xref: /openbmc/linux/fs/ocfs2/journal.c (revision a1e58bbd)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "dir.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "heartbeat.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "localalloc.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "sysfile.h"
48 
49 #include "buffer_head_io.h"
50 
51 DEFINE_SPINLOCK(trans_inc_lock);
52 
53 static int ocfs2_force_read_journal(struct inode *inode);
54 static int ocfs2_recover_node(struct ocfs2_super *osb,
55 			      int node_num);
56 static int __ocfs2_recovery_thread(void *arg);
57 static int ocfs2_commit_cache(struct ocfs2_super *osb);
58 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
59 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
60 				      int dirty);
61 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
62 				 int slot_num);
63 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
64 				 int slot);
65 static int ocfs2_commit_thread(void *arg);
66 
67 static int ocfs2_commit_cache(struct ocfs2_super *osb)
68 {
69 	int status = 0;
70 	unsigned int flushed;
71 	unsigned long old_id;
72 	struct ocfs2_journal *journal = NULL;
73 
74 	mlog_entry_void();
75 
76 	journal = osb->journal;
77 
78 	/* Flush all pending commits and checkpoint the journal. */
79 	down_write(&journal->j_trans_barrier);
80 
81 	if (atomic_read(&journal->j_num_trans) == 0) {
82 		up_write(&journal->j_trans_barrier);
83 		mlog(0, "No transactions for me to flush!\n");
84 		goto finally;
85 	}
86 
87 	journal_lock_updates(journal->j_journal);
88 	status = journal_flush(journal->j_journal);
89 	journal_unlock_updates(journal->j_journal);
90 	if (status < 0) {
91 		up_write(&journal->j_trans_barrier);
92 		mlog_errno(status);
93 		goto finally;
94 	}
95 
96 	old_id = ocfs2_inc_trans_id(journal);
97 
98 	flushed = atomic_read(&journal->j_num_trans);
99 	atomic_set(&journal->j_num_trans, 0);
100 	up_write(&journal->j_trans_barrier);
101 
102 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
103 	     journal->j_trans_id, flushed);
104 
105 	ocfs2_wake_downconvert_thread(osb);
106 	wake_up(&journal->j_checkpointed);
107 finally:
108 	mlog_exit(status);
109 	return status;
110 }
111 
112 /* pass it NULL and it will allocate a new handle object for you.  If
113  * you pass it a handle however, it may still return error, in which
114  * case it has free'd the passed handle for you. */
115 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
116 {
117 	journal_t *journal = osb->journal->j_journal;
118 	handle_t *handle;
119 
120 	BUG_ON(!osb || !osb->journal->j_journal);
121 
122 	if (ocfs2_is_hard_readonly(osb))
123 		return ERR_PTR(-EROFS);
124 
125 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
126 	BUG_ON(max_buffs <= 0);
127 
128 	/* JBD might support this, but our journalling code doesn't yet. */
129 	if (journal_current_handle()) {
130 		mlog(ML_ERROR, "Recursive transaction attempted!\n");
131 		BUG();
132 	}
133 
134 	down_read(&osb->journal->j_trans_barrier);
135 
136 	handle = journal_start(journal, max_buffs);
137 	if (IS_ERR(handle)) {
138 		up_read(&osb->journal->j_trans_barrier);
139 
140 		mlog_errno(PTR_ERR(handle));
141 
142 		if (is_journal_aborted(journal)) {
143 			ocfs2_abort(osb->sb, "Detected aborted journal");
144 			handle = ERR_PTR(-EROFS);
145 		}
146 	} else {
147 		if (!ocfs2_mount_local(osb))
148 			atomic_inc(&(osb->journal->j_num_trans));
149 	}
150 
151 	return handle;
152 }
153 
154 int ocfs2_commit_trans(struct ocfs2_super *osb,
155 		       handle_t *handle)
156 {
157 	int ret;
158 	struct ocfs2_journal *journal = osb->journal;
159 
160 	BUG_ON(!handle);
161 
162 	ret = journal_stop(handle);
163 	if (ret < 0)
164 		mlog_errno(ret);
165 
166 	up_read(&journal->j_trans_barrier);
167 
168 	return ret;
169 }
170 
171 /*
172  * 'nblocks' is what you want to add to the current
173  * transaction. extend_trans will either extend the current handle by
174  * nblocks, or commit it and start a new one with nblocks credits.
175  *
176  * This might call journal_restart() which will commit dirty buffers
177  * and then restart the transaction. Before calling
178  * ocfs2_extend_trans(), any changed blocks should have been
179  * dirtied. After calling it, all blocks which need to be changed must
180  * go through another set of journal_access/journal_dirty calls.
181  *
182  * WARNING: This will not release any semaphores or disk locks taken
183  * during the transaction, so make sure they were taken *before*
184  * start_trans or we'll have ordering deadlocks.
185  *
186  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
187  * good because transaction ids haven't yet been recorded on the
188  * cluster locks associated with this handle.
189  */
190 int ocfs2_extend_trans(handle_t *handle, int nblocks)
191 {
192 	int status;
193 
194 	BUG_ON(!handle);
195 	BUG_ON(!nblocks);
196 
197 	mlog_entry_void();
198 
199 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
200 
201 #ifdef OCFS2_DEBUG_FS
202 	status = 1;
203 #else
204 	status = journal_extend(handle, nblocks);
205 	if (status < 0) {
206 		mlog_errno(status);
207 		goto bail;
208 	}
209 #endif
210 
211 	if (status > 0) {
212 		mlog(0, "journal_extend failed, trying journal_restart\n");
213 		status = journal_restart(handle, nblocks);
214 		if (status < 0) {
215 			mlog_errno(status);
216 			goto bail;
217 		}
218 	}
219 
220 	status = 0;
221 bail:
222 
223 	mlog_exit(status);
224 	return status;
225 }
226 
227 int ocfs2_journal_access(handle_t *handle,
228 			 struct inode *inode,
229 			 struct buffer_head *bh,
230 			 int type)
231 {
232 	int status;
233 
234 	BUG_ON(!inode);
235 	BUG_ON(!handle);
236 	BUG_ON(!bh);
237 
238 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
239 		   (unsigned long long)bh->b_blocknr, type,
240 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
241 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
242 		   "OCFS2_JOURNAL_ACCESS_WRITE",
243 		   bh->b_size);
244 
245 	/* we can safely remove this assertion after testing. */
246 	if (!buffer_uptodate(bh)) {
247 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
248 		mlog(ML_ERROR, "b_blocknr=%llu\n",
249 		     (unsigned long long)bh->b_blocknr);
250 		BUG();
251 	}
252 
253 	/* Set the current transaction information on the inode so
254 	 * that the locking code knows whether it can drop it's locks
255 	 * on this inode or not. We're protected from the commit
256 	 * thread updating the current transaction id until
257 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
258 	 * j_trans_barrier for us. */
259 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
260 
261 	mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
262 	switch (type) {
263 	case OCFS2_JOURNAL_ACCESS_CREATE:
264 	case OCFS2_JOURNAL_ACCESS_WRITE:
265 		status = journal_get_write_access(handle, bh);
266 		break;
267 
268 	case OCFS2_JOURNAL_ACCESS_UNDO:
269 		status = journal_get_undo_access(handle, bh);
270 		break;
271 
272 	default:
273 		status = -EINVAL;
274 		mlog(ML_ERROR, "Uknown access type!\n");
275 	}
276 	mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
277 
278 	if (status < 0)
279 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
280 		     status, type);
281 
282 	mlog_exit(status);
283 	return status;
284 }
285 
286 int ocfs2_journal_dirty(handle_t *handle,
287 			struct buffer_head *bh)
288 {
289 	int status;
290 
291 	mlog_entry("(bh->b_blocknr=%llu)\n",
292 		   (unsigned long long)bh->b_blocknr);
293 
294 	status = journal_dirty_metadata(handle, bh);
295 	if (status < 0)
296 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
297 		     "(bh->b_blocknr=%llu)\n",
298 		     (unsigned long long)bh->b_blocknr);
299 
300 	mlog_exit(status);
301 	return status;
302 }
303 
304 int ocfs2_journal_dirty_data(handle_t *handle,
305 			     struct buffer_head *bh)
306 {
307 	int err = journal_dirty_data(handle, bh);
308 	if (err)
309 		mlog_errno(err);
310 	/* TODO: When we can handle it, abort the handle and go RO on
311 	 * error here. */
312 
313 	return err;
314 }
315 
316 #define OCFS2_DEFAULT_COMMIT_INTERVAL 	(HZ * JBD_DEFAULT_MAX_COMMIT_AGE)
317 
318 void ocfs2_set_journal_params(struct ocfs2_super *osb)
319 {
320 	journal_t *journal = osb->journal->j_journal;
321 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
322 
323 	if (osb->osb_commit_interval)
324 		commit_interval = osb->osb_commit_interval;
325 
326 	spin_lock(&journal->j_state_lock);
327 	journal->j_commit_interval = commit_interval;
328 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
329 		journal->j_flags |= JFS_BARRIER;
330 	else
331 		journal->j_flags &= ~JFS_BARRIER;
332 	spin_unlock(&journal->j_state_lock);
333 }
334 
335 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
336 {
337 	int status = -1;
338 	struct inode *inode = NULL; /* the journal inode */
339 	journal_t *j_journal = NULL;
340 	struct ocfs2_dinode *di = NULL;
341 	struct buffer_head *bh = NULL;
342 	struct ocfs2_super *osb;
343 	int inode_lock = 0;
344 
345 	mlog_entry_void();
346 
347 	BUG_ON(!journal);
348 
349 	osb = journal->j_osb;
350 
351 	/* already have the inode for our journal */
352 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
353 					    osb->slot_num);
354 	if (inode == NULL) {
355 		status = -EACCES;
356 		mlog_errno(status);
357 		goto done;
358 	}
359 	if (is_bad_inode(inode)) {
360 		mlog(ML_ERROR, "access error (bad inode)\n");
361 		iput(inode);
362 		inode = NULL;
363 		status = -EACCES;
364 		goto done;
365 	}
366 
367 	SET_INODE_JOURNAL(inode);
368 	OCFS2_I(inode)->ip_open_count++;
369 
370 	/* Skip recovery waits here - journal inode metadata never
371 	 * changes in a live cluster so it can be considered an
372 	 * exception to the rule. */
373 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
374 	if (status < 0) {
375 		if (status != -ERESTARTSYS)
376 			mlog(ML_ERROR, "Could not get lock on journal!\n");
377 		goto done;
378 	}
379 
380 	inode_lock = 1;
381 	di = (struct ocfs2_dinode *)bh->b_data;
382 
383 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
384 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
385 		     inode->i_size);
386 		status = -EINVAL;
387 		goto done;
388 	}
389 
390 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
391 	mlog(0, "inode->i_blocks = %llu\n",
392 			(unsigned long long)inode->i_blocks);
393 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
394 
395 	/* call the kernels journal init function now */
396 	j_journal = journal_init_inode(inode);
397 	if (j_journal == NULL) {
398 		mlog(ML_ERROR, "Linux journal layer error\n");
399 		status = -EINVAL;
400 		goto done;
401 	}
402 
403 	mlog(0, "Returned from journal_init_inode\n");
404 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
405 
406 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
407 		  OCFS2_JOURNAL_DIRTY_FL);
408 
409 	journal->j_journal = j_journal;
410 	journal->j_inode = inode;
411 	journal->j_bh = bh;
412 
413 	ocfs2_set_journal_params(osb);
414 
415 	journal->j_state = OCFS2_JOURNAL_LOADED;
416 
417 	status = 0;
418 done:
419 	if (status < 0) {
420 		if (inode_lock)
421 			ocfs2_inode_unlock(inode, 1);
422 		if (bh != NULL)
423 			brelse(bh);
424 		if (inode) {
425 			OCFS2_I(inode)->ip_open_count--;
426 			iput(inode);
427 		}
428 	}
429 
430 	mlog_exit(status);
431 	return status;
432 }
433 
434 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
435 				      int dirty)
436 {
437 	int status;
438 	unsigned int flags;
439 	struct ocfs2_journal *journal = osb->journal;
440 	struct buffer_head *bh = journal->j_bh;
441 	struct ocfs2_dinode *fe;
442 
443 	mlog_entry_void();
444 
445 	fe = (struct ocfs2_dinode *)bh->b_data;
446 	if (!OCFS2_IS_VALID_DINODE(fe)) {
447 		/* This is called from startup/shutdown which will
448 		 * handle the errors in a specific manner, so no need
449 		 * to call ocfs2_error() here. */
450 		mlog(ML_ERROR, "Journal dinode %llu  has invalid "
451 		     "signature: %.*s",
452 		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
453 		     fe->i_signature);
454 		status = -EIO;
455 		goto out;
456 	}
457 
458 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
459 	if (dirty)
460 		flags |= OCFS2_JOURNAL_DIRTY_FL;
461 	else
462 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
463 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
464 
465 	status = ocfs2_write_block(osb, bh, journal->j_inode);
466 	if (status < 0)
467 		mlog_errno(status);
468 
469 out:
470 	mlog_exit(status);
471 	return status;
472 }
473 
474 /*
475  * If the journal has been kmalloc'd it needs to be freed after this
476  * call.
477  */
478 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
479 {
480 	struct ocfs2_journal *journal = NULL;
481 	int status = 0;
482 	struct inode *inode = NULL;
483 	int num_running_trans = 0;
484 
485 	mlog_entry_void();
486 
487 	BUG_ON(!osb);
488 
489 	journal = osb->journal;
490 	if (!journal)
491 		goto done;
492 
493 	inode = journal->j_inode;
494 
495 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
496 		goto done;
497 
498 	/* need to inc inode use count as journal_destroy will iput. */
499 	if (!igrab(inode))
500 		BUG();
501 
502 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
503 	if (num_running_trans > 0)
504 		mlog(0, "Shutting down journal: must wait on %d "
505 		     "running transactions!\n",
506 		     num_running_trans);
507 
508 	/* Do a commit_cache here. It will flush our journal, *and*
509 	 * release any locks that are still held.
510 	 * set the SHUTDOWN flag and release the trans lock.
511 	 * the commit thread will take the trans lock for us below. */
512 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
513 
514 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
515 	 * drop the trans_lock (which we want to hold until we
516 	 * completely destroy the journal. */
517 	if (osb->commit_task) {
518 		/* Wait for the commit thread */
519 		mlog(0, "Waiting for ocfs2commit to exit....\n");
520 		kthread_stop(osb->commit_task);
521 		osb->commit_task = NULL;
522 	}
523 
524 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
525 
526 	if (ocfs2_mount_local(osb)) {
527 		journal_lock_updates(journal->j_journal);
528 		status = journal_flush(journal->j_journal);
529 		journal_unlock_updates(journal->j_journal);
530 		if (status < 0)
531 			mlog_errno(status);
532 	}
533 
534 	if (status == 0) {
535 		/*
536 		 * Do not toggle if flush was unsuccessful otherwise
537 		 * will leave dirty metadata in a "clean" journal
538 		 */
539 		status = ocfs2_journal_toggle_dirty(osb, 0);
540 		if (status < 0)
541 			mlog_errno(status);
542 	}
543 
544 	/* Shutdown the kernel journal system */
545 	journal_destroy(journal->j_journal);
546 
547 	OCFS2_I(inode)->ip_open_count--;
548 
549 	/* unlock our journal */
550 	ocfs2_inode_unlock(inode, 1);
551 
552 	brelse(journal->j_bh);
553 	journal->j_bh = NULL;
554 
555 	journal->j_state = OCFS2_JOURNAL_FREE;
556 
557 //	up_write(&journal->j_trans_barrier);
558 done:
559 	if (inode)
560 		iput(inode);
561 	mlog_exit_void();
562 }
563 
564 static void ocfs2_clear_journal_error(struct super_block *sb,
565 				      journal_t *journal,
566 				      int slot)
567 {
568 	int olderr;
569 
570 	olderr = journal_errno(journal);
571 	if (olderr) {
572 		mlog(ML_ERROR, "File system error %d recorded in "
573 		     "journal %u.\n", olderr, slot);
574 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
575 		     sb->s_id);
576 
577 		journal_ack_err(journal);
578 		journal_clear_err(journal);
579 	}
580 }
581 
582 int ocfs2_journal_load(struct ocfs2_journal *journal, int local)
583 {
584 	int status = 0;
585 	struct ocfs2_super *osb;
586 
587 	mlog_entry_void();
588 
589 	if (!journal)
590 		BUG();
591 
592 	osb = journal->j_osb;
593 
594 	status = journal_load(journal->j_journal);
595 	if (status < 0) {
596 		mlog(ML_ERROR, "Failed to load journal!\n");
597 		goto done;
598 	}
599 
600 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
601 
602 	status = ocfs2_journal_toggle_dirty(osb, 1);
603 	if (status < 0) {
604 		mlog_errno(status);
605 		goto done;
606 	}
607 
608 	/* Launch the commit thread */
609 	if (!local) {
610 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
611 					       "ocfs2cmt");
612 		if (IS_ERR(osb->commit_task)) {
613 			status = PTR_ERR(osb->commit_task);
614 			osb->commit_task = NULL;
615 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
616 			     "error=%d", status);
617 			goto done;
618 		}
619 	} else
620 		osb->commit_task = NULL;
621 
622 done:
623 	mlog_exit(status);
624 	return status;
625 }
626 
627 
628 /* 'full' flag tells us whether we clear out all blocks or if we just
629  * mark the journal clean */
630 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
631 {
632 	int status;
633 
634 	mlog_entry_void();
635 
636 	BUG_ON(!journal);
637 
638 	status = journal_wipe(journal->j_journal, full);
639 	if (status < 0) {
640 		mlog_errno(status);
641 		goto bail;
642 	}
643 
644 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
645 	if (status < 0)
646 		mlog_errno(status);
647 
648 bail:
649 	mlog_exit(status);
650 	return status;
651 }
652 
653 /*
654  * JBD Might read a cached version of another nodes journal file. We
655  * don't want this as this file changes often and we get no
656  * notification on those changes. The only way to be sure that we've
657  * got the most up to date version of those blocks then is to force
658  * read them off disk. Just searching through the buffer cache won't
659  * work as there may be pages backing this file which are still marked
660  * up to date. We know things can't change on this file underneath us
661  * as we have the lock by now :)
662  */
663 static int ocfs2_force_read_journal(struct inode *inode)
664 {
665 	int status = 0;
666 	int i;
667 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
668 #define CONCURRENT_JOURNAL_FILL 32ULL
669 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
670 
671 	mlog_entry_void();
672 
673 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
674 
675 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
676 	v_blkno = 0;
677 	while (v_blkno < num_blocks) {
678 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
679 						     &p_blkno, &p_blocks, NULL);
680 		if (status < 0) {
681 			mlog_errno(status);
682 			goto bail;
683 		}
684 
685 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
686 			p_blocks = CONCURRENT_JOURNAL_FILL;
687 
688 		/* We are reading journal data which should not
689 		 * be put in the uptodate cache */
690 		status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
691 					   p_blkno, p_blocks, bhs, 0,
692 					   NULL);
693 		if (status < 0) {
694 			mlog_errno(status);
695 			goto bail;
696 		}
697 
698 		for(i = 0; i < p_blocks; i++) {
699 			brelse(bhs[i]);
700 			bhs[i] = NULL;
701 		}
702 
703 		v_blkno += p_blocks;
704 	}
705 
706 bail:
707 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
708 		if (bhs[i])
709 			brelse(bhs[i]);
710 	mlog_exit(status);
711 	return status;
712 }
713 
714 struct ocfs2_la_recovery_item {
715 	struct list_head	lri_list;
716 	int			lri_slot;
717 	struct ocfs2_dinode	*lri_la_dinode;
718 	struct ocfs2_dinode	*lri_tl_dinode;
719 };
720 
721 /* Does the second half of the recovery process. By this point, the
722  * node is marked clean and can actually be considered recovered,
723  * hence it's no longer in the recovery map, but there's still some
724  * cleanup we can do which shouldn't happen within the recovery thread
725  * as locking in that context becomes very difficult if we are to take
726  * recovering nodes into account.
727  *
728  * NOTE: This function can and will sleep on recovery of other nodes
729  * during cluster locking, just like any other ocfs2 process.
730  */
731 void ocfs2_complete_recovery(struct work_struct *work)
732 {
733 	int ret;
734 	struct ocfs2_journal *journal =
735 		container_of(work, struct ocfs2_journal, j_recovery_work);
736 	struct ocfs2_super *osb = journal->j_osb;
737 	struct ocfs2_dinode *la_dinode, *tl_dinode;
738 	struct ocfs2_la_recovery_item *item, *n;
739 	LIST_HEAD(tmp_la_list);
740 
741 	mlog_entry_void();
742 
743 	mlog(0, "completing recovery from keventd\n");
744 
745 	spin_lock(&journal->j_lock);
746 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
747 	spin_unlock(&journal->j_lock);
748 
749 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
750 		list_del_init(&item->lri_list);
751 
752 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
753 
754 		la_dinode = item->lri_la_dinode;
755 		if (la_dinode) {
756 			mlog(0, "Clean up local alloc %llu\n",
757 			     (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
758 
759 			ret = ocfs2_complete_local_alloc_recovery(osb,
760 								  la_dinode);
761 			if (ret < 0)
762 				mlog_errno(ret);
763 
764 			kfree(la_dinode);
765 		}
766 
767 		tl_dinode = item->lri_tl_dinode;
768 		if (tl_dinode) {
769 			mlog(0, "Clean up truncate log %llu\n",
770 			     (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
771 
772 			ret = ocfs2_complete_truncate_log_recovery(osb,
773 								   tl_dinode);
774 			if (ret < 0)
775 				mlog_errno(ret);
776 
777 			kfree(tl_dinode);
778 		}
779 
780 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
781 		if (ret < 0)
782 			mlog_errno(ret);
783 
784 		kfree(item);
785 	}
786 
787 	mlog(0, "Recovery completion\n");
788 	mlog_exit_void();
789 }
790 
791 /* NOTE: This function always eats your references to la_dinode and
792  * tl_dinode, either manually on error, or by passing them to
793  * ocfs2_complete_recovery */
794 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
795 					    int slot_num,
796 					    struct ocfs2_dinode *la_dinode,
797 					    struct ocfs2_dinode *tl_dinode)
798 {
799 	struct ocfs2_la_recovery_item *item;
800 
801 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
802 	if (!item) {
803 		/* Though we wish to avoid it, we are in fact safe in
804 		 * skipping local alloc cleanup as fsck.ocfs2 is more
805 		 * than capable of reclaiming unused space. */
806 		if (la_dinode)
807 			kfree(la_dinode);
808 
809 		if (tl_dinode)
810 			kfree(tl_dinode);
811 
812 		mlog_errno(-ENOMEM);
813 		return;
814 	}
815 
816 	INIT_LIST_HEAD(&item->lri_list);
817 	item->lri_la_dinode = la_dinode;
818 	item->lri_slot = slot_num;
819 	item->lri_tl_dinode = tl_dinode;
820 
821 	spin_lock(&journal->j_lock);
822 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
823 	queue_work(ocfs2_wq, &journal->j_recovery_work);
824 	spin_unlock(&journal->j_lock);
825 }
826 
827 /* Called by the mount code to queue recovery the last part of
828  * recovery for it's own slot. */
829 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
830 {
831 	struct ocfs2_journal *journal = osb->journal;
832 
833 	if (osb->dirty) {
834 		/* No need to queue up our truncate_log as regular
835 		 * cleanup will catch that. */
836 		ocfs2_queue_recovery_completion(journal,
837 						osb->slot_num,
838 						osb->local_alloc_copy,
839 						NULL);
840 		ocfs2_schedule_truncate_log_flush(osb, 0);
841 
842 		osb->local_alloc_copy = NULL;
843 		osb->dirty = 0;
844 	}
845 }
846 
847 static int __ocfs2_recovery_thread(void *arg)
848 {
849 	int status, node_num;
850 	struct ocfs2_super *osb = arg;
851 
852 	mlog_entry_void();
853 
854 	status = ocfs2_wait_on_mount(osb);
855 	if (status < 0) {
856 		goto bail;
857 	}
858 
859 restart:
860 	status = ocfs2_super_lock(osb, 1);
861 	if (status < 0) {
862 		mlog_errno(status);
863 		goto bail;
864 	}
865 
866 	while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
867 		node_num = ocfs2_node_map_first_set_bit(osb,
868 							&osb->recovery_map);
869 		if (node_num == O2NM_INVALID_NODE_NUM) {
870 			mlog(0, "Out of nodes to recover.\n");
871 			break;
872 		}
873 
874 		status = ocfs2_recover_node(osb, node_num);
875 		if (status < 0) {
876 			mlog(ML_ERROR,
877 			     "Error %d recovering node %d on device (%u,%u)!\n",
878 			     status, node_num,
879 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
880 			mlog(ML_ERROR, "Volume requires unmount.\n");
881 			continue;
882 		}
883 
884 		ocfs2_recovery_map_clear(osb, node_num);
885 	}
886 	ocfs2_super_unlock(osb, 1);
887 
888 	/* We always run recovery on our own orphan dir - the dead
889 	 * node(s) may have disallowd a previos inode delete. Re-processing
890 	 * is therefore required. */
891 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
892 					NULL);
893 
894 bail:
895 	mutex_lock(&osb->recovery_lock);
896 	if (!status &&
897 	    !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
898 		mutex_unlock(&osb->recovery_lock);
899 		goto restart;
900 	}
901 
902 	osb->recovery_thread_task = NULL;
903 	mb(); /* sync with ocfs2_recovery_thread_running */
904 	wake_up(&osb->recovery_event);
905 
906 	mutex_unlock(&osb->recovery_lock);
907 
908 	mlog_exit(status);
909 	/* no one is callint kthread_stop() for us so the kthread() api
910 	 * requires that we call do_exit().  And it isn't exported, but
911 	 * complete_and_exit() seems to be a minimal wrapper around it. */
912 	complete_and_exit(NULL, status);
913 	return status;
914 }
915 
916 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
917 {
918 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
919 		   node_num, osb->node_num);
920 
921 	mutex_lock(&osb->recovery_lock);
922 	if (osb->disable_recovery)
923 		goto out;
924 
925 	/* People waiting on recovery will wait on
926 	 * the recovery map to empty. */
927 	if (!ocfs2_recovery_map_set(osb, node_num))
928 		mlog(0, "node %d already be in recovery.\n", node_num);
929 
930 	mlog(0, "starting recovery thread...\n");
931 
932 	if (osb->recovery_thread_task)
933 		goto out;
934 
935 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
936 						 "ocfs2rec");
937 	if (IS_ERR(osb->recovery_thread_task)) {
938 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
939 		osb->recovery_thread_task = NULL;
940 	}
941 
942 out:
943 	mutex_unlock(&osb->recovery_lock);
944 	wake_up(&osb->recovery_event);
945 
946 	mlog_exit_void();
947 }
948 
949 /* Does the actual journal replay and marks the journal inode as
950  * clean. Will only replay if the journal inode is marked dirty. */
951 static int ocfs2_replay_journal(struct ocfs2_super *osb,
952 				int node_num,
953 				int slot_num)
954 {
955 	int status;
956 	int got_lock = 0;
957 	unsigned int flags;
958 	struct inode *inode = NULL;
959 	struct ocfs2_dinode *fe;
960 	journal_t *journal = NULL;
961 	struct buffer_head *bh = NULL;
962 
963 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
964 					    slot_num);
965 	if (inode == NULL) {
966 		status = -EACCES;
967 		mlog_errno(status);
968 		goto done;
969 	}
970 	if (is_bad_inode(inode)) {
971 		status = -EACCES;
972 		iput(inode);
973 		inode = NULL;
974 		mlog_errno(status);
975 		goto done;
976 	}
977 	SET_INODE_JOURNAL(inode);
978 
979 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
980 	if (status < 0) {
981 		mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
982 		if (status != -ERESTARTSYS)
983 			mlog(ML_ERROR, "Could not lock journal!\n");
984 		goto done;
985 	}
986 	got_lock = 1;
987 
988 	fe = (struct ocfs2_dinode *) bh->b_data;
989 
990 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
991 
992 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
993 		mlog(0, "No recovery required for node %d\n", node_num);
994 		goto done;
995 	}
996 
997 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
998 	     node_num, slot_num,
999 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1000 
1001 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1002 
1003 	status = ocfs2_force_read_journal(inode);
1004 	if (status < 0) {
1005 		mlog_errno(status);
1006 		goto done;
1007 	}
1008 
1009 	mlog(0, "calling journal_init_inode\n");
1010 	journal = journal_init_inode(inode);
1011 	if (journal == NULL) {
1012 		mlog(ML_ERROR, "Linux journal layer error\n");
1013 		status = -EIO;
1014 		goto done;
1015 	}
1016 
1017 	status = journal_load(journal);
1018 	if (status < 0) {
1019 		mlog_errno(status);
1020 		if (!igrab(inode))
1021 			BUG();
1022 		journal_destroy(journal);
1023 		goto done;
1024 	}
1025 
1026 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1027 
1028 	/* wipe the journal */
1029 	mlog(0, "flushing the journal.\n");
1030 	journal_lock_updates(journal);
1031 	status = journal_flush(journal);
1032 	journal_unlock_updates(journal);
1033 	if (status < 0)
1034 		mlog_errno(status);
1035 
1036 	/* This will mark the node clean */
1037 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1038 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1039 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1040 
1041 	status = ocfs2_write_block(osb, bh, inode);
1042 	if (status < 0)
1043 		mlog_errno(status);
1044 
1045 	if (!igrab(inode))
1046 		BUG();
1047 
1048 	journal_destroy(journal);
1049 
1050 done:
1051 	/* drop the lock on this nodes journal */
1052 	if (got_lock)
1053 		ocfs2_inode_unlock(inode, 1);
1054 
1055 	if (inode)
1056 		iput(inode);
1057 
1058 	if (bh)
1059 		brelse(bh);
1060 
1061 	mlog_exit(status);
1062 	return status;
1063 }
1064 
1065 /*
1066  * Do the most important parts of node recovery:
1067  *  - Replay it's journal
1068  *  - Stamp a clean local allocator file
1069  *  - Stamp a clean truncate log
1070  *  - Mark the node clean
1071  *
1072  * If this function completes without error, a node in OCFS2 can be
1073  * said to have been safely recovered. As a result, failure during the
1074  * second part of a nodes recovery process (local alloc recovery) is
1075  * far less concerning.
1076  */
1077 static int ocfs2_recover_node(struct ocfs2_super *osb,
1078 			      int node_num)
1079 {
1080 	int status = 0;
1081 	int slot_num;
1082 	struct ocfs2_slot_info *si = osb->slot_info;
1083 	struct ocfs2_dinode *la_copy = NULL;
1084 	struct ocfs2_dinode *tl_copy = NULL;
1085 
1086 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1087 		   node_num, osb->node_num);
1088 
1089 	mlog(0, "checking node %d\n", node_num);
1090 
1091 	/* Should not ever be called to recover ourselves -- in that
1092 	 * case we should've called ocfs2_journal_load instead. */
1093 	BUG_ON(osb->node_num == node_num);
1094 
1095 	slot_num = ocfs2_node_num_to_slot(si, node_num);
1096 	if (slot_num == OCFS2_INVALID_SLOT) {
1097 		status = 0;
1098 		mlog(0, "no slot for this node, so no recovery required.\n");
1099 		goto done;
1100 	}
1101 
1102 	mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1103 
1104 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1105 	if (status < 0) {
1106 		mlog_errno(status);
1107 		goto done;
1108 	}
1109 
1110 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1111 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1112 	if (status < 0) {
1113 		mlog_errno(status);
1114 		goto done;
1115 	}
1116 
1117 	/* An error from begin_truncate_log_recovery is not
1118 	 * serious enough to warrant halting the rest of
1119 	 * recovery. */
1120 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1121 	if (status < 0)
1122 		mlog_errno(status);
1123 
1124 	/* Likewise, this would be a strange but ultimately not so
1125 	 * harmful place to get an error... */
1126 	ocfs2_clear_slot(si, slot_num);
1127 	status = ocfs2_update_disk_slots(osb, si);
1128 	if (status < 0)
1129 		mlog_errno(status);
1130 
1131 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1132 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1133 					tl_copy);
1134 
1135 	status = 0;
1136 done:
1137 
1138 	mlog_exit(status);
1139 	return status;
1140 }
1141 
1142 /* Test node liveness by trylocking his journal. If we get the lock,
1143  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1144  * still alive (we couldn't get the lock) and < 0 on error. */
1145 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1146 				 int slot_num)
1147 {
1148 	int status, flags;
1149 	struct inode *inode = NULL;
1150 
1151 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1152 					    slot_num);
1153 	if (inode == NULL) {
1154 		mlog(ML_ERROR, "access error\n");
1155 		status = -EACCES;
1156 		goto bail;
1157 	}
1158 	if (is_bad_inode(inode)) {
1159 		mlog(ML_ERROR, "access error (bad inode)\n");
1160 		iput(inode);
1161 		inode = NULL;
1162 		status = -EACCES;
1163 		goto bail;
1164 	}
1165 	SET_INODE_JOURNAL(inode);
1166 
1167 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1168 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1169 	if (status < 0) {
1170 		if (status != -EAGAIN)
1171 			mlog_errno(status);
1172 		goto bail;
1173 	}
1174 
1175 	ocfs2_inode_unlock(inode, 1);
1176 bail:
1177 	if (inode)
1178 		iput(inode);
1179 
1180 	return status;
1181 }
1182 
1183 /* Call this underneath ocfs2_super_lock. It also assumes that the
1184  * slot info struct has been updated from disk. */
1185 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1186 {
1187 	int status, i, node_num;
1188 	struct ocfs2_slot_info *si = osb->slot_info;
1189 
1190 	/* This is called with the super block cluster lock, so we
1191 	 * know that the slot map can't change underneath us. */
1192 
1193 	spin_lock(&si->si_lock);
1194 	for(i = 0; i < si->si_num_slots; i++) {
1195 		if (i == osb->slot_num)
1196 			continue;
1197 		if (ocfs2_is_empty_slot(si, i))
1198 			continue;
1199 
1200 		node_num = si->si_global_node_nums[i];
1201 		if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1202 			continue;
1203 		spin_unlock(&si->si_lock);
1204 
1205 		/* Ok, we have a slot occupied by another node which
1206 		 * is not in the recovery map. We trylock his journal
1207 		 * file here to test if he's alive. */
1208 		status = ocfs2_trylock_journal(osb, i);
1209 		if (!status) {
1210 			/* Since we're called from mount, we know that
1211 			 * the recovery thread can't race us on
1212 			 * setting / checking the recovery bits. */
1213 			ocfs2_recovery_thread(osb, node_num);
1214 		} else if ((status < 0) && (status != -EAGAIN)) {
1215 			mlog_errno(status);
1216 			goto bail;
1217 		}
1218 
1219 		spin_lock(&si->si_lock);
1220 	}
1221 	spin_unlock(&si->si_lock);
1222 
1223 	status = 0;
1224 bail:
1225 	mlog_exit(status);
1226 	return status;
1227 }
1228 
1229 struct ocfs2_orphan_filldir_priv {
1230 	struct inode		*head;
1231 	struct ocfs2_super	*osb;
1232 };
1233 
1234 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1235 				loff_t pos, u64 ino, unsigned type)
1236 {
1237 	struct ocfs2_orphan_filldir_priv *p = priv;
1238 	struct inode *iter;
1239 
1240 	if (name_len == 1 && !strncmp(".", name, 1))
1241 		return 0;
1242 	if (name_len == 2 && !strncmp("..", name, 2))
1243 		return 0;
1244 
1245 	/* Skip bad inodes so that recovery can continue */
1246 	iter = ocfs2_iget(p->osb, ino,
1247 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1248 	if (IS_ERR(iter))
1249 		return 0;
1250 
1251 	mlog(0, "queue orphan %llu\n",
1252 	     (unsigned long long)OCFS2_I(iter)->ip_blkno);
1253 	/* No locking is required for the next_orphan queue as there
1254 	 * is only ever a single process doing orphan recovery. */
1255 	OCFS2_I(iter)->ip_next_orphan = p->head;
1256 	p->head = iter;
1257 
1258 	return 0;
1259 }
1260 
1261 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1262 			       int slot,
1263 			       struct inode **head)
1264 {
1265 	int status;
1266 	struct inode *orphan_dir_inode = NULL;
1267 	struct ocfs2_orphan_filldir_priv priv;
1268 	loff_t pos = 0;
1269 
1270 	priv.osb = osb;
1271 	priv.head = *head;
1272 
1273 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1274 						       ORPHAN_DIR_SYSTEM_INODE,
1275 						       slot);
1276 	if  (!orphan_dir_inode) {
1277 		status = -ENOENT;
1278 		mlog_errno(status);
1279 		return status;
1280 	}
1281 
1282 	mutex_lock(&orphan_dir_inode->i_mutex);
1283 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1284 	if (status < 0) {
1285 		mlog_errno(status);
1286 		goto out;
1287 	}
1288 
1289 	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1290 				   ocfs2_orphan_filldir);
1291 	if (status) {
1292 		mlog_errno(status);
1293 		goto out_cluster;
1294 	}
1295 
1296 	*head = priv.head;
1297 
1298 out_cluster:
1299 	ocfs2_inode_unlock(orphan_dir_inode, 0);
1300 out:
1301 	mutex_unlock(&orphan_dir_inode->i_mutex);
1302 	iput(orphan_dir_inode);
1303 	return status;
1304 }
1305 
1306 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1307 					      int slot)
1308 {
1309 	int ret;
1310 
1311 	spin_lock(&osb->osb_lock);
1312 	ret = !osb->osb_orphan_wipes[slot];
1313 	spin_unlock(&osb->osb_lock);
1314 	return ret;
1315 }
1316 
1317 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1318 					     int slot)
1319 {
1320 	spin_lock(&osb->osb_lock);
1321 	/* Mark ourselves such that new processes in delete_inode()
1322 	 * know to quit early. */
1323 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1324 	while (osb->osb_orphan_wipes[slot]) {
1325 		/* If any processes are already in the middle of an
1326 		 * orphan wipe on this dir, then we need to wait for
1327 		 * them. */
1328 		spin_unlock(&osb->osb_lock);
1329 		wait_event_interruptible(osb->osb_wipe_event,
1330 					 ocfs2_orphan_recovery_can_continue(osb, slot));
1331 		spin_lock(&osb->osb_lock);
1332 	}
1333 	spin_unlock(&osb->osb_lock);
1334 }
1335 
1336 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1337 					      int slot)
1338 {
1339 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1340 }
1341 
1342 /*
1343  * Orphan recovery. Each mounted node has it's own orphan dir which we
1344  * must run during recovery. Our strategy here is to build a list of
1345  * the inodes in the orphan dir and iget/iput them. The VFS does
1346  * (most) of the rest of the work.
1347  *
1348  * Orphan recovery can happen at any time, not just mount so we have a
1349  * couple of extra considerations.
1350  *
1351  * - We grab as many inodes as we can under the orphan dir lock -
1352  *   doing iget() outside the orphan dir risks getting a reference on
1353  *   an invalid inode.
1354  * - We must be sure not to deadlock with other processes on the
1355  *   system wanting to run delete_inode(). This can happen when they go
1356  *   to lock the orphan dir and the orphan recovery process attempts to
1357  *   iget() inside the orphan dir lock. This can be avoided by
1358  *   advertising our state to ocfs2_delete_inode().
1359  */
1360 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1361 				 int slot)
1362 {
1363 	int ret = 0;
1364 	struct inode *inode = NULL;
1365 	struct inode *iter;
1366 	struct ocfs2_inode_info *oi;
1367 
1368 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1369 
1370 	ocfs2_mark_recovering_orphan_dir(osb, slot);
1371 	ret = ocfs2_queue_orphans(osb, slot, &inode);
1372 	ocfs2_clear_recovering_orphan_dir(osb, slot);
1373 
1374 	/* Error here should be noted, but we want to continue with as
1375 	 * many queued inodes as we've got. */
1376 	if (ret)
1377 		mlog_errno(ret);
1378 
1379 	while (inode) {
1380 		oi = OCFS2_I(inode);
1381 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1382 
1383 		iter = oi->ip_next_orphan;
1384 
1385 		spin_lock(&oi->ip_lock);
1386 		/* The remote delete code may have set these on the
1387 		 * assumption that the other node would wipe them
1388 		 * successfully.  If they are still in the node's
1389 		 * orphan dir, we need to reset that state. */
1390 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1391 
1392 		/* Set the proper information to get us going into
1393 		 * ocfs2_delete_inode. */
1394 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1395 		spin_unlock(&oi->ip_lock);
1396 
1397 		iput(inode);
1398 
1399 		inode = iter;
1400 	}
1401 
1402 	return ret;
1403 }
1404 
1405 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1406 {
1407 	/* This check is good because ocfs2 will wait on our recovery
1408 	 * thread before changing it to something other than MOUNTED
1409 	 * or DISABLED. */
1410 	wait_event(osb->osb_mount_event,
1411 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1412 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1413 
1414 	/* If there's an error on mount, then we may never get to the
1415 	 * MOUNTED flag, but this is set right before
1416 	 * dismount_volume() so we can trust it. */
1417 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1418 		mlog(0, "mount error, exiting!\n");
1419 		return -EBUSY;
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 static int ocfs2_commit_thread(void *arg)
1426 {
1427 	int status;
1428 	struct ocfs2_super *osb = arg;
1429 	struct ocfs2_journal *journal = osb->journal;
1430 
1431 	/* we can trust j_num_trans here because _should_stop() is only set in
1432 	 * shutdown and nobody other than ourselves should be able to start
1433 	 * transactions.  committing on shutdown might take a few iterations
1434 	 * as final transactions put deleted inodes on the list */
1435 	while (!(kthread_should_stop() &&
1436 		 atomic_read(&journal->j_num_trans) == 0)) {
1437 
1438 		wait_event_interruptible(osb->checkpoint_event,
1439 					 atomic_read(&journal->j_num_trans)
1440 					 || kthread_should_stop());
1441 
1442 		status = ocfs2_commit_cache(osb);
1443 		if (status < 0)
1444 			mlog_errno(status);
1445 
1446 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1447 			mlog(ML_KTHREAD,
1448 			     "commit_thread: %u transactions pending on "
1449 			     "shutdown\n",
1450 			     atomic_read(&journal->j_num_trans));
1451 		}
1452 	}
1453 
1454 	return 0;
1455 }
1456 
1457 /* Look for a dirty journal without taking any cluster locks. Used for
1458  * hard readonly access to determine whether the file system journals
1459  * require recovery. */
1460 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1461 {
1462 	int ret = 0;
1463 	unsigned int slot;
1464 	struct buffer_head *di_bh;
1465 	struct ocfs2_dinode *di;
1466 	struct inode *journal = NULL;
1467 
1468 	for(slot = 0; slot < osb->max_slots; slot++) {
1469 		journal = ocfs2_get_system_file_inode(osb,
1470 						      JOURNAL_SYSTEM_INODE,
1471 						      slot);
1472 		if (!journal || is_bad_inode(journal)) {
1473 			ret = -EACCES;
1474 			mlog_errno(ret);
1475 			goto out;
1476 		}
1477 
1478 		di_bh = NULL;
1479 		ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1480 				       0, journal);
1481 		if (ret < 0) {
1482 			mlog_errno(ret);
1483 			goto out;
1484 		}
1485 
1486 		di = (struct ocfs2_dinode *) di_bh->b_data;
1487 
1488 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
1489 		    OCFS2_JOURNAL_DIRTY_FL)
1490 			ret = -EROFS;
1491 
1492 		brelse(di_bh);
1493 		if (ret)
1494 			break;
1495 	}
1496 
1497 out:
1498 	if (journal)
1499 		iput(journal);
1500 
1501 	return ret;
1502 }
1503