); 1645 if (status < 0) { 1646 mlog_errno(status); 1647 if (!igrab(inode)) 1648 BUG(); 1649 jbd2_journal_destroy(journal); 1650 goto done; 1651 } 1652 1653 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1654 1655 /* wipe the journal */ 1656 jbd2_journal_lock_updates(journal); 1657 status = jbd2_journal_flush(journal); 1658 jbd2_journal_unlock_updates(journal); 1659 if (status < 0) 1660 mlog_errno(status); 1661 1662 /* This will mark the node clean */ 1663 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1664 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1665 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1666 1667 /* Increment recovery generation to indicate successful recovery */ 1668 ocfs2_bump_recovery_generation(fe); 1669 osb->slot_recovery_generations[slot_num] = 1670 ocfs2_get_recovery_generation(fe); 1671 1672 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1673 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1674 if (status < 0) 1675 mlog_errno(status); 1676 1677 if (!igrab(inode)) 1678 BUG(); 1679 1680 jbd2_journal_destroy(journal); 1681 1682 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1683 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1684 MINOR(osb->sb->s_dev)); 1685 done: 1686 /* drop the lock on this nodes journal */ 1687 if (got_lock) 1688 ocfs2_inode_unlock(inode, 1); 1689 1690 if (inode) 1691 iput(inode); 1692 1693 brelse(bh); 1694 1695 return status; 1696 } 1697 1698 /* 1699 * Do the most important parts of node recovery: 1700 * - Replay it's journal 1701 * - Stamp a clean local allocator file 1702 * - Stamp a clean truncate log 1703 * - Mark the node clean 1704 * 1705 * If this function completes without error, a node in OCFS2 can be 1706 * said to have been safely recovered. As a result, failure during the 1707 * second part of a nodes recovery process (local alloc recovery) is 1708 * far less concerning. 1709 */ 1710 static int ocfs2_recover_node(struct ocfs2_super *osb, 1711 int node_num, int slot_num) 1712 { 1713 int status = 0; 1714 struct ocfs2_dinode *la_copy = NULL; 1715 struct ocfs2_dinode *tl_copy = NULL; 1716 1717 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1718 1719 /* Should not ever be called to recover ourselves -- in that 1720 * case we should've called ocfs2_journal_load instead. */ 1721 BUG_ON(osb->node_num == node_num); 1722 1723 status = ocfs2_replay_journal(osb, node_num, slot_num); 1724 if (status < 0) { 1725 if (status == -EBUSY) { 1726 trace_ocfs2_recover_node_skip(slot_num, node_num); 1727 status = 0; 1728 goto done; 1729 } 1730 mlog_errno(status); 1731 goto done; 1732 } 1733 1734 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1735 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1736 if (status < 0) { 1737 mlog_errno(status); 1738 goto done; 1739 } 1740 1741 /* An error from begin_truncate_log_recovery is not 1742 * serious enough to warrant halting the rest of 1743 * recovery. */ 1744 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1745 if (status < 0) 1746 mlog_errno(status); 1747 1748 /* Likewise, this would be a strange but ultimately not so 1749 * harmful place to get an error... */ 1750 status = ocfs2_clear_slot(osb, slot_num); 1751 if (status < 0) 1752 mlog_errno(status); 1753 1754 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1755 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1756 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1757 1758 status = 0; 1759 done: 1760 1761 return status; 1762 } 1763 1764 /* Test node liveness by trylocking his journal. If we get the lock, 1765 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1766 * still alive (we couldn't get the lock) and < 0 on error. */ 1767 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1768 int slot_num) 1769 { 1770 int status, flags; 1771 struct inode *inode = NULL; 1772 1773 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1774 slot_num); 1775 if (inode == NULL) { 1776 mlog(ML_ERROR, "access error\n"); 1777 status = -EACCES; 1778 goto bail; 1779 } 1780 if (is_bad_inode(inode)) { 1781 mlog(ML_ERROR, "access error (bad inode)\n"); 1782 iput(inode); 1783 inode = NULL; 1784 status = -EACCES; 1785 goto bail; 1786 } 1787 SET_INODE_JOURNAL(inode); 1788 1789 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1790 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1791 if (status < 0) { 1792 if (status != -EAGAIN) 1793 mlog_errno(status); 1794 goto bail; 1795 } 1796 1797 ocfs2_inode_unlock(inode, 1); 1798 bail: 1799 if (inode) 1800 iput(inode); 1801 1802 return status; 1803 } 1804 1805 /* Call this underneath ocfs2_super_lock. It also assumes that the 1806 * slot info struct has been updated from disk. */ 1807 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1808 { 1809 unsigned int node_num; 1810 int status, i; 1811 u32 gen; 1812 struct buffer_head *bh = NULL; 1813 struct ocfs2_dinode *di; 1814 1815 /* This is called with the super block cluster lock, so we 1816 * know that the slot map can't change underneath us. */ 1817 1818 for (i = 0; i < osb->max_slots; i++) { 1819 /* Read journal inode to get the recovery generation */ 1820 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1821 if (status) { 1822 mlog_errno(status); 1823 goto bail; 1824 } 1825 di = (struct ocfs2_dinode *)bh->b_data; 1826 gen = ocfs2_get_recovery_generation(di); 1827 brelse(bh); 1828 bh = NULL; 1829 1830 spin_lock(&osb->osb_lock); 1831 osb->slot_recovery_generations[i] = gen; 1832 1833 trace_ocfs2_mark_dead_nodes(i, 1834 osb->slot_recovery_generations[i]); 1835 1836 if (i == osb->slot_num) { 1837 spin_unlock(&osb->osb_lock); 1838 continue; 1839 } 1840 1841 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1842 if (status == -ENOENT) { 1843 spin_unlock(&osb->osb_lock); 1844 continue; 1845 } 1846 1847 if (__ocfs2_recovery_map_test(osb, node_num)) { 1848 spin_unlock(&osb->osb_lock); 1849 continue; 1850 } 1851 spin_unlock(&osb->osb_lock); 1852 1853 /* Ok, we have a slot occupied by another node which 1854 * is not in the recovery map. We trylock his journal 1855 * file here to test if he's alive. */ 1856 status = ocfs2_trylock_journal(osb, i); 1857 if (!status) { 1858 /* Since we're called from mount, we know that 1859 * the recovery thread can't race us on 1860 * setting / checking the recovery bits. */ 1861 ocfs2_recovery_thread(osb, node_num); 1862 } else if ((status < 0) && (status != -EAGAIN)) { 1863 mlog_errno(status); 1864 goto bail; 1865 } 1866 } 1867 1868 status = 0; 1869 bail: 1870 return status; 1871 } 1872 1873 /* 1874 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1875 * randomness to the timeout to minimize multple nodes firing the timer at the 1876 * same time. 1877 */ 1878 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1879 { 1880 unsigned long time; 1881 1882 get_random_bytes(&time, sizeof(time)); 1883 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1884 return msecs_to_jiffies(time); 1885 } 1886 1887 /* 1888 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1889 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1890 * is done to catch any orphans that are left over in orphan directories. 1891 * 1892 * It scans all slots, even ones that are in use. It does so to handle the 1893 * case described below: 1894 * 1895 * Node 1 has an inode it was using. The dentry went away due to memory 1896 * pressure. Node 1 closes the inode, but it's on the free list. The node 1897 * has the open lock. 1898 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1899 * but node 1 has no dentry and doesn't get the message. It trylocks the 1900 * open lock, sees that another node has a PR, and does nothing. 1901 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1902 * open lock, sees the PR still, and does nothing. 1903 * Basically, we have to trigger an orphan iput on node 1. The only way 1904 * for this to happen is if node 1 runs node 2's orphan dir. 1905 * 1906 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1907 * seconds. It gets an EX lock on os_lockres and checks sequence number 1908 * stored in LVB. If the sequence number has changed, it means some other 1909 * node has done the scan. This node skips the scan and tracks the 1910 * sequence number. If the sequence number didn't change, it means a scan 1911 * hasn't happened. The node queues a scan and increments the 1912 * sequence number in the LVB. 1913 */ 1914 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1915 { 1916 struct ocfs2_orphan_scan *os; 1917 int status, i; 1918 u32 seqno = 0; 1919 1920 os = &osb->osb_orphan_scan; 1921 1922 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1923 goto out; 1924 1925 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1926 atomic_read(&os->os_state)); 1927 1928 status = ocfs2_orphan_scan_lock(osb, &seqno); 1929 if (status < 0) { 1930 if (status != -EAGAIN) 1931 mlog_errno(status); 1932 goto out; 1933 } 1934 1935 /* Do no queue the tasks if the volume is being umounted */ 1936 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1937 goto unlock; 1938 1939 if (os->os_seqno != seqno) { 1940 os->os_seqno = seqno; 1941 goto unlock; 1942 } 1943 1944 for (i = 0; i < osb->max_slots; i++) 1945 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1946 NULL, ORPHAN_NO_NEED_TRUNCATE); 1947 /* 1948 * We queued a recovery on orphan slots, increment the sequence 1949 * number and update LVB so other node will skip the scan for a while 1950 */ 1951 seqno++; 1952 os->os_count++; 1953 os->os_scantime = CURRENT_TIME; 1954 unlock: 1955 ocfs2_orphan_scan_unlock(osb, seqno); 1956 out: 1957 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 1958 atomic_read(&os->os_state)); 1959 return; 1960 } 1961 1962 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1963 static void ocfs2_orphan_scan_work(struct work_struct *work) 1964 { 1965 struct ocfs2_orphan_scan *os; 1966 struct ocfs2_super *osb; 1967 1968 os = container_of(work, struct ocfs2_orphan_scan, 1969 os_orphan_scan_work.work); 1970 osb = os->os_osb; 1971 1972 mutex_lock(&os->os_lock); 1973 ocfs2_queue_orphan_scan(osb); 1974 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 1975 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work, 1976 ocfs2_orphan_scan_timeout()); 1977 mutex_unlock(&os->os_lock); 1978 } 1979 1980 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 1981 { 1982 struct ocfs2_orphan_scan *os; 1983 1984 os = &osb->osb_orphan_scan; 1985 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 1986 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1987 mutex_lock(&os->os_lock); 1988 cancel_delayed_work(&os->os_orphan_scan_work); 1989 mutex_unlock(&os->os_lock); 1990 } 1991 } 1992 1993 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 1994 { 1995 struct ocfs2_orphan_scan *os; 1996 1997 os = &osb->osb_orphan_scan; 1998 os->os_osb = osb; 1999 os->os_count = 0; 2000 os->os_seqno = 0; 2001 mutex_init(&os->os_lock); 2002 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2003 } 2004 2005 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2006 { 2007 struct ocfs2_orphan_scan *os; 2008 2009 os = &osb->osb_orphan_scan; 2010 os->os_scantime = CURRENT_TIME; 2011 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2012 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2013 else { 2014 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2015 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work, 2016 ocfs2_orphan_scan_timeout()); 2017 } 2018 } 2019 2020 struct ocfs2_orphan_filldir_priv { 2021 struct dir_context ctx; 2022 struct inode *head; 2023 struct ocfs2_super *osb; 2024 }; 2025 2026 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2027 int name_len, loff_t pos, u64 ino, 2028 unsigned type) 2029 { 2030 struct ocfs2_orphan_filldir_priv *p = 2031 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2032 struct inode *iter; 2033 2034 if (name_len == 1 && !strncmp(".", name, 1)) 2035 return 0; 2036 if (name_len == 2 && !strncmp("..", name, 2)) 2037 return 0; 2038 2039 /* Skip bad inodes so that recovery can continue */ 2040 iter = ocfs2_iget(p->osb, ino, 2041 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2042 if (IS_ERR(iter)) 2043 return 0; 2044 2045 /* Skip inodes which are already added to recover list, since dio may 2046 * happen concurrently with unlink/rename */ 2047 if (OCFS2_I(iter)->ip_next_orphan) { 2048 iput(iter); 2049 return 0; 2050 } 2051 2052 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2053 /* No locking is required for the next_orphan queue as there 2054 * is only ever a single process doing orphan recovery. */ 2055 OCFS2_I(iter)->ip_next_orphan = p->head; 2056 p->head = iter; 2057 2058 return 0; 2059 } 2060 2061 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2062 int slot, 2063 struct inode **head) 2064 { 2065 int status; 2066 struct inode *orphan_dir_inode = NULL; 2067 struct ocfs2_orphan_filldir_priv priv = { 2068 .ctx.actor = ocfs2_orphan_filldir, 2069 .osb = osb, 2070 .head = *head 2071 }; 2072 2073 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2074 ORPHAN_DIR_SYSTEM_INODE, 2075 slot); 2076 if (!orphan_dir_inode) { 2077 status = -ENOENT; 2078 mlog_errno(status); 2079 return status; 2080 } 2081 2082 mutex_lock(&orphan_dir_inode->i_mutex); 2083 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2084 if (status < 0) { 2085 mlog_errno(status); 2086 goto out; 2087 } 2088 2089 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2090 if (status) { 2091 mlog_errno(status); 2092 goto out_cluster; 2093 } 2094 2095 *head = priv.head; 2096 2097 out_cluster: 2098 ocfs2_inode_unlock(orphan_dir_inode, 0); 2099 out: 2100 mutex_unlock(&orphan_dir_inode->i_mutex); 2101 iput(orphan_dir_inode); 2102 return status; 2103 } 2104 2105 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2106 int slot) 2107 { 2108 int ret; 2109 2110 spin_lock(&osb->osb_lock); 2111 ret = !osb->osb_orphan_wipes[slot]; 2112 spin_unlock(&osb->osb_lock); 2113 return ret; 2114 } 2115 2116 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2117 int slot) 2118 { 2119 spin_lock(&osb->osb_lock); 2120 /* Mark ourselves such that new processes in delete_inode() 2121 * know to quit early. */ 2122 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2123 while (osb->osb_orphan_wipes[slot]) { 2124 /* If any processes are already in the middle of an 2125 * orphan wipe on this dir, then we need to wait for 2126 * them. */ 2127 spin_unlock(&osb->osb_lock); 2128 wait_event_interruptible(osb->osb_wipe_event, 2129 ocfs2_orphan_recovery_can_continue(osb, slot)); 2130 spin_lock(&osb->osb_lock); 2131 } 2132 spin_unlock(&osb->osb_lock); 2133 } 2134 2135 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2136 int slot) 2137 { 2138 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2139 } 2140 2141 /* 2142 * Orphan recovery. Each mounted node has it's own orphan dir which we 2143 * must run during recovery. Our strategy here is to build a list of 2144 * the inodes in the orphan dir and iget/iput them. The VFS does 2145 * (most) of the rest of the work. 2146 * 2147 * Orphan recovery can happen at any time, not just mount so we have a 2148 * couple of extra considerations. 2149 * 2150 * - We grab as many inodes as we can under the orphan dir lock - 2151 * doing iget() outside the orphan dir risks getting a reference on 2152 * an invalid inode. 2153 * - We must be sure not to deadlock with other processes on the 2154 * system wanting to run delete_inode(). This can happen when they go 2155 * to lock the orphan dir and the orphan recovery process attempts to 2156 * iget() inside the orphan dir lock. This can be avoided by 2157 * advertising our state to ocfs2_delete_inode(). 2158 */ 2159 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2160 int slot, 2161 enum ocfs2_orphan_reco_type orphan_reco_type) 2162 { 2163 int ret = 0; 2164 struct inode *inode = NULL; 2165 struct inode *iter; 2166 struct ocfs2_inode_info *oi; 2167 struct buffer_head *di_bh = NULL; 2168 struct ocfs2_dinode *di = NULL; 2169 2170 trace_ocfs2_recover_orphans(slot); 2171 2172 ocfs2_mark_recovering_orphan_dir(osb, slot); 2173 ret = ocfs2_queue_orphans(osb, slot, &inode); 2174 ocfs2_clear_recovering_orphan_dir(osb, slot); 2175 2176 /* Error here should be noted, but we want to continue with as 2177 * many queued inodes as we've got. */ 2178 if (ret) 2179 mlog_errno(ret); 2180 2181 while (inode) { 2182 oi = OCFS2_I(inode); 2183 trace_ocfs2_recover_orphans_iput( 2184 (unsigned long long)oi->ip_blkno); 2185 2186 iter = oi->ip_next_orphan; 2187 oi->ip_next_orphan = NULL; 2188 2189 mutex_lock(&inode->i_mutex); 2190 ret = ocfs2_rw_lock(inode, 1); 2191 if (ret < 0) { 2192 mlog_errno(ret); 2193 goto next; 2194 } 2195 /* 2196 * We need to take and drop the inode lock to 2197 * force read inode from disk. 2198 */ 2199 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2200 if (ret) { 2201 mlog_errno(ret); 2202 goto unlock_rw; 2203 } 2204 2205 di = (struct ocfs2_dinode *)di_bh->b_data; 2206 2207 if (inode->i_nlink == 0) { 2208 spin_lock(&oi->ip_lock); 2209 /* Set the proper information to get us going into 2210 * ocfs2_delete_inode. */ 2211 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2212 spin_unlock(&oi->ip_lock); 2213 } 2214 2215 if ((orphan_reco_type == ORPHAN_NEED_TRUNCATE) && 2216 (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL))) { 2217 ret = ocfs2_truncate_file(inode, di_bh, 2218 i_size_read(inode)); 2219 if (ret < 0) { 2220 if (ret != -ENOSPC) 2221 mlog_errno(ret); 2222 goto unlock_inode; 2223 } 2224 2225 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 0, 0); 2226 if (ret) 2227 mlog_errno(ret); 2228 } /* else if ORPHAN_NO_NEED_TRUNCATE, do nothing */ 2229 unlock_inode: 2230 ocfs2_inode_unlock(inode, 1); 2231 brelse(di_bh); 2232 di_bh = NULL; 2233 unlock_rw: 2234 ocfs2_rw_unlock(inode, 1); 2235 next: 2236 mutex_unlock(&inode->i_mutex); 2237 iput(inode); 2238 inode = iter; 2239 } 2240 2241 return ret; 2242 } 2243 2244 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2245 { 2246 /* This check is good because ocfs2 will wait on our recovery 2247 * thread before changing it to something other than MOUNTED 2248 * or DISABLED. */ 2249 wait_event(osb->osb_mount_event, 2250 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2251 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2252 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2253 2254 /* If there's an error on mount, then we may never get to the 2255 * MOUNTED flag, but this is set right before 2256 * dismount_volume() so we can trust it. */ 2257 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2258 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2259 mlog(0, "mount error, exiting!\n"); 2260 return -EBUSY; 2261 } 2262 2263 return 0; 2264 } 2265 2266 static int ocfs2_commit_thread(void *arg) 2267 { 2268 int status; 2269 struct ocfs2_super *osb = arg; 2270 struct ocfs2_journal *journal = osb->journal; 2271 2272 /* we can trust j_num_trans here because _should_stop() is only set in 2273 * shutdown and nobody other than ourselves should be able to start 2274 * transactions. committing on shutdown might take a few iterations 2275 * as final transactions put deleted inodes on the list */ 2276 while (!(kthread_should_stop() && 2277 atomic_read(&journal->j_num_trans) == 0)) { 2278 2279 wait_event_interruptible(osb->checkpoint_event, 2280 atomic_read(&journal->j_num_trans) 2281 || kthread_should_stop()); 2282 2283 status = ocfs2_commit_cache(osb); 2284 if (status < 0) { 2285 static unsigned long abort_warn_time; 2286 2287 /* Warn about this once per minute */ 2288 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2289 mlog(ML_ERROR, "status = %d, journal is " 2290 "already aborted.\n", status); 2291 /* 2292 * After ocfs2_commit_cache() fails, j_num_trans has a 2293 * non-zero value. Sleep here to avoid a busy-wait 2294 * loop. 2295 */ 2296 msleep_interruptible(1000); 2297 } 2298 2299 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2300 mlog(ML_KTHREAD, 2301 "commit_thread: %u transactions pending on " 2302 "shutdown\n", 2303 atomic_read(&journal->j_num_trans)); 2304 } 2305 } 2306 2307 return 0; 2308 } 2309 2310 /* Reads all the journal inodes without taking any cluster locks. Used 2311 * for hard readonly access to determine whether any journal requires 2312 * recovery. Also used to refresh the recovery generation numbers after 2313 * a journal has been recovered by another node. 2314 */ 2315 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2316 { 2317 int ret = 0; 2318 unsigned int slot; 2319 struct buffer_head *di_bh = NULL; 2320 struct ocfs2_dinode *di; 2321 int journal_dirty = 0; 2322 2323 for(slot = 0; slot < osb->max_slots; slot++) { 2324 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2325 if (ret) { 2326 mlog_errno(ret); 2327 goto out; 2328 } 2329 2330 di = (struct ocfs2_dinode *) di_bh->b_data; 2331 2332 osb->slot_recovery_generations[slot] = 2333 ocfs2_get_recovery_generation(di); 2334 2335 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2336 OCFS2_JOURNAL_DIRTY_FL) 2337 journal_dirty = 1; 2338 2339 brelse(di_bh); 2340 di_bh = NULL; 2341 } 2342 2343 out: 2344 if (journal_dirty) 2345 ret = -EROFS; 2346 return ret; 2347 } 2348