xref: /openbmc/linux/fs/ocfs2/journal.c (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * journal.c
4  *
5  * Defines functions of journalling api
6  *
7  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 
19 #include <cluster/masklog.h>
20 
21 #include "ocfs2.h"
22 
23 #include "alloc.h"
24 #include "blockcheck.h"
25 #include "dir.h"
26 #include "dlmglue.h"
27 #include "extent_map.h"
28 #include "heartbeat.h"
29 #include "inode.h"
30 #include "journal.h"
31 #include "localalloc.h"
32 #include "slot_map.h"
33 #include "super.h"
34 #include "sysfile.h"
35 #include "uptodate.h"
36 #include "quota.h"
37 #include "file.h"
38 #include "namei.h"
39 
40 #include "buffer_head_io.h"
41 #include "ocfs2_trace.h"
42 
43 DEFINE_SPINLOCK(trans_inc_lock);
44 
45 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
46 
47 static int ocfs2_force_read_journal(struct inode *inode);
48 static int ocfs2_recover_node(struct ocfs2_super *osb,
49 			      int node_num, int slot_num);
50 static int __ocfs2_recovery_thread(void *arg);
51 static int ocfs2_commit_cache(struct ocfs2_super *osb);
52 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
53 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
54 				      int dirty, int replayed);
55 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
56 				 int slot_num);
57 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
58 				 int slot,
59 				 enum ocfs2_orphan_reco_type orphan_reco_type);
60 static int ocfs2_commit_thread(void *arg);
61 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
62 					    int slot_num,
63 					    struct ocfs2_dinode *la_dinode,
64 					    struct ocfs2_dinode *tl_dinode,
65 					    struct ocfs2_quota_recovery *qrec,
66 					    enum ocfs2_orphan_reco_type orphan_reco_type);
67 
68 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
69 {
70 	return __ocfs2_wait_on_mount(osb, 0);
71 }
72 
73 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
74 {
75 	return __ocfs2_wait_on_mount(osb, 1);
76 }
77 
78 /*
79  * This replay_map is to track online/offline slots, so we could recover
80  * offline slots during recovery and mount
81  */
82 
83 enum ocfs2_replay_state {
84 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
85 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
86 	REPLAY_DONE 		/* Replay was already queued */
87 };
88 
89 struct ocfs2_replay_map {
90 	unsigned int rm_slots;
91 	enum ocfs2_replay_state rm_state;
92 	unsigned char rm_replay_slots[];
93 };
94 
95 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
96 {
97 	if (!osb->replay_map)
98 		return;
99 
100 	/* If we've already queued the replay, we don't have any more to do */
101 	if (osb->replay_map->rm_state == REPLAY_DONE)
102 		return;
103 
104 	osb->replay_map->rm_state = state;
105 }
106 
107 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
108 {
109 	struct ocfs2_replay_map *replay_map;
110 	int i, node_num;
111 
112 	/* If replay map is already set, we don't do it again */
113 	if (osb->replay_map)
114 		return 0;
115 
116 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
117 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
118 
119 	if (!replay_map) {
120 		mlog_errno(-ENOMEM);
121 		return -ENOMEM;
122 	}
123 
124 	spin_lock(&osb->osb_lock);
125 
126 	replay_map->rm_slots = osb->max_slots;
127 	replay_map->rm_state = REPLAY_UNNEEDED;
128 
129 	/* set rm_replay_slots for offline slot(s) */
130 	for (i = 0; i < replay_map->rm_slots; i++) {
131 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
132 			replay_map->rm_replay_slots[i] = 1;
133 	}
134 
135 	osb->replay_map = replay_map;
136 	spin_unlock(&osb->osb_lock);
137 	return 0;
138 }
139 
140 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
141 		enum ocfs2_orphan_reco_type orphan_reco_type)
142 {
143 	struct ocfs2_replay_map *replay_map = osb->replay_map;
144 	int i;
145 
146 	if (!replay_map)
147 		return;
148 
149 	if (replay_map->rm_state != REPLAY_NEEDED)
150 		return;
151 
152 	for (i = 0; i < replay_map->rm_slots; i++)
153 		if (replay_map->rm_replay_slots[i])
154 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
155 							NULL, NULL,
156 							orphan_reco_type);
157 	replay_map->rm_state = REPLAY_DONE;
158 }
159 
160 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
161 {
162 	struct ocfs2_replay_map *replay_map = osb->replay_map;
163 
164 	if (!osb->replay_map)
165 		return;
166 
167 	kfree(replay_map);
168 	osb->replay_map = NULL;
169 }
170 
171 int ocfs2_recovery_init(struct ocfs2_super *osb)
172 {
173 	struct ocfs2_recovery_map *rm;
174 
175 	mutex_init(&osb->recovery_lock);
176 	osb->disable_recovery = 0;
177 	osb->recovery_thread_task = NULL;
178 	init_waitqueue_head(&osb->recovery_event);
179 
180 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
181 		     osb->max_slots * sizeof(unsigned int),
182 		     GFP_KERNEL);
183 	if (!rm) {
184 		mlog_errno(-ENOMEM);
185 		return -ENOMEM;
186 	}
187 
188 	rm->rm_entries = (unsigned int *)((char *)rm +
189 					  sizeof(struct ocfs2_recovery_map));
190 	osb->recovery_map = rm;
191 
192 	return 0;
193 }
194 
195 /* we can't grab the goofy sem lock from inside wait_event, so we use
196  * memory barriers to make sure that we'll see the null task before
197  * being woken up */
198 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
199 {
200 	mb();
201 	return osb->recovery_thread_task != NULL;
202 }
203 
204 void ocfs2_recovery_exit(struct ocfs2_super *osb)
205 {
206 	struct ocfs2_recovery_map *rm;
207 
208 	/* disable any new recovery threads and wait for any currently
209 	 * running ones to exit. Do this before setting the vol_state. */
210 	mutex_lock(&osb->recovery_lock);
211 	osb->disable_recovery = 1;
212 	mutex_unlock(&osb->recovery_lock);
213 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
214 
215 	/* At this point, we know that no more recovery threads can be
216 	 * launched, so wait for any recovery completion work to
217 	 * complete. */
218 	if (osb->ocfs2_wq)
219 		flush_workqueue(osb->ocfs2_wq);
220 
221 	/*
222 	 * Now that recovery is shut down, and the osb is about to be
223 	 * freed,  the osb_lock is not taken here.
224 	 */
225 	rm = osb->recovery_map;
226 	/* XXX: Should we bug if there are dirty entries? */
227 
228 	kfree(rm);
229 }
230 
231 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
232 				     unsigned int node_num)
233 {
234 	int i;
235 	struct ocfs2_recovery_map *rm = osb->recovery_map;
236 
237 	assert_spin_locked(&osb->osb_lock);
238 
239 	for (i = 0; i < rm->rm_used; i++) {
240 		if (rm->rm_entries[i] == node_num)
241 			return 1;
242 	}
243 
244 	return 0;
245 }
246 
247 /* Behaves like test-and-set.  Returns the previous value */
248 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
249 				  unsigned int node_num)
250 {
251 	struct ocfs2_recovery_map *rm = osb->recovery_map;
252 
253 	spin_lock(&osb->osb_lock);
254 	if (__ocfs2_recovery_map_test(osb, node_num)) {
255 		spin_unlock(&osb->osb_lock);
256 		return 1;
257 	}
258 
259 	/* XXX: Can this be exploited? Not from o2dlm... */
260 	BUG_ON(rm->rm_used >= osb->max_slots);
261 
262 	rm->rm_entries[rm->rm_used] = node_num;
263 	rm->rm_used++;
264 	spin_unlock(&osb->osb_lock);
265 
266 	return 0;
267 }
268 
269 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
270 				     unsigned int node_num)
271 {
272 	int i;
273 	struct ocfs2_recovery_map *rm = osb->recovery_map;
274 
275 	spin_lock(&osb->osb_lock);
276 
277 	for (i = 0; i < rm->rm_used; i++) {
278 		if (rm->rm_entries[i] == node_num)
279 			break;
280 	}
281 
282 	if (i < rm->rm_used) {
283 		/* XXX: be careful with the pointer math */
284 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
285 			(rm->rm_used - i - 1) * sizeof(unsigned int));
286 		rm->rm_used--;
287 	}
288 
289 	spin_unlock(&osb->osb_lock);
290 }
291 
292 static int ocfs2_commit_cache(struct ocfs2_super *osb)
293 {
294 	int status = 0;
295 	unsigned int flushed;
296 	struct ocfs2_journal *journal = NULL;
297 
298 	journal = osb->journal;
299 
300 	/* Flush all pending commits and checkpoint the journal. */
301 	down_write(&journal->j_trans_barrier);
302 
303 	flushed = atomic_read(&journal->j_num_trans);
304 	trace_ocfs2_commit_cache_begin(flushed);
305 	if (flushed == 0) {
306 		up_write(&journal->j_trans_barrier);
307 		goto finally;
308 	}
309 
310 	jbd2_journal_lock_updates(journal->j_journal);
311 	status = jbd2_journal_flush(journal->j_journal, 0);
312 	jbd2_journal_unlock_updates(journal->j_journal);
313 	if (status < 0) {
314 		up_write(&journal->j_trans_barrier);
315 		mlog_errno(status);
316 		goto finally;
317 	}
318 
319 	ocfs2_inc_trans_id(journal);
320 
321 	flushed = atomic_read(&journal->j_num_trans);
322 	atomic_set(&journal->j_num_trans, 0);
323 	up_write(&journal->j_trans_barrier);
324 
325 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
326 
327 	ocfs2_wake_downconvert_thread(osb);
328 	wake_up(&journal->j_checkpointed);
329 finally:
330 	return status;
331 }
332 
333 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
334 {
335 	journal_t *journal = osb->journal->j_journal;
336 	handle_t *handle;
337 
338 	BUG_ON(!osb || !osb->journal->j_journal);
339 
340 	if (ocfs2_is_hard_readonly(osb))
341 		return ERR_PTR(-EROFS);
342 
343 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
344 	BUG_ON(max_buffs <= 0);
345 
346 	/* Nested transaction? Just return the handle... */
347 	if (journal_current_handle())
348 		return jbd2_journal_start(journal, max_buffs);
349 
350 	sb_start_intwrite(osb->sb);
351 
352 	down_read(&osb->journal->j_trans_barrier);
353 
354 	handle = jbd2_journal_start(journal, max_buffs);
355 	if (IS_ERR(handle)) {
356 		up_read(&osb->journal->j_trans_barrier);
357 		sb_end_intwrite(osb->sb);
358 
359 		mlog_errno(PTR_ERR(handle));
360 
361 		if (is_journal_aborted(journal)) {
362 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
363 			handle = ERR_PTR(-EROFS);
364 		}
365 	} else {
366 		if (!ocfs2_mount_local(osb))
367 			atomic_inc(&(osb->journal->j_num_trans));
368 	}
369 
370 	return handle;
371 }
372 
373 int ocfs2_commit_trans(struct ocfs2_super *osb,
374 		       handle_t *handle)
375 {
376 	int ret, nested;
377 	struct ocfs2_journal *journal = osb->journal;
378 
379 	BUG_ON(!handle);
380 
381 	nested = handle->h_ref > 1;
382 	ret = jbd2_journal_stop(handle);
383 	if (ret < 0)
384 		mlog_errno(ret);
385 
386 	if (!nested) {
387 		up_read(&journal->j_trans_barrier);
388 		sb_end_intwrite(osb->sb);
389 	}
390 
391 	return ret;
392 }
393 
394 /*
395  * 'nblocks' is what you want to add to the current transaction.
396  *
397  * This might call jbd2_journal_restart() which will commit dirty buffers
398  * and then restart the transaction. Before calling
399  * ocfs2_extend_trans(), any changed blocks should have been
400  * dirtied. After calling it, all blocks which need to be changed must
401  * go through another set of journal_access/journal_dirty calls.
402  *
403  * WARNING: This will not release any semaphores or disk locks taken
404  * during the transaction, so make sure they were taken *before*
405  * start_trans or we'll have ordering deadlocks.
406  *
407  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
408  * good because transaction ids haven't yet been recorded on the
409  * cluster locks associated with this handle.
410  */
411 int ocfs2_extend_trans(handle_t *handle, int nblocks)
412 {
413 	int status, old_nblocks;
414 
415 	BUG_ON(!handle);
416 	BUG_ON(nblocks < 0);
417 
418 	if (!nblocks)
419 		return 0;
420 
421 	old_nblocks = jbd2_handle_buffer_credits(handle);
422 
423 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
424 
425 #ifdef CONFIG_OCFS2_DEBUG_FS
426 	status = 1;
427 #else
428 	status = jbd2_journal_extend(handle, nblocks, 0);
429 	if (status < 0) {
430 		mlog_errno(status);
431 		goto bail;
432 	}
433 #endif
434 
435 	if (status > 0) {
436 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
437 		status = jbd2_journal_restart(handle,
438 					      old_nblocks + nblocks);
439 		if (status < 0) {
440 			mlog_errno(status);
441 			goto bail;
442 		}
443 	}
444 
445 	status = 0;
446 bail:
447 	return status;
448 }
449 
450 /*
451  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
452  * If that fails, restart the transaction & regain write access for the
453  * buffer head which is used for metadata modifications.
454  * Taken from Ext4: extend_or_restart_transaction()
455  */
456 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
457 {
458 	int status, old_nblks;
459 
460 	BUG_ON(!handle);
461 
462 	old_nblks = jbd2_handle_buffer_credits(handle);
463 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
464 
465 	if (old_nblks < thresh)
466 		return 0;
467 
468 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
469 	if (status < 0) {
470 		mlog_errno(status);
471 		goto bail;
472 	}
473 
474 	if (status > 0) {
475 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
476 		if (status < 0)
477 			mlog_errno(status);
478 	}
479 
480 bail:
481 	return status;
482 }
483 
484 
485 struct ocfs2_triggers {
486 	struct jbd2_buffer_trigger_type	ot_triggers;
487 	int				ot_offset;
488 };
489 
490 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
491 {
492 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
493 }
494 
495 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
496 				 struct buffer_head *bh,
497 				 void *data, size_t size)
498 {
499 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
500 
501 	/*
502 	 * We aren't guaranteed to have the superblock here, so we
503 	 * must unconditionally compute the ecc data.
504 	 * __ocfs2_journal_access() will only set the triggers if
505 	 * metaecc is enabled.
506 	 */
507 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
508 }
509 
510 /*
511  * Quota blocks have their own trigger because the struct ocfs2_block_check
512  * offset depends on the blocksize.
513  */
514 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
515 				 struct buffer_head *bh,
516 				 void *data, size_t size)
517 {
518 	struct ocfs2_disk_dqtrailer *dqt =
519 		ocfs2_block_dqtrailer(size, data);
520 
521 	/*
522 	 * We aren't guaranteed to have the superblock here, so we
523 	 * must unconditionally compute the ecc data.
524 	 * __ocfs2_journal_access() will only set the triggers if
525 	 * metaecc is enabled.
526 	 */
527 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
528 }
529 
530 /*
531  * Directory blocks also have their own trigger because the
532  * struct ocfs2_block_check offset depends on the blocksize.
533  */
534 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
535 				 struct buffer_head *bh,
536 				 void *data, size_t size)
537 {
538 	struct ocfs2_dir_block_trailer *trailer =
539 		ocfs2_dir_trailer_from_size(size, data);
540 
541 	/*
542 	 * We aren't guaranteed to have the superblock here, so we
543 	 * must unconditionally compute the ecc data.
544 	 * __ocfs2_journal_access() will only set the triggers if
545 	 * metaecc is enabled.
546 	 */
547 	ocfs2_block_check_compute(data, size, &trailer->db_check);
548 }
549 
550 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
551 				struct buffer_head *bh)
552 {
553 	mlog(ML_ERROR,
554 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
555 	     "bh->b_blocknr = %llu\n",
556 	     (unsigned long)bh,
557 	     (unsigned long long)bh->b_blocknr);
558 
559 	ocfs2_error(bh->b_bdev->bd_super,
560 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
561 }
562 
563 static struct ocfs2_triggers di_triggers = {
564 	.ot_triggers = {
565 		.t_frozen = ocfs2_frozen_trigger,
566 		.t_abort = ocfs2_abort_trigger,
567 	},
568 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
569 };
570 
571 static struct ocfs2_triggers eb_triggers = {
572 	.ot_triggers = {
573 		.t_frozen = ocfs2_frozen_trigger,
574 		.t_abort = ocfs2_abort_trigger,
575 	},
576 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
577 };
578 
579 static struct ocfs2_triggers rb_triggers = {
580 	.ot_triggers = {
581 		.t_frozen = ocfs2_frozen_trigger,
582 		.t_abort = ocfs2_abort_trigger,
583 	},
584 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
585 };
586 
587 static struct ocfs2_triggers gd_triggers = {
588 	.ot_triggers = {
589 		.t_frozen = ocfs2_frozen_trigger,
590 		.t_abort = ocfs2_abort_trigger,
591 	},
592 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
593 };
594 
595 static struct ocfs2_triggers db_triggers = {
596 	.ot_triggers = {
597 		.t_frozen = ocfs2_db_frozen_trigger,
598 		.t_abort = ocfs2_abort_trigger,
599 	},
600 };
601 
602 static struct ocfs2_triggers xb_triggers = {
603 	.ot_triggers = {
604 		.t_frozen = ocfs2_frozen_trigger,
605 		.t_abort = ocfs2_abort_trigger,
606 	},
607 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
608 };
609 
610 static struct ocfs2_triggers dq_triggers = {
611 	.ot_triggers = {
612 		.t_frozen = ocfs2_dq_frozen_trigger,
613 		.t_abort = ocfs2_abort_trigger,
614 	},
615 };
616 
617 static struct ocfs2_triggers dr_triggers = {
618 	.ot_triggers = {
619 		.t_frozen = ocfs2_frozen_trigger,
620 		.t_abort = ocfs2_abort_trigger,
621 	},
622 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
623 };
624 
625 static struct ocfs2_triggers dl_triggers = {
626 	.ot_triggers = {
627 		.t_frozen = ocfs2_frozen_trigger,
628 		.t_abort = ocfs2_abort_trigger,
629 	},
630 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
631 };
632 
633 static int __ocfs2_journal_access(handle_t *handle,
634 				  struct ocfs2_caching_info *ci,
635 				  struct buffer_head *bh,
636 				  struct ocfs2_triggers *triggers,
637 				  int type)
638 {
639 	int status;
640 	struct ocfs2_super *osb =
641 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
642 
643 	BUG_ON(!ci || !ci->ci_ops);
644 	BUG_ON(!handle);
645 	BUG_ON(!bh);
646 
647 	trace_ocfs2_journal_access(
648 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
649 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
650 
651 	/* we can safely remove this assertion after testing. */
652 	if (!buffer_uptodate(bh)) {
653 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
654 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
655 		     (unsigned long long)bh->b_blocknr, bh->b_state);
656 
657 		lock_buffer(bh);
658 		/*
659 		 * A previous transaction with a couple of buffer heads fail
660 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
661 		 * For current transaction, the bh is just among those error
662 		 * bhs which previous transaction handle. We can't just clear
663 		 * its BH_Write_EIO and reuse directly, since other bhs are
664 		 * not written to disk yet and that will cause metadata
665 		 * inconsistency. So we should set fs read-only to avoid
666 		 * further damage.
667 		 */
668 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
669 			unlock_buffer(bh);
670 			return ocfs2_error(osb->sb, "A previous attempt to "
671 					"write this buffer head failed\n");
672 		}
673 		unlock_buffer(bh);
674 	}
675 
676 	/* Set the current transaction information on the ci so
677 	 * that the locking code knows whether it can drop it's locks
678 	 * on this ci or not. We're protected from the commit
679 	 * thread updating the current transaction id until
680 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
681 	 * j_trans_barrier for us. */
682 	ocfs2_set_ci_lock_trans(osb->journal, ci);
683 
684 	ocfs2_metadata_cache_io_lock(ci);
685 	switch (type) {
686 	case OCFS2_JOURNAL_ACCESS_CREATE:
687 	case OCFS2_JOURNAL_ACCESS_WRITE:
688 		status = jbd2_journal_get_write_access(handle, bh);
689 		break;
690 
691 	case OCFS2_JOURNAL_ACCESS_UNDO:
692 		status = jbd2_journal_get_undo_access(handle, bh);
693 		break;
694 
695 	default:
696 		status = -EINVAL;
697 		mlog(ML_ERROR, "Unknown access type!\n");
698 	}
699 	if (!status && ocfs2_meta_ecc(osb) && triggers)
700 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701 	ocfs2_metadata_cache_io_unlock(ci);
702 
703 	if (status < 0)
704 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705 		     status, type);
706 
707 	return status;
708 }
709 
710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711 			    struct buffer_head *bh, int type)
712 {
713 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
714 }
715 
716 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
717 			    struct buffer_head *bh, int type)
718 {
719 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
720 }
721 
722 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
723 			    struct buffer_head *bh, int type)
724 {
725 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
726 				      type);
727 }
728 
729 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
730 			    struct buffer_head *bh, int type)
731 {
732 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
733 }
734 
735 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
736 			    struct buffer_head *bh, int type)
737 {
738 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
739 }
740 
741 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
742 			    struct buffer_head *bh, int type)
743 {
744 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
745 }
746 
747 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
748 			    struct buffer_head *bh, int type)
749 {
750 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
751 }
752 
753 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
754 			    struct buffer_head *bh, int type)
755 {
756 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
757 }
758 
759 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
760 			    struct buffer_head *bh, int type)
761 {
762 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
763 }
764 
765 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
766 			 struct buffer_head *bh, int type)
767 {
768 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
769 }
770 
771 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
772 {
773 	int status;
774 
775 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
776 
777 	status = jbd2_journal_dirty_metadata(handle, bh);
778 	if (status) {
779 		mlog_errno(status);
780 		if (!is_handle_aborted(handle)) {
781 			journal_t *journal = handle->h_transaction->t_journal;
782 			struct super_block *sb = bh->b_bdev->bd_super;
783 
784 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
785 					"Aborting transaction and journal.\n");
786 			handle->h_err = status;
787 			jbd2_journal_abort_handle(handle);
788 			jbd2_journal_abort(journal, status);
789 			ocfs2_abort(sb, "Journal already aborted.\n");
790 		}
791 	}
792 }
793 
794 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
795 
796 void ocfs2_set_journal_params(struct ocfs2_super *osb)
797 {
798 	journal_t *journal = osb->journal->j_journal;
799 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
800 
801 	if (osb->osb_commit_interval)
802 		commit_interval = osb->osb_commit_interval;
803 
804 	write_lock(&journal->j_state_lock);
805 	journal->j_commit_interval = commit_interval;
806 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
807 		journal->j_flags |= JBD2_BARRIER;
808 	else
809 		journal->j_flags &= ~JBD2_BARRIER;
810 	write_unlock(&journal->j_state_lock);
811 }
812 
813 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
814 {
815 	int status = -1;
816 	struct inode *inode = NULL; /* the journal inode */
817 	journal_t *j_journal = NULL;
818 	struct ocfs2_journal *journal = NULL;
819 	struct ocfs2_dinode *di = NULL;
820 	struct buffer_head *bh = NULL;
821 	int inode_lock = 0;
822 
823 	/* initialize our journal structure */
824 	journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
825 	if (!journal) {
826 		mlog(ML_ERROR, "unable to alloc journal\n");
827 		status = -ENOMEM;
828 		goto done;
829 	}
830 	osb->journal = journal;
831 	journal->j_osb = osb;
832 
833 	atomic_set(&journal->j_num_trans, 0);
834 	init_rwsem(&journal->j_trans_barrier);
835 	init_waitqueue_head(&journal->j_checkpointed);
836 	spin_lock_init(&journal->j_lock);
837 	journal->j_trans_id = 1UL;
838 	INIT_LIST_HEAD(&journal->j_la_cleanups);
839 	INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
840 	journal->j_state = OCFS2_JOURNAL_FREE;
841 
842 	/* already have the inode for our journal */
843 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
844 					    osb->slot_num);
845 	if (inode == NULL) {
846 		status = -EACCES;
847 		mlog_errno(status);
848 		goto done;
849 	}
850 	if (is_bad_inode(inode)) {
851 		mlog(ML_ERROR, "access error (bad inode)\n");
852 		iput(inode);
853 		inode = NULL;
854 		status = -EACCES;
855 		goto done;
856 	}
857 
858 	SET_INODE_JOURNAL(inode);
859 	OCFS2_I(inode)->ip_open_count++;
860 
861 	/* Skip recovery waits here - journal inode metadata never
862 	 * changes in a live cluster so it can be considered an
863 	 * exception to the rule. */
864 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
865 	if (status < 0) {
866 		if (status != -ERESTARTSYS)
867 			mlog(ML_ERROR, "Could not get lock on journal!\n");
868 		goto done;
869 	}
870 
871 	inode_lock = 1;
872 	di = (struct ocfs2_dinode *)bh->b_data;
873 
874 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
875 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
876 		     i_size_read(inode));
877 		status = -EINVAL;
878 		goto done;
879 	}
880 
881 	trace_ocfs2_journal_init(i_size_read(inode),
882 				 (unsigned long long)inode->i_blocks,
883 				 OCFS2_I(inode)->ip_clusters);
884 
885 	/* call the kernels journal init function now */
886 	j_journal = jbd2_journal_init_inode(inode);
887 	if (j_journal == NULL) {
888 		mlog(ML_ERROR, "Linux journal layer error\n");
889 		status = -EINVAL;
890 		goto done;
891 	}
892 
893 	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
894 
895 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
896 		  OCFS2_JOURNAL_DIRTY_FL);
897 
898 	journal->j_journal = j_journal;
899 	journal->j_journal->j_submit_inode_data_buffers =
900 		jbd2_journal_submit_inode_data_buffers;
901 	journal->j_journal->j_finish_inode_data_buffers =
902 		jbd2_journal_finish_inode_data_buffers;
903 	journal->j_inode = inode;
904 	journal->j_bh = bh;
905 
906 	ocfs2_set_journal_params(osb);
907 
908 	journal->j_state = OCFS2_JOURNAL_LOADED;
909 
910 	status = 0;
911 done:
912 	if (status < 0) {
913 		if (inode_lock)
914 			ocfs2_inode_unlock(inode, 1);
915 		brelse(bh);
916 		if (inode) {
917 			OCFS2_I(inode)->ip_open_count--;
918 			iput(inode);
919 		}
920 	}
921 
922 	return status;
923 }
924 
925 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
926 {
927 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
928 }
929 
930 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
931 {
932 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
933 }
934 
935 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
936 				      int dirty, int replayed)
937 {
938 	int status;
939 	unsigned int flags;
940 	struct ocfs2_journal *journal = osb->journal;
941 	struct buffer_head *bh = journal->j_bh;
942 	struct ocfs2_dinode *fe;
943 
944 	fe = (struct ocfs2_dinode *)bh->b_data;
945 
946 	/* The journal bh on the osb always comes from ocfs2_journal_init()
947 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
948 	 * code bug if we mess it up. */
949 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
950 
951 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
952 	if (dirty)
953 		flags |= OCFS2_JOURNAL_DIRTY_FL;
954 	else
955 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
956 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
957 
958 	if (replayed)
959 		ocfs2_bump_recovery_generation(fe);
960 
961 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
962 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
963 	if (status < 0)
964 		mlog_errno(status);
965 
966 	return status;
967 }
968 
969 /*
970  * If the journal has been kmalloc'd it needs to be freed after this
971  * call.
972  */
973 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
974 {
975 	struct ocfs2_journal *journal = NULL;
976 	int status = 0;
977 	struct inode *inode = NULL;
978 	int num_running_trans = 0;
979 
980 	BUG_ON(!osb);
981 
982 	journal = osb->journal;
983 	if (!journal)
984 		goto done;
985 
986 	inode = journal->j_inode;
987 
988 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
989 		goto done;
990 
991 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
992 	if (!igrab(inode))
993 		BUG();
994 
995 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
996 	trace_ocfs2_journal_shutdown(num_running_trans);
997 
998 	/* Do a commit_cache here. It will flush our journal, *and*
999 	 * release any locks that are still held.
1000 	 * set the SHUTDOWN flag and release the trans lock.
1001 	 * the commit thread will take the trans lock for us below. */
1002 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1003 
1004 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1005 	 * drop the trans_lock (which we want to hold until we
1006 	 * completely destroy the journal. */
1007 	if (osb->commit_task) {
1008 		/* Wait for the commit thread */
1009 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1010 		kthread_stop(osb->commit_task);
1011 		osb->commit_task = NULL;
1012 	}
1013 
1014 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1015 
1016 	if (ocfs2_mount_local(osb)) {
1017 		jbd2_journal_lock_updates(journal->j_journal);
1018 		status = jbd2_journal_flush(journal->j_journal, 0);
1019 		jbd2_journal_unlock_updates(journal->j_journal);
1020 		if (status < 0)
1021 			mlog_errno(status);
1022 	}
1023 
1024 	/* Shutdown the kernel journal system */
1025 	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1026 		/*
1027 		 * Do not toggle if flush was unsuccessful otherwise
1028 		 * will leave dirty metadata in a "clean" journal
1029 		 */
1030 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1031 		if (status < 0)
1032 			mlog_errno(status);
1033 	}
1034 	journal->j_journal = NULL;
1035 
1036 	OCFS2_I(inode)->ip_open_count--;
1037 
1038 	/* unlock our journal */
1039 	ocfs2_inode_unlock(inode, 1);
1040 
1041 	brelse(journal->j_bh);
1042 	journal->j_bh = NULL;
1043 
1044 	journal->j_state = OCFS2_JOURNAL_FREE;
1045 
1046 done:
1047 	iput(inode);
1048 	kfree(journal);
1049 	osb->journal = NULL;
1050 }
1051 
1052 static void ocfs2_clear_journal_error(struct super_block *sb,
1053 				      journal_t *journal,
1054 				      int slot)
1055 {
1056 	int olderr;
1057 
1058 	olderr = jbd2_journal_errno(journal);
1059 	if (olderr) {
1060 		mlog(ML_ERROR, "File system error %d recorded in "
1061 		     "journal %u.\n", olderr, slot);
1062 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1063 		     sb->s_id);
1064 
1065 		jbd2_journal_ack_err(journal);
1066 		jbd2_journal_clear_err(journal);
1067 	}
1068 }
1069 
1070 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1071 {
1072 	int status = 0;
1073 	struct ocfs2_super *osb;
1074 
1075 	BUG_ON(!journal);
1076 
1077 	osb = journal->j_osb;
1078 
1079 	status = jbd2_journal_load(journal->j_journal);
1080 	if (status < 0) {
1081 		mlog(ML_ERROR, "Failed to load journal!\n");
1082 		goto done;
1083 	}
1084 
1085 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1086 
1087 	if (replayed) {
1088 		jbd2_journal_lock_updates(journal->j_journal);
1089 		status = jbd2_journal_flush(journal->j_journal, 0);
1090 		jbd2_journal_unlock_updates(journal->j_journal);
1091 		if (status < 0)
1092 			mlog_errno(status);
1093 	}
1094 
1095 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1096 	if (status < 0) {
1097 		mlog_errno(status);
1098 		goto done;
1099 	}
1100 
1101 	/* Launch the commit thread */
1102 	if (!local) {
1103 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1104 				"ocfs2cmt-%s", osb->uuid_str);
1105 		if (IS_ERR(osb->commit_task)) {
1106 			status = PTR_ERR(osb->commit_task);
1107 			osb->commit_task = NULL;
1108 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1109 			     "error=%d", status);
1110 			goto done;
1111 		}
1112 	} else
1113 		osb->commit_task = NULL;
1114 
1115 done:
1116 	return status;
1117 }
1118 
1119 
1120 /* 'full' flag tells us whether we clear out all blocks or if we just
1121  * mark the journal clean */
1122 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1123 {
1124 	int status;
1125 
1126 	BUG_ON(!journal);
1127 
1128 	status = jbd2_journal_wipe(journal->j_journal, full);
1129 	if (status < 0) {
1130 		mlog_errno(status);
1131 		goto bail;
1132 	}
1133 
1134 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1135 	if (status < 0)
1136 		mlog_errno(status);
1137 
1138 bail:
1139 	return status;
1140 }
1141 
1142 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1143 {
1144 	int empty;
1145 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1146 
1147 	spin_lock(&osb->osb_lock);
1148 	empty = (rm->rm_used == 0);
1149 	spin_unlock(&osb->osb_lock);
1150 
1151 	return empty;
1152 }
1153 
1154 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1155 {
1156 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1157 }
1158 
1159 /*
1160  * JBD Might read a cached version of another nodes journal file. We
1161  * don't want this as this file changes often and we get no
1162  * notification on those changes. The only way to be sure that we've
1163  * got the most up to date version of those blocks then is to force
1164  * read them off disk. Just searching through the buffer cache won't
1165  * work as there may be pages backing this file which are still marked
1166  * up to date. We know things can't change on this file underneath us
1167  * as we have the lock by now :)
1168  */
1169 static int ocfs2_force_read_journal(struct inode *inode)
1170 {
1171 	int status = 0;
1172 	int i;
1173 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1174 	struct buffer_head *bh = NULL;
1175 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1176 
1177 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1178 	v_blkno = 0;
1179 	while (v_blkno < num_blocks) {
1180 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1181 						     &p_blkno, &p_blocks, NULL);
1182 		if (status < 0) {
1183 			mlog_errno(status);
1184 			goto bail;
1185 		}
1186 
1187 		for (i = 0; i < p_blocks; i++, p_blkno++) {
1188 			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1189 					osb->sb->s_blocksize);
1190 			/* block not cached. */
1191 			if (!bh)
1192 				continue;
1193 
1194 			brelse(bh);
1195 			bh = NULL;
1196 			/* We are reading journal data which should not
1197 			 * be put in the uptodate cache.
1198 			 */
1199 			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1200 			if (status < 0) {
1201 				mlog_errno(status);
1202 				goto bail;
1203 			}
1204 
1205 			brelse(bh);
1206 			bh = NULL;
1207 		}
1208 
1209 		v_blkno += p_blocks;
1210 	}
1211 
1212 bail:
1213 	return status;
1214 }
1215 
1216 struct ocfs2_la_recovery_item {
1217 	struct list_head	lri_list;
1218 	int			lri_slot;
1219 	struct ocfs2_dinode	*lri_la_dinode;
1220 	struct ocfs2_dinode	*lri_tl_dinode;
1221 	struct ocfs2_quota_recovery *lri_qrec;
1222 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1223 };
1224 
1225 /* Does the second half of the recovery process. By this point, the
1226  * node is marked clean and can actually be considered recovered,
1227  * hence it's no longer in the recovery map, but there's still some
1228  * cleanup we can do which shouldn't happen within the recovery thread
1229  * as locking in that context becomes very difficult if we are to take
1230  * recovering nodes into account.
1231  *
1232  * NOTE: This function can and will sleep on recovery of other nodes
1233  * during cluster locking, just like any other ocfs2 process.
1234  */
1235 void ocfs2_complete_recovery(struct work_struct *work)
1236 {
1237 	int ret = 0;
1238 	struct ocfs2_journal *journal =
1239 		container_of(work, struct ocfs2_journal, j_recovery_work);
1240 	struct ocfs2_super *osb = journal->j_osb;
1241 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1242 	struct ocfs2_la_recovery_item *item, *n;
1243 	struct ocfs2_quota_recovery *qrec;
1244 	enum ocfs2_orphan_reco_type orphan_reco_type;
1245 	LIST_HEAD(tmp_la_list);
1246 
1247 	trace_ocfs2_complete_recovery(
1248 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1249 
1250 	spin_lock(&journal->j_lock);
1251 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1252 	spin_unlock(&journal->j_lock);
1253 
1254 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1255 		list_del_init(&item->lri_list);
1256 
1257 		ocfs2_wait_on_quotas(osb);
1258 
1259 		la_dinode = item->lri_la_dinode;
1260 		tl_dinode = item->lri_tl_dinode;
1261 		qrec = item->lri_qrec;
1262 		orphan_reco_type = item->lri_orphan_reco_type;
1263 
1264 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1265 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1266 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1267 			qrec);
1268 
1269 		if (la_dinode) {
1270 			ret = ocfs2_complete_local_alloc_recovery(osb,
1271 								  la_dinode);
1272 			if (ret < 0)
1273 				mlog_errno(ret);
1274 
1275 			kfree(la_dinode);
1276 		}
1277 
1278 		if (tl_dinode) {
1279 			ret = ocfs2_complete_truncate_log_recovery(osb,
1280 								   tl_dinode);
1281 			if (ret < 0)
1282 				mlog_errno(ret);
1283 
1284 			kfree(tl_dinode);
1285 		}
1286 
1287 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1288 				orphan_reco_type);
1289 		if (ret < 0)
1290 			mlog_errno(ret);
1291 
1292 		if (qrec) {
1293 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1294 							  item->lri_slot);
1295 			if (ret < 0)
1296 				mlog_errno(ret);
1297 			/* Recovery info is already freed now */
1298 		}
1299 
1300 		kfree(item);
1301 	}
1302 
1303 	trace_ocfs2_complete_recovery_end(ret);
1304 }
1305 
1306 /* NOTE: This function always eats your references to la_dinode and
1307  * tl_dinode, either manually on error, or by passing them to
1308  * ocfs2_complete_recovery */
1309 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1310 					    int slot_num,
1311 					    struct ocfs2_dinode *la_dinode,
1312 					    struct ocfs2_dinode *tl_dinode,
1313 					    struct ocfs2_quota_recovery *qrec,
1314 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1315 {
1316 	struct ocfs2_la_recovery_item *item;
1317 
1318 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1319 	if (!item) {
1320 		/* Though we wish to avoid it, we are in fact safe in
1321 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1322 		 * than capable of reclaiming unused space. */
1323 		kfree(la_dinode);
1324 		kfree(tl_dinode);
1325 
1326 		if (qrec)
1327 			ocfs2_free_quota_recovery(qrec);
1328 
1329 		mlog_errno(-ENOMEM);
1330 		return;
1331 	}
1332 
1333 	INIT_LIST_HEAD(&item->lri_list);
1334 	item->lri_la_dinode = la_dinode;
1335 	item->lri_slot = slot_num;
1336 	item->lri_tl_dinode = tl_dinode;
1337 	item->lri_qrec = qrec;
1338 	item->lri_orphan_reco_type = orphan_reco_type;
1339 
1340 	spin_lock(&journal->j_lock);
1341 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1342 	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1343 	spin_unlock(&journal->j_lock);
1344 }
1345 
1346 /* Called by the mount code to queue recovery the last part of
1347  * recovery for it's own and offline slot(s). */
1348 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1349 {
1350 	struct ocfs2_journal *journal = osb->journal;
1351 
1352 	if (ocfs2_is_hard_readonly(osb))
1353 		return;
1354 
1355 	/* No need to queue up our truncate_log as regular cleanup will catch
1356 	 * that */
1357 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1358 					osb->local_alloc_copy, NULL, NULL,
1359 					ORPHAN_NEED_TRUNCATE);
1360 	ocfs2_schedule_truncate_log_flush(osb, 0);
1361 
1362 	osb->local_alloc_copy = NULL;
1363 
1364 	/* queue to recover orphan slots for all offline slots */
1365 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1366 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1367 	ocfs2_free_replay_slots(osb);
1368 }
1369 
1370 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1371 {
1372 	if (osb->quota_rec) {
1373 		ocfs2_queue_recovery_completion(osb->journal,
1374 						osb->slot_num,
1375 						NULL,
1376 						NULL,
1377 						osb->quota_rec,
1378 						ORPHAN_NEED_TRUNCATE);
1379 		osb->quota_rec = NULL;
1380 	}
1381 }
1382 
1383 static int __ocfs2_recovery_thread(void *arg)
1384 {
1385 	int status, node_num, slot_num;
1386 	struct ocfs2_super *osb = arg;
1387 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1388 	int *rm_quota = NULL;
1389 	int rm_quota_used = 0, i;
1390 	struct ocfs2_quota_recovery *qrec;
1391 
1392 	/* Whether the quota supported. */
1393 	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1394 			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1395 		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1396 			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1397 
1398 	status = ocfs2_wait_on_mount(osb);
1399 	if (status < 0) {
1400 		goto bail;
1401 	}
1402 
1403 	if (quota_enabled) {
1404 		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1405 		if (!rm_quota) {
1406 			status = -ENOMEM;
1407 			goto bail;
1408 		}
1409 	}
1410 restart:
1411 	status = ocfs2_super_lock(osb, 1);
1412 	if (status < 0) {
1413 		mlog_errno(status);
1414 		goto bail;
1415 	}
1416 
1417 	status = ocfs2_compute_replay_slots(osb);
1418 	if (status < 0)
1419 		mlog_errno(status);
1420 
1421 	/* queue recovery for our own slot */
1422 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1423 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1424 
1425 	spin_lock(&osb->osb_lock);
1426 	while (rm->rm_used) {
1427 		/* It's always safe to remove entry zero, as we won't
1428 		 * clear it until ocfs2_recover_node() has succeeded. */
1429 		node_num = rm->rm_entries[0];
1430 		spin_unlock(&osb->osb_lock);
1431 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1432 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1433 		if (slot_num == -ENOENT) {
1434 			status = 0;
1435 			goto skip_recovery;
1436 		}
1437 
1438 		/* It is a bit subtle with quota recovery. We cannot do it
1439 		 * immediately because we have to obtain cluster locks from
1440 		 * quota files and we also don't want to just skip it because
1441 		 * then quota usage would be out of sync until some node takes
1442 		 * the slot. So we remember which nodes need quota recovery
1443 		 * and when everything else is done, we recover quotas. */
1444 		if (quota_enabled) {
1445 			for (i = 0; i < rm_quota_used
1446 					&& rm_quota[i] != slot_num; i++)
1447 				;
1448 
1449 			if (i == rm_quota_used)
1450 				rm_quota[rm_quota_used++] = slot_num;
1451 		}
1452 
1453 		status = ocfs2_recover_node(osb, node_num, slot_num);
1454 skip_recovery:
1455 		if (!status) {
1456 			ocfs2_recovery_map_clear(osb, node_num);
1457 		} else {
1458 			mlog(ML_ERROR,
1459 			     "Error %d recovering node %d on device (%u,%u)!\n",
1460 			     status, node_num,
1461 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1462 			mlog(ML_ERROR, "Volume requires unmount.\n");
1463 		}
1464 
1465 		spin_lock(&osb->osb_lock);
1466 	}
1467 	spin_unlock(&osb->osb_lock);
1468 	trace_ocfs2_recovery_thread_end(status);
1469 
1470 	/* Refresh all journal recovery generations from disk */
1471 	status = ocfs2_check_journals_nolocks(osb);
1472 	status = (status == -EROFS) ? 0 : status;
1473 	if (status < 0)
1474 		mlog_errno(status);
1475 
1476 	/* Now it is right time to recover quotas... We have to do this under
1477 	 * superblock lock so that no one can start using the slot (and crash)
1478 	 * before we recover it */
1479 	if (quota_enabled) {
1480 		for (i = 0; i < rm_quota_used; i++) {
1481 			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1482 			if (IS_ERR(qrec)) {
1483 				status = PTR_ERR(qrec);
1484 				mlog_errno(status);
1485 				continue;
1486 			}
1487 			ocfs2_queue_recovery_completion(osb->journal,
1488 					rm_quota[i],
1489 					NULL, NULL, qrec,
1490 					ORPHAN_NEED_TRUNCATE);
1491 		}
1492 	}
1493 
1494 	ocfs2_super_unlock(osb, 1);
1495 
1496 	/* queue recovery for offline slots */
1497 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1498 
1499 bail:
1500 	mutex_lock(&osb->recovery_lock);
1501 	if (!status && !ocfs2_recovery_completed(osb)) {
1502 		mutex_unlock(&osb->recovery_lock);
1503 		goto restart;
1504 	}
1505 
1506 	ocfs2_free_replay_slots(osb);
1507 	osb->recovery_thread_task = NULL;
1508 	mb(); /* sync with ocfs2_recovery_thread_running */
1509 	wake_up(&osb->recovery_event);
1510 
1511 	mutex_unlock(&osb->recovery_lock);
1512 
1513 	if (quota_enabled)
1514 		kfree(rm_quota);
1515 
1516 	return status;
1517 }
1518 
1519 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1520 {
1521 	mutex_lock(&osb->recovery_lock);
1522 
1523 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1524 		osb->disable_recovery, osb->recovery_thread_task,
1525 		osb->disable_recovery ?
1526 		-1 : ocfs2_recovery_map_set(osb, node_num));
1527 
1528 	if (osb->disable_recovery)
1529 		goto out;
1530 
1531 	if (osb->recovery_thread_task)
1532 		goto out;
1533 
1534 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1535 			"ocfs2rec-%s", osb->uuid_str);
1536 	if (IS_ERR(osb->recovery_thread_task)) {
1537 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1538 		osb->recovery_thread_task = NULL;
1539 	}
1540 
1541 out:
1542 	mutex_unlock(&osb->recovery_lock);
1543 	wake_up(&osb->recovery_event);
1544 }
1545 
1546 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1547 				    int slot_num,
1548 				    struct buffer_head **bh,
1549 				    struct inode **ret_inode)
1550 {
1551 	int status = -EACCES;
1552 	struct inode *inode = NULL;
1553 
1554 	BUG_ON(slot_num >= osb->max_slots);
1555 
1556 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1557 					    slot_num);
1558 	if (!inode || is_bad_inode(inode)) {
1559 		mlog_errno(status);
1560 		goto bail;
1561 	}
1562 	SET_INODE_JOURNAL(inode);
1563 
1564 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1565 	if (status < 0) {
1566 		mlog_errno(status);
1567 		goto bail;
1568 	}
1569 
1570 	status = 0;
1571 
1572 bail:
1573 	if (inode) {
1574 		if (status || !ret_inode)
1575 			iput(inode);
1576 		else
1577 			*ret_inode = inode;
1578 	}
1579 	return status;
1580 }
1581 
1582 /* Does the actual journal replay and marks the journal inode as
1583  * clean. Will only replay if the journal inode is marked dirty. */
1584 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1585 				int node_num,
1586 				int slot_num)
1587 {
1588 	int status;
1589 	int got_lock = 0;
1590 	unsigned int flags;
1591 	struct inode *inode = NULL;
1592 	struct ocfs2_dinode *fe;
1593 	journal_t *journal = NULL;
1594 	struct buffer_head *bh = NULL;
1595 	u32 slot_reco_gen;
1596 
1597 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1598 	if (status) {
1599 		mlog_errno(status);
1600 		goto done;
1601 	}
1602 
1603 	fe = (struct ocfs2_dinode *)bh->b_data;
1604 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1605 	brelse(bh);
1606 	bh = NULL;
1607 
1608 	/*
1609 	 * As the fs recovery is asynchronous, there is a small chance that
1610 	 * another node mounted (and recovered) the slot before the recovery
1611 	 * thread could get the lock. To handle that, we dirty read the journal
1612 	 * inode for that slot to get the recovery generation. If it is
1613 	 * different than what we expected, the slot has been recovered.
1614 	 * If not, it needs recovery.
1615 	 */
1616 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1617 		trace_ocfs2_replay_journal_recovered(slot_num,
1618 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1619 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1620 		status = -EBUSY;
1621 		goto done;
1622 	}
1623 
1624 	/* Continue with recovery as the journal has not yet been recovered */
1625 
1626 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1627 	if (status < 0) {
1628 		trace_ocfs2_replay_journal_lock_err(status);
1629 		if (status != -ERESTARTSYS)
1630 			mlog(ML_ERROR, "Could not lock journal!\n");
1631 		goto done;
1632 	}
1633 	got_lock = 1;
1634 
1635 	fe = (struct ocfs2_dinode *) bh->b_data;
1636 
1637 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1638 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1639 
1640 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1641 		trace_ocfs2_replay_journal_skip(node_num);
1642 		/* Refresh recovery generation for the slot */
1643 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1644 		goto done;
1645 	}
1646 
1647 	/* we need to run complete recovery for offline orphan slots */
1648 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1649 
1650 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1651 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1652 	       MINOR(osb->sb->s_dev));
1653 
1654 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1655 
1656 	status = ocfs2_force_read_journal(inode);
1657 	if (status < 0) {
1658 		mlog_errno(status);
1659 		goto done;
1660 	}
1661 
1662 	journal = jbd2_journal_init_inode(inode);
1663 	if (journal == NULL) {
1664 		mlog(ML_ERROR, "Linux journal layer error\n");
1665 		status = -EIO;
1666 		goto done;
1667 	}
1668 
1669 	status = jbd2_journal_load(journal);
1670 	if (status < 0) {
1671 		mlog_errno(status);
1672 		if (!igrab(inode))
1673 			BUG();
1674 		jbd2_journal_destroy(journal);
1675 		goto done;
1676 	}
1677 
1678 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1679 
1680 	/* wipe the journal */
1681 	jbd2_journal_lock_updates(journal);
1682 	status = jbd2_journal_flush(journal, 0);
1683 	jbd2_journal_unlock_updates(journal);
1684 	if (status < 0)
1685 		mlog_errno(status);
1686 
1687 	/* This will mark the node clean */
1688 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1689 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1690 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1691 
1692 	/* Increment recovery generation to indicate successful recovery */
1693 	ocfs2_bump_recovery_generation(fe);
1694 	osb->slot_recovery_generations[slot_num] =
1695 					ocfs2_get_recovery_generation(fe);
1696 
1697 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1698 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1699 	if (status < 0)
1700 		mlog_errno(status);
1701 
1702 	if (!igrab(inode))
1703 		BUG();
1704 
1705 	jbd2_journal_destroy(journal);
1706 
1707 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1708 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1709 	       MINOR(osb->sb->s_dev));
1710 done:
1711 	/* drop the lock on this nodes journal */
1712 	if (got_lock)
1713 		ocfs2_inode_unlock(inode, 1);
1714 
1715 	iput(inode);
1716 	brelse(bh);
1717 
1718 	return status;
1719 }
1720 
1721 /*
1722  * Do the most important parts of node recovery:
1723  *  - Replay it's journal
1724  *  - Stamp a clean local allocator file
1725  *  - Stamp a clean truncate log
1726  *  - Mark the node clean
1727  *
1728  * If this function completes without error, a node in OCFS2 can be
1729  * said to have been safely recovered. As a result, failure during the
1730  * second part of a nodes recovery process (local alloc recovery) is
1731  * far less concerning.
1732  */
1733 static int ocfs2_recover_node(struct ocfs2_super *osb,
1734 			      int node_num, int slot_num)
1735 {
1736 	int status = 0;
1737 	struct ocfs2_dinode *la_copy = NULL;
1738 	struct ocfs2_dinode *tl_copy = NULL;
1739 
1740 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1741 
1742 	/* Should not ever be called to recover ourselves -- in that
1743 	 * case we should've called ocfs2_journal_load instead. */
1744 	BUG_ON(osb->node_num == node_num);
1745 
1746 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1747 	if (status < 0) {
1748 		if (status == -EBUSY) {
1749 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1750 			status = 0;
1751 			goto done;
1752 		}
1753 		mlog_errno(status);
1754 		goto done;
1755 	}
1756 
1757 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1758 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1759 	if (status < 0) {
1760 		mlog_errno(status);
1761 		goto done;
1762 	}
1763 
1764 	/* An error from begin_truncate_log_recovery is not
1765 	 * serious enough to warrant halting the rest of
1766 	 * recovery. */
1767 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1768 	if (status < 0)
1769 		mlog_errno(status);
1770 
1771 	/* Likewise, this would be a strange but ultimately not so
1772 	 * harmful place to get an error... */
1773 	status = ocfs2_clear_slot(osb, slot_num);
1774 	if (status < 0)
1775 		mlog_errno(status);
1776 
1777 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1778 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1779 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1780 
1781 	status = 0;
1782 done:
1783 
1784 	return status;
1785 }
1786 
1787 /* Test node liveness by trylocking his journal. If we get the lock,
1788  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1789  * still alive (we couldn't get the lock) and < 0 on error. */
1790 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1791 				 int slot_num)
1792 {
1793 	int status, flags;
1794 	struct inode *inode = NULL;
1795 
1796 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1797 					    slot_num);
1798 	if (inode == NULL) {
1799 		mlog(ML_ERROR, "access error\n");
1800 		status = -EACCES;
1801 		goto bail;
1802 	}
1803 	if (is_bad_inode(inode)) {
1804 		mlog(ML_ERROR, "access error (bad inode)\n");
1805 		iput(inode);
1806 		inode = NULL;
1807 		status = -EACCES;
1808 		goto bail;
1809 	}
1810 	SET_INODE_JOURNAL(inode);
1811 
1812 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1813 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1814 	if (status < 0) {
1815 		if (status != -EAGAIN)
1816 			mlog_errno(status);
1817 		goto bail;
1818 	}
1819 
1820 	ocfs2_inode_unlock(inode, 1);
1821 bail:
1822 	iput(inode);
1823 
1824 	return status;
1825 }
1826 
1827 /* Call this underneath ocfs2_super_lock. It also assumes that the
1828  * slot info struct has been updated from disk. */
1829 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1830 {
1831 	unsigned int node_num;
1832 	int status, i;
1833 	u32 gen;
1834 	struct buffer_head *bh = NULL;
1835 	struct ocfs2_dinode *di;
1836 
1837 	/* This is called with the super block cluster lock, so we
1838 	 * know that the slot map can't change underneath us. */
1839 
1840 	for (i = 0; i < osb->max_slots; i++) {
1841 		/* Read journal inode to get the recovery generation */
1842 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1843 		if (status) {
1844 			mlog_errno(status);
1845 			goto bail;
1846 		}
1847 		di = (struct ocfs2_dinode *)bh->b_data;
1848 		gen = ocfs2_get_recovery_generation(di);
1849 		brelse(bh);
1850 		bh = NULL;
1851 
1852 		spin_lock(&osb->osb_lock);
1853 		osb->slot_recovery_generations[i] = gen;
1854 
1855 		trace_ocfs2_mark_dead_nodes(i,
1856 					    osb->slot_recovery_generations[i]);
1857 
1858 		if (i == osb->slot_num) {
1859 			spin_unlock(&osb->osb_lock);
1860 			continue;
1861 		}
1862 
1863 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1864 		if (status == -ENOENT) {
1865 			spin_unlock(&osb->osb_lock);
1866 			continue;
1867 		}
1868 
1869 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1870 			spin_unlock(&osb->osb_lock);
1871 			continue;
1872 		}
1873 		spin_unlock(&osb->osb_lock);
1874 
1875 		/* Ok, we have a slot occupied by another node which
1876 		 * is not in the recovery map. We trylock his journal
1877 		 * file here to test if he's alive. */
1878 		status = ocfs2_trylock_journal(osb, i);
1879 		if (!status) {
1880 			/* Since we're called from mount, we know that
1881 			 * the recovery thread can't race us on
1882 			 * setting / checking the recovery bits. */
1883 			ocfs2_recovery_thread(osb, node_num);
1884 		} else if ((status < 0) && (status != -EAGAIN)) {
1885 			mlog_errno(status);
1886 			goto bail;
1887 		}
1888 	}
1889 
1890 	status = 0;
1891 bail:
1892 	return status;
1893 }
1894 
1895 /*
1896  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1897  * randomness to the timeout to minimize multple nodes firing the timer at the
1898  * same time.
1899  */
1900 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1901 {
1902 	unsigned long time;
1903 
1904 	get_random_bytes(&time, sizeof(time));
1905 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1906 	return msecs_to_jiffies(time);
1907 }
1908 
1909 /*
1910  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1911  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1912  * is done to catch any orphans that are left over in orphan directories.
1913  *
1914  * It scans all slots, even ones that are in use. It does so to handle the
1915  * case described below:
1916  *
1917  *   Node 1 has an inode it was using. The dentry went away due to memory
1918  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1919  *   has the open lock.
1920  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1921  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1922  *   open lock, sees that another node has a PR, and does nothing.
1923  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1924  *   open lock, sees the PR still, and does nothing.
1925  *   Basically, we have to trigger an orphan iput on node 1. The only way
1926  *   for this to happen is if node 1 runs node 2's orphan dir.
1927  *
1928  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1929  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1930  * stored in LVB. If the sequence number has changed, it means some other
1931  * node has done the scan.  This node skips the scan and tracks the
1932  * sequence number.  If the sequence number didn't change, it means a scan
1933  * hasn't happened.  The node queues a scan and increments the
1934  * sequence number in the LVB.
1935  */
1936 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1937 {
1938 	struct ocfs2_orphan_scan *os;
1939 	int status, i;
1940 	u32 seqno = 0;
1941 
1942 	os = &osb->osb_orphan_scan;
1943 
1944 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1945 		goto out;
1946 
1947 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1948 					    atomic_read(&os->os_state));
1949 
1950 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1951 	if (status < 0) {
1952 		if (status != -EAGAIN)
1953 			mlog_errno(status);
1954 		goto out;
1955 	}
1956 
1957 	/* Do no queue the tasks if the volume is being umounted */
1958 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1959 		goto unlock;
1960 
1961 	if (os->os_seqno != seqno) {
1962 		os->os_seqno = seqno;
1963 		goto unlock;
1964 	}
1965 
1966 	for (i = 0; i < osb->max_slots; i++)
1967 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1968 						NULL, ORPHAN_NO_NEED_TRUNCATE);
1969 	/*
1970 	 * We queued a recovery on orphan slots, increment the sequence
1971 	 * number and update LVB so other node will skip the scan for a while
1972 	 */
1973 	seqno++;
1974 	os->os_count++;
1975 	os->os_scantime = ktime_get_seconds();
1976 unlock:
1977 	ocfs2_orphan_scan_unlock(osb, seqno);
1978 out:
1979 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1980 					  atomic_read(&os->os_state));
1981 	return;
1982 }
1983 
1984 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1985 static void ocfs2_orphan_scan_work(struct work_struct *work)
1986 {
1987 	struct ocfs2_orphan_scan *os;
1988 	struct ocfs2_super *osb;
1989 
1990 	os = container_of(work, struct ocfs2_orphan_scan,
1991 			  os_orphan_scan_work.work);
1992 	osb = os->os_osb;
1993 
1994 	mutex_lock(&os->os_lock);
1995 	ocfs2_queue_orphan_scan(osb);
1996 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1997 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1998 				      ocfs2_orphan_scan_timeout());
1999 	mutex_unlock(&os->os_lock);
2000 }
2001 
2002 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2003 {
2004 	struct ocfs2_orphan_scan *os;
2005 
2006 	os = &osb->osb_orphan_scan;
2007 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2008 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2009 		mutex_lock(&os->os_lock);
2010 		cancel_delayed_work(&os->os_orphan_scan_work);
2011 		mutex_unlock(&os->os_lock);
2012 	}
2013 }
2014 
2015 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2016 {
2017 	struct ocfs2_orphan_scan *os;
2018 
2019 	os = &osb->osb_orphan_scan;
2020 	os->os_osb = osb;
2021 	os->os_count = 0;
2022 	os->os_seqno = 0;
2023 	mutex_init(&os->os_lock);
2024 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2025 }
2026 
2027 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2028 {
2029 	struct ocfs2_orphan_scan *os;
2030 
2031 	os = &osb->osb_orphan_scan;
2032 	os->os_scantime = ktime_get_seconds();
2033 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2034 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2035 	else {
2036 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2037 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2038 				   ocfs2_orphan_scan_timeout());
2039 	}
2040 }
2041 
2042 struct ocfs2_orphan_filldir_priv {
2043 	struct dir_context	ctx;
2044 	struct inode		*head;
2045 	struct ocfs2_super	*osb;
2046 	enum ocfs2_orphan_reco_type orphan_reco_type;
2047 };
2048 
2049 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2050 				int name_len, loff_t pos, u64 ino,
2051 				unsigned type)
2052 {
2053 	struct ocfs2_orphan_filldir_priv *p =
2054 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2055 	struct inode *iter;
2056 
2057 	if (name_len == 1 && !strncmp(".", name, 1))
2058 		return 0;
2059 	if (name_len == 2 && !strncmp("..", name, 2))
2060 		return 0;
2061 
2062 	/* do not include dio entry in case of orphan scan */
2063 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2064 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2065 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2066 		return 0;
2067 
2068 	/* Skip bad inodes so that recovery can continue */
2069 	iter = ocfs2_iget(p->osb, ino,
2070 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2071 	if (IS_ERR(iter))
2072 		return 0;
2073 
2074 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2075 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2076 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2077 
2078 	/* Skip inodes which are already added to recover list, since dio may
2079 	 * happen concurrently with unlink/rename */
2080 	if (OCFS2_I(iter)->ip_next_orphan) {
2081 		iput(iter);
2082 		return 0;
2083 	}
2084 
2085 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2086 	/* No locking is required for the next_orphan queue as there
2087 	 * is only ever a single process doing orphan recovery. */
2088 	OCFS2_I(iter)->ip_next_orphan = p->head;
2089 	p->head = iter;
2090 
2091 	return 0;
2092 }
2093 
2094 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2095 			       int slot,
2096 			       struct inode **head,
2097 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2098 {
2099 	int status;
2100 	struct inode *orphan_dir_inode = NULL;
2101 	struct ocfs2_orphan_filldir_priv priv = {
2102 		.ctx.actor = ocfs2_orphan_filldir,
2103 		.osb = osb,
2104 		.head = *head,
2105 		.orphan_reco_type = orphan_reco_type
2106 	};
2107 
2108 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2109 						       ORPHAN_DIR_SYSTEM_INODE,
2110 						       slot);
2111 	if  (!orphan_dir_inode) {
2112 		status = -ENOENT;
2113 		mlog_errno(status);
2114 		return status;
2115 	}
2116 
2117 	inode_lock(orphan_dir_inode);
2118 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2119 	if (status < 0) {
2120 		mlog_errno(status);
2121 		goto out;
2122 	}
2123 
2124 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2125 	if (status) {
2126 		mlog_errno(status);
2127 		goto out_cluster;
2128 	}
2129 
2130 	*head = priv.head;
2131 
2132 out_cluster:
2133 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2134 out:
2135 	inode_unlock(orphan_dir_inode);
2136 	iput(orphan_dir_inode);
2137 	return status;
2138 }
2139 
2140 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2141 					      int slot)
2142 {
2143 	int ret;
2144 
2145 	spin_lock(&osb->osb_lock);
2146 	ret = !osb->osb_orphan_wipes[slot];
2147 	spin_unlock(&osb->osb_lock);
2148 	return ret;
2149 }
2150 
2151 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2152 					     int slot)
2153 {
2154 	spin_lock(&osb->osb_lock);
2155 	/* Mark ourselves such that new processes in delete_inode()
2156 	 * know to quit early. */
2157 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2158 	while (osb->osb_orphan_wipes[slot]) {
2159 		/* If any processes are already in the middle of an
2160 		 * orphan wipe on this dir, then we need to wait for
2161 		 * them. */
2162 		spin_unlock(&osb->osb_lock);
2163 		wait_event_interruptible(osb->osb_wipe_event,
2164 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2165 		spin_lock(&osb->osb_lock);
2166 	}
2167 	spin_unlock(&osb->osb_lock);
2168 }
2169 
2170 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2171 					      int slot)
2172 {
2173 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2174 }
2175 
2176 /*
2177  * Orphan recovery. Each mounted node has it's own orphan dir which we
2178  * must run during recovery. Our strategy here is to build a list of
2179  * the inodes in the orphan dir and iget/iput them. The VFS does
2180  * (most) of the rest of the work.
2181  *
2182  * Orphan recovery can happen at any time, not just mount so we have a
2183  * couple of extra considerations.
2184  *
2185  * - We grab as many inodes as we can under the orphan dir lock -
2186  *   doing iget() outside the orphan dir risks getting a reference on
2187  *   an invalid inode.
2188  * - We must be sure not to deadlock with other processes on the
2189  *   system wanting to run delete_inode(). This can happen when they go
2190  *   to lock the orphan dir and the orphan recovery process attempts to
2191  *   iget() inside the orphan dir lock. This can be avoided by
2192  *   advertising our state to ocfs2_delete_inode().
2193  */
2194 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2195 				 int slot,
2196 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2197 {
2198 	int ret = 0;
2199 	struct inode *inode = NULL;
2200 	struct inode *iter;
2201 	struct ocfs2_inode_info *oi;
2202 	struct buffer_head *di_bh = NULL;
2203 	struct ocfs2_dinode *di = NULL;
2204 
2205 	trace_ocfs2_recover_orphans(slot);
2206 
2207 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2208 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2209 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2210 
2211 	/* Error here should be noted, but we want to continue with as
2212 	 * many queued inodes as we've got. */
2213 	if (ret)
2214 		mlog_errno(ret);
2215 
2216 	while (inode) {
2217 		oi = OCFS2_I(inode);
2218 		trace_ocfs2_recover_orphans_iput(
2219 					(unsigned long long)oi->ip_blkno);
2220 
2221 		iter = oi->ip_next_orphan;
2222 		oi->ip_next_orphan = NULL;
2223 
2224 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2225 			inode_lock(inode);
2226 			ret = ocfs2_rw_lock(inode, 1);
2227 			if (ret < 0) {
2228 				mlog_errno(ret);
2229 				goto unlock_mutex;
2230 			}
2231 			/*
2232 			 * We need to take and drop the inode lock to
2233 			 * force read inode from disk.
2234 			 */
2235 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2236 			if (ret) {
2237 				mlog_errno(ret);
2238 				goto unlock_rw;
2239 			}
2240 
2241 			di = (struct ocfs2_dinode *)di_bh->b_data;
2242 
2243 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2244 				ret = ocfs2_truncate_file(inode, di_bh,
2245 						i_size_read(inode));
2246 				if (ret < 0) {
2247 					if (ret != -ENOSPC)
2248 						mlog_errno(ret);
2249 					goto unlock_inode;
2250 				}
2251 
2252 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2253 						di_bh, 0, 0);
2254 				if (ret)
2255 					mlog_errno(ret);
2256 			}
2257 unlock_inode:
2258 			ocfs2_inode_unlock(inode, 1);
2259 			brelse(di_bh);
2260 			di_bh = NULL;
2261 unlock_rw:
2262 			ocfs2_rw_unlock(inode, 1);
2263 unlock_mutex:
2264 			inode_unlock(inode);
2265 
2266 			/* clear dio flag in ocfs2_inode_info */
2267 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2268 		} else {
2269 			spin_lock(&oi->ip_lock);
2270 			/* Set the proper information to get us going into
2271 			 * ocfs2_delete_inode. */
2272 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2273 			spin_unlock(&oi->ip_lock);
2274 		}
2275 
2276 		iput(inode);
2277 		inode = iter;
2278 	}
2279 
2280 	return ret;
2281 }
2282 
2283 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2284 {
2285 	/* This check is good because ocfs2 will wait on our recovery
2286 	 * thread before changing it to something other than MOUNTED
2287 	 * or DISABLED. */
2288 	wait_event(osb->osb_mount_event,
2289 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2290 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2291 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2292 
2293 	/* If there's an error on mount, then we may never get to the
2294 	 * MOUNTED flag, but this is set right before
2295 	 * dismount_volume() so we can trust it. */
2296 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2297 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2298 		mlog(0, "mount error, exiting!\n");
2299 		return -EBUSY;
2300 	}
2301 
2302 	return 0;
2303 }
2304 
2305 static int ocfs2_commit_thread(void *arg)
2306 {
2307 	int status;
2308 	struct ocfs2_super *osb = arg;
2309 	struct ocfs2_journal *journal = osb->journal;
2310 
2311 	/* we can trust j_num_trans here because _should_stop() is only set in
2312 	 * shutdown and nobody other than ourselves should be able to start
2313 	 * transactions.  committing on shutdown might take a few iterations
2314 	 * as final transactions put deleted inodes on the list */
2315 	while (!(kthread_should_stop() &&
2316 		 atomic_read(&journal->j_num_trans) == 0)) {
2317 
2318 		wait_event_interruptible(osb->checkpoint_event,
2319 					 atomic_read(&journal->j_num_trans)
2320 					 || kthread_should_stop());
2321 
2322 		status = ocfs2_commit_cache(osb);
2323 		if (status < 0) {
2324 			static unsigned long abort_warn_time;
2325 
2326 			/* Warn about this once per minute */
2327 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2328 				mlog(ML_ERROR, "status = %d, journal is "
2329 						"already aborted.\n", status);
2330 			/*
2331 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2332 			 * non-zero value.  Sleep here to avoid a busy-wait
2333 			 * loop.
2334 			 */
2335 			msleep_interruptible(1000);
2336 		}
2337 
2338 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2339 			mlog(ML_KTHREAD,
2340 			     "commit_thread: %u transactions pending on "
2341 			     "shutdown\n",
2342 			     atomic_read(&journal->j_num_trans));
2343 		}
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 /* Reads all the journal inodes without taking any cluster locks. Used
2350  * for hard readonly access to determine whether any journal requires
2351  * recovery. Also used to refresh the recovery generation numbers after
2352  * a journal has been recovered by another node.
2353  */
2354 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2355 {
2356 	int ret = 0;
2357 	unsigned int slot;
2358 	struct buffer_head *di_bh = NULL;
2359 	struct ocfs2_dinode *di;
2360 	int journal_dirty = 0;
2361 
2362 	for(slot = 0; slot < osb->max_slots; slot++) {
2363 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2364 		if (ret) {
2365 			mlog_errno(ret);
2366 			goto out;
2367 		}
2368 
2369 		di = (struct ocfs2_dinode *) di_bh->b_data;
2370 
2371 		osb->slot_recovery_generations[slot] =
2372 					ocfs2_get_recovery_generation(di);
2373 
2374 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2375 		    OCFS2_JOURNAL_DIRTY_FL)
2376 			journal_dirty = 1;
2377 
2378 		brelse(di_bh);
2379 		di_bh = NULL;
2380 	}
2381 
2382 out:
2383 	if (journal_dirty)
2384 		ret = -EROFS;
2385 	return ret;
2386 }
2387