1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 #include <linux/time.h> 32 #include <linux/random.h> 33 34 #define MLOG_MASK_PREFIX ML_JOURNAL 35 #include <cluster/masklog.h> 36 37 #include "ocfs2.h" 38 39 #include "alloc.h" 40 #include "blockcheck.h" 41 #include "dir.h" 42 #include "dlmglue.h" 43 #include "extent_map.h" 44 #include "heartbeat.h" 45 #include "inode.h" 46 #include "journal.h" 47 #include "localalloc.h" 48 #include "slot_map.h" 49 #include "super.h" 50 #include "sysfile.h" 51 #include "uptodate.h" 52 #include "quota.h" 53 54 #include "buffer_head_io.h" 55 56 DEFINE_SPINLOCK(trans_inc_lock); 57 58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 59 60 static int ocfs2_force_read_journal(struct inode *inode); 61 static int ocfs2_recover_node(struct ocfs2_super *osb, 62 int node_num, int slot_num); 63 static int __ocfs2_recovery_thread(void *arg); 64 static int ocfs2_commit_cache(struct ocfs2_super *osb); 65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 67 int dirty, int replayed); 68 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 69 int slot_num); 70 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 71 int slot); 72 static int ocfs2_commit_thread(void *arg); 73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 74 int slot_num, 75 struct ocfs2_dinode *la_dinode, 76 struct ocfs2_dinode *tl_dinode, 77 struct ocfs2_quota_recovery *qrec); 78 79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 80 { 81 return __ocfs2_wait_on_mount(osb, 0); 82 } 83 84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 85 { 86 return __ocfs2_wait_on_mount(osb, 1); 87 } 88 89 /* 90 * This replay_map is to track online/offline slots, so we could recover 91 * offline slots during recovery and mount 92 */ 93 94 enum ocfs2_replay_state { 95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 97 REPLAY_DONE /* Replay was already queued */ 98 }; 99 100 struct ocfs2_replay_map { 101 unsigned int rm_slots; 102 enum ocfs2_replay_state rm_state; 103 unsigned char rm_replay_slots[0]; 104 }; 105 106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 107 { 108 if (!osb->replay_map) 109 return; 110 111 /* If we've already queued the replay, we don't have any more to do */ 112 if (osb->replay_map->rm_state == REPLAY_DONE) 113 return; 114 115 osb->replay_map->rm_state = state; 116 } 117 118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 119 { 120 struct ocfs2_replay_map *replay_map; 121 int i, node_num; 122 123 /* If replay map is already set, we don't do it again */ 124 if (osb->replay_map) 125 return 0; 126 127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 128 (osb->max_slots * sizeof(char)), GFP_KERNEL); 129 130 if (!replay_map) { 131 mlog_errno(-ENOMEM); 132 return -ENOMEM; 133 } 134 135 spin_lock(&osb->osb_lock); 136 137 replay_map->rm_slots = osb->max_slots; 138 replay_map->rm_state = REPLAY_UNNEEDED; 139 140 /* set rm_replay_slots for offline slot(s) */ 141 for (i = 0; i < replay_map->rm_slots; i++) { 142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 143 replay_map->rm_replay_slots[i] = 1; 144 } 145 146 osb->replay_map = replay_map; 147 spin_unlock(&osb->osb_lock); 148 return 0; 149 } 150 151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb) 152 { 153 struct ocfs2_replay_map *replay_map = osb->replay_map; 154 int i; 155 156 if (!replay_map) 157 return; 158 159 if (replay_map->rm_state != REPLAY_NEEDED) 160 return; 161 162 for (i = 0; i < replay_map->rm_slots; i++) 163 if (replay_map->rm_replay_slots[i]) 164 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 165 NULL, NULL); 166 replay_map->rm_state = REPLAY_DONE; 167 } 168 169 void ocfs2_free_replay_slots(struct ocfs2_super *osb) 170 { 171 struct ocfs2_replay_map *replay_map = osb->replay_map; 172 173 if (!osb->replay_map) 174 return; 175 176 kfree(replay_map); 177 osb->replay_map = NULL; 178 } 179 180 int ocfs2_recovery_init(struct ocfs2_super *osb) 181 { 182 struct ocfs2_recovery_map *rm; 183 184 mutex_init(&osb->recovery_lock); 185 osb->disable_recovery = 0; 186 osb->recovery_thread_task = NULL; 187 init_waitqueue_head(&osb->recovery_event); 188 189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 190 osb->max_slots * sizeof(unsigned int), 191 GFP_KERNEL); 192 if (!rm) { 193 mlog_errno(-ENOMEM); 194 return -ENOMEM; 195 } 196 197 rm->rm_entries = (unsigned int *)((char *)rm + 198 sizeof(struct ocfs2_recovery_map)); 199 osb->recovery_map = rm; 200 201 return 0; 202 } 203 204 /* we can't grab the goofy sem lock from inside wait_event, so we use 205 * memory barriers to make sure that we'll see the null task before 206 * being woken up */ 207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 208 { 209 mb(); 210 return osb->recovery_thread_task != NULL; 211 } 212 213 void ocfs2_recovery_exit(struct ocfs2_super *osb) 214 { 215 struct ocfs2_recovery_map *rm; 216 217 /* disable any new recovery threads and wait for any currently 218 * running ones to exit. Do this before setting the vol_state. */ 219 mutex_lock(&osb->recovery_lock); 220 osb->disable_recovery = 1; 221 mutex_unlock(&osb->recovery_lock); 222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 223 224 /* At this point, we know that no more recovery threads can be 225 * launched, so wait for any recovery completion work to 226 * complete. */ 227 flush_workqueue(ocfs2_wq); 228 229 /* 230 * Now that recovery is shut down, and the osb is about to be 231 * freed, the osb_lock is not taken here. 232 */ 233 rm = osb->recovery_map; 234 /* XXX: Should we bug if there are dirty entries? */ 235 236 kfree(rm); 237 } 238 239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 240 unsigned int node_num) 241 { 242 int i; 243 struct ocfs2_recovery_map *rm = osb->recovery_map; 244 245 assert_spin_locked(&osb->osb_lock); 246 247 for (i = 0; i < rm->rm_used; i++) { 248 if (rm->rm_entries[i] == node_num) 249 return 1; 250 } 251 252 return 0; 253 } 254 255 /* Behaves like test-and-set. Returns the previous value */ 256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 257 unsigned int node_num) 258 { 259 struct ocfs2_recovery_map *rm = osb->recovery_map; 260 261 spin_lock(&osb->osb_lock); 262 if (__ocfs2_recovery_map_test(osb, node_num)) { 263 spin_unlock(&osb->osb_lock); 264 return 1; 265 } 266 267 /* XXX: Can this be exploited? Not from o2dlm... */ 268 BUG_ON(rm->rm_used >= osb->max_slots); 269 270 rm->rm_entries[rm->rm_used] = node_num; 271 rm->rm_used++; 272 spin_unlock(&osb->osb_lock); 273 274 return 0; 275 } 276 277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 278 unsigned int node_num) 279 { 280 int i; 281 struct ocfs2_recovery_map *rm = osb->recovery_map; 282 283 spin_lock(&osb->osb_lock); 284 285 for (i = 0; i < rm->rm_used; i++) { 286 if (rm->rm_entries[i] == node_num) 287 break; 288 } 289 290 if (i < rm->rm_used) { 291 /* XXX: be careful with the pointer math */ 292 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 293 (rm->rm_used - i - 1) * sizeof(unsigned int)); 294 rm->rm_used--; 295 } 296 297 spin_unlock(&osb->osb_lock); 298 } 299 300 static int ocfs2_commit_cache(struct ocfs2_super *osb) 301 { 302 int status = 0; 303 unsigned int flushed; 304 unsigned long old_id; 305 struct ocfs2_journal *journal = NULL; 306 307 mlog_entry_void(); 308 309 journal = osb->journal; 310 311 /* Flush all pending commits and checkpoint the journal. */ 312 down_write(&journal->j_trans_barrier); 313 314 if (atomic_read(&journal->j_num_trans) == 0) { 315 up_write(&journal->j_trans_barrier); 316 mlog(0, "No transactions for me to flush!\n"); 317 goto finally; 318 } 319 320 jbd2_journal_lock_updates(journal->j_journal); 321 status = jbd2_journal_flush(journal->j_journal); 322 jbd2_journal_unlock_updates(journal->j_journal); 323 if (status < 0) { 324 up_write(&journal->j_trans_barrier); 325 mlog_errno(status); 326 goto finally; 327 } 328 329 old_id = ocfs2_inc_trans_id(journal); 330 331 flushed = atomic_read(&journal->j_num_trans); 332 atomic_set(&journal->j_num_trans, 0); 333 up_write(&journal->j_trans_barrier); 334 335 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n", 336 journal->j_trans_id, flushed); 337 338 ocfs2_wake_downconvert_thread(osb); 339 wake_up(&journal->j_checkpointed); 340 finally: 341 mlog_exit(status); 342 return status; 343 } 344 345 /* pass it NULL and it will allocate a new handle object for you. If 346 * you pass it a handle however, it may still return error, in which 347 * case it has free'd the passed handle for you. */ 348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 349 { 350 journal_t *journal = osb->journal->j_journal; 351 handle_t *handle; 352 353 BUG_ON(!osb || !osb->journal->j_journal); 354 355 if (ocfs2_is_hard_readonly(osb)) 356 return ERR_PTR(-EROFS); 357 358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 359 BUG_ON(max_buffs <= 0); 360 361 /* Nested transaction? Just return the handle... */ 362 if (journal_current_handle()) 363 return jbd2_journal_start(journal, max_buffs); 364 365 down_read(&osb->journal->j_trans_barrier); 366 367 handle = jbd2_journal_start(journal, max_buffs); 368 if (IS_ERR(handle)) { 369 up_read(&osb->journal->j_trans_barrier); 370 371 mlog_errno(PTR_ERR(handle)); 372 373 if (is_journal_aborted(journal)) { 374 ocfs2_abort(osb->sb, "Detected aborted journal"); 375 handle = ERR_PTR(-EROFS); 376 } 377 } else { 378 if (!ocfs2_mount_local(osb)) 379 atomic_inc(&(osb->journal->j_num_trans)); 380 } 381 382 return handle; 383 } 384 385 int ocfs2_commit_trans(struct ocfs2_super *osb, 386 handle_t *handle) 387 { 388 int ret, nested; 389 struct ocfs2_journal *journal = osb->journal; 390 391 BUG_ON(!handle); 392 393 nested = handle->h_ref > 1; 394 ret = jbd2_journal_stop(handle); 395 if (ret < 0) 396 mlog_errno(ret); 397 398 if (!nested) 399 up_read(&journal->j_trans_barrier); 400 401 return ret; 402 } 403 404 /* 405 * 'nblocks' is what you want to add to the current 406 * transaction. extend_trans will either extend the current handle by 407 * nblocks, or commit it and start a new one with nblocks credits. 408 * 409 * This might call jbd2_journal_restart() which will commit dirty buffers 410 * and then restart the transaction. Before calling 411 * ocfs2_extend_trans(), any changed blocks should have been 412 * dirtied. After calling it, all blocks which need to be changed must 413 * go through another set of journal_access/journal_dirty calls. 414 * 415 * WARNING: This will not release any semaphores or disk locks taken 416 * during the transaction, so make sure they were taken *before* 417 * start_trans or we'll have ordering deadlocks. 418 * 419 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 420 * good because transaction ids haven't yet been recorded on the 421 * cluster locks associated with this handle. 422 */ 423 int ocfs2_extend_trans(handle_t *handle, int nblocks) 424 { 425 int status; 426 427 BUG_ON(!handle); 428 BUG_ON(!nblocks); 429 430 mlog_entry_void(); 431 432 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks); 433 434 #ifdef CONFIG_OCFS2_DEBUG_FS 435 status = 1; 436 #else 437 status = jbd2_journal_extend(handle, nblocks); 438 if (status < 0) { 439 mlog_errno(status); 440 goto bail; 441 } 442 #endif 443 444 if (status > 0) { 445 mlog(0, 446 "jbd2_journal_extend failed, trying " 447 "jbd2_journal_restart\n"); 448 status = jbd2_journal_restart(handle, nblocks); 449 if (status < 0) { 450 mlog_errno(status); 451 goto bail; 452 } 453 } 454 455 status = 0; 456 bail: 457 458 mlog_exit(status); 459 return status; 460 } 461 462 struct ocfs2_triggers { 463 struct jbd2_buffer_trigger_type ot_triggers; 464 int ot_offset; 465 }; 466 467 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 468 { 469 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 470 } 471 472 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 473 struct buffer_head *bh, 474 void *data, size_t size) 475 { 476 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 477 478 /* 479 * We aren't guaranteed to have the superblock here, so we 480 * must unconditionally compute the ecc data. 481 * __ocfs2_journal_access() will only set the triggers if 482 * metaecc is enabled. 483 */ 484 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 485 } 486 487 /* 488 * Quota blocks have their own trigger because the struct ocfs2_block_check 489 * offset depends on the blocksize. 490 */ 491 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 492 struct buffer_head *bh, 493 void *data, size_t size) 494 { 495 struct ocfs2_disk_dqtrailer *dqt = 496 ocfs2_block_dqtrailer(size, data); 497 498 /* 499 * We aren't guaranteed to have the superblock here, so we 500 * must unconditionally compute the ecc data. 501 * __ocfs2_journal_access() will only set the triggers if 502 * metaecc is enabled. 503 */ 504 ocfs2_block_check_compute(data, size, &dqt->dq_check); 505 } 506 507 /* 508 * Directory blocks also have their own trigger because the 509 * struct ocfs2_block_check offset depends on the blocksize. 510 */ 511 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 512 struct buffer_head *bh, 513 void *data, size_t size) 514 { 515 struct ocfs2_dir_block_trailer *trailer = 516 ocfs2_dir_trailer_from_size(size, data); 517 518 /* 519 * We aren't guaranteed to have the superblock here, so we 520 * must unconditionally compute the ecc data. 521 * __ocfs2_journal_access() will only set the triggers if 522 * metaecc is enabled. 523 */ 524 ocfs2_block_check_compute(data, size, &trailer->db_check); 525 } 526 527 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 528 struct buffer_head *bh) 529 { 530 mlog(ML_ERROR, 531 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 532 "bh->b_blocknr = %llu\n", 533 (unsigned long)bh, 534 (unsigned long long)bh->b_blocknr); 535 536 /* We aren't guaranteed to have the superblock here - but if we 537 * don't, it'll just crash. */ 538 ocfs2_error(bh->b_assoc_map->host->i_sb, 539 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 540 } 541 542 static struct ocfs2_triggers di_triggers = { 543 .ot_triggers = { 544 .t_commit = ocfs2_commit_trigger, 545 .t_abort = ocfs2_abort_trigger, 546 }, 547 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 548 }; 549 550 static struct ocfs2_triggers eb_triggers = { 551 .ot_triggers = { 552 .t_commit = ocfs2_commit_trigger, 553 .t_abort = ocfs2_abort_trigger, 554 }, 555 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 556 }; 557 558 static struct ocfs2_triggers rb_triggers = { 559 .ot_triggers = { 560 .t_commit = ocfs2_commit_trigger, 561 .t_abort = ocfs2_abort_trigger, 562 }, 563 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 564 }; 565 566 static struct ocfs2_triggers gd_triggers = { 567 .ot_triggers = { 568 .t_commit = ocfs2_commit_trigger, 569 .t_abort = ocfs2_abort_trigger, 570 }, 571 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 572 }; 573 574 static struct ocfs2_triggers db_triggers = { 575 .ot_triggers = { 576 .t_commit = ocfs2_db_commit_trigger, 577 .t_abort = ocfs2_abort_trigger, 578 }, 579 }; 580 581 static struct ocfs2_triggers xb_triggers = { 582 .ot_triggers = { 583 .t_commit = ocfs2_commit_trigger, 584 .t_abort = ocfs2_abort_trigger, 585 }, 586 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 587 }; 588 589 static struct ocfs2_triggers dq_triggers = { 590 .ot_triggers = { 591 .t_commit = ocfs2_dq_commit_trigger, 592 .t_abort = ocfs2_abort_trigger, 593 }, 594 }; 595 596 static struct ocfs2_triggers dr_triggers = { 597 .ot_triggers = { 598 .t_commit = ocfs2_commit_trigger, 599 .t_abort = ocfs2_abort_trigger, 600 }, 601 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 602 }; 603 604 static struct ocfs2_triggers dl_triggers = { 605 .ot_triggers = { 606 .t_commit = ocfs2_commit_trigger, 607 .t_abort = ocfs2_abort_trigger, 608 }, 609 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 610 }; 611 612 static int __ocfs2_journal_access(handle_t *handle, 613 struct ocfs2_caching_info *ci, 614 struct buffer_head *bh, 615 struct ocfs2_triggers *triggers, 616 int type) 617 { 618 int status; 619 struct ocfs2_super *osb = 620 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 621 622 BUG_ON(!ci || !ci->ci_ops); 623 BUG_ON(!handle); 624 BUG_ON(!bh); 625 626 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n", 627 (unsigned long long)bh->b_blocknr, type, 628 (type == OCFS2_JOURNAL_ACCESS_CREATE) ? 629 "OCFS2_JOURNAL_ACCESS_CREATE" : 630 "OCFS2_JOURNAL_ACCESS_WRITE", 631 bh->b_size); 632 633 /* we can safely remove this assertion after testing. */ 634 if (!buffer_uptodate(bh)) { 635 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 636 mlog(ML_ERROR, "b_blocknr=%llu\n", 637 (unsigned long long)bh->b_blocknr); 638 BUG(); 639 } 640 641 /* Set the current transaction information on the ci so 642 * that the locking code knows whether it can drop it's locks 643 * on this ci or not. We're protected from the commit 644 * thread updating the current transaction id until 645 * ocfs2_commit_trans() because ocfs2_start_trans() took 646 * j_trans_barrier for us. */ 647 ocfs2_set_ci_lock_trans(osb->journal, ci); 648 649 ocfs2_metadata_cache_io_lock(ci); 650 switch (type) { 651 case OCFS2_JOURNAL_ACCESS_CREATE: 652 case OCFS2_JOURNAL_ACCESS_WRITE: 653 status = jbd2_journal_get_write_access(handle, bh); 654 break; 655 656 case OCFS2_JOURNAL_ACCESS_UNDO: 657 status = jbd2_journal_get_undo_access(handle, bh); 658 break; 659 660 default: 661 status = -EINVAL; 662 mlog(ML_ERROR, "Unknown access type!\n"); 663 } 664 if (!status && ocfs2_meta_ecc(osb) && triggers) 665 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 666 ocfs2_metadata_cache_io_unlock(ci); 667 668 if (status < 0) 669 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 670 status, type); 671 672 mlog_exit(status); 673 return status; 674 } 675 676 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 677 struct buffer_head *bh, int type) 678 { 679 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 680 } 681 682 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 683 struct buffer_head *bh, int type) 684 { 685 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 686 } 687 688 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 689 struct buffer_head *bh, int type) 690 { 691 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 692 type); 693 } 694 695 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 696 struct buffer_head *bh, int type) 697 { 698 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 699 } 700 701 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 702 struct buffer_head *bh, int type) 703 { 704 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 705 } 706 707 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 708 struct buffer_head *bh, int type) 709 { 710 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 711 } 712 713 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 714 struct buffer_head *bh, int type) 715 { 716 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 717 } 718 719 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 720 struct buffer_head *bh, int type) 721 { 722 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 723 } 724 725 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 726 struct buffer_head *bh, int type) 727 { 728 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 729 } 730 731 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 732 struct buffer_head *bh, int type) 733 { 734 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 735 } 736 737 int ocfs2_journal_dirty(handle_t *handle, 738 struct buffer_head *bh) 739 { 740 int status; 741 742 mlog_entry("(bh->b_blocknr=%llu)\n", 743 (unsigned long long)bh->b_blocknr); 744 745 status = jbd2_journal_dirty_metadata(handle, bh); 746 if (status < 0) 747 mlog(ML_ERROR, "Could not dirty metadata buffer. " 748 "(bh->b_blocknr=%llu)\n", 749 (unsigned long long)bh->b_blocknr); 750 751 mlog_exit(status); 752 return status; 753 } 754 755 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 756 757 void ocfs2_set_journal_params(struct ocfs2_super *osb) 758 { 759 journal_t *journal = osb->journal->j_journal; 760 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 761 762 if (osb->osb_commit_interval) 763 commit_interval = osb->osb_commit_interval; 764 765 spin_lock(&journal->j_state_lock); 766 journal->j_commit_interval = commit_interval; 767 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 768 journal->j_flags |= JBD2_BARRIER; 769 else 770 journal->j_flags &= ~JBD2_BARRIER; 771 spin_unlock(&journal->j_state_lock); 772 } 773 774 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 775 { 776 int status = -1; 777 struct inode *inode = NULL; /* the journal inode */ 778 journal_t *j_journal = NULL; 779 struct ocfs2_dinode *di = NULL; 780 struct buffer_head *bh = NULL; 781 struct ocfs2_super *osb; 782 int inode_lock = 0; 783 784 mlog_entry_void(); 785 786 BUG_ON(!journal); 787 788 osb = journal->j_osb; 789 790 /* already have the inode for our journal */ 791 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 792 osb->slot_num); 793 if (inode == NULL) { 794 status = -EACCES; 795 mlog_errno(status); 796 goto done; 797 } 798 if (is_bad_inode(inode)) { 799 mlog(ML_ERROR, "access error (bad inode)\n"); 800 iput(inode); 801 inode = NULL; 802 status = -EACCES; 803 goto done; 804 } 805 806 SET_INODE_JOURNAL(inode); 807 OCFS2_I(inode)->ip_open_count++; 808 809 /* Skip recovery waits here - journal inode metadata never 810 * changes in a live cluster so it can be considered an 811 * exception to the rule. */ 812 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 813 if (status < 0) { 814 if (status != -ERESTARTSYS) 815 mlog(ML_ERROR, "Could not get lock on journal!\n"); 816 goto done; 817 } 818 819 inode_lock = 1; 820 di = (struct ocfs2_dinode *)bh->b_data; 821 822 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) { 823 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 824 inode->i_size); 825 status = -EINVAL; 826 goto done; 827 } 828 829 mlog(0, "inode->i_size = %lld\n", inode->i_size); 830 mlog(0, "inode->i_blocks = %llu\n", 831 (unsigned long long)inode->i_blocks); 832 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters); 833 834 /* call the kernels journal init function now */ 835 j_journal = jbd2_journal_init_inode(inode); 836 if (j_journal == NULL) { 837 mlog(ML_ERROR, "Linux journal layer error\n"); 838 status = -EINVAL; 839 goto done; 840 } 841 842 mlog(0, "Returned from jbd2_journal_init_inode\n"); 843 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen); 844 845 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 846 OCFS2_JOURNAL_DIRTY_FL); 847 848 journal->j_journal = j_journal; 849 journal->j_inode = inode; 850 journal->j_bh = bh; 851 852 ocfs2_set_journal_params(osb); 853 854 journal->j_state = OCFS2_JOURNAL_LOADED; 855 856 status = 0; 857 done: 858 if (status < 0) { 859 if (inode_lock) 860 ocfs2_inode_unlock(inode, 1); 861 brelse(bh); 862 if (inode) { 863 OCFS2_I(inode)->ip_open_count--; 864 iput(inode); 865 } 866 } 867 868 mlog_exit(status); 869 return status; 870 } 871 872 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 873 { 874 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 875 } 876 877 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 878 { 879 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 880 } 881 882 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 883 int dirty, int replayed) 884 { 885 int status; 886 unsigned int flags; 887 struct ocfs2_journal *journal = osb->journal; 888 struct buffer_head *bh = journal->j_bh; 889 struct ocfs2_dinode *fe; 890 891 mlog_entry_void(); 892 893 fe = (struct ocfs2_dinode *)bh->b_data; 894 895 /* The journal bh on the osb always comes from ocfs2_journal_init() 896 * and was validated there inside ocfs2_inode_lock_full(). It's a 897 * code bug if we mess it up. */ 898 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 899 900 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 901 if (dirty) 902 flags |= OCFS2_JOURNAL_DIRTY_FL; 903 else 904 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 905 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 906 907 if (replayed) 908 ocfs2_bump_recovery_generation(fe); 909 910 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 911 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 912 if (status < 0) 913 mlog_errno(status); 914 915 mlog_exit(status); 916 return status; 917 } 918 919 /* 920 * If the journal has been kmalloc'd it needs to be freed after this 921 * call. 922 */ 923 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 924 { 925 struct ocfs2_journal *journal = NULL; 926 int status = 0; 927 struct inode *inode = NULL; 928 int num_running_trans = 0; 929 930 mlog_entry_void(); 931 932 BUG_ON(!osb); 933 934 journal = osb->journal; 935 if (!journal) 936 goto done; 937 938 inode = journal->j_inode; 939 940 if (journal->j_state != OCFS2_JOURNAL_LOADED) 941 goto done; 942 943 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 944 if (!igrab(inode)) 945 BUG(); 946 947 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 948 if (num_running_trans > 0) 949 mlog(0, "Shutting down journal: must wait on %d " 950 "running transactions!\n", 951 num_running_trans); 952 953 /* Do a commit_cache here. It will flush our journal, *and* 954 * release any locks that are still held. 955 * set the SHUTDOWN flag and release the trans lock. 956 * the commit thread will take the trans lock for us below. */ 957 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 958 959 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 960 * drop the trans_lock (which we want to hold until we 961 * completely destroy the journal. */ 962 if (osb->commit_task) { 963 /* Wait for the commit thread */ 964 mlog(0, "Waiting for ocfs2commit to exit....\n"); 965 kthread_stop(osb->commit_task); 966 osb->commit_task = NULL; 967 } 968 969 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 970 971 if (ocfs2_mount_local(osb)) { 972 jbd2_journal_lock_updates(journal->j_journal); 973 status = jbd2_journal_flush(journal->j_journal); 974 jbd2_journal_unlock_updates(journal->j_journal); 975 if (status < 0) 976 mlog_errno(status); 977 } 978 979 if (status == 0) { 980 /* 981 * Do not toggle if flush was unsuccessful otherwise 982 * will leave dirty metadata in a "clean" journal 983 */ 984 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 985 if (status < 0) 986 mlog_errno(status); 987 } 988 989 /* Shutdown the kernel journal system */ 990 jbd2_journal_destroy(journal->j_journal); 991 journal->j_journal = NULL; 992 993 OCFS2_I(inode)->ip_open_count--; 994 995 /* unlock our journal */ 996 ocfs2_inode_unlock(inode, 1); 997 998 brelse(journal->j_bh); 999 journal->j_bh = NULL; 1000 1001 journal->j_state = OCFS2_JOURNAL_FREE; 1002 1003 // up_write(&journal->j_trans_barrier); 1004 done: 1005 if (inode) 1006 iput(inode); 1007 mlog_exit_void(); 1008 } 1009 1010 static void ocfs2_clear_journal_error(struct super_block *sb, 1011 journal_t *journal, 1012 int slot) 1013 { 1014 int olderr; 1015 1016 olderr = jbd2_journal_errno(journal); 1017 if (olderr) { 1018 mlog(ML_ERROR, "File system error %d recorded in " 1019 "journal %u.\n", olderr, slot); 1020 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1021 sb->s_id); 1022 1023 jbd2_journal_ack_err(journal); 1024 jbd2_journal_clear_err(journal); 1025 } 1026 } 1027 1028 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1029 { 1030 int status = 0; 1031 struct ocfs2_super *osb; 1032 1033 mlog_entry_void(); 1034 1035 BUG_ON(!journal); 1036 1037 osb = journal->j_osb; 1038 1039 status = jbd2_journal_load(journal->j_journal); 1040 if (status < 0) { 1041 mlog(ML_ERROR, "Failed to load journal!\n"); 1042 goto done; 1043 } 1044 1045 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1046 1047 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1048 if (status < 0) { 1049 mlog_errno(status); 1050 goto done; 1051 } 1052 1053 /* Launch the commit thread */ 1054 if (!local) { 1055 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1056 "ocfs2cmt"); 1057 if (IS_ERR(osb->commit_task)) { 1058 status = PTR_ERR(osb->commit_task); 1059 osb->commit_task = NULL; 1060 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1061 "error=%d", status); 1062 goto done; 1063 } 1064 } else 1065 osb->commit_task = NULL; 1066 1067 done: 1068 mlog_exit(status); 1069 return status; 1070 } 1071 1072 1073 /* 'full' flag tells us whether we clear out all blocks or if we just 1074 * mark the journal clean */ 1075 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1076 { 1077 int status; 1078 1079 mlog_entry_void(); 1080 1081 BUG_ON(!journal); 1082 1083 status = jbd2_journal_wipe(journal->j_journal, full); 1084 if (status < 0) { 1085 mlog_errno(status); 1086 goto bail; 1087 } 1088 1089 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1090 if (status < 0) 1091 mlog_errno(status); 1092 1093 bail: 1094 mlog_exit(status); 1095 return status; 1096 } 1097 1098 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1099 { 1100 int empty; 1101 struct ocfs2_recovery_map *rm = osb->recovery_map; 1102 1103 spin_lock(&osb->osb_lock); 1104 empty = (rm->rm_used == 0); 1105 spin_unlock(&osb->osb_lock); 1106 1107 return empty; 1108 } 1109 1110 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1111 { 1112 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1113 } 1114 1115 /* 1116 * JBD Might read a cached version of another nodes journal file. We 1117 * don't want this as this file changes often and we get no 1118 * notification on those changes. The only way to be sure that we've 1119 * got the most up to date version of those blocks then is to force 1120 * read them off disk. Just searching through the buffer cache won't 1121 * work as there may be pages backing this file which are still marked 1122 * up to date. We know things can't change on this file underneath us 1123 * as we have the lock by now :) 1124 */ 1125 static int ocfs2_force_read_journal(struct inode *inode) 1126 { 1127 int status = 0; 1128 int i; 1129 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1130 #define CONCURRENT_JOURNAL_FILL 32ULL 1131 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 1132 1133 mlog_entry_void(); 1134 1135 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 1136 1137 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size); 1138 v_blkno = 0; 1139 while (v_blkno < num_blocks) { 1140 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1141 &p_blkno, &p_blocks, NULL); 1142 if (status < 0) { 1143 mlog_errno(status); 1144 goto bail; 1145 } 1146 1147 if (p_blocks > CONCURRENT_JOURNAL_FILL) 1148 p_blocks = CONCURRENT_JOURNAL_FILL; 1149 1150 /* We are reading journal data which should not 1151 * be put in the uptodate cache */ 1152 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb), 1153 p_blkno, p_blocks, bhs); 1154 if (status < 0) { 1155 mlog_errno(status); 1156 goto bail; 1157 } 1158 1159 for(i = 0; i < p_blocks; i++) { 1160 brelse(bhs[i]); 1161 bhs[i] = NULL; 1162 } 1163 1164 v_blkno += p_blocks; 1165 } 1166 1167 bail: 1168 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 1169 brelse(bhs[i]); 1170 mlog_exit(status); 1171 return status; 1172 } 1173 1174 struct ocfs2_la_recovery_item { 1175 struct list_head lri_list; 1176 int lri_slot; 1177 struct ocfs2_dinode *lri_la_dinode; 1178 struct ocfs2_dinode *lri_tl_dinode; 1179 struct ocfs2_quota_recovery *lri_qrec; 1180 }; 1181 1182 /* Does the second half of the recovery process. By this point, the 1183 * node is marked clean and can actually be considered recovered, 1184 * hence it's no longer in the recovery map, but there's still some 1185 * cleanup we can do which shouldn't happen within the recovery thread 1186 * as locking in that context becomes very difficult if we are to take 1187 * recovering nodes into account. 1188 * 1189 * NOTE: This function can and will sleep on recovery of other nodes 1190 * during cluster locking, just like any other ocfs2 process. 1191 */ 1192 void ocfs2_complete_recovery(struct work_struct *work) 1193 { 1194 int ret; 1195 struct ocfs2_journal *journal = 1196 container_of(work, struct ocfs2_journal, j_recovery_work); 1197 struct ocfs2_super *osb = journal->j_osb; 1198 struct ocfs2_dinode *la_dinode, *tl_dinode; 1199 struct ocfs2_la_recovery_item *item, *n; 1200 struct ocfs2_quota_recovery *qrec; 1201 LIST_HEAD(tmp_la_list); 1202 1203 mlog_entry_void(); 1204 1205 mlog(0, "completing recovery from keventd\n"); 1206 1207 spin_lock(&journal->j_lock); 1208 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1209 spin_unlock(&journal->j_lock); 1210 1211 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1212 list_del_init(&item->lri_list); 1213 1214 mlog(0, "Complete recovery for slot %d\n", item->lri_slot); 1215 1216 ocfs2_wait_on_quotas(osb); 1217 1218 la_dinode = item->lri_la_dinode; 1219 if (la_dinode) { 1220 mlog(0, "Clean up local alloc %llu\n", 1221 (unsigned long long)le64_to_cpu(la_dinode->i_blkno)); 1222 1223 ret = ocfs2_complete_local_alloc_recovery(osb, 1224 la_dinode); 1225 if (ret < 0) 1226 mlog_errno(ret); 1227 1228 kfree(la_dinode); 1229 } 1230 1231 tl_dinode = item->lri_tl_dinode; 1232 if (tl_dinode) { 1233 mlog(0, "Clean up truncate log %llu\n", 1234 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno)); 1235 1236 ret = ocfs2_complete_truncate_log_recovery(osb, 1237 tl_dinode); 1238 if (ret < 0) 1239 mlog_errno(ret); 1240 1241 kfree(tl_dinode); 1242 } 1243 1244 ret = ocfs2_recover_orphans(osb, item->lri_slot); 1245 if (ret < 0) 1246 mlog_errno(ret); 1247 1248 qrec = item->lri_qrec; 1249 if (qrec) { 1250 mlog(0, "Recovering quota files"); 1251 ret = ocfs2_finish_quota_recovery(osb, qrec, 1252 item->lri_slot); 1253 if (ret < 0) 1254 mlog_errno(ret); 1255 /* Recovery info is already freed now */ 1256 } 1257 1258 kfree(item); 1259 } 1260 1261 mlog(0, "Recovery completion\n"); 1262 mlog_exit_void(); 1263 } 1264 1265 /* NOTE: This function always eats your references to la_dinode and 1266 * tl_dinode, either manually on error, or by passing them to 1267 * ocfs2_complete_recovery */ 1268 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1269 int slot_num, 1270 struct ocfs2_dinode *la_dinode, 1271 struct ocfs2_dinode *tl_dinode, 1272 struct ocfs2_quota_recovery *qrec) 1273 { 1274 struct ocfs2_la_recovery_item *item; 1275 1276 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1277 if (!item) { 1278 /* Though we wish to avoid it, we are in fact safe in 1279 * skipping local alloc cleanup as fsck.ocfs2 is more 1280 * than capable of reclaiming unused space. */ 1281 if (la_dinode) 1282 kfree(la_dinode); 1283 1284 if (tl_dinode) 1285 kfree(tl_dinode); 1286 1287 if (qrec) 1288 ocfs2_free_quota_recovery(qrec); 1289 1290 mlog_errno(-ENOMEM); 1291 return; 1292 } 1293 1294 INIT_LIST_HEAD(&item->lri_list); 1295 item->lri_la_dinode = la_dinode; 1296 item->lri_slot = slot_num; 1297 item->lri_tl_dinode = tl_dinode; 1298 item->lri_qrec = qrec; 1299 1300 spin_lock(&journal->j_lock); 1301 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1302 queue_work(ocfs2_wq, &journal->j_recovery_work); 1303 spin_unlock(&journal->j_lock); 1304 } 1305 1306 /* Called by the mount code to queue recovery the last part of 1307 * recovery for it's own and offline slot(s). */ 1308 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1309 { 1310 struct ocfs2_journal *journal = osb->journal; 1311 1312 /* No need to queue up our truncate_log as regular cleanup will catch 1313 * that */ 1314 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1315 osb->local_alloc_copy, NULL, NULL); 1316 ocfs2_schedule_truncate_log_flush(osb, 0); 1317 1318 osb->local_alloc_copy = NULL; 1319 osb->dirty = 0; 1320 1321 /* queue to recover orphan slots for all offline slots */ 1322 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1323 ocfs2_queue_replay_slots(osb); 1324 ocfs2_free_replay_slots(osb); 1325 } 1326 1327 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1328 { 1329 if (osb->quota_rec) { 1330 ocfs2_queue_recovery_completion(osb->journal, 1331 osb->slot_num, 1332 NULL, 1333 NULL, 1334 osb->quota_rec); 1335 osb->quota_rec = NULL; 1336 } 1337 } 1338 1339 static int __ocfs2_recovery_thread(void *arg) 1340 { 1341 int status, node_num, slot_num; 1342 struct ocfs2_super *osb = arg; 1343 struct ocfs2_recovery_map *rm = osb->recovery_map; 1344 int *rm_quota = NULL; 1345 int rm_quota_used = 0, i; 1346 struct ocfs2_quota_recovery *qrec; 1347 1348 mlog_entry_void(); 1349 1350 status = ocfs2_wait_on_mount(osb); 1351 if (status < 0) { 1352 goto bail; 1353 } 1354 1355 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS); 1356 if (!rm_quota) { 1357 status = -ENOMEM; 1358 goto bail; 1359 } 1360 restart: 1361 status = ocfs2_super_lock(osb, 1); 1362 if (status < 0) { 1363 mlog_errno(status); 1364 goto bail; 1365 } 1366 1367 status = ocfs2_compute_replay_slots(osb); 1368 if (status < 0) 1369 mlog_errno(status); 1370 1371 /* queue recovery for our own slot */ 1372 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1373 NULL, NULL); 1374 1375 spin_lock(&osb->osb_lock); 1376 while (rm->rm_used) { 1377 /* It's always safe to remove entry zero, as we won't 1378 * clear it until ocfs2_recover_node() has succeeded. */ 1379 node_num = rm->rm_entries[0]; 1380 spin_unlock(&osb->osb_lock); 1381 mlog(0, "checking node %d\n", node_num); 1382 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1383 if (slot_num == -ENOENT) { 1384 status = 0; 1385 mlog(0, "no slot for this node, so no recovery" 1386 "required.\n"); 1387 goto skip_recovery; 1388 } 1389 mlog(0, "node %d was using slot %d\n", node_num, slot_num); 1390 1391 /* It is a bit subtle with quota recovery. We cannot do it 1392 * immediately because we have to obtain cluster locks from 1393 * quota files and we also don't want to just skip it because 1394 * then quota usage would be out of sync until some node takes 1395 * the slot. So we remember which nodes need quota recovery 1396 * and when everything else is done, we recover quotas. */ 1397 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++); 1398 if (i == rm_quota_used) 1399 rm_quota[rm_quota_used++] = slot_num; 1400 1401 status = ocfs2_recover_node(osb, node_num, slot_num); 1402 skip_recovery: 1403 if (!status) { 1404 ocfs2_recovery_map_clear(osb, node_num); 1405 } else { 1406 mlog(ML_ERROR, 1407 "Error %d recovering node %d on device (%u,%u)!\n", 1408 status, node_num, 1409 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1410 mlog(ML_ERROR, "Volume requires unmount.\n"); 1411 } 1412 1413 spin_lock(&osb->osb_lock); 1414 } 1415 spin_unlock(&osb->osb_lock); 1416 mlog(0, "All nodes recovered\n"); 1417 1418 /* Refresh all journal recovery generations from disk */ 1419 status = ocfs2_check_journals_nolocks(osb); 1420 status = (status == -EROFS) ? 0 : status; 1421 if (status < 0) 1422 mlog_errno(status); 1423 1424 /* Now it is right time to recover quotas... We have to do this under 1425 * superblock lock so that noone can start using the slot (and crash) 1426 * before we recover it */ 1427 for (i = 0; i < rm_quota_used; i++) { 1428 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1429 if (IS_ERR(qrec)) { 1430 status = PTR_ERR(qrec); 1431 mlog_errno(status); 1432 continue; 1433 } 1434 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i], 1435 NULL, NULL, qrec); 1436 } 1437 1438 ocfs2_super_unlock(osb, 1); 1439 1440 /* queue recovery for offline slots */ 1441 ocfs2_queue_replay_slots(osb); 1442 1443 bail: 1444 mutex_lock(&osb->recovery_lock); 1445 if (!status && !ocfs2_recovery_completed(osb)) { 1446 mutex_unlock(&osb->recovery_lock); 1447 goto restart; 1448 } 1449 1450 ocfs2_free_replay_slots(osb); 1451 osb->recovery_thread_task = NULL; 1452 mb(); /* sync with ocfs2_recovery_thread_running */ 1453 wake_up(&osb->recovery_event); 1454 1455 mutex_unlock(&osb->recovery_lock); 1456 1457 if (rm_quota) 1458 kfree(rm_quota); 1459 1460 mlog_exit(status); 1461 /* no one is callint kthread_stop() for us so the kthread() api 1462 * requires that we call do_exit(). And it isn't exported, but 1463 * complete_and_exit() seems to be a minimal wrapper around it. */ 1464 complete_and_exit(NULL, status); 1465 return status; 1466 } 1467 1468 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1469 { 1470 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 1471 node_num, osb->node_num); 1472 1473 mutex_lock(&osb->recovery_lock); 1474 if (osb->disable_recovery) 1475 goto out; 1476 1477 /* People waiting on recovery will wait on 1478 * the recovery map to empty. */ 1479 if (ocfs2_recovery_map_set(osb, node_num)) 1480 mlog(0, "node %d already in recovery map.\n", node_num); 1481 1482 mlog(0, "starting recovery thread...\n"); 1483 1484 if (osb->recovery_thread_task) 1485 goto out; 1486 1487 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1488 "ocfs2rec"); 1489 if (IS_ERR(osb->recovery_thread_task)) { 1490 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1491 osb->recovery_thread_task = NULL; 1492 } 1493 1494 out: 1495 mutex_unlock(&osb->recovery_lock); 1496 wake_up(&osb->recovery_event); 1497 1498 mlog_exit_void(); 1499 } 1500 1501 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1502 int slot_num, 1503 struct buffer_head **bh, 1504 struct inode **ret_inode) 1505 { 1506 int status = -EACCES; 1507 struct inode *inode = NULL; 1508 1509 BUG_ON(slot_num >= osb->max_slots); 1510 1511 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1512 slot_num); 1513 if (!inode || is_bad_inode(inode)) { 1514 mlog_errno(status); 1515 goto bail; 1516 } 1517 SET_INODE_JOURNAL(inode); 1518 1519 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1520 if (status < 0) { 1521 mlog_errno(status); 1522 goto bail; 1523 } 1524 1525 status = 0; 1526 1527 bail: 1528 if (inode) { 1529 if (status || !ret_inode) 1530 iput(inode); 1531 else 1532 *ret_inode = inode; 1533 } 1534 return status; 1535 } 1536 1537 /* Does the actual journal replay and marks the journal inode as 1538 * clean. Will only replay if the journal inode is marked dirty. */ 1539 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1540 int node_num, 1541 int slot_num) 1542 { 1543 int status; 1544 int got_lock = 0; 1545 unsigned int flags; 1546 struct inode *inode = NULL; 1547 struct ocfs2_dinode *fe; 1548 journal_t *journal = NULL; 1549 struct buffer_head *bh = NULL; 1550 u32 slot_reco_gen; 1551 1552 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1553 if (status) { 1554 mlog_errno(status); 1555 goto done; 1556 } 1557 1558 fe = (struct ocfs2_dinode *)bh->b_data; 1559 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1560 brelse(bh); 1561 bh = NULL; 1562 1563 /* 1564 * As the fs recovery is asynchronous, there is a small chance that 1565 * another node mounted (and recovered) the slot before the recovery 1566 * thread could get the lock. To handle that, we dirty read the journal 1567 * inode for that slot to get the recovery generation. If it is 1568 * different than what we expected, the slot has been recovered. 1569 * If not, it needs recovery. 1570 */ 1571 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1572 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num, 1573 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1574 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1575 status = -EBUSY; 1576 goto done; 1577 } 1578 1579 /* Continue with recovery as the journal has not yet been recovered */ 1580 1581 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1582 if (status < 0) { 1583 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status); 1584 if (status != -ERESTARTSYS) 1585 mlog(ML_ERROR, "Could not lock journal!\n"); 1586 goto done; 1587 } 1588 got_lock = 1; 1589 1590 fe = (struct ocfs2_dinode *) bh->b_data; 1591 1592 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1593 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1594 1595 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1596 mlog(0, "No recovery required for node %d\n", node_num); 1597 /* Refresh recovery generation for the slot */ 1598 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1599 goto done; 1600 } 1601 1602 /* we need to run complete recovery for offline orphan slots */ 1603 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1604 1605 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n", 1606 node_num, slot_num, 1607 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1608 1609 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1610 1611 status = ocfs2_force_read_journal(inode); 1612 if (status < 0) { 1613 mlog_errno(status); 1614 goto done; 1615 } 1616 1617 mlog(0, "calling journal_init_inode\n"); 1618 journal = jbd2_journal_init_inode(inode); 1619 if (journal == NULL) { 1620 mlog(ML_ERROR, "Linux journal layer error\n"); 1621 status = -EIO; 1622 goto done; 1623 } 1624 1625 status = jbd2_journal_load(journal); 1626 if (status < 0) { 1627 mlog_errno(status); 1628 if (!igrab(inode)) 1629 BUG(); 1630 jbd2_journal_destroy(journal); 1631 goto done; 1632 } 1633 1634 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1635 1636 /* wipe the journal */ 1637 mlog(0, "flushing the journal.\n"); 1638 jbd2_journal_lock_updates(journal); 1639 status = jbd2_journal_flush(journal); 1640 jbd2_journal_unlock_updates(journal); 1641 if (status < 0) 1642 mlog_errno(status); 1643 1644 /* This will mark the node clean */ 1645 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1646 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1647 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1648 1649 /* Increment recovery generation to indicate successful recovery */ 1650 ocfs2_bump_recovery_generation(fe); 1651 osb->slot_recovery_generations[slot_num] = 1652 ocfs2_get_recovery_generation(fe); 1653 1654 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1655 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1656 if (status < 0) 1657 mlog_errno(status); 1658 1659 if (!igrab(inode)) 1660 BUG(); 1661 1662 jbd2_journal_destroy(journal); 1663 1664 done: 1665 /* drop the lock on this nodes journal */ 1666 if (got_lock) 1667 ocfs2_inode_unlock(inode, 1); 1668 1669 if (inode) 1670 iput(inode); 1671 1672 brelse(bh); 1673 1674 mlog_exit(status); 1675 return status; 1676 } 1677 1678 /* 1679 * Do the most important parts of node recovery: 1680 * - Replay it's journal 1681 * - Stamp a clean local allocator file 1682 * - Stamp a clean truncate log 1683 * - Mark the node clean 1684 * 1685 * If this function completes without error, a node in OCFS2 can be 1686 * said to have been safely recovered. As a result, failure during the 1687 * second part of a nodes recovery process (local alloc recovery) is 1688 * far less concerning. 1689 */ 1690 static int ocfs2_recover_node(struct ocfs2_super *osb, 1691 int node_num, int slot_num) 1692 { 1693 int status = 0; 1694 struct ocfs2_dinode *la_copy = NULL; 1695 struct ocfs2_dinode *tl_copy = NULL; 1696 1697 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n", 1698 node_num, slot_num, osb->node_num); 1699 1700 /* Should not ever be called to recover ourselves -- in that 1701 * case we should've called ocfs2_journal_load instead. */ 1702 BUG_ON(osb->node_num == node_num); 1703 1704 status = ocfs2_replay_journal(osb, node_num, slot_num); 1705 if (status < 0) { 1706 if (status == -EBUSY) { 1707 mlog(0, "Skipping recovery for slot %u (node %u) " 1708 "as another node has recovered it\n", slot_num, 1709 node_num); 1710 status = 0; 1711 goto done; 1712 } 1713 mlog_errno(status); 1714 goto done; 1715 } 1716 1717 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1718 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1719 if (status < 0) { 1720 mlog_errno(status); 1721 goto done; 1722 } 1723 1724 /* An error from begin_truncate_log_recovery is not 1725 * serious enough to warrant halting the rest of 1726 * recovery. */ 1727 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1728 if (status < 0) 1729 mlog_errno(status); 1730 1731 /* Likewise, this would be a strange but ultimately not so 1732 * harmful place to get an error... */ 1733 status = ocfs2_clear_slot(osb, slot_num); 1734 if (status < 0) 1735 mlog_errno(status); 1736 1737 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1738 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1739 tl_copy, NULL); 1740 1741 status = 0; 1742 done: 1743 1744 mlog_exit(status); 1745 return status; 1746 } 1747 1748 /* Test node liveness by trylocking his journal. If we get the lock, 1749 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1750 * still alive (we couldn't get the lock) and < 0 on error. */ 1751 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1752 int slot_num) 1753 { 1754 int status, flags; 1755 struct inode *inode = NULL; 1756 1757 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1758 slot_num); 1759 if (inode == NULL) { 1760 mlog(ML_ERROR, "access error\n"); 1761 status = -EACCES; 1762 goto bail; 1763 } 1764 if (is_bad_inode(inode)) { 1765 mlog(ML_ERROR, "access error (bad inode)\n"); 1766 iput(inode); 1767 inode = NULL; 1768 status = -EACCES; 1769 goto bail; 1770 } 1771 SET_INODE_JOURNAL(inode); 1772 1773 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1774 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1775 if (status < 0) { 1776 if (status != -EAGAIN) 1777 mlog_errno(status); 1778 goto bail; 1779 } 1780 1781 ocfs2_inode_unlock(inode, 1); 1782 bail: 1783 if (inode) 1784 iput(inode); 1785 1786 return status; 1787 } 1788 1789 /* Call this underneath ocfs2_super_lock. It also assumes that the 1790 * slot info struct has been updated from disk. */ 1791 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1792 { 1793 unsigned int node_num; 1794 int status, i; 1795 u32 gen; 1796 struct buffer_head *bh = NULL; 1797 struct ocfs2_dinode *di; 1798 1799 /* This is called with the super block cluster lock, so we 1800 * know that the slot map can't change underneath us. */ 1801 1802 for (i = 0; i < osb->max_slots; i++) { 1803 /* Read journal inode to get the recovery generation */ 1804 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1805 if (status) { 1806 mlog_errno(status); 1807 goto bail; 1808 } 1809 di = (struct ocfs2_dinode *)bh->b_data; 1810 gen = ocfs2_get_recovery_generation(di); 1811 brelse(bh); 1812 bh = NULL; 1813 1814 spin_lock(&osb->osb_lock); 1815 osb->slot_recovery_generations[i] = gen; 1816 1817 mlog(0, "Slot %u recovery generation is %u\n", i, 1818 osb->slot_recovery_generations[i]); 1819 1820 if (i == osb->slot_num) { 1821 spin_unlock(&osb->osb_lock); 1822 continue; 1823 } 1824 1825 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1826 if (status == -ENOENT) { 1827 spin_unlock(&osb->osb_lock); 1828 continue; 1829 } 1830 1831 if (__ocfs2_recovery_map_test(osb, node_num)) { 1832 spin_unlock(&osb->osb_lock); 1833 continue; 1834 } 1835 spin_unlock(&osb->osb_lock); 1836 1837 /* Ok, we have a slot occupied by another node which 1838 * is not in the recovery map. We trylock his journal 1839 * file here to test if he's alive. */ 1840 status = ocfs2_trylock_journal(osb, i); 1841 if (!status) { 1842 /* Since we're called from mount, we know that 1843 * the recovery thread can't race us on 1844 * setting / checking the recovery bits. */ 1845 ocfs2_recovery_thread(osb, node_num); 1846 } else if ((status < 0) && (status != -EAGAIN)) { 1847 mlog_errno(status); 1848 goto bail; 1849 } 1850 } 1851 1852 status = 0; 1853 bail: 1854 mlog_exit(status); 1855 return status; 1856 } 1857 1858 /* 1859 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1860 * randomness to the timeout to minimize multple nodes firing the timer at the 1861 * same time. 1862 */ 1863 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1864 { 1865 unsigned long time; 1866 1867 get_random_bytes(&time, sizeof(time)); 1868 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1869 return msecs_to_jiffies(time); 1870 } 1871 1872 /* 1873 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1874 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1875 * is done to catch any orphans that are left over in orphan directories. 1876 * 1877 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1878 * seconds. It gets an EX lock on os_lockres and checks sequence number 1879 * stored in LVB. If the sequence number has changed, it means some other 1880 * node has done the scan. This node skips the scan and tracks the 1881 * sequence number. If the sequence number didn't change, it means a scan 1882 * hasn't happened. The node queues a scan and increments the 1883 * sequence number in the LVB. 1884 */ 1885 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1886 { 1887 struct ocfs2_orphan_scan *os; 1888 int status, i; 1889 u32 seqno = 0; 1890 1891 os = &osb->osb_orphan_scan; 1892 1893 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1894 goto out; 1895 1896 status = ocfs2_orphan_scan_lock(osb, &seqno); 1897 if (status < 0) { 1898 if (status != -EAGAIN) 1899 mlog_errno(status); 1900 goto out; 1901 } 1902 1903 /* Do no queue the tasks if the volume is being umounted */ 1904 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1905 goto unlock; 1906 1907 if (os->os_seqno != seqno) { 1908 os->os_seqno = seqno; 1909 goto unlock; 1910 } 1911 1912 for (i = 0; i < osb->max_slots; i++) 1913 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1914 NULL); 1915 /* 1916 * We queued a recovery on orphan slots, increment the sequence 1917 * number and update LVB so other node will skip the scan for a while 1918 */ 1919 seqno++; 1920 os->os_count++; 1921 os->os_scantime = CURRENT_TIME; 1922 unlock: 1923 ocfs2_orphan_scan_unlock(osb, seqno); 1924 out: 1925 return; 1926 } 1927 1928 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1929 void ocfs2_orphan_scan_work(struct work_struct *work) 1930 { 1931 struct ocfs2_orphan_scan *os; 1932 struct ocfs2_super *osb; 1933 1934 os = container_of(work, struct ocfs2_orphan_scan, 1935 os_orphan_scan_work.work); 1936 osb = os->os_osb; 1937 1938 mutex_lock(&os->os_lock); 1939 ocfs2_queue_orphan_scan(osb); 1940 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 1941 schedule_delayed_work(&os->os_orphan_scan_work, 1942 ocfs2_orphan_scan_timeout()); 1943 mutex_unlock(&os->os_lock); 1944 } 1945 1946 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 1947 { 1948 struct ocfs2_orphan_scan *os; 1949 1950 os = &osb->osb_orphan_scan; 1951 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 1952 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1953 mutex_lock(&os->os_lock); 1954 cancel_delayed_work(&os->os_orphan_scan_work); 1955 mutex_unlock(&os->os_lock); 1956 } 1957 } 1958 1959 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 1960 { 1961 struct ocfs2_orphan_scan *os; 1962 1963 os = &osb->osb_orphan_scan; 1964 os->os_osb = osb; 1965 os->os_count = 0; 1966 os->os_seqno = 0; 1967 mutex_init(&os->os_lock); 1968 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 1969 } 1970 1971 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 1972 { 1973 struct ocfs2_orphan_scan *os; 1974 1975 os = &osb->osb_orphan_scan; 1976 os->os_scantime = CURRENT_TIME; 1977 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 1978 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1979 else { 1980 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 1981 schedule_delayed_work(&os->os_orphan_scan_work, 1982 ocfs2_orphan_scan_timeout()); 1983 } 1984 } 1985 1986 struct ocfs2_orphan_filldir_priv { 1987 struct inode *head; 1988 struct ocfs2_super *osb; 1989 }; 1990 1991 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len, 1992 loff_t pos, u64 ino, unsigned type) 1993 { 1994 struct ocfs2_orphan_filldir_priv *p = priv; 1995 struct inode *iter; 1996 1997 if (name_len == 1 && !strncmp(".", name, 1)) 1998 return 0; 1999 if (name_len == 2 && !strncmp("..", name, 2)) 2000 return 0; 2001 2002 /* Skip bad inodes so that recovery can continue */ 2003 iter = ocfs2_iget(p->osb, ino, 2004 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2005 if (IS_ERR(iter)) 2006 return 0; 2007 2008 mlog(0, "queue orphan %llu\n", 2009 (unsigned long long)OCFS2_I(iter)->ip_blkno); 2010 /* No locking is required for the next_orphan queue as there 2011 * is only ever a single process doing orphan recovery. */ 2012 OCFS2_I(iter)->ip_next_orphan = p->head; 2013 p->head = iter; 2014 2015 return 0; 2016 } 2017 2018 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2019 int slot, 2020 struct inode **head) 2021 { 2022 int status; 2023 struct inode *orphan_dir_inode = NULL; 2024 struct ocfs2_orphan_filldir_priv priv; 2025 loff_t pos = 0; 2026 2027 priv.osb = osb; 2028 priv.head = *head; 2029 2030 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2031 ORPHAN_DIR_SYSTEM_INODE, 2032 slot); 2033 if (!orphan_dir_inode) { 2034 status = -ENOENT; 2035 mlog_errno(status); 2036 return status; 2037 } 2038 2039 mutex_lock(&orphan_dir_inode->i_mutex); 2040 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2041 if (status < 0) { 2042 mlog_errno(status); 2043 goto out; 2044 } 2045 2046 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv, 2047 ocfs2_orphan_filldir); 2048 if (status) { 2049 mlog_errno(status); 2050 goto out_cluster; 2051 } 2052 2053 *head = priv.head; 2054 2055 out_cluster: 2056 ocfs2_inode_unlock(orphan_dir_inode, 0); 2057 out: 2058 mutex_unlock(&orphan_dir_inode->i_mutex); 2059 iput(orphan_dir_inode); 2060 return status; 2061 } 2062 2063 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2064 int slot) 2065 { 2066 int ret; 2067 2068 spin_lock(&osb->osb_lock); 2069 ret = !osb->osb_orphan_wipes[slot]; 2070 spin_unlock(&osb->osb_lock); 2071 return ret; 2072 } 2073 2074 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2075 int slot) 2076 { 2077 spin_lock(&osb->osb_lock); 2078 /* Mark ourselves such that new processes in delete_inode() 2079 * know to quit early. */ 2080 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2081 while (osb->osb_orphan_wipes[slot]) { 2082 /* If any processes are already in the middle of an 2083 * orphan wipe on this dir, then we need to wait for 2084 * them. */ 2085 spin_unlock(&osb->osb_lock); 2086 wait_event_interruptible(osb->osb_wipe_event, 2087 ocfs2_orphan_recovery_can_continue(osb, slot)); 2088 spin_lock(&osb->osb_lock); 2089 } 2090 spin_unlock(&osb->osb_lock); 2091 } 2092 2093 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2094 int slot) 2095 { 2096 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2097 } 2098 2099 /* 2100 * Orphan recovery. Each mounted node has it's own orphan dir which we 2101 * must run during recovery. Our strategy here is to build a list of 2102 * the inodes in the orphan dir and iget/iput them. The VFS does 2103 * (most) of the rest of the work. 2104 * 2105 * Orphan recovery can happen at any time, not just mount so we have a 2106 * couple of extra considerations. 2107 * 2108 * - We grab as many inodes as we can under the orphan dir lock - 2109 * doing iget() outside the orphan dir risks getting a reference on 2110 * an invalid inode. 2111 * - We must be sure not to deadlock with other processes on the 2112 * system wanting to run delete_inode(). This can happen when they go 2113 * to lock the orphan dir and the orphan recovery process attempts to 2114 * iget() inside the orphan dir lock. This can be avoided by 2115 * advertising our state to ocfs2_delete_inode(). 2116 */ 2117 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2118 int slot) 2119 { 2120 int ret = 0; 2121 struct inode *inode = NULL; 2122 struct inode *iter; 2123 struct ocfs2_inode_info *oi; 2124 2125 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot); 2126 2127 ocfs2_mark_recovering_orphan_dir(osb, slot); 2128 ret = ocfs2_queue_orphans(osb, slot, &inode); 2129 ocfs2_clear_recovering_orphan_dir(osb, slot); 2130 2131 /* Error here should be noted, but we want to continue with as 2132 * many queued inodes as we've got. */ 2133 if (ret) 2134 mlog_errno(ret); 2135 2136 while (inode) { 2137 oi = OCFS2_I(inode); 2138 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno); 2139 2140 iter = oi->ip_next_orphan; 2141 2142 spin_lock(&oi->ip_lock); 2143 /* The remote delete code may have set these on the 2144 * assumption that the other node would wipe them 2145 * successfully. If they are still in the node's 2146 * orphan dir, we need to reset that state. */ 2147 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); 2148 2149 /* Set the proper information to get us going into 2150 * ocfs2_delete_inode. */ 2151 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2152 spin_unlock(&oi->ip_lock); 2153 2154 iput(inode); 2155 2156 inode = iter; 2157 } 2158 2159 return ret; 2160 } 2161 2162 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2163 { 2164 /* This check is good because ocfs2 will wait on our recovery 2165 * thread before changing it to something other than MOUNTED 2166 * or DISABLED. */ 2167 wait_event(osb->osb_mount_event, 2168 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2169 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2170 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2171 2172 /* If there's an error on mount, then we may never get to the 2173 * MOUNTED flag, but this is set right before 2174 * dismount_volume() so we can trust it. */ 2175 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2176 mlog(0, "mount error, exiting!\n"); 2177 return -EBUSY; 2178 } 2179 2180 return 0; 2181 } 2182 2183 static int ocfs2_commit_thread(void *arg) 2184 { 2185 int status; 2186 struct ocfs2_super *osb = arg; 2187 struct ocfs2_journal *journal = osb->journal; 2188 2189 /* we can trust j_num_trans here because _should_stop() is only set in 2190 * shutdown and nobody other than ourselves should be able to start 2191 * transactions. committing on shutdown might take a few iterations 2192 * as final transactions put deleted inodes on the list */ 2193 while (!(kthread_should_stop() && 2194 atomic_read(&journal->j_num_trans) == 0)) { 2195 2196 wait_event_interruptible(osb->checkpoint_event, 2197 atomic_read(&journal->j_num_trans) 2198 || kthread_should_stop()); 2199 2200 status = ocfs2_commit_cache(osb); 2201 if (status < 0) 2202 mlog_errno(status); 2203 2204 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2205 mlog(ML_KTHREAD, 2206 "commit_thread: %u transactions pending on " 2207 "shutdown\n", 2208 atomic_read(&journal->j_num_trans)); 2209 } 2210 } 2211 2212 return 0; 2213 } 2214 2215 /* Reads all the journal inodes without taking any cluster locks. Used 2216 * for hard readonly access to determine whether any journal requires 2217 * recovery. Also used to refresh the recovery generation numbers after 2218 * a journal has been recovered by another node. 2219 */ 2220 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2221 { 2222 int ret = 0; 2223 unsigned int slot; 2224 struct buffer_head *di_bh = NULL; 2225 struct ocfs2_dinode *di; 2226 int journal_dirty = 0; 2227 2228 for(slot = 0; slot < osb->max_slots; slot++) { 2229 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2230 if (ret) { 2231 mlog_errno(ret); 2232 goto out; 2233 } 2234 2235 di = (struct ocfs2_dinode *) di_bh->b_data; 2236 2237 osb->slot_recovery_generations[slot] = 2238 ocfs2_get_recovery_generation(di); 2239 2240 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2241 OCFS2_JOURNAL_DIRTY_FL) 2242 journal_dirty = 1; 2243 2244 brelse(di_bh); 2245 di_bh = NULL; 2246 } 2247 2248 out: 2249 if (journal_dirty) 2250 ret = -EROFS; 2251 return ret; 2252 } 2253