1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 32 #define MLOG_MASK_PREFIX ML_JOURNAL 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "blockcheck.h" 39 #include "dir.h" 40 #include "dlmglue.h" 41 #include "extent_map.h" 42 #include "heartbeat.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "slot_map.h" 47 #include "super.h" 48 #include "sysfile.h" 49 #include "quota.h" 50 51 #include "buffer_head_io.h" 52 53 DEFINE_SPINLOCK(trans_inc_lock); 54 55 static int ocfs2_force_read_journal(struct inode *inode); 56 static int ocfs2_recover_node(struct ocfs2_super *osb, 57 int node_num, int slot_num); 58 static int __ocfs2_recovery_thread(void *arg); 59 static int ocfs2_commit_cache(struct ocfs2_super *osb); 60 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 61 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 62 int dirty, int replayed); 63 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 64 int slot_num); 65 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 66 int slot); 67 static int ocfs2_commit_thread(void *arg); 68 69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 70 { 71 return __ocfs2_wait_on_mount(osb, 0); 72 } 73 74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 75 { 76 return __ocfs2_wait_on_mount(osb, 1); 77 } 78 79 80 81 /* 82 * The recovery_list is a simple linked list of node numbers to recover. 83 * It is protected by the recovery_lock. 84 */ 85 86 struct ocfs2_recovery_map { 87 unsigned int rm_used; 88 unsigned int *rm_entries; 89 }; 90 91 int ocfs2_recovery_init(struct ocfs2_super *osb) 92 { 93 struct ocfs2_recovery_map *rm; 94 95 mutex_init(&osb->recovery_lock); 96 osb->disable_recovery = 0; 97 osb->recovery_thread_task = NULL; 98 init_waitqueue_head(&osb->recovery_event); 99 100 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 101 osb->max_slots * sizeof(unsigned int), 102 GFP_KERNEL); 103 if (!rm) { 104 mlog_errno(-ENOMEM); 105 return -ENOMEM; 106 } 107 108 rm->rm_entries = (unsigned int *)((char *)rm + 109 sizeof(struct ocfs2_recovery_map)); 110 osb->recovery_map = rm; 111 112 return 0; 113 } 114 115 /* we can't grab the goofy sem lock from inside wait_event, so we use 116 * memory barriers to make sure that we'll see the null task before 117 * being woken up */ 118 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 119 { 120 mb(); 121 return osb->recovery_thread_task != NULL; 122 } 123 124 void ocfs2_recovery_exit(struct ocfs2_super *osb) 125 { 126 struct ocfs2_recovery_map *rm; 127 128 /* disable any new recovery threads and wait for any currently 129 * running ones to exit. Do this before setting the vol_state. */ 130 mutex_lock(&osb->recovery_lock); 131 osb->disable_recovery = 1; 132 mutex_unlock(&osb->recovery_lock); 133 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 134 135 /* At this point, we know that no more recovery threads can be 136 * launched, so wait for any recovery completion work to 137 * complete. */ 138 flush_workqueue(ocfs2_wq); 139 140 /* 141 * Now that recovery is shut down, and the osb is about to be 142 * freed, the osb_lock is not taken here. 143 */ 144 rm = osb->recovery_map; 145 /* XXX: Should we bug if there are dirty entries? */ 146 147 kfree(rm); 148 } 149 150 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 151 unsigned int node_num) 152 { 153 int i; 154 struct ocfs2_recovery_map *rm = osb->recovery_map; 155 156 assert_spin_locked(&osb->osb_lock); 157 158 for (i = 0; i < rm->rm_used; i++) { 159 if (rm->rm_entries[i] == node_num) 160 return 1; 161 } 162 163 return 0; 164 } 165 166 /* Behaves like test-and-set. Returns the previous value */ 167 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 168 unsigned int node_num) 169 { 170 struct ocfs2_recovery_map *rm = osb->recovery_map; 171 172 spin_lock(&osb->osb_lock); 173 if (__ocfs2_recovery_map_test(osb, node_num)) { 174 spin_unlock(&osb->osb_lock); 175 return 1; 176 } 177 178 /* XXX: Can this be exploited? Not from o2dlm... */ 179 BUG_ON(rm->rm_used >= osb->max_slots); 180 181 rm->rm_entries[rm->rm_used] = node_num; 182 rm->rm_used++; 183 spin_unlock(&osb->osb_lock); 184 185 return 0; 186 } 187 188 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 189 unsigned int node_num) 190 { 191 int i; 192 struct ocfs2_recovery_map *rm = osb->recovery_map; 193 194 spin_lock(&osb->osb_lock); 195 196 for (i = 0; i < rm->rm_used; i++) { 197 if (rm->rm_entries[i] == node_num) 198 break; 199 } 200 201 if (i < rm->rm_used) { 202 /* XXX: be careful with the pointer math */ 203 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 204 (rm->rm_used - i - 1) * sizeof(unsigned int)); 205 rm->rm_used--; 206 } 207 208 spin_unlock(&osb->osb_lock); 209 } 210 211 static int ocfs2_commit_cache(struct ocfs2_super *osb) 212 { 213 int status = 0; 214 unsigned int flushed; 215 unsigned long old_id; 216 struct ocfs2_journal *journal = NULL; 217 218 mlog_entry_void(); 219 220 journal = osb->journal; 221 222 /* Flush all pending commits and checkpoint the journal. */ 223 down_write(&journal->j_trans_barrier); 224 225 if (atomic_read(&journal->j_num_trans) == 0) { 226 up_write(&journal->j_trans_barrier); 227 mlog(0, "No transactions for me to flush!\n"); 228 goto finally; 229 } 230 231 jbd2_journal_lock_updates(journal->j_journal); 232 status = jbd2_journal_flush(journal->j_journal); 233 jbd2_journal_unlock_updates(journal->j_journal); 234 if (status < 0) { 235 up_write(&journal->j_trans_barrier); 236 mlog_errno(status); 237 goto finally; 238 } 239 240 old_id = ocfs2_inc_trans_id(journal); 241 242 flushed = atomic_read(&journal->j_num_trans); 243 atomic_set(&journal->j_num_trans, 0); 244 up_write(&journal->j_trans_barrier); 245 246 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n", 247 journal->j_trans_id, flushed); 248 249 ocfs2_wake_downconvert_thread(osb); 250 wake_up(&journal->j_checkpointed); 251 finally: 252 mlog_exit(status); 253 return status; 254 } 255 256 /* pass it NULL and it will allocate a new handle object for you. If 257 * you pass it a handle however, it may still return error, in which 258 * case it has free'd the passed handle for you. */ 259 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 260 { 261 journal_t *journal = osb->journal->j_journal; 262 handle_t *handle; 263 264 BUG_ON(!osb || !osb->journal->j_journal); 265 266 if (ocfs2_is_hard_readonly(osb)) 267 return ERR_PTR(-EROFS); 268 269 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 270 BUG_ON(max_buffs <= 0); 271 272 /* Nested transaction? Just return the handle... */ 273 if (journal_current_handle()) 274 return jbd2_journal_start(journal, max_buffs); 275 276 down_read(&osb->journal->j_trans_barrier); 277 278 handle = jbd2_journal_start(journal, max_buffs); 279 if (IS_ERR(handle)) { 280 up_read(&osb->journal->j_trans_barrier); 281 282 mlog_errno(PTR_ERR(handle)); 283 284 if (is_journal_aborted(journal)) { 285 ocfs2_abort(osb->sb, "Detected aborted journal"); 286 handle = ERR_PTR(-EROFS); 287 } 288 } else { 289 if (!ocfs2_mount_local(osb)) 290 atomic_inc(&(osb->journal->j_num_trans)); 291 } 292 293 return handle; 294 } 295 296 int ocfs2_commit_trans(struct ocfs2_super *osb, 297 handle_t *handle) 298 { 299 int ret, nested; 300 struct ocfs2_journal *journal = osb->journal; 301 302 BUG_ON(!handle); 303 304 nested = handle->h_ref > 1; 305 ret = jbd2_journal_stop(handle); 306 if (ret < 0) 307 mlog_errno(ret); 308 309 if (!nested) 310 up_read(&journal->j_trans_barrier); 311 312 return ret; 313 } 314 315 /* 316 * 'nblocks' is what you want to add to the current 317 * transaction. extend_trans will either extend the current handle by 318 * nblocks, or commit it and start a new one with nblocks credits. 319 * 320 * This might call jbd2_journal_restart() which will commit dirty buffers 321 * and then restart the transaction. Before calling 322 * ocfs2_extend_trans(), any changed blocks should have been 323 * dirtied. After calling it, all blocks which need to be changed must 324 * go through another set of journal_access/journal_dirty calls. 325 * 326 * WARNING: This will not release any semaphores or disk locks taken 327 * during the transaction, so make sure they were taken *before* 328 * start_trans or we'll have ordering deadlocks. 329 * 330 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 331 * good because transaction ids haven't yet been recorded on the 332 * cluster locks associated with this handle. 333 */ 334 int ocfs2_extend_trans(handle_t *handle, int nblocks) 335 { 336 int status; 337 338 BUG_ON(!handle); 339 BUG_ON(!nblocks); 340 341 mlog_entry_void(); 342 343 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks); 344 345 #ifdef CONFIG_OCFS2_DEBUG_FS 346 status = 1; 347 #else 348 status = jbd2_journal_extend(handle, nblocks); 349 if (status < 0) { 350 mlog_errno(status); 351 goto bail; 352 } 353 #endif 354 355 if (status > 0) { 356 mlog(0, 357 "jbd2_journal_extend failed, trying " 358 "jbd2_journal_restart\n"); 359 status = jbd2_journal_restart(handle, nblocks); 360 if (status < 0) { 361 mlog_errno(status); 362 goto bail; 363 } 364 } 365 366 status = 0; 367 bail: 368 369 mlog_exit(status); 370 return status; 371 } 372 373 struct ocfs2_triggers { 374 struct jbd2_buffer_trigger_type ot_triggers; 375 int ot_offset; 376 }; 377 378 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 379 { 380 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 381 } 382 383 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 384 struct buffer_head *bh, 385 void *data, size_t size) 386 { 387 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 388 389 /* 390 * We aren't guaranteed to have the superblock here, so we 391 * must unconditionally compute the ecc data. 392 * __ocfs2_journal_access() will only set the triggers if 393 * metaecc is enabled. 394 */ 395 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 396 } 397 398 /* 399 * Quota blocks have their own trigger because the struct ocfs2_block_check 400 * offset depends on the blocksize. 401 */ 402 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 403 struct buffer_head *bh, 404 void *data, size_t size) 405 { 406 struct ocfs2_disk_dqtrailer *dqt = 407 ocfs2_block_dqtrailer(size, data); 408 409 /* 410 * We aren't guaranteed to have the superblock here, so we 411 * must unconditionally compute the ecc data. 412 * __ocfs2_journal_access() will only set the triggers if 413 * metaecc is enabled. 414 */ 415 ocfs2_block_check_compute(data, size, &dqt->dq_check); 416 } 417 418 /* 419 * Directory blocks also have their own trigger because the 420 * struct ocfs2_block_check offset depends on the blocksize. 421 */ 422 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 423 struct buffer_head *bh, 424 void *data, size_t size) 425 { 426 struct ocfs2_dir_block_trailer *trailer = 427 ocfs2_dir_trailer_from_size(size, data); 428 429 /* 430 * We aren't guaranteed to have the superblock here, so we 431 * must unconditionally compute the ecc data. 432 * __ocfs2_journal_access() will only set the triggers if 433 * metaecc is enabled. 434 */ 435 ocfs2_block_check_compute(data, size, &trailer->db_check); 436 } 437 438 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 439 struct buffer_head *bh) 440 { 441 mlog(ML_ERROR, 442 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 443 "bh->b_blocknr = %llu\n", 444 (unsigned long)bh, 445 (unsigned long long)bh->b_blocknr); 446 447 /* We aren't guaranteed to have the superblock here - but if we 448 * don't, it'll just crash. */ 449 ocfs2_error(bh->b_assoc_map->host->i_sb, 450 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 451 } 452 453 static struct ocfs2_triggers di_triggers = { 454 .ot_triggers = { 455 .t_commit = ocfs2_commit_trigger, 456 .t_abort = ocfs2_abort_trigger, 457 }, 458 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 459 }; 460 461 static struct ocfs2_triggers eb_triggers = { 462 .ot_triggers = { 463 .t_commit = ocfs2_commit_trigger, 464 .t_abort = ocfs2_abort_trigger, 465 }, 466 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 467 }; 468 469 static struct ocfs2_triggers gd_triggers = { 470 .ot_triggers = { 471 .t_commit = ocfs2_commit_trigger, 472 .t_abort = ocfs2_abort_trigger, 473 }, 474 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 475 }; 476 477 static struct ocfs2_triggers db_triggers = { 478 .ot_triggers = { 479 .t_commit = ocfs2_db_commit_trigger, 480 .t_abort = ocfs2_abort_trigger, 481 }, 482 }; 483 484 static struct ocfs2_triggers xb_triggers = { 485 .ot_triggers = { 486 .t_commit = ocfs2_commit_trigger, 487 .t_abort = ocfs2_abort_trigger, 488 }, 489 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 490 }; 491 492 static struct ocfs2_triggers dq_triggers = { 493 .ot_triggers = { 494 .t_commit = ocfs2_dq_commit_trigger, 495 .t_abort = ocfs2_abort_trigger, 496 }, 497 }; 498 499 static int __ocfs2_journal_access(handle_t *handle, 500 struct inode *inode, 501 struct buffer_head *bh, 502 struct ocfs2_triggers *triggers, 503 int type) 504 { 505 int status; 506 507 BUG_ON(!inode); 508 BUG_ON(!handle); 509 BUG_ON(!bh); 510 511 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n", 512 (unsigned long long)bh->b_blocknr, type, 513 (type == OCFS2_JOURNAL_ACCESS_CREATE) ? 514 "OCFS2_JOURNAL_ACCESS_CREATE" : 515 "OCFS2_JOURNAL_ACCESS_WRITE", 516 bh->b_size); 517 518 /* we can safely remove this assertion after testing. */ 519 if (!buffer_uptodate(bh)) { 520 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 521 mlog(ML_ERROR, "b_blocknr=%llu\n", 522 (unsigned long long)bh->b_blocknr); 523 BUG(); 524 } 525 526 /* Set the current transaction information on the inode so 527 * that the locking code knows whether it can drop it's locks 528 * on this inode or not. We're protected from the commit 529 * thread updating the current transaction id until 530 * ocfs2_commit_trans() because ocfs2_start_trans() took 531 * j_trans_barrier for us. */ 532 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode); 533 534 mutex_lock(&OCFS2_I(inode)->ip_io_mutex); 535 switch (type) { 536 case OCFS2_JOURNAL_ACCESS_CREATE: 537 case OCFS2_JOURNAL_ACCESS_WRITE: 538 status = jbd2_journal_get_write_access(handle, bh); 539 break; 540 541 case OCFS2_JOURNAL_ACCESS_UNDO: 542 status = jbd2_journal_get_undo_access(handle, bh); 543 break; 544 545 default: 546 status = -EINVAL; 547 mlog(ML_ERROR, "Uknown access type!\n"); 548 } 549 if (!status && ocfs2_meta_ecc(OCFS2_SB(inode->i_sb)) && triggers) 550 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 551 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex); 552 553 if (status < 0) 554 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 555 status, type); 556 557 mlog_exit(status); 558 return status; 559 } 560 561 int ocfs2_journal_access_di(handle_t *handle, struct inode *inode, 562 struct buffer_head *bh, int type) 563 { 564 return __ocfs2_journal_access(handle, inode, bh, &di_triggers, 565 type); 566 } 567 568 int ocfs2_journal_access_eb(handle_t *handle, struct inode *inode, 569 struct buffer_head *bh, int type) 570 { 571 return __ocfs2_journal_access(handle, inode, bh, &eb_triggers, 572 type); 573 } 574 575 int ocfs2_journal_access_gd(handle_t *handle, struct inode *inode, 576 struct buffer_head *bh, int type) 577 { 578 return __ocfs2_journal_access(handle, inode, bh, &gd_triggers, 579 type); 580 } 581 582 int ocfs2_journal_access_db(handle_t *handle, struct inode *inode, 583 struct buffer_head *bh, int type) 584 { 585 return __ocfs2_journal_access(handle, inode, bh, &db_triggers, 586 type); 587 } 588 589 int ocfs2_journal_access_xb(handle_t *handle, struct inode *inode, 590 struct buffer_head *bh, int type) 591 { 592 return __ocfs2_journal_access(handle, inode, bh, &xb_triggers, 593 type); 594 } 595 596 int ocfs2_journal_access_dq(handle_t *handle, struct inode *inode, 597 struct buffer_head *bh, int type) 598 { 599 return __ocfs2_journal_access(handle, inode, bh, &dq_triggers, 600 type); 601 } 602 603 int ocfs2_journal_access(handle_t *handle, struct inode *inode, 604 struct buffer_head *bh, int type) 605 { 606 return __ocfs2_journal_access(handle, inode, bh, NULL, type); 607 } 608 609 int ocfs2_journal_dirty(handle_t *handle, 610 struct buffer_head *bh) 611 { 612 int status; 613 614 mlog_entry("(bh->b_blocknr=%llu)\n", 615 (unsigned long long)bh->b_blocknr); 616 617 status = jbd2_journal_dirty_metadata(handle, bh); 618 if (status < 0) 619 mlog(ML_ERROR, "Could not dirty metadata buffer. " 620 "(bh->b_blocknr=%llu)\n", 621 (unsigned long long)bh->b_blocknr); 622 623 mlog_exit(status); 624 return status; 625 } 626 627 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 628 629 void ocfs2_set_journal_params(struct ocfs2_super *osb) 630 { 631 journal_t *journal = osb->journal->j_journal; 632 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 633 634 if (osb->osb_commit_interval) 635 commit_interval = osb->osb_commit_interval; 636 637 spin_lock(&journal->j_state_lock); 638 journal->j_commit_interval = commit_interval; 639 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 640 journal->j_flags |= JBD2_BARRIER; 641 else 642 journal->j_flags &= ~JBD2_BARRIER; 643 spin_unlock(&journal->j_state_lock); 644 } 645 646 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 647 { 648 int status = -1; 649 struct inode *inode = NULL; /* the journal inode */ 650 journal_t *j_journal = NULL; 651 struct ocfs2_dinode *di = NULL; 652 struct buffer_head *bh = NULL; 653 struct ocfs2_super *osb; 654 int inode_lock = 0; 655 656 mlog_entry_void(); 657 658 BUG_ON(!journal); 659 660 osb = journal->j_osb; 661 662 /* already have the inode for our journal */ 663 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 664 osb->slot_num); 665 if (inode == NULL) { 666 status = -EACCES; 667 mlog_errno(status); 668 goto done; 669 } 670 if (is_bad_inode(inode)) { 671 mlog(ML_ERROR, "access error (bad inode)\n"); 672 iput(inode); 673 inode = NULL; 674 status = -EACCES; 675 goto done; 676 } 677 678 SET_INODE_JOURNAL(inode); 679 OCFS2_I(inode)->ip_open_count++; 680 681 /* Skip recovery waits here - journal inode metadata never 682 * changes in a live cluster so it can be considered an 683 * exception to the rule. */ 684 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 685 if (status < 0) { 686 if (status != -ERESTARTSYS) 687 mlog(ML_ERROR, "Could not get lock on journal!\n"); 688 goto done; 689 } 690 691 inode_lock = 1; 692 di = (struct ocfs2_dinode *)bh->b_data; 693 694 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) { 695 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 696 inode->i_size); 697 status = -EINVAL; 698 goto done; 699 } 700 701 mlog(0, "inode->i_size = %lld\n", inode->i_size); 702 mlog(0, "inode->i_blocks = %llu\n", 703 (unsigned long long)inode->i_blocks); 704 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters); 705 706 /* call the kernels journal init function now */ 707 j_journal = jbd2_journal_init_inode(inode); 708 if (j_journal == NULL) { 709 mlog(ML_ERROR, "Linux journal layer error\n"); 710 status = -EINVAL; 711 goto done; 712 } 713 714 mlog(0, "Returned from jbd2_journal_init_inode\n"); 715 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen); 716 717 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 718 OCFS2_JOURNAL_DIRTY_FL); 719 720 journal->j_journal = j_journal; 721 journal->j_inode = inode; 722 journal->j_bh = bh; 723 724 ocfs2_set_journal_params(osb); 725 726 journal->j_state = OCFS2_JOURNAL_LOADED; 727 728 status = 0; 729 done: 730 if (status < 0) { 731 if (inode_lock) 732 ocfs2_inode_unlock(inode, 1); 733 brelse(bh); 734 if (inode) { 735 OCFS2_I(inode)->ip_open_count--; 736 iput(inode); 737 } 738 } 739 740 mlog_exit(status); 741 return status; 742 } 743 744 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 745 { 746 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 747 } 748 749 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 750 { 751 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 752 } 753 754 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 755 int dirty, int replayed) 756 { 757 int status; 758 unsigned int flags; 759 struct ocfs2_journal *journal = osb->journal; 760 struct buffer_head *bh = journal->j_bh; 761 struct ocfs2_dinode *fe; 762 763 mlog_entry_void(); 764 765 fe = (struct ocfs2_dinode *)bh->b_data; 766 767 /* The journal bh on the osb always comes from ocfs2_journal_init() 768 * and was validated there inside ocfs2_inode_lock_full(). It's a 769 * code bug if we mess it up. */ 770 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 771 772 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 773 if (dirty) 774 flags |= OCFS2_JOURNAL_DIRTY_FL; 775 else 776 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 777 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 778 779 if (replayed) 780 ocfs2_bump_recovery_generation(fe); 781 782 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 783 status = ocfs2_write_block(osb, bh, journal->j_inode); 784 if (status < 0) 785 mlog_errno(status); 786 787 mlog_exit(status); 788 return status; 789 } 790 791 /* 792 * If the journal has been kmalloc'd it needs to be freed after this 793 * call. 794 */ 795 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 796 { 797 struct ocfs2_journal *journal = NULL; 798 int status = 0; 799 struct inode *inode = NULL; 800 int num_running_trans = 0; 801 802 mlog_entry_void(); 803 804 BUG_ON(!osb); 805 806 journal = osb->journal; 807 if (!journal) 808 goto done; 809 810 inode = journal->j_inode; 811 812 if (journal->j_state != OCFS2_JOURNAL_LOADED) 813 goto done; 814 815 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 816 if (!igrab(inode)) 817 BUG(); 818 819 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 820 if (num_running_trans > 0) 821 mlog(0, "Shutting down journal: must wait on %d " 822 "running transactions!\n", 823 num_running_trans); 824 825 /* Do a commit_cache here. It will flush our journal, *and* 826 * release any locks that are still held. 827 * set the SHUTDOWN flag and release the trans lock. 828 * the commit thread will take the trans lock for us below. */ 829 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 830 831 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 832 * drop the trans_lock (which we want to hold until we 833 * completely destroy the journal. */ 834 if (osb->commit_task) { 835 /* Wait for the commit thread */ 836 mlog(0, "Waiting for ocfs2commit to exit....\n"); 837 kthread_stop(osb->commit_task); 838 osb->commit_task = NULL; 839 } 840 841 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 842 843 if (ocfs2_mount_local(osb)) { 844 jbd2_journal_lock_updates(journal->j_journal); 845 status = jbd2_journal_flush(journal->j_journal); 846 jbd2_journal_unlock_updates(journal->j_journal); 847 if (status < 0) 848 mlog_errno(status); 849 } 850 851 if (status == 0) { 852 /* 853 * Do not toggle if flush was unsuccessful otherwise 854 * will leave dirty metadata in a "clean" journal 855 */ 856 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 857 if (status < 0) 858 mlog_errno(status); 859 } 860 861 /* Shutdown the kernel journal system */ 862 jbd2_journal_destroy(journal->j_journal); 863 journal->j_journal = NULL; 864 865 OCFS2_I(inode)->ip_open_count--; 866 867 /* unlock our journal */ 868 ocfs2_inode_unlock(inode, 1); 869 870 brelse(journal->j_bh); 871 journal->j_bh = NULL; 872 873 journal->j_state = OCFS2_JOURNAL_FREE; 874 875 // up_write(&journal->j_trans_barrier); 876 done: 877 if (inode) 878 iput(inode); 879 mlog_exit_void(); 880 } 881 882 static void ocfs2_clear_journal_error(struct super_block *sb, 883 journal_t *journal, 884 int slot) 885 { 886 int olderr; 887 888 olderr = jbd2_journal_errno(journal); 889 if (olderr) { 890 mlog(ML_ERROR, "File system error %d recorded in " 891 "journal %u.\n", olderr, slot); 892 mlog(ML_ERROR, "File system on device %s needs checking.\n", 893 sb->s_id); 894 895 jbd2_journal_ack_err(journal); 896 jbd2_journal_clear_err(journal); 897 } 898 } 899 900 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 901 { 902 int status = 0; 903 struct ocfs2_super *osb; 904 905 mlog_entry_void(); 906 907 BUG_ON(!journal); 908 909 osb = journal->j_osb; 910 911 status = jbd2_journal_load(journal->j_journal); 912 if (status < 0) { 913 mlog(ML_ERROR, "Failed to load journal!\n"); 914 goto done; 915 } 916 917 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 918 919 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 920 if (status < 0) { 921 mlog_errno(status); 922 goto done; 923 } 924 925 /* Launch the commit thread */ 926 if (!local) { 927 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 928 "ocfs2cmt"); 929 if (IS_ERR(osb->commit_task)) { 930 status = PTR_ERR(osb->commit_task); 931 osb->commit_task = NULL; 932 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 933 "error=%d", status); 934 goto done; 935 } 936 } else 937 osb->commit_task = NULL; 938 939 done: 940 mlog_exit(status); 941 return status; 942 } 943 944 945 /* 'full' flag tells us whether we clear out all blocks or if we just 946 * mark the journal clean */ 947 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 948 { 949 int status; 950 951 mlog_entry_void(); 952 953 BUG_ON(!journal); 954 955 status = jbd2_journal_wipe(journal->j_journal, full); 956 if (status < 0) { 957 mlog_errno(status); 958 goto bail; 959 } 960 961 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 962 if (status < 0) 963 mlog_errno(status); 964 965 bail: 966 mlog_exit(status); 967 return status; 968 } 969 970 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 971 { 972 int empty; 973 struct ocfs2_recovery_map *rm = osb->recovery_map; 974 975 spin_lock(&osb->osb_lock); 976 empty = (rm->rm_used == 0); 977 spin_unlock(&osb->osb_lock); 978 979 return empty; 980 } 981 982 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 983 { 984 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 985 } 986 987 /* 988 * JBD Might read a cached version of another nodes journal file. We 989 * don't want this as this file changes often and we get no 990 * notification on those changes. The only way to be sure that we've 991 * got the most up to date version of those blocks then is to force 992 * read them off disk. Just searching through the buffer cache won't 993 * work as there may be pages backing this file which are still marked 994 * up to date. We know things can't change on this file underneath us 995 * as we have the lock by now :) 996 */ 997 static int ocfs2_force_read_journal(struct inode *inode) 998 { 999 int status = 0; 1000 int i; 1001 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1002 #define CONCURRENT_JOURNAL_FILL 32ULL 1003 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 1004 1005 mlog_entry_void(); 1006 1007 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 1008 1009 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size); 1010 v_blkno = 0; 1011 while (v_blkno < num_blocks) { 1012 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1013 &p_blkno, &p_blocks, NULL); 1014 if (status < 0) { 1015 mlog_errno(status); 1016 goto bail; 1017 } 1018 1019 if (p_blocks > CONCURRENT_JOURNAL_FILL) 1020 p_blocks = CONCURRENT_JOURNAL_FILL; 1021 1022 /* We are reading journal data which should not 1023 * be put in the uptodate cache */ 1024 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb), 1025 p_blkno, p_blocks, bhs); 1026 if (status < 0) { 1027 mlog_errno(status); 1028 goto bail; 1029 } 1030 1031 for(i = 0; i < p_blocks; i++) { 1032 brelse(bhs[i]); 1033 bhs[i] = NULL; 1034 } 1035 1036 v_blkno += p_blocks; 1037 } 1038 1039 bail: 1040 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 1041 brelse(bhs[i]); 1042 mlog_exit(status); 1043 return status; 1044 } 1045 1046 struct ocfs2_la_recovery_item { 1047 struct list_head lri_list; 1048 int lri_slot; 1049 struct ocfs2_dinode *lri_la_dinode; 1050 struct ocfs2_dinode *lri_tl_dinode; 1051 struct ocfs2_quota_recovery *lri_qrec; 1052 }; 1053 1054 /* Does the second half of the recovery process. By this point, the 1055 * node is marked clean and can actually be considered recovered, 1056 * hence it's no longer in the recovery map, but there's still some 1057 * cleanup we can do which shouldn't happen within the recovery thread 1058 * as locking in that context becomes very difficult if we are to take 1059 * recovering nodes into account. 1060 * 1061 * NOTE: This function can and will sleep on recovery of other nodes 1062 * during cluster locking, just like any other ocfs2 process. 1063 */ 1064 void ocfs2_complete_recovery(struct work_struct *work) 1065 { 1066 int ret; 1067 struct ocfs2_journal *journal = 1068 container_of(work, struct ocfs2_journal, j_recovery_work); 1069 struct ocfs2_super *osb = journal->j_osb; 1070 struct ocfs2_dinode *la_dinode, *tl_dinode; 1071 struct ocfs2_la_recovery_item *item, *n; 1072 struct ocfs2_quota_recovery *qrec; 1073 LIST_HEAD(tmp_la_list); 1074 1075 mlog_entry_void(); 1076 1077 mlog(0, "completing recovery from keventd\n"); 1078 1079 spin_lock(&journal->j_lock); 1080 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1081 spin_unlock(&journal->j_lock); 1082 1083 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1084 list_del_init(&item->lri_list); 1085 1086 mlog(0, "Complete recovery for slot %d\n", item->lri_slot); 1087 1088 ocfs2_wait_on_quotas(osb); 1089 1090 la_dinode = item->lri_la_dinode; 1091 if (la_dinode) { 1092 mlog(0, "Clean up local alloc %llu\n", 1093 (unsigned long long)le64_to_cpu(la_dinode->i_blkno)); 1094 1095 ret = ocfs2_complete_local_alloc_recovery(osb, 1096 la_dinode); 1097 if (ret < 0) 1098 mlog_errno(ret); 1099 1100 kfree(la_dinode); 1101 } 1102 1103 tl_dinode = item->lri_tl_dinode; 1104 if (tl_dinode) { 1105 mlog(0, "Clean up truncate log %llu\n", 1106 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno)); 1107 1108 ret = ocfs2_complete_truncate_log_recovery(osb, 1109 tl_dinode); 1110 if (ret < 0) 1111 mlog_errno(ret); 1112 1113 kfree(tl_dinode); 1114 } 1115 1116 ret = ocfs2_recover_orphans(osb, item->lri_slot); 1117 if (ret < 0) 1118 mlog_errno(ret); 1119 1120 qrec = item->lri_qrec; 1121 if (qrec) { 1122 mlog(0, "Recovering quota files"); 1123 ret = ocfs2_finish_quota_recovery(osb, qrec, 1124 item->lri_slot); 1125 if (ret < 0) 1126 mlog_errno(ret); 1127 /* Recovery info is already freed now */ 1128 } 1129 1130 kfree(item); 1131 } 1132 1133 mlog(0, "Recovery completion\n"); 1134 mlog_exit_void(); 1135 } 1136 1137 /* NOTE: This function always eats your references to la_dinode and 1138 * tl_dinode, either manually on error, or by passing them to 1139 * ocfs2_complete_recovery */ 1140 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1141 int slot_num, 1142 struct ocfs2_dinode *la_dinode, 1143 struct ocfs2_dinode *tl_dinode, 1144 struct ocfs2_quota_recovery *qrec) 1145 { 1146 struct ocfs2_la_recovery_item *item; 1147 1148 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1149 if (!item) { 1150 /* Though we wish to avoid it, we are in fact safe in 1151 * skipping local alloc cleanup as fsck.ocfs2 is more 1152 * than capable of reclaiming unused space. */ 1153 if (la_dinode) 1154 kfree(la_dinode); 1155 1156 if (tl_dinode) 1157 kfree(tl_dinode); 1158 1159 if (qrec) 1160 ocfs2_free_quota_recovery(qrec); 1161 1162 mlog_errno(-ENOMEM); 1163 return; 1164 } 1165 1166 INIT_LIST_HEAD(&item->lri_list); 1167 item->lri_la_dinode = la_dinode; 1168 item->lri_slot = slot_num; 1169 item->lri_tl_dinode = tl_dinode; 1170 item->lri_qrec = qrec; 1171 1172 spin_lock(&journal->j_lock); 1173 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1174 queue_work(ocfs2_wq, &journal->j_recovery_work); 1175 spin_unlock(&journal->j_lock); 1176 } 1177 1178 /* Called by the mount code to queue recovery the last part of 1179 * recovery for it's own slot. */ 1180 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1181 { 1182 struct ocfs2_journal *journal = osb->journal; 1183 1184 if (osb->dirty) { 1185 /* No need to queue up our truncate_log as regular 1186 * cleanup will catch that. */ 1187 ocfs2_queue_recovery_completion(journal, 1188 osb->slot_num, 1189 osb->local_alloc_copy, 1190 NULL, 1191 NULL); 1192 ocfs2_schedule_truncate_log_flush(osb, 0); 1193 1194 osb->local_alloc_copy = NULL; 1195 osb->dirty = 0; 1196 } 1197 } 1198 1199 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1200 { 1201 if (osb->quota_rec) { 1202 ocfs2_queue_recovery_completion(osb->journal, 1203 osb->slot_num, 1204 NULL, 1205 NULL, 1206 osb->quota_rec); 1207 osb->quota_rec = NULL; 1208 } 1209 } 1210 1211 static int __ocfs2_recovery_thread(void *arg) 1212 { 1213 int status, node_num, slot_num; 1214 struct ocfs2_super *osb = arg; 1215 struct ocfs2_recovery_map *rm = osb->recovery_map; 1216 int *rm_quota = NULL; 1217 int rm_quota_used = 0, i; 1218 struct ocfs2_quota_recovery *qrec; 1219 1220 mlog_entry_void(); 1221 1222 status = ocfs2_wait_on_mount(osb); 1223 if (status < 0) { 1224 goto bail; 1225 } 1226 1227 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS); 1228 if (!rm_quota) { 1229 status = -ENOMEM; 1230 goto bail; 1231 } 1232 restart: 1233 status = ocfs2_super_lock(osb, 1); 1234 if (status < 0) { 1235 mlog_errno(status); 1236 goto bail; 1237 } 1238 1239 spin_lock(&osb->osb_lock); 1240 while (rm->rm_used) { 1241 /* It's always safe to remove entry zero, as we won't 1242 * clear it until ocfs2_recover_node() has succeeded. */ 1243 node_num = rm->rm_entries[0]; 1244 spin_unlock(&osb->osb_lock); 1245 mlog(0, "checking node %d\n", node_num); 1246 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1247 if (slot_num == -ENOENT) { 1248 status = 0; 1249 mlog(0, "no slot for this node, so no recovery" 1250 "required.\n"); 1251 goto skip_recovery; 1252 } 1253 mlog(0, "node %d was using slot %d\n", node_num, slot_num); 1254 1255 /* It is a bit subtle with quota recovery. We cannot do it 1256 * immediately because we have to obtain cluster locks from 1257 * quota files and we also don't want to just skip it because 1258 * then quota usage would be out of sync until some node takes 1259 * the slot. So we remember which nodes need quota recovery 1260 * and when everything else is done, we recover quotas. */ 1261 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++); 1262 if (i == rm_quota_used) 1263 rm_quota[rm_quota_used++] = slot_num; 1264 1265 status = ocfs2_recover_node(osb, node_num, slot_num); 1266 skip_recovery: 1267 if (!status) { 1268 ocfs2_recovery_map_clear(osb, node_num); 1269 } else { 1270 mlog(ML_ERROR, 1271 "Error %d recovering node %d on device (%u,%u)!\n", 1272 status, node_num, 1273 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1274 mlog(ML_ERROR, "Volume requires unmount.\n"); 1275 } 1276 1277 spin_lock(&osb->osb_lock); 1278 } 1279 spin_unlock(&osb->osb_lock); 1280 mlog(0, "All nodes recovered\n"); 1281 1282 /* Refresh all journal recovery generations from disk */ 1283 status = ocfs2_check_journals_nolocks(osb); 1284 status = (status == -EROFS) ? 0 : status; 1285 if (status < 0) 1286 mlog_errno(status); 1287 1288 /* Now it is right time to recover quotas... We have to do this under 1289 * superblock lock so that noone can start using the slot (and crash) 1290 * before we recover it */ 1291 for (i = 0; i < rm_quota_used; i++) { 1292 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1293 if (IS_ERR(qrec)) { 1294 status = PTR_ERR(qrec); 1295 mlog_errno(status); 1296 continue; 1297 } 1298 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i], 1299 NULL, NULL, qrec); 1300 } 1301 1302 ocfs2_super_unlock(osb, 1); 1303 1304 /* We always run recovery on our own orphan dir - the dead 1305 * node(s) may have disallowd a previos inode delete. Re-processing 1306 * is therefore required. */ 1307 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1308 NULL, NULL); 1309 1310 bail: 1311 mutex_lock(&osb->recovery_lock); 1312 if (!status && !ocfs2_recovery_completed(osb)) { 1313 mutex_unlock(&osb->recovery_lock); 1314 goto restart; 1315 } 1316 1317 osb->recovery_thread_task = NULL; 1318 mb(); /* sync with ocfs2_recovery_thread_running */ 1319 wake_up(&osb->recovery_event); 1320 1321 mutex_unlock(&osb->recovery_lock); 1322 1323 if (rm_quota) 1324 kfree(rm_quota); 1325 1326 mlog_exit(status); 1327 /* no one is callint kthread_stop() for us so the kthread() api 1328 * requires that we call do_exit(). And it isn't exported, but 1329 * complete_and_exit() seems to be a minimal wrapper around it. */ 1330 complete_and_exit(NULL, status); 1331 return status; 1332 } 1333 1334 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1335 { 1336 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 1337 node_num, osb->node_num); 1338 1339 mutex_lock(&osb->recovery_lock); 1340 if (osb->disable_recovery) 1341 goto out; 1342 1343 /* People waiting on recovery will wait on 1344 * the recovery map to empty. */ 1345 if (ocfs2_recovery_map_set(osb, node_num)) 1346 mlog(0, "node %d already in recovery map.\n", node_num); 1347 1348 mlog(0, "starting recovery thread...\n"); 1349 1350 if (osb->recovery_thread_task) 1351 goto out; 1352 1353 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1354 "ocfs2rec"); 1355 if (IS_ERR(osb->recovery_thread_task)) { 1356 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1357 osb->recovery_thread_task = NULL; 1358 } 1359 1360 out: 1361 mutex_unlock(&osb->recovery_lock); 1362 wake_up(&osb->recovery_event); 1363 1364 mlog_exit_void(); 1365 } 1366 1367 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1368 int slot_num, 1369 struct buffer_head **bh, 1370 struct inode **ret_inode) 1371 { 1372 int status = -EACCES; 1373 struct inode *inode = NULL; 1374 1375 BUG_ON(slot_num >= osb->max_slots); 1376 1377 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1378 slot_num); 1379 if (!inode || is_bad_inode(inode)) { 1380 mlog_errno(status); 1381 goto bail; 1382 } 1383 SET_INODE_JOURNAL(inode); 1384 1385 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1386 if (status < 0) { 1387 mlog_errno(status); 1388 goto bail; 1389 } 1390 1391 status = 0; 1392 1393 bail: 1394 if (inode) { 1395 if (status || !ret_inode) 1396 iput(inode); 1397 else 1398 *ret_inode = inode; 1399 } 1400 return status; 1401 } 1402 1403 /* Does the actual journal replay and marks the journal inode as 1404 * clean. Will only replay if the journal inode is marked dirty. */ 1405 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1406 int node_num, 1407 int slot_num) 1408 { 1409 int status; 1410 int got_lock = 0; 1411 unsigned int flags; 1412 struct inode *inode = NULL; 1413 struct ocfs2_dinode *fe; 1414 journal_t *journal = NULL; 1415 struct buffer_head *bh = NULL; 1416 u32 slot_reco_gen; 1417 1418 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1419 if (status) { 1420 mlog_errno(status); 1421 goto done; 1422 } 1423 1424 fe = (struct ocfs2_dinode *)bh->b_data; 1425 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1426 brelse(bh); 1427 bh = NULL; 1428 1429 /* 1430 * As the fs recovery is asynchronous, there is a small chance that 1431 * another node mounted (and recovered) the slot before the recovery 1432 * thread could get the lock. To handle that, we dirty read the journal 1433 * inode for that slot to get the recovery generation. If it is 1434 * different than what we expected, the slot has been recovered. 1435 * If not, it needs recovery. 1436 */ 1437 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1438 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num, 1439 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1440 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1441 status = -EBUSY; 1442 goto done; 1443 } 1444 1445 /* Continue with recovery as the journal has not yet been recovered */ 1446 1447 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1448 if (status < 0) { 1449 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status); 1450 if (status != -ERESTARTSYS) 1451 mlog(ML_ERROR, "Could not lock journal!\n"); 1452 goto done; 1453 } 1454 got_lock = 1; 1455 1456 fe = (struct ocfs2_dinode *) bh->b_data; 1457 1458 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1459 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1460 1461 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1462 mlog(0, "No recovery required for node %d\n", node_num); 1463 /* Refresh recovery generation for the slot */ 1464 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1465 goto done; 1466 } 1467 1468 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n", 1469 node_num, slot_num, 1470 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1471 1472 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1473 1474 status = ocfs2_force_read_journal(inode); 1475 if (status < 0) { 1476 mlog_errno(status); 1477 goto done; 1478 } 1479 1480 mlog(0, "calling journal_init_inode\n"); 1481 journal = jbd2_journal_init_inode(inode); 1482 if (journal == NULL) { 1483 mlog(ML_ERROR, "Linux journal layer error\n"); 1484 status = -EIO; 1485 goto done; 1486 } 1487 1488 status = jbd2_journal_load(journal); 1489 if (status < 0) { 1490 mlog_errno(status); 1491 if (!igrab(inode)) 1492 BUG(); 1493 jbd2_journal_destroy(journal); 1494 goto done; 1495 } 1496 1497 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1498 1499 /* wipe the journal */ 1500 mlog(0, "flushing the journal.\n"); 1501 jbd2_journal_lock_updates(journal); 1502 status = jbd2_journal_flush(journal); 1503 jbd2_journal_unlock_updates(journal); 1504 if (status < 0) 1505 mlog_errno(status); 1506 1507 /* This will mark the node clean */ 1508 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1509 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1510 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1511 1512 /* Increment recovery generation to indicate successful recovery */ 1513 ocfs2_bump_recovery_generation(fe); 1514 osb->slot_recovery_generations[slot_num] = 1515 ocfs2_get_recovery_generation(fe); 1516 1517 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1518 status = ocfs2_write_block(osb, bh, inode); 1519 if (status < 0) 1520 mlog_errno(status); 1521 1522 if (!igrab(inode)) 1523 BUG(); 1524 1525 jbd2_journal_destroy(journal); 1526 1527 done: 1528 /* drop the lock on this nodes journal */ 1529 if (got_lock) 1530 ocfs2_inode_unlock(inode, 1); 1531 1532 if (inode) 1533 iput(inode); 1534 1535 brelse(bh); 1536 1537 mlog_exit(status); 1538 return status; 1539 } 1540 1541 /* 1542 * Do the most important parts of node recovery: 1543 * - Replay it's journal 1544 * - Stamp a clean local allocator file 1545 * - Stamp a clean truncate log 1546 * - Mark the node clean 1547 * 1548 * If this function completes without error, a node in OCFS2 can be 1549 * said to have been safely recovered. As a result, failure during the 1550 * second part of a nodes recovery process (local alloc recovery) is 1551 * far less concerning. 1552 */ 1553 static int ocfs2_recover_node(struct ocfs2_super *osb, 1554 int node_num, int slot_num) 1555 { 1556 int status = 0; 1557 struct ocfs2_dinode *la_copy = NULL; 1558 struct ocfs2_dinode *tl_copy = NULL; 1559 1560 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n", 1561 node_num, slot_num, osb->node_num); 1562 1563 /* Should not ever be called to recover ourselves -- in that 1564 * case we should've called ocfs2_journal_load instead. */ 1565 BUG_ON(osb->node_num == node_num); 1566 1567 status = ocfs2_replay_journal(osb, node_num, slot_num); 1568 if (status < 0) { 1569 if (status == -EBUSY) { 1570 mlog(0, "Skipping recovery for slot %u (node %u) " 1571 "as another node has recovered it\n", slot_num, 1572 node_num); 1573 status = 0; 1574 goto done; 1575 } 1576 mlog_errno(status); 1577 goto done; 1578 } 1579 1580 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1581 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1582 if (status < 0) { 1583 mlog_errno(status); 1584 goto done; 1585 } 1586 1587 /* An error from begin_truncate_log_recovery is not 1588 * serious enough to warrant halting the rest of 1589 * recovery. */ 1590 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1591 if (status < 0) 1592 mlog_errno(status); 1593 1594 /* Likewise, this would be a strange but ultimately not so 1595 * harmful place to get an error... */ 1596 status = ocfs2_clear_slot(osb, slot_num); 1597 if (status < 0) 1598 mlog_errno(status); 1599 1600 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1601 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1602 tl_copy, NULL); 1603 1604 status = 0; 1605 done: 1606 1607 mlog_exit(status); 1608 return status; 1609 } 1610 1611 /* Test node liveness by trylocking his journal. If we get the lock, 1612 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1613 * still alive (we couldn't get the lock) and < 0 on error. */ 1614 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1615 int slot_num) 1616 { 1617 int status, flags; 1618 struct inode *inode = NULL; 1619 1620 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1621 slot_num); 1622 if (inode == NULL) { 1623 mlog(ML_ERROR, "access error\n"); 1624 status = -EACCES; 1625 goto bail; 1626 } 1627 if (is_bad_inode(inode)) { 1628 mlog(ML_ERROR, "access error (bad inode)\n"); 1629 iput(inode); 1630 inode = NULL; 1631 status = -EACCES; 1632 goto bail; 1633 } 1634 SET_INODE_JOURNAL(inode); 1635 1636 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1637 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1638 if (status < 0) { 1639 if (status != -EAGAIN) 1640 mlog_errno(status); 1641 goto bail; 1642 } 1643 1644 ocfs2_inode_unlock(inode, 1); 1645 bail: 1646 if (inode) 1647 iput(inode); 1648 1649 return status; 1650 } 1651 1652 /* Call this underneath ocfs2_super_lock. It also assumes that the 1653 * slot info struct has been updated from disk. */ 1654 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1655 { 1656 unsigned int node_num; 1657 int status, i; 1658 u32 gen; 1659 struct buffer_head *bh = NULL; 1660 struct ocfs2_dinode *di; 1661 1662 /* This is called with the super block cluster lock, so we 1663 * know that the slot map can't change underneath us. */ 1664 1665 for (i = 0; i < osb->max_slots; i++) { 1666 /* Read journal inode to get the recovery generation */ 1667 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1668 if (status) { 1669 mlog_errno(status); 1670 goto bail; 1671 } 1672 di = (struct ocfs2_dinode *)bh->b_data; 1673 gen = ocfs2_get_recovery_generation(di); 1674 brelse(bh); 1675 bh = NULL; 1676 1677 spin_lock(&osb->osb_lock); 1678 osb->slot_recovery_generations[i] = gen; 1679 1680 mlog(0, "Slot %u recovery generation is %u\n", i, 1681 osb->slot_recovery_generations[i]); 1682 1683 if (i == osb->slot_num) { 1684 spin_unlock(&osb->osb_lock); 1685 continue; 1686 } 1687 1688 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1689 if (status == -ENOENT) { 1690 spin_unlock(&osb->osb_lock); 1691 continue; 1692 } 1693 1694 if (__ocfs2_recovery_map_test(osb, node_num)) { 1695 spin_unlock(&osb->osb_lock); 1696 continue; 1697 } 1698 spin_unlock(&osb->osb_lock); 1699 1700 /* Ok, we have a slot occupied by another node which 1701 * is not in the recovery map. We trylock his journal 1702 * file here to test if he's alive. */ 1703 status = ocfs2_trylock_journal(osb, i); 1704 if (!status) { 1705 /* Since we're called from mount, we know that 1706 * the recovery thread can't race us on 1707 * setting / checking the recovery bits. */ 1708 ocfs2_recovery_thread(osb, node_num); 1709 } else if ((status < 0) && (status != -EAGAIN)) { 1710 mlog_errno(status); 1711 goto bail; 1712 } 1713 } 1714 1715 status = 0; 1716 bail: 1717 mlog_exit(status); 1718 return status; 1719 } 1720 1721 struct ocfs2_orphan_filldir_priv { 1722 struct inode *head; 1723 struct ocfs2_super *osb; 1724 }; 1725 1726 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len, 1727 loff_t pos, u64 ino, unsigned type) 1728 { 1729 struct ocfs2_orphan_filldir_priv *p = priv; 1730 struct inode *iter; 1731 1732 if (name_len == 1 && !strncmp(".", name, 1)) 1733 return 0; 1734 if (name_len == 2 && !strncmp("..", name, 2)) 1735 return 0; 1736 1737 /* Skip bad inodes so that recovery can continue */ 1738 iter = ocfs2_iget(p->osb, ino, 1739 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 1740 if (IS_ERR(iter)) 1741 return 0; 1742 1743 mlog(0, "queue orphan %llu\n", 1744 (unsigned long long)OCFS2_I(iter)->ip_blkno); 1745 /* No locking is required for the next_orphan queue as there 1746 * is only ever a single process doing orphan recovery. */ 1747 OCFS2_I(iter)->ip_next_orphan = p->head; 1748 p->head = iter; 1749 1750 return 0; 1751 } 1752 1753 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 1754 int slot, 1755 struct inode **head) 1756 { 1757 int status; 1758 struct inode *orphan_dir_inode = NULL; 1759 struct ocfs2_orphan_filldir_priv priv; 1760 loff_t pos = 0; 1761 1762 priv.osb = osb; 1763 priv.head = *head; 1764 1765 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 1766 ORPHAN_DIR_SYSTEM_INODE, 1767 slot); 1768 if (!orphan_dir_inode) { 1769 status = -ENOENT; 1770 mlog_errno(status); 1771 return status; 1772 } 1773 1774 mutex_lock(&orphan_dir_inode->i_mutex); 1775 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 1776 if (status < 0) { 1777 mlog_errno(status); 1778 goto out; 1779 } 1780 1781 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv, 1782 ocfs2_orphan_filldir); 1783 if (status) { 1784 mlog_errno(status); 1785 goto out_cluster; 1786 } 1787 1788 *head = priv.head; 1789 1790 out_cluster: 1791 ocfs2_inode_unlock(orphan_dir_inode, 0); 1792 out: 1793 mutex_unlock(&orphan_dir_inode->i_mutex); 1794 iput(orphan_dir_inode); 1795 return status; 1796 } 1797 1798 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 1799 int slot) 1800 { 1801 int ret; 1802 1803 spin_lock(&osb->osb_lock); 1804 ret = !osb->osb_orphan_wipes[slot]; 1805 spin_unlock(&osb->osb_lock); 1806 return ret; 1807 } 1808 1809 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 1810 int slot) 1811 { 1812 spin_lock(&osb->osb_lock); 1813 /* Mark ourselves such that new processes in delete_inode() 1814 * know to quit early. */ 1815 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1816 while (osb->osb_orphan_wipes[slot]) { 1817 /* If any processes are already in the middle of an 1818 * orphan wipe on this dir, then we need to wait for 1819 * them. */ 1820 spin_unlock(&osb->osb_lock); 1821 wait_event_interruptible(osb->osb_wipe_event, 1822 ocfs2_orphan_recovery_can_continue(osb, slot)); 1823 spin_lock(&osb->osb_lock); 1824 } 1825 spin_unlock(&osb->osb_lock); 1826 } 1827 1828 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 1829 int slot) 1830 { 1831 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1832 } 1833 1834 /* 1835 * Orphan recovery. Each mounted node has it's own orphan dir which we 1836 * must run during recovery. Our strategy here is to build a list of 1837 * the inodes in the orphan dir and iget/iput them. The VFS does 1838 * (most) of the rest of the work. 1839 * 1840 * Orphan recovery can happen at any time, not just mount so we have a 1841 * couple of extra considerations. 1842 * 1843 * - We grab as many inodes as we can under the orphan dir lock - 1844 * doing iget() outside the orphan dir risks getting a reference on 1845 * an invalid inode. 1846 * - We must be sure not to deadlock with other processes on the 1847 * system wanting to run delete_inode(). This can happen when they go 1848 * to lock the orphan dir and the orphan recovery process attempts to 1849 * iget() inside the orphan dir lock. This can be avoided by 1850 * advertising our state to ocfs2_delete_inode(). 1851 */ 1852 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 1853 int slot) 1854 { 1855 int ret = 0; 1856 struct inode *inode = NULL; 1857 struct inode *iter; 1858 struct ocfs2_inode_info *oi; 1859 1860 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot); 1861 1862 ocfs2_mark_recovering_orphan_dir(osb, slot); 1863 ret = ocfs2_queue_orphans(osb, slot, &inode); 1864 ocfs2_clear_recovering_orphan_dir(osb, slot); 1865 1866 /* Error here should be noted, but we want to continue with as 1867 * many queued inodes as we've got. */ 1868 if (ret) 1869 mlog_errno(ret); 1870 1871 while (inode) { 1872 oi = OCFS2_I(inode); 1873 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno); 1874 1875 iter = oi->ip_next_orphan; 1876 1877 spin_lock(&oi->ip_lock); 1878 /* The remote delete code may have set these on the 1879 * assumption that the other node would wipe them 1880 * successfully. If they are still in the node's 1881 * orphan dir, we need to reset that state. */ 1882 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); 1883 1884 /* Set the proper information to get us going into 1885 * ocfs2_delete_inode. */ 1886 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 1887 spin_unlock(&oi->ip_lock); 1888 1889 iput(inode); 1890 1891 inode = iter; 1892 } 1893 1894 return ret; 1895 } 1896 1897 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 1898 { 1899 /* This check is good because ocfs2 will wait on our recovery 1900 * thread before changing it to something other than MOUNTED 1901 * or DISABLED. */ 1902 wait_event(osb->osb_mount_event, 1903 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 1904 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 1905 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 1906 1907 /* If there's an error on mount, then we may never get to the 1908 * MOUNTED flag, but this is set right before 1909 * dismount_volume() so we can trust it. */ 1910 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 1911 mlog(0, "mount error, exiting!\n"); 1912 return -EBUSY; 1913 } 1914 1915 return 0; 1916 } 1917 1918 static int ocfs2_commit_thread(void *arg) 1919 { 1920 int status; 1921 struct ocfs2_super *osb = arg; 1922 struct ocfs2_journal *journal = osb->journal; 1923 1924 /* we can trust j_num_trans here because _should_stop() is only set in 1925 * shutdown and nobody other than ourselves should be able to start 1926 * transactions. committing on shutdown might take a few iterations 1927 * as final transactions put deleted inodes on the list */ 1928 while (!(kthread_should_stop() && 1929 atomic_read(&journal->j_num_trans) == 0)) { 1930 1931 wait_event_interruptible(osb->checkpoint_event, 1932 atomic_read(&journal->j_num_trans) 1933 || kthread_should_stop()); 1934 1935 status = ocfs2_commit_cache(osb); 1936 if (status < 0) 1937 mlog_errno(status); 1938 1939 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 1940 mlog(ML_KTHREAD, 1941 "commit_thread: %u transactions pending on " 1942 "shutdown\n", 1943 atomic_read(&journal->j_num_trans)); 1944 } 1945 } 1946 1947 return 0; 1948 } 1949 1950 /* Reads all the journal inodes without taking any cluster locks. Used 1951 * for hard readonly access to determine whether any journal requires 1952 * recovery. Also used to refresh the recovery generation numbers after 1953 * a journal has been recovered by another node. 1954 */ 1955 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 1956 { 1957 int ret = 0; 1958 unsigned int slot; 1959 struct buffer_head *di_bh = NULL; 1960 struct ocfs2_dinode *di; 1961 int journal_dirty = 0; 1962 1963 for(slot = 0; slot < osb->max_slots; slot++) { 1964 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 1965 if (ret) { 1966 mlog_errno(ret); 1967 goto out; 1968 } 1969 1970 di = (struct ocfs2_dinode *) di_bh->b_data; 1971 1972 osb->slot_recovery_generations[slot] = 1973 ocfs2_get_recovery_generation(di); 1974 1975 if (le32_to_cpu(di->id1.journal1.ij_flags) & 1976 OCFS2_JOURNAL_DIRTY_FL) 1977 journal_dirty = 1; 1978 1979 brelse(di_bh); 1980 di_bh = NULL; 1981 } 1982 1983 out: 1984 if (journal_dirty) 1985 ret = -EROFS; 1986 return ret; 1987 } 1988