xref: /openbmc/linux/fs/ocfs2/journal.c (revision b34e08d5)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "blockcheck.h"
40 #include "dir.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "heartbeat.h"
44 #include "inode.h"
45 #include "journal.h"
46 #include "localalloc.h"
47 #include "slot_map.h"
48 #include "super.h"
49 #include "sysfile.h"
50 #include "uptodate.h"
51 #include "quota.h"
52 
53 #include "buffer_head_io.h"
54 #include "ocfs2_trace.h"
55 
56 DEFINE_SPINLOCK(trans_inc_lock);
57 
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59 
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62 			      int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 				      int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 				 int slot_num);
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 				 int slot);
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 					    int slot_num,
75 					    struct ocfs2_dinode *la_dinode,
76 					    struct ocfs2_dinode *tl_dinode,
77 					    struct ocfs2_quota_recovery *qrec);
78 
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80 {
81 	return __ocfs2_wait_on_mount(osb, 0);
82 }
83 
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85 {
86 	return __ocfs2_wait_on_mount(osb, 1);
87 }
88 
89 /*
90  * This replay_map is to track online/offline slots, so we could recover
91  * offline slots during recovery and mount
92  */
93 
94 enum ocfs2_replay_state {
95 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
96 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
97 	REPLAY_DONE 		/* Replay was already queued */
98 };
99 
100 struct ocfs2_replay_map {
101 	unsigned int rm_slots;
102 	enum ocfs2_replay_state rm_state;
103 	unsigned char rm_replay_slots[0];
104 };
105 
106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107 {
108 	if (!osb->replay_map)
109 		return;
110 
111 	/* If we've already queued the replay, we don't have any more to do */
112 	if (osb->replay_map->rm_state == REPLAY_DONE)
113 		return;
114 
115 	osb->replay_map->rm_state = state;
116 }
117 
118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119 {
120 	struct ocfs2_replay_map *replay_map;
121 	int i, node_num;
122 
123 	/* If replay map is already set, we don't do it again */
124 	if (osb->replay_map)
125 		return 0;
126 
127 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
129 
130 	if (!replay_map) {
131 		mlog_errno(-ENOMEM);
132 		return -ENOMEM;
133 	}
134 
135 	spin_lock(&osb->osb_lock);
136 
137 	replay_map->rm_slots = osb->max_slots;
138 	replay_map->rm_state = REPLAY_UNNEEDED;
139 
140 	/* set rm_replay_slots for offline slot(s) */
141 	for (i = 0; i < replay_map->rm_slots; i++) {
142 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 			replay_map->rm_replay_slots[i] = 1;
144 	}
145 
146 	osb->replay_map = replay_map;
147 	spin_unlock(&osb->osb_lock);
148 	return 0;
149 }
150 
151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152 {
153 	struct ocfs2_replay_map *replay_map = osb->replay_map;
154 	int i;
155 
156 	if (!replay_map)
157 		return;
158 
159 	if (replay_map->rm_state != REPLAY_NEEDED)
160 		return;
161 
162 	for (i = 0; i < replay_map->rm_slots; i++)
163 		if (replay_map->rm_replay_slots[i])
164 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 							NULL, NULL);
166 	replay_map->rm_state = REPLAY_DONE;
167 }
168 
169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170 {
171 	struct ocfs2_replay_map *replay_map = osb->replay_map;
172 
173 	if (!osb->replay_map)
174 		return;
175 
176 	kfree(replay_map);
177 	osb->replay_map = NULL;
178 }
179 
180 int ocfs2_recovery_init(struct ocfs2_super *osb)
181 {
182 	struct ocfs2_recovery_map *rm;
183 
184 	mutex_init(&osb->recovery_lock);
185 	osb->disable_recovery = 0;
186 	osb->recovery_thread_task = NULL;
187 	init_waitqueue_head(&osb->recovery_event);
188 
189 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 		     osb->max_slots * sizeof(unsigned int),
191 		     GFP_KERNEL);
192 	if (!rm) {
193 		mlog_errno(-ENOMEM);
194 		return -ENOMEM;
195 	}
196 
197 	rm->rm_entries = (unsigned int *)((char *)rm +
198 					  sizeof(struct ocfs2_recovery_map));
199 	osb->recovery_map = rm;
200 
201 	return 0;
202 }
203 
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205  * memory barriers to make sure that we'll see the null task before
206  * being woken up */
207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208 {
209 	mb();
210 	return osb->recovery_thread_task != NULL;
211 }
212 
213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
214 {
215 	struct ocfs2_recovery_map *rm;
216 
217 	/* disable any new recovery threads and wait for any currently
218 	 * running ones to exit. Do this before setting the vol_state. */
219 	mutex_lock(&osb->recovery_lock);
220 	osb->disable_recovery = 1;
221 	mutex_unlock(&osb->recovery_lock);
222 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223 
224 	/* At this point, we know that no more recovery threads can be
225 	 * launched, so wait for any recovery completion work to
226 	 * complete. */
227 	flush_workqueue(ocfs2_wq);
228 
229 	/*
230 	 * Now that recovery is shut down, and the osb is about to be
231 	 * freed,  the osb_lock is not taken here.
232 	 */
233 	rm = osb->recovery_map;
234 	/* XXX: Should we bug if there are dirty entries? */
235 
236 	kfree(rm);
237 }
238 
239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 				     unsigned int node_num)
241 {
242 	int i;
243 	struct ocfs2_recovery_map *rm = osb->recovery_map;
244 
245 	assert_spin_locked(&osb->osb_lock);
246 
247 	for (i = 0; i < rm->rm_used; i++) {
248 		if (rm->rm_entries[i] == node_num)
249 			return 1;
250 	}
251 
252 	return 0;
253 }
254 
255 /* Behaves like test-and-set.  Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 				  unsigned int node_num)
258 {
259 	struct ocfs2_recovery_map *rm = osb->recovery_map;
260 
261 	spin_lock(&osb->osb_lock);
262 	if (__ocfs2_recovery_map_test(osb, node_num)) {
263 		spin_unlock(&osb->osb_lock);
264 		return 1;
265 	}
266 
267 	/* XXX: Can this be exploited? Not from o2dlm... */
268 	BUG_ON(rm->rm_used >= osb->max_slots);
269 
270 	rm->rm_entries[rm->rm_used] = node_num;
271 	rm->rm_used++;
272 	spin_unlock(&osb->osb_lock);
273 
274 	return 0;
275 }
276 
277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 				     unsigned int node_num)
279 {
280 	int i;
281 	struct ocfs2_recovery_map *rm = osb->recovery_map;
282 
283 	spin_lock(&osb->osb_lock);
284 
285 	for (i = 0; i < rm->rm_used; i++) {
286 		if (rm->rm_entries[i] == node_num)
287 			break;
288 	}
289 
290 	if (i < rm->rm_used) {
291 		/* XXX: be careful with the pointer math */
292 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 			(rm->rm_used - i - 1) * sizeof(unsigned int));
294 		rm->rm_used--;
295 	}
296 
297 	spin_unlock(&osb->osb_lock);
298 }
299 
300 static int ocfs2_commit_cache(struct ocfs2_super *osb)
301 {
302 	int status = 0;
303 	unsigned int flushed;
304 	struct ocfs2_journal *journal = NULL;
305 
306 	journal = osb->journal;
307 
308 	/* Flush all pending commits and checkpoint the journal. */
309 	down_write(&journal->j_trans_barrier);
310 
311 	flushed = atomic_read(&journal->j_num_trans);
312 	trace_ocfs2_commit_cache_begin(flushed);
313 	if (flushed == 0) {
314 		up_write(&journal->j_trans_barrier);
315 		goto finally;
316 	}
317 
318 	jbd2_journal_lock_updates(journal->j_journal);
319 	status = jbd2_journal_flush(journal->j_journal);
320 	jbd2_journal_unlock_updates(journal->j_journal);
321 	if (status < 0) {
322 		up_write(&journal->j_trans_barrier);
323 		mlog_errno(status);
324 		goto finally;
325 	}
326 
327 	ocfs2_inc_trans_id(journal);
328 
329 	flushed = atomic_read(&journal->j_num_trans);
330 	atomic_set(&journal->j_num_trans, 0);
331 	up_write(&journal->j_trans_barrier);
332 
333 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
334 
335 	ocfs2_wake_downconvert_thread(osb);
336 	wake_up(&journal->j_checkpointed);
337 finally:
338 	return status;
339 }
340 
341 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
342 {
343 	journal_t *journal = osb->journal->j_journal;
344 	handle_t *handle;
345 
346 	BUG_ON(!osb || !osb->journal->j_journal);
347 
348 	if (ocfs2_is_hard_readonly(osb))
349 		return ERR_PTR(-EROFS);
350 
351 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
352 	BUG_ON(max_buffs <= 0);
353 
354 	/* Nested transaction? Just return the handle... */
355 	if (journal_current_handle())
356 		return jbd2_journal_start(journal, max_buffs);
357 
358 	sb_start_intwrite(osb->sb);
359 
360 	down_read(&osb->journal->j_trans_barrier);
361 
362 	handle = jbd2_journal_start(journal, max_buffs);
363 	if (IS_ERR(handle)) {
364 		up_read(&osb->journal->j_trans_barrier);
365 		sb_end_intwrite(osb->sb);
366 
367 		mlog_errno(PTR_ERR(handle));
368 
369 		if (is_journal_aborted(journal)) {
370 			ocfs2_abort(osb->sb, "Detected aborted journal");
371 			handle = ERR_PTR(-EROFS);
372 		}
373 	} else {
374 		if (!ocfs2_mount_local(osb))
375 			atomic_inc(&(osb->journal->j_num_trans));
376 	}
377 
378 	return handle;
379 }
380 
381 int ocfs2_commit_trans(struct ocfs2_super *osb,
382 		       handle_t *handle)
383 {
384 	int ret, nested;
385 	struct ocfs2_journal *journal = osb->journal;
386 
387 	BUG_ON(!handle);
388 
389 	nested = handle->h_ref > 1;
390 	ret = jbd2_journal_stop(handle);
391 	if (ret < 0)
392 		mlog_errno(ret);
393 
394 	if (!nested) {
395 		up_read(&journal->j_trans_barrier);
396 		sb_end_intwrite(osb->sb);
397 	}
398 
399 	return ret;
400 }
401 
402 /*
403  * 'nblocks' is what you want to add to the current transaction.
404  *
405  * This might call jbd2_journal_restart() which will commit dirty buffers
406  * and then restart the transaction. Before calling
407  * ocfs2_extend_trans(), any changed blocks should have been
408  * dirtied. After calling it, all blocks which need to be changed must
409  * go through another set of journal_access/journal_dirty calls.
410  *
411  * WARNING: This will not release any semaphores or disk locks taken
412  * during the transaction, so make sure they were taken *before*
413  * start_trans or we'll have ordering deadlocks.
414  *
415  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
416  * good because transaction ids haven't yet been recorded on the
417  * cluster locks associated with this handle.
418  */
419 int ocfs2_extend_trans(handle_t *handle, int nblocks)
420 {
421 	int status, old_nblocks;
422 
423 	BUG_ON(!handle);
424 	BUG_ON(nblocks < 0);
425 
426 	if (!nblocks)
427 		return 0;
428 
429 	old_nblocks = handle->h_buffer_credits;
430 
431 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
432 
433 #ifdef CONFIG_OCFS2_DEBUG_FS
434 	status = 1;
435 #else
436 	status = jbd2_journal_extend(handle, nblocks);
437 	if (status < 0) {
438 		mlog_errno(status);
439 		goto bail;
440 	}
441 #endif
442 
443 	if (status > 0) {
444 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
445 		status = jbd2_journal_restart(handle,
446 					      old_nblocks + nblocks);
447 		if (status < 0) {
448 			mlog_errno(status);
449 			goto bail;
450 		}
451 	}
452 
453 	status = 0;
454 bail:
455 	return status;
456 }
457 
458 /*
459  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
460  * If that fails, restart the transaction & regain write access for the
461  * buffer head which is used for metadata modifications.
462  * Taken from Ext4: extend_or_restart_transaction()
463  */
464 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
465 {
466 	int status, old_nblks;
467 
468 	BUG_ON(!handle);
469 
470 	old_nblks = handle->h_buffer_credits;
471 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
472 
473 	if (old_nblks < thresh)
474 		return 0;
475 
476 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
477 	if (status < 0) {
478 		mlog_errno(status);
479 		goto bail;
480 	}
481 
482 	if (status > 0) {
483 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
484 		if (status < 0)
485 			mlog_errno(status);
486 	}
487 
488 bail:
489 	return status;
490 }
491 
492 
493 struct ocfs2_triggers {
494 	struct jbd2_buffer_trigger_type	ot_triggers;
495 	int				ot_offset;
496 };
497 
498 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
499 {
500 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
501 }
502 
503 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
504 				 struct buffer_head *bh,
505 				 void *data, size_t size)
506 {
507 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
508 
509 	/*
510 	 * We aren't guaranteed to have the superblock here, so we
511 	 * must unconditionally compute the ecc data.
512 	 * __ocfs2_journal_access() will only set the triggers if
513 	 * metaecc is enabled.
514 	 */
515 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
516 }
517 
518 /*
519  * Quota blocks have their own trigger because the struct ocfs2_block_check
520  * offset depends on the blocksize.
521  */
522 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
523 				 struct buffer_head *bh,
524 				 void *data, size_t size)
525 {
526 	struct ocfs2_disk_dqtrailer *dqt =
527 		ocfs2_block_dqtrailer(size, data);
528 
529 	/*
530 	 * We aren't guaranteed to have the superblock here, so we
531 	 * must unconditionally compute the ecc data.
532 	 * __ocfs2_journal_access() will only set the triggers if
533 	 * metaecc is enabled.
534 	 */
535 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
536 }
537 
538 /*
539  * Directory blocks also have their own trigger because the
540  * struct ocfs2_block_check offset depends on the blocksize.
541  */
542 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
543 				 struct buffer_head *bh,
544 				 void *data, size_t size)
545 {
546 	struct ocfs2_dir_block_trailer *trailer =
547 		ocfs2_dir_trailer_from_size(size, data);
548 
549 	/*
550 	 * We aren't guaranteed to have the superblock here, so we
551 	 * must unconditionally compute the ecc data.
552 	 * __ocfs2_journal_access() will only set the triggers if
553 	 * metaecc is enabled.
554 	 */
555 	ocfs2_block_check_compute(data, size, &trailer->db_check);
556 }
557 
558 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
559 				struct buffer_head *bh)
560 {
561 	mlog(ML_ERROR,
562 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
563 	     "bh->b_blocknr = %llu\n",
564 	     (unsigned long)bh,
565 	     (unsigned long long)bh->b_blocknr);
566 
567 	/* We aren't guaranteed to have the superblock here - but if we
568 	 * don't, it'll just crash. */
569 	ocfs2_error(bh->b_assoc_map->host->i_sb,
570 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
571 }
572 
573 static struct ocfs2_triggers di_triggers = {
574 	.ot_triggers = {
575 		.t_frozen = ocfs2_frozen_trigger,
576 		.t_abort = ocfs2_abort_trigger,
577 	},
578 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
579 };
580 
581 static struct ocfs2_triggers eb_triggers = {
582 	.ot_triggers = {
583 		.t_frozen = ocfs2_frozen_trigger,
584 		.t_abort = ocfs2_abort_trigger,
585 	},
586 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
587 };
588 
589 static struct ocfs2_triggers rb_triggers = {
590 	.ot_triggers = {
591 		.t_frozen = ocfs2_frozen_trigger,
592 		.t_abort = ocfs2_abort_trigger,
593 	},
594 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
595 };
596 
597 static struct ocfs2_triggers gd_triggers = {
598 	.ot_triggers = {
599 		.t_frozen = ocfs2_frozen_trigger,
600 		.t_abort = ocfs2_abort_trigger,
601 	},
602 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
603 };
604 
605 static struct ocfs2_triggers db_triggers = {
606 	.ot_triggers = {
607 		.t_frozen = ocfs2_db_frozen_trigger,
608 		.t_abort = ocfs2_abort_trigger,
609 	},
610 };
611 
612 static struct ocfs2_triggers xb_triggers = {
613 	.ot_triggers = {
614 		.t_frozen = ocfs2_frozen_trigger,
615 		.t_abort = ocfs2_abort_trigger,
616 	},
617 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
618 };
619 
620 static struct ocfs2_triggers dq_triggers = {
621 	.ot_triggers = {
622 		.t_frozen = ocfs2_dq_frozen_trigger,
623 		.t_abort = ocfs2_abort_trigger,
624 	},
625 };
626 
627 static struct ocfs2_triggers dr_triggers = {
628 	.ot_triggers = {
629 		.t_frozen = ocfs2_frozen_trigger,
630 		.t_abort = ocfs2_abort_trigger,
631 	},
632 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
633 };
634 
635 static struct ocfs2_triggers dl_triggers = {
636 	.ot_triggers = {
637 		.t_frozen = ocfs2_frozen_trigger,
638 		.t_abort = ocfs2_abort_trigger,
639 	},
640 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
641 };
642 
643 static int __ocfs2_journal_access(handle_t *handle,
644 				  struct ocfs2_caching_info *ci,
645 				  struct buffer_head *bh,
646 				  struct ocfs2_triggers *triggers,
647 				  int type)
648 {
649 	int status;
650 	struct ocfs2_super *osb =
651 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
652 
653 	BUG_ON(!ci || !ci->ci_ops);
654 	BUG_ON(!handle);
655 	BUG_ON(!bh);
656 
657 	trace_ocfs2_journal_access(
658 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
659 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
660 
661 	/* we can safely remove this assertion after testing. */
662 	if (!buffer_uptodate(bh)) {
663 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
664 		mlog(ML_ERROR, "b_blocknr=%llu\n",
665 		     (unsigned long long)bh->b_blocknr);
666 		BUG();
667 	}
668 
669 	/* Set the current transaction information on the ci so
670 	 * that the locking code knows whether it can drop it's locks
671 	 * on this ci or not. We're protected from the commit
672 	 * thread updating the current transaction id until
673 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
674 	 * j_trans_barrier for us. */
675 	ocfs2_set_ci_lock_trans(osb->journal, ci);
676 
677 	ocfs2_metadata_cache_io_lock(ci);
678 	switch (type) {
679 	case OCFS2_JOURNAL_ACCESS_CREATE:
680 	case OCFS2_JOURNAL_ACCESS_WRITE:
681 		status = jbd2_journal_get_write_access(handle, bh);
682 		break;
683 
684 	case OCFS2_JOURNAL_ACCESS_UNDO:
685 		status = jbd2_journal_get_undo_access(handle, bh);
686 		break;
687 
688 	default:
689 		status = -EINVAL;
690 		mlog(ML_ERROR, "Unknown access type!\n");
691 	}
692 	if (!status && ocfs2_meta_ecc(osb) && triggers)
693 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
694 	ocfs2_metadata_cache_io_unlock(ci);
695 
696 	if (status < 0)
697 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
698 		     status, type);
699 
700 	return status;
701 }
702 
703 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
704 			    struct buffer_head *bh, int type)
705 {
706 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
707 }
708 
709 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
710 			    struct buffer_head *bh, int type)
711 {
712 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
713 }
714 
715 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
716 			    struct buffer_head *bh, int type)
717 {
718 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
719 				      type);
720 }
721 
722 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
723 			    struct buffer_head *bh, int type)
724 {
725 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
726 }
727 
728 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
729 			    struct buffer_head *bh, int type)
730 {
731 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
732 }
733 
734 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
735 			    struct buffer_head *bh, int type)
736 {
737 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
738 }
739 
740 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
741 			    struct buffer_head *bh, int type)
742 {
743 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
744 }
745 
746 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
747 			    struct buffer_head *bh, int type)
748 {
749 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
750 }
751 
752 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
753 			    struct buffer_head *bh, int type)
754 {
755 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
756 }
757 
758 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
759 			 struct buffer_head *bh, int type)
760 {
761 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
762 }
763 
764 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
765 {
766 	int status;
767 
768 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
769 
770 	status = jbd2_journal_dirty_metadata(handle, bh);
771 	BUG_ON(status);
772 }
773 
774 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
775 
776 void ocfs2_set_journal_params(struct ocfs2_super *osb)
777 {
778 	journal_t *journal = osb->journal->j_journal;
779 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
780 
781 	if (osb->osb_commit_interval)
782 		commit_interval = osb->osb_commit_interval;
783 
784 	write_lock(&journal->j_state_lock);
785 	journal->j_commit_interval = commit_interval;
786 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
787 		journal->j_flags |= JBD2_BARRIER;
788 	else
789 		journal->j_flags &= ~JBD2_BARRIER;
790 	write_unlock(&journal->j_state_lock);
791 }
792 
793 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
794 {
795 	int status = -1;
796 	struct inode *inode = NULL; /* the journal inode */
797 	journal_t *j_journal = NULL;
798 	struct ocfs2_dinode *di = NULL;
799 	struct buffer_head *bh = NULL;
800 	struct ocfs2_super *osb;
801 	int inode_lock = 0;
802 
803 	BUG_ON(!journal);
804 
805 	osb = journal->j_osb;
806 
807 	/* already have the inode for our journal */
808 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
809 					    osb->slot_num);
810 	if (inode == NULL) {
811 		status = -EACCES;
812 		mlog_errno(status);
813 		goto done;
814 	}
815 	if (is_bad_inode(inode)) {
816 		mlog(ML_ERROR, "access error (bad inode)\n");
817 		iput(inode);
818 		inode = NULL;
819 		status = -EACCES;
820 		goto done;
821 	}
822 
823 	SET_INODE_JOURNAL(inode);
824 	OCFS2_I(inode)->ip_open_count++;
825 
826 	/* Skip recovery waits here - journal inode metadata never
827 	 * changes in a live cluster so it can be considered an
828 	 * exception to the rule. */
829 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
830 	if (status < 0) {
831 		if (status != -ERESTARTSYS)
832 			mlog(ML_ERROR, "Could not get lock on journal!\n");
833 		goto done;
834 	}
835 
836 	inode_lock = 1;
837 	di = (struct ocfs2_dinode *)bh->b_data;
838 
839 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
840 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
841 		     i_size_read(inode));
842 		status = -EINVAL;
843 		goto done;
844 	}
845 
846 	trace_ocfs2_journal_init(i_size_read(inode),
847 				 (unsigned long long)inode->i_blocks,
848 				 OCFS2_I(inode)->ip_clusters);
849 
850 	/* call the kernels journal init function now */
851 	j_journal = jbd2_journal_init_inode(inode);
852 	if (j_journal == NULL) {
853 		mlog(ML_ERROR, "Linux journal layer error\n");
854 		status = -EINVAL;
855 		goto done;
856 	}
857 
858 	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
859 
860 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
861 		  OCFS2_JOURNAL_DIRTY_FL);
862 
863 	journal->j_journal = j_journal;
864 	journal->j_inode = inode;
865 	journal->j_bh = bh;
866 
867 	ocfs2_set_journal_params(osb);
868 
869 	journal->j_state = OCFS2_JOURNAL_LOADED;
870 
871 	status = 0;
872 done:
873 	if (status < 0) {
874 		if (inode_lock)
875 			ocfs2_inode_unlock(inode, 1);
876 		brelse(bh);
877 		if (inode) {
878 			OCFS2_I(inode)->ip_open_count--;
879 			iput(inode);
880 		}
881 	}
882 
883 	return status;
884 }
885 
886 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
887 {
888 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
889 }
890 
891 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
892 {
893 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
894 }
895 
896 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
897 				      int dirty, int replayed)
898 {
899 	int status;
900 	unsigned int flags;
901 	struct ocfs2_journal *journal = osb->journal;
902 	struct buffer_head *bh = journal->j_bh;
903 	struct ocfs2_dinode *fe;
904 
905 	fe = (struct ocfs2_dinode *)bh->b_data;
906 
907 	/* The journal bh on the osb always comes from ocfs2_journal_init()
908 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
909 	 * code bug if we mess it up. */
910 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
911 
912 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
913 	if (dirty)
914 		flags |= OCFS2_JOURNAL_DIRTY_FL;
915 	else
916 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
917 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
918 
919 	if (replayed)
920 		ocfs2_bump_recovery_generation(fe);
921 
922 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
923 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
924 	if (status < 0)
925 		mlog_errno(status);
926 
927 	return status;
928 }
929 
930 /*
931  * If the journal has been kmalloc'd it needs to be freed after this
932  * call.
933  */
934 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
935 {
936 	struct ocfs2_journal *journal = NULL;
937 	int status = 0;
938 	struct inode *inode = NULL;
939 	int num_running_trans = 0;
940 
941 	BUG_ON(!osb);
942 
943 	journal = osb->journal;
944 	if (!journal)
945 		goto done;
946 
947 	inode = journal->j_inode;
948 
949 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
950 		goto done;
951 
952 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
953 	if (!igrab(inode))
954 		BUG();
955 
956 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
957 	trace_ocfs2_journal_shutdown(num_running_trans);
958 
959 	/* Do a commit_cache here. It will flush our journal, *and*
960 	 * release any locks that are still held.
961 	 * set the SHUTDOWN flag and release the trans lock.
962 	 * the commit thread will take the trans lock for us below. */
963 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
964 
965 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
966 	 * drop the trans_lock (which we want to hold until we
967 	 * completely destroy the journal. */
968 	if (osb->commit_task) {
969 		/* Wait for the commit thread */
970 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
971 		kthread_stop(osb->commit_task);
972 		osb->commit_task = NULL;
973 	}
974 
975 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
976 
977 	if (ocfs2_mount_local(osb)) {
978 		jbd2_journal_lock_updates(journal->j_journal);
979 		status = jbd2_journal_flush(journal->j_journal);
980 		jbd2_journal_unlock_updates(journal->j_journal);
981 		if (status < 0)
982 			mlog_errno(status);
983 	}
984 
985 	if (status == 0) {
986 		/*
987 		 * Do not toggle if flush was unsuccessful otherwise
988 		 * will leave dirty metadata in a "clean" journal
989 		 */
990 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
991 		if (status < 0)
992 			mlog_errno(status);
993 	}
994 
995 	/* Shutdown the kernel journal system */
996 	jbd2_journal_destroy(journal->j_journal);
997 	journal->j_journal = NULL;
998 
999 	OCFS2_I(inode)->ip_open_count--;
1000 
1001 	/* unlock our journal */
1002 	ocfs2_inode_unlock(inode, 1);
1003 
1004 	brelse(journal->j_bh);
1005 	journal->j_bh = NULL;
1006 
1007 	journal->j_state = OCFS2_JOURNAL_FREE;
1008 
1009 //	up_write(&journal->j_trans_barrier);
1010 done:
1011 	if (inode)
1012 		iput(inode);
1013 }
1014 
1015 static void ocfs2_clear_journal_error(struct super_block *sb,
1016 				      journal_t *journal,
1017 				      int slot)
1018 {
1019 	int olderr;
1020 
1021 	olderr = jbd2_journal_errno(journal);
1022 	if (olderr) {
1023 		mlog(ML_ERROR, "File system error %d recorded in "
1024 		     "journal %u.\n", olderr, slot);
1025 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1026 		     sb->s_id);
1027 
1028 		jbd2_journal_ack_err(journal);
1029 		jbd2_journal_clear_err(journal);
1030 	}
1031 }
1032 
1033 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1034 {
1035 	int status = 0;
1036 	struct ocfs2_super *osb;
1037 
1038 	BUG_ON(!journal);
1039 
1040 	osb = journal->j_osb;
1041 
1042 	status = jbd2_journal_load(journal->j_journal);
1043 	if (status < 0) {
1044 		mlog(ML_ERROR, "Failed to load journal!\n");
1045 		goto done;
1046 	}
1047 
1048 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1049 
1050 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1051 	if (status < 0) {
1052 		mlog_errno(status);
1053 		goto done;
1054 	}
1055 
1056 	/* Launch the commit thread */
1057 	if (!local) {
1058 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1059 					       "ocfs2cmt");
1060 		if (IS_ERR(osb->commit_task)) {
1061 			status = PTR_ERR(osb->commit_task);
1062 			osb->commit_task = NULL;
1063 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1064 			     "error=%d", status);
1065 			goto done;
1066 		}
1067 	} else
1068 		osb->commit_task = NULL;
1069 
1070 done:
1071 	return status;
1072 }
1073 
1074 
1075 /* 'full' flag tells us whether we clear out all blocks or if we just
1076  * mark the journal clean */
1077 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1078 {
1079 	int status;
1080 
1081 	BUG_ON(!journal);
1082 
1083 	status = jbd2_journal_wipe(journal->j_journal, full);
1084 	if (status < 0) {
1085 		mlog_errno(status);
1086 		goto bail;
1087 	}
1088 
1089 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1090 	if (status < 0)
1091 		mlog_errno(status);
1092 
1093 bail:
1094 	return status;
1095 }
1096 
1097 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1098 {
1099 	int empty;
1100 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1101 
1102 	spin_lock(&osb->osb_lock);
1103 	empty = (rm->rm_used == 0);
1104 	spin_unlock(&osb->osb_lock);
1105 
1106 	return empty;
1107 }
1108 
1109 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1110 {
1111 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1112 }
1113 
1114 /*
1115  * JBD Might read a cached version of another nodes journal file. We
1116  * don't want this as this file changes often and we get no
1117  * notification on those changes. The only way to be sure that we've
1118  * got the most up to date version of those blocks then is to force
1119  * read them off disk. Just searching through the buffer cache won't
1120  * work as there may be pages backing this file which are still marked
1121  * up to date. We know things can't change on this file underneath us
1122  * as we have the lock by now :)
1123  */
1124 static int ocfs2_force_read_journal(struct inode *inode)
1125 {
1126 	int status = 0;
1127 	int i;
1128 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1129 #define CONCURRENT_JOURNAL_FILL 32ULL
1130 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1131 
1132 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1133 
1134 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1135 	v_blkno = 0;
1136 	while (v_blkno < num_blocks) {
1137 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1138 						     &p_blkno, &p_blocks, NULL);
1139 		if (status < 0) {
1140 			mlog_errno(status);
1141 			goto bail;
1142 		}
1143 
1144 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1145 			p_blocks = CONCURRENT_JOURNAL_FILL;
1146 
1147 		/* We are reading journal data which should not
1148 		 * be put in the uptodate cache */
1149 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1150 						p_blkno, p_blocks, bhs);
1151 		if (status < 0) {
1152 			mlog_errno(status);
1153 			goto bail;
1154 		}
1155 
1156 		for(i = 0; i < p_blocks; i++) {
1157 			brelse(bhs[i]);
1158 			bhs[i] = NULL;
1159 		}
1160 
1161 		v_blkno += p_blocks;
1162 	}
1163 
1164 bail:
1165 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1166 		brelse(bhs[i]);
1167 	return status;
1168 }
1169 
1170 struct ocfs2_la_recovery_item {
1171 	struct list_head	lri_list;
1172 	int			lri_slot;
1173 	struct ocfs2_dinode	*lri_la_dinode;
1174 	struct ocfs2_dinode	*lri_tl_dinode;
1175 	struct ocfs2_quota_recovery *lri_qrec;
1176 };
1177 
1178 /* Does the second half of the recovery process. By this point, the
1179  * node is marked clean and can actually be considered recovered,
1180  * hence it's no longer in the recovery map, but there's still some
1181  * cleanup we can do which shouldn't happen within the recovery thread
1182  * as locking in that context becomes very difficult if we are to take
1183  * recovering nodes into account.
1184  *
1185  * NOTE: This function can and will sleep on recovery of other nodes
1186  * during cluster locking, just like any other ocfs2 process.
1187  */
1188 void ocfs2_complete_recovery(struct work_struct *work)
1189 {
1190 	int ret = 0;
1191 	struct ocfs2_journal *journal =
1192 		container_of(work, struct ocfs2_journal, j_recovery_work);
1193 	struct ocfs2_super *osb = journal->j_osb;
1194 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1195 	struct ocfs2_la_recovery_item *item, *n;
1196 	struct ocfs2_quota_recovery *qrec;
1197 	LIST_HEAD(tmp_la_list);
1198 
1199 	trace_ocfs2_complete_recovery(
1200 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1201 
1202 	spin_lock(&journal->j_lock);
1203 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1204 	spin_unlock(&journal->j_lock);
1205 
1206 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1207 		list_del_init(&item->lri_list);
1208 
1209 		ocfs2_wait_on_quotas(osb);
1210 
1211 		la_dinode = item->lri_la_dinode;
1212 		tl_dinode = item->lri_tl_dinode;
1213 		qrec = item->lri_qrec;
1214 
1215 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1216 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1217 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1218 			qrec);
1219 
1220 		if (la_dinode) {
1221 			ret = ocfs2_complete_local_alloc_recovery(osb,
1222 								  la_dinode);
1223 			if (ret < 0)
1224 				mlog_errno(ret);
1225 
1226 			kfree(la_dinode);
1227 		}
1228 
1229 		if (tl_dinode) {
1230 			ret = ocfs2_complete_truncate_log_recovery(osb,
1231 								   tl_dinode);
1232 			if (ret < 0)
1233 				mlog_errno(ret);
1234 
1235 			kfree(tl_dinode);
1236 		}
1237 
1238 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
1239 		if (ret < 0)
1240 			mlog_errno(ret);
1241 
1242 		if (qrec) {
1243 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1244 							  item->lri_slot);
1245 			if (ret < 0)
1246 				mlog_errno(ret);
1247 			/* Recovery info is already freed now */
1248 		}
1249 
1250 		kfree(item);
1251 	}
1252 
1253 	trace_ocfs2_complete_recovery_end(ret);
1254 }
1255 
1256 /* NOTE: This function always eats your references to la_dinode and
1257  * tl_dinode, either manually on error, or by passing them to
1258  * ocfs2_complete_recovery */
1259 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1260 					    int slot_num,
1261 					    struct ocfs2_dinode *la_dinode,
1262 					    struct ocfs2_dinode *tl_dinode,
1263 					    struct ocfs2_quota_recovery *qrec)
1264 {
1265 	struct ocfs2_la_recovery_item *item;
1266 
1267 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1268 	if (!item) {
1269 		/* Though we wish to avoid it, we are in fact safe in
1270 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1271 		 * than capable of reclaiming unused space. */
1272 		kfree(la_dinode);
1273 		kfree(tl_dinode);
1274 
1275 		if (qrec)
1276 			ocfs2_free_quota_recovery(qrec);
1277 
1278 		mlog_errno(-ENOMEM);
1279 		return;
1280 	}
1281 
1282 	INIT_LIST_HEAD(&item->lri_list);
1283 	item->lri_la_dinode = la_dinode;
1284 	item->lri_slot = slot_num;
1285 	item->lri_tl_dinode = tl_dinode;
1286 	item->lri_qrec = qrec;
1287 
1288 	spin_lock(&journal->j_lock);
1289 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1290 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1291 	spin_unlock(&journal->j_lock);
1292 }
1293 
1294 /* Called by the mount code to queue recovery the last part of
1295  * recovery for it's own and offline slot(s). */
1296 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1297 {
1298 	struct ocfs2_journal *journal = osb->journal;
1299 
1300 	if (ocfs2_is_hard_readonly(osb))
1301 		return;
1302 
1303 	/* No need to queue up our truncate_log as regular cleanup will catch
1304 	 * that */
1305 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1306 					osb->local_alloc_copy, NULL, NULL);
1307 	ocfs2_schedule_truncate_log_flush(osb, 0);
1308 
1309 	osb->local_alloc_copy = NULL;
1310 	osb->dirty = 0;
1311 
1312 	/* queue to recover orphan slots for all offline slots */
1313 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1314 	ocfs2_queue_replay_slots(osb);
1315 	ocfs2_free_replay_slots(osb);
1316 }
1317 
1318 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1319 {
1320 	if (osb->quota_rec) {
1321 		ocfs2_queue_recovery_completion(osb->journal,
1322 						osb->slot_num,
1323 						NULL,
1324 						NULL,
1325 						osb->quota_rec);
1326 		osb->quota_rec = NULL;
1327 	}
1328 }
1329 
1330 static int __ocfs2_recovery_thread(void *arg)
1331 {
1332 	int status, node_num, slot_num;
1333 	struct ocfs2_super *osb = arg;
1334 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1335 	int *rm_quota = NULL;
1336 	int rm_quota_used = 0, i;
1337 	struct ocfs2_quota_recovery *qrec;
1338 
1339 	status = ocfs2_wait_on_mount(osb);
1340 	if (status < 0) {
1341 		goto bail;
1342 	}
1343 
1344 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1345 	if (!rm_quota) {
1346 		status = -ENOMEM;
1347 		goto bail;
1348 	}
1349 restart:
1350 	status = ocfs2_super_lock(osb, 1);
1351 	if (status < 0) {
1352 		mlog_errno(status);
1353 		goto bail;
1354 	}
1355 
1356 	status = ocfs2_compute_replay_slots(osb);
1357 	if (status < 0)
1358 		mlog_errno(status);
1359 
1360 	/* queue recovery for our own slot */
1361 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1362 					NULL, NULL);
1363 
1364 	spin_lock(&osb->osb_lock);
1365 	while (rm->rm_used) {
1366 		/* It's always safe to remove entry zero, as we won't
1367 		 * clear it until ocfs2_recover_node() has succeeded. */
1368 		node_num = rm->rm_entries[0];
1369 		spin_unlock(&osb->osb_lock);
1370 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1371 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1372 		if (slot_num == -ENOENT) {
1373 			status = 0;
1374 			goto skip_recovery;
1375 		}
1376 
1377 		/* It is a bit subtle with quota recovery. We cannot do it
1378 		 * immediately because we have to obtain cluster locks from
1379 		 * quota files and we also don't want to just skip it because
1380 		 * then quota usage would be out of sync until some node takes
1381 		 * the slot. So we remember which nodes need quota recovery
1382 		 * and when everything else is done, we recover quotas. */
1383 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1384 		if (i == rm_quota_used)
1385 			rm_quota[rm_quota_used++] = slot_num;
1386 
1387 		status = ocfs2_recover_node(osb, node_num, slot_num);
1388 skip_recovery:
1389 		if (!status) {
1390 			ocfs2_recovery_map_clear(osb, node_num);
1391 		} else {
1392 			mlog(ML_ERROR,
1393 			     "Error %d recovering node %d on device (%u,%u)!\n",
1394 			     status, node_num,
1395 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1396 			mlog(ML_ERROR, "Volume requires unmount.\n");
1397 		}
1398 
1399 		spin_lock(&osb->osb_lock);
1400 	}
1401 	spin_unlock(&osb->osb_lock);
1402 	trace_ocfs2_recovery_thread_end(status);
1403 
1404 	/* Refresh all journal recovery generations from disk */
1405 	status = ocfs2_check_journals_nolocks(osb);
1406 	status = (status == -EROFS) ? 0 : status;
1407 	if (status < 0)
1408 		mlog_errno(status);
1409 
1410 	/* Now it is right time to recover quotas... We have to do this under
1411 	 * superblock lock so that no one can start using the slot (and crash)
1412 	 * before we recover it */
1413 	for (i = 0; i < rm_quota_used; i++) {
1414 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1415 		if (IS_ERR(qrec)) {
1416 			status = PTR_ERR(qrec);
1417 			mlog_errno(status);
1418 			continue;
1419 		}
1420 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1421 						NULL, NULL, qrec);
1422 	}
1423 
1424 	ocfs2_super_unlock(osb, 1);
1425 
1426 	/* queue recovery for offline slots */
1427 	ocfs2_queue_replay_slots(osb);
1428 
1429 bail:
1430 	mutex_lock(&osb->recovery_lock);
1431 	if (!status && !ocfs2_recovery_completed(osb)) {
1432 		mutex_unlock(&osb->recovery_lock);
1433 		goto restart;
1434 	}
1435 
1436 	ocfs2_free_replay_slots(osb);
1437 	osb->recovery_thread_task = NULL;
1438 	mb(); /* sync with ocfs2_recovery_thread_running */
1439 	wake_up(&osb->recovery_event);
1440 
1441 	mutex_unlock(&osb->recovery_lock);
1442 
1443 	kfree(rm_quota);
1444 
1445 	/* no one is callint kthread_stop() for us so the kthread() api
1446 	 * requires that we call do_exit().  And it isn't exported, but
1447 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1448 	complete_and_exit(NULL, status);
1449 	return status;
1450 }
1451 
1452 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1453 {
1454 	mutex_lock(&osb->recovery_lock);
1455 
1456 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1457 		osb->disable_recovery, osb->recovery_thread_task,
1458 		osb->disable_recovery ?
1459 		-1 : ocfs2_recovery_map_set(osb, node_num));
1460 
1461 	if (osb->disable_recovery)
1462 		goto out;
1463 
1464 	if (osb->recovery_thread_task)
1465 		goto out;
1466 
1467 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1468 						 "ocfs2rec");
1469 	if (IS_ERR(osb->recovery_thread_task)) {
1470 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1471 		osb->recovery_thread_task = NULL;
1472 	}
1473 
1474 out:
1475 	mutex_unlock(&osb->recovery_lock);
1476 	wake_up(&osb->recovery_event);
1477 }
1478 
1479 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1480 				    int slot_num,
1481 				    struct buffer_head **bh,
1482 				    struct inode **ret_inode)
1483 {
1484 	int status = -EACCES;
1485 	struct inode *inode = NULL;
1486 
1487 	BUG_ON(slot_num >= osb->max_slots);
1488 
1489 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1490 					    slot_num);
1491 	if (!inode || is_bad_inode(inode)) {
1492 		mlog_errno(status);
1493 		goto bail;
1494 	}
1495 	SET_INODE_JOURNAL(inode);
1496 
1497 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1498 	if (status < 0) {
1499 		mlog_errno(status);
1500 		goto bail;
1501 	}
1502 
1503 	status = 0;
1504 
1505 bail:
1506 	if (inode) {
1507 		if (status || !ret_inode)
1508 			iput(inode);
1509 		else
1510 			*ret_inode = inode;
1511 	}
1512 	return status;
1513 }
1514 
1515 /* Does the actual journal replay and marks the journal inode as
1516  * clean. Will only replay if the journal inode is marked dirty. */
1517 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1518 				int node_num,
1519 				int slot_num)
1520 {
1521 	int status;
1522 	int got_lock = 0;
1523 	unsigned int flags;
1524 	struct inode *inode = NULL;
1525 	struct ocfs2_dinode *fe;
1526 	journal_t *journal = NULL;
1527 	struct buffer_head *bh = NULL;
1528 	u32 slot_reco_gen;
1529 
1530 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1531 	if (status) {
1532 		mlog_errno(status);
1533 		goto done;
1534 	}
1535 
1536 	fe = (struct ocfs2_dinode *)bh->b_data;
1537 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1538 	brelse(bh);
1539 	bh = NULL;
1540 
1541 	/*
1542 	 * As the fs recovery is asynchronous, there is a small chance that
1543 	 * another node mounted (and recovered) the slot before the recovery
1544 	 * thread could get the lock. To handle that, we dirty read the journal
1545 	 * inode for that slot to get the recovery generation. If it is
1546 	 * different than what we expected, the slot has been recovered.
1547 	 * If not, it needs recovery.
1548 	 */
1549 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1550 		trace_ocfs2_replay_journal_recovered(slot_num,
1551 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1552 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1553 		status = -EBUSY;
1554 		goto done;
1555 	}
1556 
1557 	/* Continue with recovery as the journal has not yet been recovered */
1558 
1559 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1560 	if (status < 0) {
1561 		trace_ocfs2_replay_journal_lock_err(status);
1562 		if (status != -ERESTARTSYS)
1563 			mlog(ML_ERROR, "Could not lock journal!\n");
1564 		goto done;
1565 	}
1566 	got_lock = 1;
1567 
1568 	fe = (struct ocfs2_dinode *) bh->b_data;
1569 
1570 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1571 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1572 
1573 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1574 		trace_ocfs2_replay_journal_skip(node_num);
1575 		/* Refresh recovery generation for the slot */
1576 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1577 		goto done;
1578 	}
1579 
1580 	/* we need to run complete recovery for offline orphan slots */
1581 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1582 
1583 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1584 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1585 	       MINOR(osb->sb->s_dev));
1586 
1587 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1588 
1589 	status = ocfs2_force_read_journal(inode);
1590 	if (status < 0) {
1591 		mlog_errno(status);
1592 		goto done;
1593 	}
1594 
1595 	journal = jbd2_journal_init_inode(inode);
1596 	if (journal == NULL) {
1597 		mlog(ML_ERROR, "Linux journal layer error\n");
1598 		status = -EIO;
1599 		goto done;
1600 	}
1601 
1602 	status = jbd2_journal_load(journal);
1603 	if (status < 0) {
1604 		mlog_errno(status);
1605 		if (!igrab(inode))
1606 			BUG();
1607 		jbd2_journal_destroy(journal);
1608 		goto done;
1609 	}
1610 
1611 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1612 
1613 	/* wipe the journal */
1614 	jbd2_journal_lock_updates(journal);
1615 	status = jbd2_journal_flush(journal);
1616 	jbd2_journal_unlock_updates(journal);
1617 	if (status < 0)
1618 		mlog_errno(status);
1619 
1620 	/* This will mark the node clean */
1621 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1622 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1623 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1624 
1625 	/* Increment recovery generation to indicate successful recovery */
1626 	ocfs2_bump_recovery_generation(fe);
1627 	osb->slot_recovery_generations[slot_num] =
1628 					ocfs2_get_recovery_generation(fe);
1629 
1630 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1631 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1632 	if (status < 0)
1633 		mlog_errno(status);
1634 
1635 	if (!igrab(inode))
1636 		BUG();
1637 
1638 	jbd2_journal_destroy(journal);
1639 
1640 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1641 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1642 	       MINOR(osb->sb->s_dev));
1643 done:
1644 	/* drop the lock on this nodes journal */
1645 	if (got_lock)
1646 		ocfs2_inode_unlock(inode, 1);
1647 
1648 	if (inode)
1649 		iput(inode);
1650 
1651 	brelse(bh);
1652 
1653 	return status;
1654 }
1655 
1656 /*
1657  * Do the most important parts of node recovery:
1658  *  - Replay it's journal
1659  *  - Stamp a clean local allocator file
1660  *  - Stamp a clean truncate log
1661  *  - Mark the node clean
1662  *
1663  * If this function completes without error, a node in OCFS2 can be
1664  * said to have been safely recovered. As a result, failure during the
1665  * second part of a nodes recovery process (local alloc recovery) is
1666  * far less concerning.
1667  */
1668 static int ocfs2_recover_node(struct ocfs2_super *osb,
1669 			      int node_num, int slot_num)
1670 {
1671 	int status = 0;
1672 	struct ocfs2_dinode *la_copy = NULL;
1673 	struct ocfs2_dinode *tl_copy = NULL;
1674 
1675 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1676 
1677 	/* Should not ever be called to recover ourselves -- in that
1678 	 * case we should've called ocfs2_journal_load instead. */
1679 	BUG_ON(osb->node_num == node_num);
1680 
1681 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1682 	if (status < 0) {
1683 		if (status == -EBUSY) {
1684 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1685 			status = 0;
1686 			goto done;
1687 		}
1688 		mlog_errno(status);
1689 		goto done;
1690 	}
1691 
1692 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1693 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1694 	if (status < 0) {
1695 		mlog_errno(status);
1696 		goto done;
1697 	}
1698 
1699 	/* An error from begin_truncate_log_recovery is not
1700 	 * serious enough to warrant halting the rest of
1701 	 * recovery. */
1702 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1703 	if (status < 0)
1704 		mlog_errno(status);
1705 
1706 	/* Likewise, this would be a strange but ultimately not so
1707 	 * harmful place to get an error... */
1708 	status = ocfs2_clear_slot(osb, slot_num);
1709 	if (status < 0)
1710 		mlog_errno(status);
1711 
1712 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1713 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1714 					tl_copy, NULL);
1715 
1716 	status = 0;
1717 done:
1718 
1719 	return status;
1720 }
1721 
1722 /* Test node liveness by trylocking his journal. If we get the lock,
1723  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1724  * still alive (we couldn't get the lock) and < 0 on error. */
1725 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1726 				 int slot_num)
1727 {
1728 	int status, flags;
1729 	struct inode *inode = NULL;
1730 
1731 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1732 					    slot_num);
1733 	if (inode == NULL) {
1734 		mlog(ML_ERROR, "access error\n");
1735 		status = -EACCES;
1736 		goto bail;
1737 	}
1738 	if (is_bad_inode(inode)) {
1739 		mlog(ML_ERROR, "access error (bad inode)\n");
1740 		iput(inode);
1741 		inode = NULL;
1742 		status = -EACCES;
1743 		goto bail;
1744 	}
1745 	SET_INODE_JOURNAL(inode);
1746 
1747 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1748 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1749 	if (status < 0) {
1750 		if (status != -EAGAIN)
1751 			mlog_errno(status);
1752 		goto bail;
1753 	}
1754 
1755 	ocfs2_inode_unlock(inode, 1);
1756 bail:
1757 	if (inode)
1758 		iput(inode);
1759 
1760 	return status;
1761 }
1762 
1763 /* Call this underneath ocfs2_super_lock. It also assumes that the
1764  * slot info struct has been updated from disk. */
1765 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1766 {
1767 	unsigned int node_num;
1768 	int status, i;
1769 	u32 gen;
1770 	struct buffer_head *bh = NULL;
1771 	struct ocfs2_dinode *di;
1772 
1773 	/* This is called with the super block cluster lock, so we
1774 	 * know that the slot map can't change underneath us. */
1775 
1776 	for (i = 0; i < osb->max_slots; i++) {
1777 		/* Read journal inode to get the recovery generation */
1778 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1779 		if (status) {
1780 			mlog_errno(status);
1781 			goto bail;
1782 		}
1783 		di = (struct ocfs2_dinode *)bh->b_data;
1784 		gen = ocfs2_get_recovery_generation(di);
1785 		brelse(bh);
1786 		bh = NULL;
1787 
1788 		spin_lock(&osb->osb_lock);
1789 		osb->slot_recovery_generations[i] = gen;
1790 
1791 		trace_ocfs2_mark_dead_nodes(i,
1792 					    osb->slot_recovery_generations[i]);
1793 
1794 		if (i == osb->slot_num) {
1795 			spin_unlock(&osb->osb_lock);
1796 			continue;
1797 		}
1798 
1799 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1800 		if (status == -ENOENT) {
1801 			spin_unlock(&osb->osb_lock);
1802 			continue;
1803 		}
1804 
1805 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1806 			spin_unlock(&osb->osb_lock);
1807 			continue;
1808 		}
1809 		spin_unlock(&osb->osb_lock);
1810 
1811 		/* Ok, we have a slot occupied by another node which
1812 		 * is not in the recovery map. We trylock his journal
1813 		 * file here to test if he's alive. */
1814 		status = ocfs2_trylock_journal(osb, i);
1815 		if (!status) {
1816 			/* Since we're called from mount, we know that
1817 			 * the recovery thread can't race us on
1818 			 * setting / checking the recovery bits. */
1819 			ocfs2_recovery_thread(osb, node_num);
1820 		} else if ((status < 0) && (status != -EAGAIN)) {
1821 			mlog_errno(status);
1822 			goto bail;
1823 		}
1824 	}
1825 
1826 	status = 0;
1827 bail:
1828 	return status;
1829 }
1830 
1831 /*
1832  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1833  * randomness to the timeout to minimize multple nodes firing the timer at the
1834  * same time.
1835  */
1836 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1837 {
1838 	unsigned long time;
1839 
1840 	get_random_bytes(&time, sizeof(time));
1841 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1842 	return msecs_to_jiffies(time);
1843 }
1844 
1845 /*
1846  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1847  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1848  * is done to catch any orphans that are left over in orphan directories.
1849  *
1850  * It scans all slots, even ones that are in use. It does so to handle the
1851  * case described below:
1852  *
1853  *   Node 1 has an inode it was using. The dentry went away due to memory
1854  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1855  *   has the open lock.
1856  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1857  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1858  *   open lock, sees that another node has a PR, and does nothing.
1859  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1860  *   open lock, sees the PR still, and does nothing.
1861  *   Basically, we have to trigger an orphan iput on node 1. The only way
1862  *   for this to happen is if node 1 runs node 2's orphan dir.
1863  *
1864  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1865  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1866  * stored in LVB. If the sequence number has changed, it means some other
1867  * node has done the scan.  This node skips the scan and tracks the
1868  * sequence number.  If the sequence number didn't change, it means a scan
1869  * hasn't happened.  The node queues a scan and increments the
1870  * sequence number in the LVB.
1871  */
1872 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1873 {
1874 	struct ocfs2_orphan_scan *os;
1875 	int status, i;
1876 	u32 seqno = 0;
1877 
1878 	os = &osb->osb_orphan_scan;
1879 
1880 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1881 		goto out;
1882 
1883 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1884 					    atomic_read(&os->os_state));
1885 
1886 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1887 	if (status < 0) {
1888 		if (status != -EAGAIN)
1889 			mlog_errno(status);
1890 		goto out;
1891 	}
1892 
1893 	/* Do no queue the tasks if the volume is being umounted */
1894 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1895 		goto unlock;
1896 
1897 	if (os->os_seqno != seqno) {
1898 		os->os_seqno = seqno;
1899 		goto unlock;
1900 	}
1901 
1902 	for (i = 0; i < osb->max_slots; i++)
1903 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1904 						NULL);
1905 	/*
1906 	 * We queued a recovery on orphan slots, increment the sequence
1907 	 * number and update LVB so other node will skip the scan for a while
1908 	 */
1909 	seqno++;
1910 	os->os_count++;
1911 	os->os_scantime = CURRENT_TIME;
1912 unlock:
1913 	ocfs2_orphan_scan_unlock(osb, seqno);
1914 out:
1915 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1916 					  atomic_read(&os->os_state));
1917 	return;
1918 }
1919 
1920 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1921 void ocfs2_orphan_scan_work(struct work_struct *work)
1922 {
1923 	struct ocfs2_orphan_scan *os;
1924 	struct ocfs2_super *osb;
1925 
1926 	os = container_of(work, struct ocfs2_orphan_scan,
1927 			  os_orphan_scan_work.work);
1928 	osb = os->os_osb;
1929 
1930 	mutex_lock(&os->os_lock);
1931 	ocfs2_queue_orphan_scan(osb);
1932 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1933 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1934 				      ocfs2_orphan_scan_timeout());
1935 	mutex_unlock(&os->os_lock);
1936 }
1937 
1938 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1939 {
1940 	struct ocfs2_orphan_scan *os;
1941 
1942 	os = &osb->osb_orphan_scan;
1943 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1944 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1945 		mutex_lock(&os->os_lock);
1946 		cancel_delayed_work(&os->os_orphan_scan_work);
1947 		mutex_unlock(&os->os_lock);
1948 	}
1949 }
1950 
1951 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1952 {
1953 	struct ocfs2_orphan_scan *os;
1954 
1955 	os = &osb->osb_orphan_scan;
1956 	os->os_osb = osb;
1957 	os->os_count = 0;
1958 	os->os_seqno = 0;
1959 	mutex_init(&os->os_lock);
1960 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1961 }
1962 
1963 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1964 {
1965 	struct ocfs2_orphan_scan *os;
1966 
1967 	os = &osb->osb_orphan_scan;
1968 	os->os_scantime = CURRENT_TIME;
1969 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1970 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1971 	else {
1972 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1973 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1974 				   ocfs2_orphan_scan_timeout());
1975 	}
1976 }
1977 
1978 struct ocfs2_orphan_filldir_priv {
1979 	struct dir_context	ctx;
1980 	struct inode		*head;
1981 	struct ocfs2_super	*osb;
1982 };
1983 
1984 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1985 				loff_t pos, u64 ino, unsigned type)
1986 {
1987 	struct ocfs2_orphan_filldir_priv *p = priv;
1988 	struct inode *iter;
1989 
1990 	if (name_len == 1 && !strncmp(".", name, 1))
1991 		return 0;
1992 	if (name_len == 2 && !strncmp("..", name, 2))
1993 		return 0;
1994 
1995 	/* Skip bad inodes so that recovery can continue */
1996 	iter = ocfs2_iget(p->osb, ino,
1997 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1998 	if (IS_ERR(iter))
1999 		return 0;
2000 
2001 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2002 	/* No locking is required for the next_orphan queue as there
2003 	 * is only ever a single process doing orphan recovery. */
2004 	OCFS2_I(iter)->ip_next_orphan = p->head;
2005 	p->head = iter;
2006 
2007 	return 0;
2008 }
2009 
2010 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2011 			       int slot,
2012 			       struct inode **head)
2013 {
2014 	int status;
2015 	struct inode *orphan_dir_inode = NULL;
2016 	struct ocfs2_orphan_filldir_priv priv = {
2017 		.ctx.actor = ocfs2_orphan_filldir,
2018 		.osb = osb,
2019 		.head = *head
2020 	};
2021 
2022 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2023 						       ORPHAN_DIR_SYSTEM_INODE,
2024 						       slot);
2025 	if  (!orphan_dir_inode) {
2026 		status = -ENOENT;
2027 		mlog_errno(status);
2028 		return status;
2029 	}
2030 
2031 	mutex_lock(&orphan_dir_inode->i_mutex);
2032 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2033 	if (status < 0) {
2034 		mlog_errno(status);
2035 		goto out;
2036 	}
2037 
2038 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2039 	if (status) {
2040 		mlog_errno(status);
2041 		goto out_cluster;
2042 	}
2043 
2044 	*head = priv.head;
2045 
2046 out_cluster:
2047 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2048 out:
2049 	mutex_unlock(&orphan_dir_inode->i_mutex);
2050 	iput(orphan_dir_inode);
2051 	return status;
2052 }
2053 
2054 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2055 					      int slot)
2056 {
2057 	int ret;
2058 
2059 	spin_lock(&osb->osb_lock);
2060 	ret = !osb->osb_orphan_wipes[slot];
2061 	spin_unlock(&osb->osb_lock);
2062 	return ret;
2063 }
2064 
2065 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2066 					     int slot)
2067 {
2068 	spin_lock(&osb->osb_lock);
2069 	/* Mark ourselves such that new processes in delete_inode()
2070 	 * know to quit early. */
2071 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2072 	while (osb->osb_orphan_wipes[slot]) {
2073 		/* If any processes are already in the middle of an
2074 		 * orphan wipe on this dir, then we need to wait for
2075 		 * them. */
2076 		spin_unlock(&osb->osb_lock);
2077 		wait_event_interruptible(osb->osb_wipe_event,
2078 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2079 		spin_lock(&osb->osb_lock);
2080 	}
2081 	spin_unlock(&osb->osb_lock);
2082 }
2083 
2084 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2085 					      int slot)
2086 {
2087 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2088 }
2089 
2090 /*
2091  * Orphan recovery. Each mounted node has it's own orphan dir which we
2092  * must run during recovery. Our strategy here is to build a list of
2093  * the inodes in the orphan dir and iget/iput them. The VFS does
2094  * (most) of the rest of the work.
2095  *
2096  * Orphan recovery can happen at any time, not just mount so we have a
2097  * couple of extra considerations.
2098  *
2099  * - We grab as many inodes as we can under the orphan dir lock -
2100  *   doing iget() outside the orphan dir risks getting a reference on
2101  *   an invalid inode.
2102  * - We must be sure not to deadlock with other processes on the
2103  *   system wanting to run delete_inode(). This can happen when they go
2104  *   to lock the orphan dir and the orphan recovery process attempts to
2105  *   iget() inside the orphan dir lock. This can be avoided by
2106  *   advertising our state to ocfs2_delete_inode().
2107  */
2108 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2109 				 int slot)
2110 {
2111 	int ret = 0;
2112 	struct inode *inode = NULL;
2113 	struct inode *iter;
2114 	struct ocfs2_inode_info *oi;
2115 
2116 	trace_ocfs2_recover_orphans(slot);
2117 
2118 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2119 	ret = ocfs2_queue_orphans(osb, slot, &inode);
2120 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2121 
2122 	/* Error here should be noted, but we want to continue with as
2123 	 * many queued inodes as we've got. */
2124 	if (ret)
2125 		mlog_errno(ret);
2126 
2127 	while (inode) {
2128 		oi = OCFS2_I(inode);
2129 		trace_ocfs2_recover_orphans_iput(
2130 					(unsigned long long)oi->ip_blkno);
2131 
2132 		iter = oi->ip_next_orphan;
2133 
2134 		spin_lock(&oi->ip_lock);
2135 		/* Set the proper information to get us going into
2136 		 * ocfs2_delete_inode. */
2137 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2138 		spin_unlock(&oi->ip_lock);
2139 
2140 		iput(inode);
2141 
2142 		inode = iter;
2143 	}
2144 
2145 	return ret;
2146 }
2147 
2148 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2149 {
2150 	/* This check is good because ocfs2 will wait on our recovery
2151 	 * thread before changing it to something other than MOUNTED
2152 	 * or DISABLED. */
2153 	wait_event(osb->osb_mount_event,
2154 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2155 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2156 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2157 
2158 	/* If there's an error on mount, then we may never get to the
2159 	 * MOUNTED flag, but this is set right before
2160 	 * dismount_volume() so we can trust it. */
2161 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2162 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2163 		mlog(0, "mount error, exiting!\n");
2164 		return -EBUSY;
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static int ocfs2_commit_thread(void *arg)
2171 {
2172 	int status;
2173 	struct ocfs2_super *osb = arg;
2174 	struct ocfs2_journal *journal = osb->journal;
2175 
2176 	/* we can trust j_num_trans here because _should_stop() is only set in
2177 	 * shutdown and nobody other than ourselves should be able to start
2178 	 * transactions.  committing on shutdown might take a few iterations
2179 	 * as final transactions put deleted inodes on the list */
2180 	while (!(kthread_should_stop() &&
2181 		 atomic_read(&journal->j_num_trans) == 0)) {
2182 
2183 		wait_event_interruptible(osb->checkpoint_event,
2184 					 atomic_read(&journal->j_num_trans)
2185 					 || kthread_should_stop());
2186 
2187 		status = ocfs2_commit_cache(osb);
2188 		if (status < 0)
2189 			mlog_errno(status);
2190 
2191 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2192 			mlog(ML_KTHREAD,
2193 			     "commit_thread: %u transactions pending on "
2194 			     "shutdown\n",
2195 			     atomic_read(&journal->j_num_trans));
2196 		}
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 /* Reads all the journal inodes without taking any cluster locks. Used
2203  * for hard readonly access to determine whether any journal requires
2204  * recovery. Also used to refresh the recovery generation numbers after
2205  * a journal has been recovered by another node.
2206  */
2207 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2208 {
2209 	int ret = 0;
2210 	unsigned int slot;
2211 	struct buffer_head *di_bh = NULL;
2212 	struct ocfs2_dinode *di;
2213 	int journal_dirty = 0;
2214 
2215 	for(slot = 0; slot < osb->max_slots; slot++) {
2216 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2217 		if (ret) {
2218 			mlog_errno(ret);
2219 			goto out;
2220 		}
2221 
2222 		di = (struct ocfs2_dinode *) di_bh->b_data;
2223 
2224 		osb->slot_recovery_generations[slot] =
2225 					ocfs2_get_recovery_generation(di);
2226 
2227 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2228 		    OCFS2_JOURNAL_DIRTY_FL)
2229 			journal_dirty = 1;
2230 
2231 		brelse(di_bh);
2232 		di_bh = NULL;
2233 	}
2234 
2235 out:
2236 	if (journal_dirty)
2237 		ret = -EROFS;
2238 	return ret;
2239 }
2240