1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 #include <linux/time.h> 32 #include <linux/random.h> 33 #include <linux/delay.h> 34 35 #include <cluster/masklog.h> 36 37 #include "ocfs2.h" 38 39 #include "alloc.h" 40 #include "blockcheck.h" 41 #include "dir.h" 42 #include "dlmglue.h" 43 #include "extent_map.h" 44 #include "heartbeat.h" 45 #include "inode.h" 46 #include "journal.h" 47 #include "localalloc.h" 48 #include "slot_map.h" 49 #include "super.h" 50 #include "sysfile.h" 51 #include "uptodate.h" 52 #include "quota.h" 53 #include "file.h" 54 #include "namei.h" 55 56 #include "buffer_head_io.h" 57 #include "ocfs2_trace.h" 58 59 DEFINE_SPINLOCK(trans_inc_lock); 60 61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 62 63 static int ocfs2_force_read_journal(struct inode *inode); 64 static int ocfs2_recover_node(struct ocfs2_super *osb, 65 int node_num, int slot_num); 66 static int __ocfs2_recovery_thread(void *arg); 67 static int ocfs2_commit_cache(struct ocfs2_super *osb); 68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 70 int dirty, int replayed); 71 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 72 int slot_num); 73 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 74 int slot, 75 enum ocfs2_orphan_reco_type orphan_reco_type); 76 static int ocfs2_commit_thread(void *arg); 77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 78 int slot_num, 79 struct ocfs2_dinode *la_dinode, 80 struct ocfs2_dinode *tl_dinode, 81 struct ocfs2_quota_recovery *qrec, 82 enum ocfs2_orphan_reco_type orphan_reco_type); 83 84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 85 { 86 return __ocfs2_wait_on_mount(osb, 0); 87 } 88 89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 90 { 91 return __ocfs2_wait_on_mount(osb, 1); 92 } 93 94 /* 95 * This replay_map is to track online/offline slots, so we could recover 96 * offline slots during recovery and mount 97 */ 98 99 enum ocfs2_replay_state { 100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 102 REPLAY_DONE /* Replay was already queued */ 103 }; 104 105 struct ocfs2_replay_map { 106 unsigned int rm_slots; 107 enum ocfs2_replay_state rm_state; 108 unsigned char rm_replay_slots[0]; 109 }; 110 111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 112 { 113 if (!osb->replay_map) 114 return; 115 116 /* If we've already queued the replay, we don't have any more to do */ 117 if (osb->replay_map->rm_state == REPLAY_DONE) 118 return; 119 120 osb->replay_map->rm_state = state; 121 } 122 123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 124 { 125 struct ocfs2_replay_map *replay_map; 126 int i, node_num; 127 128 /* If replay map is already set, we don't do it again */ 129 if (osb->replay_map) 130 return 0; 131 132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 133 (osb->max_slots * sizeof(char)), GFP_KERNEL); 134 135 if (!replay_map) { 136 mlog_errno(-ENOMEM); 137 return -ENOMEM; 138 } 139 140 spin_lock(&osb->osb_lock); 141 142 replay_map->rm_slots = osb->max_slots; 143 replay_map->rm_state = REPLAY_UNNEEDED; 144 145 /* set rm_replay_slots for offline slot(s) */ 146 for (i = 0; i < replay_map->rm_slots; i++) { 147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 148 replay_map->rm_replay_slots[i] = 1; 149 } 150 151 osb->replay_map = replay_map; 152 spin_unlock(&osb->osb_lock); 153 return 0; 154 } 155 156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 157 enum ocfs2_orphan_reco_type orphan_reco_type) 158 { 159 struct ocfs2_replay_map *replay_map = osb->replay_map; 160 int i; 161 162 if (!replay_map) 163 return; 164 165 if (replay_map->rm_state != REPLAY_NEEDED) 166 return; 167 168 for (i = 0; i < replay_map->rm_slots; i++) 169 if (replay_map->rm_replay_slots[i]) 170 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 171 NULL, NULL, 172 orphan_reco_type); 173 replay_map->rm_state = REPLAY_DONE; 174 } 175 176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb) 177 { 178 struct ocfs2_replay_map *replay_map = osb->replay_map; 179 180 if (!osb->replay_map) 181 return; 182 183 kfree(replay_map); 184 osb->replay_map = NULL; 185 } 186 187 int ocfs2_recovery_init(struct ocfs2_super *osb) 188 { 189 struct ocfs2_recovery_map *rm; 190 191 mutex_init(&osb->recovery_lock); 192 osb->disable_recovery = 0; 193 osb->recovery_thread_task = NULL; 194 init_waitqueue_head(&osb->recovery_event); 195 196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 197 osb->max_slots * sizeof(unsigned int), 198 GFP_KERNEL); 199 if (!rm) { 200 mlog_errno(-ENOMEM); 201 return -ENOMEM; 202 } 203 204 rm->rm_entries = (unsigned int *)((char *)rm + 205 sizeof(struct ocfs2_recovery_map)); 206 osb->recovery_map = rm; 207 208 return 0; 209 } 210 211 /* we can't grab the goofy sem lock from inside wait_event, so we use 212 * memory barriers to make sure that we'll see the null task before 213 * being woken up */ 214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 215 { 216 mb(); 217 return osb->recovery_thread_task != NULL; 218 } 219 220 void ocfs2_recovery_exit(struct ocfs2_super *osb) 221 { 222 struct ocfs2_recovery_map *rm; 223 224 /* disable any new recovery threads and wait for any currently 225 * running ones to exit. Do this before setting the vol_state. */ 226 mutex_lock(&osb->recovery_lock); 227 osb->disable_recovery = 1; 228 mutex_unlock(&osb->recovery_lock); 229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 230 231 /* At this point, we know that no more recovery threads can be 232 * launched, so wait for any recovery completion work to 233 * complete. */ 234 flush_workqueue(osb->ocfs2_wq); 235 236 /* 237 * Now that recovery is shut down, and the osb is about to be 238 * freed, the osb_lock is not taken here. 239 */ 240 rm = osb->recovery_map; 241 /* XXX: Should we bug if there are dirty entries? */ 242 243 kfree(rm); 244 } 245 246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 247 unsigned int node_num) 248 { 249 int i; 250 struct ocfs2_recovery_map *rm = osb->recovery_map; 251 252 assert_spin_locked(&osb->osb_lock); 253 254 for (i = 0; i < rm->rm_used; i++) { 255 if (rm->rm_entries[i] == node_num) 256 return 1; 257 } 258 259 return 0; 260 } 261 262 /* Behaves like test-and-set. Returns the previous value */ 263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 264 unsigned int node_num) 265 { 266 struct ocfs2_recovery_map *rm = osb->recovery_map; 267 268 spin_lock(&osb->osb_lock); 269 if (__ocfs2_recovery_map_test(osb, node_num)) { 270 spin_unlock(&osb->osb_lock); 271 return 1; 272 } 273 274 /* XXX: Can this be exploited? Not from o2dlm... */ 275 BUG_ON(rm->rm_used >= osb->max_slots); 276 277 rm->rm_entries[rm->rm_used] = node_num; 278 rm->rm_used++; 279 spin_unlock(&osb->osb_lock); 280 281 return 0; 282 } 283 284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 285 unsigned int node_num) 286 { 287 int i; 288 struct ocfs2_recovery_map *rm = osb->recovery_map; 289 290 spin_lock(&osb->osb_lock); 291 292 for (i = 0; i < rm->rm_used; i++) { 293 if (rm->rm_entries[i] == node_num) 294 break; 295 } 296 297 if (i < rm->rm_used) { 298 /* XXX: be careful with the pointer math */ 299 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 300 (rm->rm_used - i - 1) * sizeof(unsigned int)); 301 rm->rm_used--; 302 } 303 304 spin_unlock(&osb->osb_lock); 305 } 306 307 static int ocfs2_commit_cache(struct ocfs2_super *osb) 308 { 309 int status = 0; 310 unsigned int flushed; 311 struct ocfs2_journal *journal = NULL; 312 313 journal = osb->journal; 314 315 /* Flush all pending commits and checkpoint the journal. */ 316 down_write(&journal->j_trans_barrier); 317 318 flushed = atomic_read(&journal->j_num_trans); 319 trace_ocfs2_commit_cache_begin(flushed); 320 if (flushed == 0) { 321 up_write(&journal->j_trans_barrier); 322 goto finally; 323 } 324 325 jbd2_journal_lock_updates(journal->j_journal); 326 status = jbd2_journal_flush(journal->j_journal); 327 jbd2_journal_unlock_updates(journal->j_journal); 328 if (status < 0) { 329 up_write(&journal->j_trans_barrier); 330 mlog_errno(status); 331 goto finally; 332 } 333 334 ocfs2_inc_trans_id(journal); 335 336 flushed = atomic_read(&journal->j_num_trans); 337 atomic_set(&journal->j_num_trans, 0); 338 up_write(&journal->j_trans_barrier); 339 340 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 341 342 ocfs2_wake_downconvert_thread(osb); 343 wake_up(&journal->j_checkpointed); 344 finally: 345 return status; 346 } 347 348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 349 { 350 journal_t *journal = osb->journal->j_journal; 351 handle_t *handle; 352 353 BUG_ON(!osb || !osb->journal->j_journal); 354 355 if (ocfs2_is_hard_readonly(osb)) 356 return ERR_PTR(-EROFS); 357 358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 359 BUG_ON(max_buffs <= 0); 360 361 /* Nested transaction? Just return the handle... */ 362 if (journal_current_handle()) 363 return jbd2_journal_start(journal, max_buffs); 364 365 sb_start_intwrite(osb->sb); 366 367 down_read(&osb->journal->j_trans_barrier); 368 369 handle = jbd2_journal_start(journal, max_buffs); 370 if (IS_ERR(handle)) { 371 up_read(&osb->journal->j_trans_barrier); 372 sb_end_intwrite(osb->sb); 373 374 mlog_errno(PTR_ERR(handle)); 375 376 if (is_journal_aborted(journal)) { 377 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 378 handle = ERR_PTR(-EROFS); 379 } 380 } else { 381 if (!ocfs2_mount_local(osb)) 382 atomic_inc(&(osb->journal->j_num_trans)); 383 } 384 385 return handle; 386 } 387 388 int ocfs2_commit_trans(struct ocfs2_super *osb, 389 handle_t *handle) 390 { 391 int ret, nested; 392 struct ocfs2_journal *journal = osb->journal; 393 394 BUG_ON(!handle); 395 396 nested = handle->h_ref > 1; 397 ret = jbd2_journal_stop(handle); 398 if (ret < 0) 399 mlog_errno(ret); 400 401 if (!nested) { 402 up_read(&journal->j_trans_barrier); 403 sb_end_intwrite(osb->sb); 404 } 405 406 return ret; 407 } 408 409 /* 410 * 'nblocks' is what you want to add to the current transaction. 411 * 412 * This might call jbd2_journal_restart() which will commit dirty buffers 413 * and then restart the transaction. Before calling 414 * ocfs2_extend_trans(), any changed blocks should have been 415 * dirtied. After calling it, all blocks which need to be changed must 416 * go through another set of journal_access/journal_dirty calls. 417 * 418 * WARNING: This will not release any semaphores or disk locks taken 419 * during the transaction, so make sure they were taken *before* 420 * start_trans or we'll have ordering deadlocks. 421 * 422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 423 * good because transaction ids haven't yet been recorded on the 424 * cluster locks associated with this handle. 425 */ 426 int ocfs2_extend_trans(handle_t *handle, int nblocks) 427 { 428 int status, old_nblocks; 429 430 BUG_ON(!handle); 431 BUG_ON(nblocks < 0); 432 433 if (!nblocks) 434 return 0; 435 436 old_nblocks = handle->h_buffer_credits; 437 438 trace_ocfs2_extend_trans(old_nblocks, nblocks); 439 440 #ifdef CONFIG_OCFS2_DEBUG_FS 441 status = 1; 442 #else 443 status = jbd2_journal_extend(handle, nblocks); 444 if (status < 0) { 445 mlog_errno(status); 446 goto bail; 447 } 448 #endif 449 450 if (status > 0) { 451 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 452 status = jbd2_journal_restart(handle, 453 old_nblocks + nblocks); 454 if (status < 0) { 455 mlog_errno(status); 456 goto bail; 457 } 458 } 459 460 status = 0; 461 bail: 462 return status; 463 } 464 465 /* 466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 467 * If that fails, restart the transaction & regain write access for the 468 * buffer head which is used for metadata modifications. 469 * Taken from Ext4: extend_or_restart_transaction() 470 */ 471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 472 { 473 int status, old_nblks; 474 475 BUG_ON(!handle); 476 477 old_nblks = handle->h_buffer_credits; 478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 479 480 if (old_nblks < thresh) 481 return 0; 482 483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA); 484 if (status < 0) { 485 mlog_errno(status); 486 goto bail; 487 } 488 489 if (status > 0) { 490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 491 if (status < 0) 492 mlog_errno(status); 493 } 494 495 bail: 496 return status; 497 } 498 499 500 struct ocfs2_triggers { 501 struct jbd2_buffer_trigger_type ot_triggers; 502 int ot_offset; 503 }; 504 505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 506 { 507 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 508 } 509 510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 511 struct buffer_head *bh, 512 void *data, size_t size) 513 { 514 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 515 516 /* 517 * We aren't guaranteed to have the superblock here, so we 518 * must unconditionally compute the ecc data. 519 * __ocfs2_journal_access() will only set the triggers if 520 * metaecc is enabled. 521 */ 522 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 523 } 524 525 /* 526 * Quota blocks have their own trigger because the struct ocfs2_block_check 527 * offset depends on the blocksize. 528 */ 529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 530 struct buffer_head *bh, 531 void *data, size_t size) 532 { 533 struct ocfs2_disk_dqtrailer *dqt = 534 ocfs2_block_dqtrailer(size, data); 535 536 /* 537 * We aren't guaranteed to have the superblock here, so we 538 * must unconditionally compute the ecc data. 539 * __ocfs2_journal_access() will only set the triggers if 540 * metaecc is enabled. 541 */ 542 ocfs2_block_check_compute(data, size, &dqt->dq_check); 543 } 544 545 /* 546 * Directory blocks also have their own trigger because the 547 * struct ocfs2_block_check offset depends on the blocksize. 548 */ 549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 550 struct buffer_head *bh, 551 void *data, size_t size) 552 { 553 struct ocfs2_dir_block_trailer *trailer = 554 ocfs2_dir_trailer_from_size(size, data); 555 556 /* 557 * We aren't guaranteed to have the superblock here, so we 558 * must unconditionally compute the ecc data. 559 * __ocfs2_journal_access() will only set the triggers if 560 * metaecc is enabled. 561 */ 562 ocfs2_block_check_compute(data, size, &trailer->db_check); 563 } 564 565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 566 struct buffer_head *bh) 567 { 568 mlog(ML_ERROR, 569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 570 "bh->b_blocknr = %llu\n", 571 (unsigned long)bh, 572 (unsigned long long)bh->b_blocknr); 573 574 ocfs2_error(bh->b_bdev->bd_super, 575 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 576 } 577 578 static struct ocfs2_triggers di_triggers = { 579 .ot_triggers = { 580 .t_frozen = ocfs2_frozen_trigger, 581 .t_abort = ocfs2_abort_trigger, 582 }, 583 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 584 }; 585 586 static struct ocfs2_triggers eb_triggers = { 587 .ot_triggers = { 588 .t_frozen = ocfs2_frozen_trigger, 589 .t_abort = ocfs2_abort_trigger, 590 }, 591 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 592 }; 593 594 static struct ocfs2_triggers rb_triggers = { 595 .ot_triggers = { 596 .t_frozen = ocfs2_frozen_trigger, 597 .t_abort = ocfs2_abort_trigger, 598 }, 599 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 600 }; 601 602 static struct ocfs2_triggers gd_triggers = { 603 .ot_triggers = { 604 .t_frozen = ocfs2_frozen_trigger, 605 .t_abort = ocfs2_abort_trigger, 606 }, 607 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 608 }; 609 610 static struct ocfs2_triggers db_triggers = { 611 .ot_triggers = { 612 .t_frozen = ocfs2_db_frozen_trigger, 613 .t_abort = ocfs2_abort_trigger, 614 }, 615 }; 616 617 static struct ocfs2_triggers xb_triggers = { 618 .ot_triggers = { 619 .t_frozen = ocfs2_frozen_trigger, 620 .t_abort = ocfs2_abort_trigger, 621 }, 622 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 623 }; 624 625 static struct ocfs2_triggers dq_triggers = { 626 .ot_triggers = { 627 .t_frozen = ocfs2_dq_frozen_trigger, 628 .t_abort = ocfs2_abort_trigger, 629 }, 630 }; 631 632 static struct ocfs2_triggers dr_triggers = { 633 .ot_triggers = { 634 .t_frozen = ocfs2_frozen_trigger, 635 .t_abort = ocfs2_abort_trigger, 636 }, 637 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 638 }; 639 640 static struct ocfs2_triggers dl_triggers = { 641 .ot_triggers = { 642 .t_frozen = ocfs2_frozen_trigger, 643 .t_abort = ocfs2_abort_trigger, 644 }, 645 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 646 }; 647 648 static int __ocfs2_journal_access(handle_t *handle, 649 struct ocfs2_caching_info *ci, 650 struct buffer_head *bh, 651 struct ocfs2_triggers *triggers, 652 int type) 653 { 654 int status; 655 struct ocfs2_super *osb = 656 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 657 658 BUG_ON(!ci || !ci->ci_ops); 659 BUG_ON(!handle); 660 BUG_ON(!bh); 661 662 trace_ocfs2_journal_access( 663 (unsigned long long)ocfs2_metadata_cache_owner(ci), 664 (unsigned long long)bh->b_blocknr, type, bh->b_size); 665 666 /* we can safely remove this assertion after testing. */ 667 if (!buffer_uptodate(bh)) { 668 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 669 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 670 (unsigned long long)bh->b_blocknr, bh->b_state); 671 672 lock_buffer(bh); 673 /* 674 * A previous transaction with a couple of buffer heads fail 675 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 676 * For current transaction, the bh is just among those error 677 * bhs which previous transaction handle. We can't just clear 678 * its BH_Write_EIO and reuse directly, since other bhs are 679 * not written to disk yet and that will cause metadata 680 * inconsistency. So we should set fs read-only to avoid 681 * further damage. 682 */ 683 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 684 unlock_buffer(bh); 685 return ocfs2_error(osb->sb, "A previous attempt to " 686 "write this buffer head failed\n"); 687 } 688 unlock_buffer(bh); 689 } 690 691 /* Set the current transaction information on the ci so 692 * that the locking code knows whether it can drop it's locks 693 * on this ci or not. We're protected from the commit 694 * thread updating the current transaction id until 695 * ocfs2_commit_trans() because ocfs2_start_trans() took 696 * j_trans_barrier for us. */ 697 ocfs2_set_ci_lock_trans(osb->journal, ci); 698 699 ocfs2_metadata_cache_io_lock(ci); 700 switch (type) { 701 case OCFS2_JOURNAL_ACCESS_CREATE: 702 case OCFS2_JOURNAL_ACCESS_WRITE: 703 status = jbd2_journal_get_write_access(handle, bh); 704 break; 705 706 case OCFS2_JOURNAL_ACCESS_UNDO: 707 status = jbd2_journal_get_undo_access(handle, bh); 708 break; 709 710 default: 711 status = -EINVAL; 712 mlog(ML_ERROR, "Unknown access type!\n"); 713 } 714 if (!status && ocfs2_meta_ecc(osb) && triggers) 715 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 716 ocfs2_metadata_cache_io_unlock(ci); 717 718 if (status < 0) 719 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 720 status, type); 721 722 return status; 723 } 724 725 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 726 struct buffer_head *bh, int type) 727 { 728 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 729 } 730 731 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 732 struct buffer_head *bh, int type) 733 { 734 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 735 } 736 737 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 738 struct buffer_head *bh, int type) 739 { 740 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 741 type); 742 } 743 744 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 745 struct buffer_head *bh, int type) 746 { 747 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 748 } 749 750 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 751 struct buffer_head *bh, int type) 752 { 753 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 754 } 755 756 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 757 struct buffer_head *bh, int type) 758 { 759 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 760 } 761 762 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 763 struct buffer_head *bh, int type) 764 { 765 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 766 } 767 768 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 769 struct buffer_head *bh, int type) 770 { 771 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 772 } 773 774 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 775 struct buffer_head *bh, int type) 776 { 777 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 778 } 779 780 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 781 struct buffer_head *bh, int type) 782 { 783 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 784 } 785 786 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 787 { 788 int status; 789 790 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 791 792 status = jbd2_journal_dirty_metadata(handle, bh); 793 if (status) { 794 mlog_errno(status); 795 if (!is_handle_aborted(handle)) { 796 journal_t *journal = handle->h_transaction->t_journal; 797 struct super_block *sb = bh->b_bdev->bd_super; 798 799 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " 800 "Aborting transaction and journal.\n"); 801 handle->h_err = status; 802 jbd2_journal_abort_handle(handle); 803 jbd2_journal_abort(journal, status); 804 ocfs2_abort(sb, "Journal already aborted.\n"); 805 } 806 } 807 } 808 809 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 810 811 void ocfs2_set_journal_params(struct ocfs2_super *osb) 812 { 813 journal_t *journal = osb->journal->j_journal; 814 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 815 816 if (osb->osb_commit_interval) 817 commit_interval = osb->osb_commit_interval; 818 819 write_lock(&journal->j_state_lock); 820 journal->j_commit_interval = commit_interval; 821 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 822 journal->j_flags |= JBD2_BARRIER; 823 else 824 journal->j_flags &= ~JBD2_BARRIER; 825 write_unlock(&journal->j_state_lock); 826 } 827 828 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 829 { 830 int status = -1; 831 struct inode *inode = NULL; /* the journal inode */ 832 journal_t *j_journal = NULL; 833 struct ocfs2_dinode *di = NULL; 834 struct buffer_head *bh = NULL; 835 struct ocfs2_super *osb; 836 int inode_lock = 0; 837 838 BUG_ON(!journal); 839 840 osb = journal->j_osb; 841 842 /* already have the inode for our journal */ 843 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 844 osb->slot_num); 845 if (inode == NULL) { 846 status = -EACCES; 847 mlog_errno(status); 848 goto done; 849 } 850 if (is_bad_inode(inode)) { 851 mlog(ML_ERROR, "access error (bad inode)\n"); 852 iput(inode); 853 inode = NULL; 854 status = -EACCES; 855 goto done; 856 } 857 858 SET_INODE_JOURNAL(inode); 859 OCFS2_I(inode)->ip_open_count++; 860 861 /* Skip recovery waits here - journal inode metadata never 862 * changes in a live cluster so it can be considered an 863 * exception to the rule. */ 864 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 865 if (status < 0) { 866 if (status != -ERESTARTSYS) 867 mlog(ML_ERROR, "Could not get lock on journal!\n"); 868 goto done; 869 } 870 871 inode_lock = 1; 872 di = (struct ocfs2_dinode *)bh->b_data; 873 874 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 875 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 876 i_size_read(inode)); 877 status = -EINVAL; 878 goto done; 879 } 880 881 trace_ocfs2_journal_init(i_size_read(inode), 882 (unsigned long long)inode->i_blocks, 883 OCFS2_I(inode)->ip_clusters); 884 885 /* call the kernels journal init function now */ 886 j_journal = jbd2_journal_init_inode(inode); 887 if (j_journal == NULL) { 888 mlog(ML_ERROR, "Linux journal layer error\n"); 889 status = -EINVAL; 890 goto done; 891 } 892 893 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen); 894 895 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 896 OCFS2_JOURNAL_DIRTY_FL); 897 898 journal->j_journal = j_journal; 899 journal->j_inode = inode; 900 journal->j_bh = bh; 901 902 ocfs2_set_journal_params(osb); 903 904 journal->j_state = OCFS2_JOURNAL_LOADED; 905 906 status = 0; 907 done: 908 if (status < 0) { 909 if (inode_lock) 910 ocfs2_inode_unlock(inode, 1); 911 brelse(bh); 912 if (inode) { 913 OCFS2_I(inode)->ip_open_count--; 914 iput(inode); 915 } 916 } 917 918 return status; 919 } 920 921 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 922 { 923 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 924 } 925 926 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 927 { 928 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 929 } 930 931 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 932 int dirty, int replayed) 933 { 934 int status; 935 unsigned int flags; 936 struct ocfs2_journal *journal = osb->journal; 937 struct buffer_head *bh = journal->j_bh; 938 struct ocfs2_dinode *fe; 939 940 fe = (struct ocfs2_dinode *)bh->b_data; 941 942 /* The journal bh on the osb always comes from ocfs2_journal_init() 943 * and was validated there inside ocfs2_inode_lock_full(). It's a 944 * code bug if we mess it up. */ 945 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 946 947 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 948 if (dirty) 949 flags |= OCFS2_JOURNAL_DIRTY_FL; 950 else 951 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 952 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 953 954 if (replayed) 955 ocfs2_bump_recovery_generation(fe); 956 957 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 958 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 959 if (status < 0) 960 mlog_errno(status); 961 962 return status; 963 } 964 965 /* 966 * If the journal has been kmalloc'd it needs to be freed after this 967 * call. 968 */ 969 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 970 { 971 struct ocfs2_journal *journal = NULL; 972 int status = 0; 973 struct inode *inode = NULL; 974 int num_running_trans = 0; 975 976 BUG_ON(!osb); 977 978 journal = osb->journal; 979 if (!journal) 980 goto done; 981 982 inode = journal->j_inode; 983 984 if (journal->j_state != OCFS2_JOURNAL_LOADED) 985 goto done; 986 987 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 988 if (!igrab(inode)) 989 BUG(); 990 991 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 992 trace_ocfs2_journal_shutdown(num_running_trans); 993 994 /* Do a commit_cache here. It will flush our journal, *and* 995 * release any locks that are still held. 996 * set the SHUTDOWN flag and release the trans lock. 997 * the commit thread will take the trans lock for us below. */ 998 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 999 1000 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 1001 * drop the trans_lock (which we want to hold until we 1002 * completely destroy the journal. */ 1003 if (osb->commit_task) { 1004 /* Wait for the commit thread */ 1005 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 1006 kthread_stop(osb->commit_task); 1007 osb->commit_task = NULL; 1008 } 1009 1010 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 1011 1012 if (ocfs2_mount_local(osb)) { 1013 jbd2_journal_lock_updates(journal->j_journal); 1014 status = jbd2_journal_flush(journal->j_journal); 1015 jbd2_journal_unlock_updates(journal->j_journal); 1016 if (status < 0) 1017 mlog_errno(status); 1018 } 1019 1020 /* Shutdown the kernel journal system */ 1021 if (!jbd2_journal_destroy(journal->j_journal) && !status) { 1022 /* 1023 * Do not toggle if flush was unsuccessful otherwise 1024 * will leave dirty metadata in a "clean" journal 1025 */ 1026 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1027 if (status < 0) 1028 mlog_errno(status); 1029 } 1030 journal->j_journal = NULL; 1031 1032 OCFS2_I(inode)->ip_open_count--; 1033 1034 /* unlock our journal */ 1035 ocfs2_inode_unlock(inode, 1); 1036 1037 brelse(journal->j_bh); 1038 journal->j_bh = NULL; 1039 1040 journal->j_state = OCFS2_JOURNAL_FREE; 1041 1042 // up_write(&journal->j_trans_barrier); 1043 done: 1044 iput(inode); 1045 } 1046 1047 static void ocfs2_clear_journal_error(struct super_block *sb, 1048 journal_t *journal, 1049 int slot) 1050 { 1051 int olderr; 1052 1053 olderr = jbd2_journal_errno(journal); 1054 if (olderr) { 1055 mlog(ML_ERROR, "File system error %d recorded in " 1056 "journal %u.\n", olderr, slot); 1057 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1058 sb->s_id); 1059 1060 jbd2_journal_ack_err(journal); 1061 jbd2_journal_clear_err(journal); 1062 } 1063 } 1064 1065 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1066 { 1067 int status = 0; 1068 struct ocfs2_super *osb; 1069 1070 BUG_ON(!journal); 1071 1072 osb = journal->j_osb; 1073 1074 status = jbd2_journal_load(journal->j_journal); 1075 if (status < 0) { 1076 mlog(ML_ERROR, "Failed to load journal!\n"); 1077 goto done; 1078 } 1079 1080 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1081 1082 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1083 if (status < 0) { 1084 mlog_errno(status); 1085 goto done; 1086 } 1087 1088 /* Launch the commit thread */ 1089 if (!local) { 1090 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1091 "ocfs2cmt-%s", osb->uuid_str); 1092 if (IS_ERR(osb->commit_task)) { 1093 status = PTR_ERR(osb->commit_task); 1094 osb->commit_task = NULL; 1095 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1096 "error=%d", status); 1097 goto done; 1098 } 1099 } else 1100 osb->commit_task = NULL; 1101 1102 done: 1103 return status; 1104 } 1105 1106 1107 /* 'full' flag tells us whether we clear out all blocks or if we just 1108 * mark the journal clean */ 1109 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1110 { 1111 int status; 1112 1113 BUG_ON(!journal); 1114 1115 status = jbd2_journal_wipe(journal->j_journal, full); 1116 if (status < 0) { 1117 mlog_errno(status); 1118 goto bail; 1119 } 1120 1121 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1122 if (status < 0) 1123 mlog_errno(status); 1124 1125 bail: 1126 return status; 1127 } 1128 1129 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1130 { 1131 int empty; 1132 struct ocfs2_recovery_map *rm = osb->recovery_map; 1133 1134 spin_lock(&osb->osb_lock); 1135 empty = (rm->rm_used == 0); 1136 spin_unlock(&osb->osb_lock); 1137 1138 return empty; 1139 } 1140 1141 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1142 { 1143 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1144 } 1145 1146 /* 1147 * JBD Might read a cached version of another nodes journal file. We 1148 * don't want this as this file changes often and we get no 1149 * notification on those changes. The only way to be sure that we've 1150 * got the most up to date version of those blocks then is to force 1151 * read them off disk. Just searching through the buffer cache won't 1152 * work as there may be pages backing this file which are still marked 1153 * up to date. We know things can't change on this file underneath us 1154 * as we have the lock by now :) 1155 */ 1156 static int ocfs2_force_read_journal(struct inode *inode) 1157 { 1158 int status = 0; 1159 int i; 1160 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1161 struct buffer_head *bh = NULL; 1162 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1163 1164 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1165 v_blkno = 0; 1166 while (v_blkno < num_blocks) { 1167 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1168 &p_blkno, &p_blocks, NULL); 1169 if (status < 0) { 1170 mlog_errno(status); 1171 goto bail; 1172 } 1173 1174 for (i = 0; i < p_blocks; i++, p_blkno++) { 1175 bh = __find_get_block(osb->sb->s_bdev, p_blkno, 1176 osb->sb->s_blocksize); 1177 /* block not cached. */ 1178 if (!bh) 1179 continue; 1180 1181 brelse(bh); 1182 bh = NULL; 1183 /* We are reading journal data which should not 1184 * be put in the uptodate cache. 1185 */ 1186 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1187 if (status < 0) { 1188 mlog_errno(status); 1189 goto bail; 1190 } 1191 1192 brelse(bh); 1193 bh = NULL; 1194 } 1195 1196 v_blkno += p_blocks; 1197 } 1198 1199 bail: 1200 return status; 1201 } 1202 1203 struct ocfs2_la_recovery_item { 1204 struct list_head lri_list; 1205 int lri_slot; 1206 struct ocfs2_dinode *lri_la_dinode; 1207 struct ocfs2_dinode *lri_tl_dinode; 1208 struct ocfs2_quota_recovery *lri_qrec; 1209 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1210 }; 1211 1212 /* Does the second half of the recovery process. By this point, the 1213 * node is marked clean and can actually be considered recovered, 1214 * hence it's no longer in the recovery map, but there's still some 1215 * cleanup we can do which shouldn't happen within the recovery thread 1216 * as locking in that context becomes very difficult if we are to take 1217 * recovering nodes into account. 1218 * 1219 * NOTE: This function can and will sleep on recovery of other nodes 1220 * during cluster locking, just like any other ocfs2 process. 1221 */ 1222 void ocfs2_complete_recovery(struct work_struct *work) 1223 { 1224 int ret = 0; 1225 struct ocfs2_journal *journal = 1226 container_of(work, struct ocfs2_journal, j_recovery_work); 1227 struct ocfs2_super *osb = journal->j_osb; 1228 struct ocfs2_dinode *la_dinode, *tl_dinode; 1229 struct ocfs2_la_recovery_item *item, *n; 1230 struct ocfs2_quota_recovery *qrec; 1231 enum ocfs2_orphan_reco_type orphan_reco_type; 1232 LIST_HEAD(tmp_la_list); 1233 1234 trace_ocfs2_complete_recovery( 1235 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1236 1237 spin_lock(&journal->j_lock); 1238 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1239 spin_unlock(&journal->j_lock); 1240 1241 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1242 list_del_init(&item->lri_list); 1243 1244 ocfs2_wait_on_quotas(osb); 1245 1246 la_dinode = item->lri_la_dinode; 1247 tl_dinode = item->lri_tl_dinode; 1248 qrec = item->lri_qrec; 1249 orphan_reco_type = item->lri_orphan_reco_type; 1250 1251 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1252 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1253 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1254 qrec); 1255 1256 if (la_dinode) { 1257 ret = ocfs2_complete_local_alloc_recovery(osb, 1258 la_dinode); 1259 if (ret < 0) 1260 mlog_errno(ret); 1261 1262 kfree(la_dinode); 1263 } 1264 1265 if (tl_dinode) { 1266 ret = ocfs2_complete_truncate_log_recovery(osb, 1267 tl_dinode); 1268 if (ret < 0) 1269 mlog_errno(ret); 1270 1271 kfree(tl_dinode); 1272 } 1273 1274 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1275 orphan_reco_type); 1276 if (ret < 0) 1277 mlog_errno(ret); 1278 1279 if (qrec) { 1280 ret = ocfs2_finish_quota_recovery(osb, qrec, 1281 item->lri_slot); 1282 if (ret < 0) 1283 mlog_errno(ret); 1284 /* Recovery info is already freed now */ 1285 } 1286 1287 kfree(item); 1288 } 1289 1290 trace_ocfs2_complete_recovery_end(ret); 1291 } 1292 1293 /* NOTE: This function always eats your references to la_dinode and 1294 * tl_dinode, either manually on error, or by passing them to 1295 * ocfs2_complete_recovery */ 1296 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1297 int slot_num, 1298 struct ocfs2_dinode *la_dinode, 1299 struct ocfs2_dinode *tl_dinode, 1300 struct ocfs2_quota_recovery *qrec, 1301 enum ocfs2_orphan_reco_type orphan_reco_type) 1302 { 1303 struct ocfs2_la_recovery_item *item; 1304 1305 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1306 if (!item) { 1307 /* Though we wish to avoid it, we are in fact safe in 1308 * skipping local alloc cleanup as fsck.ocfs2 is more 1309 * than capable of reclaiming unused space. */ 1310 kfree(la_dinode); 1311 kfree(tl_dinode); 1312 1313 if (qrec) 1314 ocfs2_free_quota_recovery(qrec); 1315 1316 mlog_errno(-ENOMEM); 1317 return; 1318 } 1319 1320 INIT_LIST_HEAD(&item->lri_list); 1321 item->lri_la_dinode = la_dinode; 1322 item->lri_slot = slot_num; 1323 item->lri_tl_dinode = tl_dinode; 1324 item->lri_qrec = qrec; 1325 item->lri_orphan_reco_type = orphan_reco_type; 1326 1327 spin_lock(&journal->j_lock); 1328 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1329 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1330 spin_unlock(&journal->j_lock); 1331 } 1332 1333 /* Called by the mount code to queue recovery the last part of 1334 * recovery for it's own and offline slot(s). */ 1335 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1336 { 1337 struct ocfs2_journal *journal = osb->journal; 1338 1339 if (ocfs2_is_hard_readonly(osb)) 1340 return; 1341 1342 /* No need to queue up our truncate_log as regular cleanup will catch 1343 * that */ 1344 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1345 osb->local_alloc_copy, NULL, NULL, 1346 ORPHAN_NEED_TRUNCATE); 1347 ocfs2_schedule_truncate_log_flush(osb, 0); 1348 1349 osb->local_alloc_copy = NULL; 1350 1351 /* queue to recover orphan slots for all offline slots */ 1352 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1353 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1354 ocfs2_free_replay_slots(osb); 1355 } 1356 1357 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1358 { 1359 if (osb->quota_rec) { 1360 ocfs2_queue_recovery_completion(osb->journal, 1361 osb->slot_num, 1362 NULL, 1363 NULL, 1364 osb->quota_rec, 1365 ORPHAN_NEED_TRUNCATE); 1366 osb->quota_rec = NULL; 1367 } 1368 } 1369 1370 static int __ocfs2_recovery_thread(void *arg) 1371 { 1372 int status, node_num, slot_num; 1373 struct ocfs2_super *osb = arg; 1374 struct ocfs2_recovery_map *rm = osb->recovery_map; 1375 int *rm_quota = NULL; 1376 int rm_quota_used = 0, i; 1377 struct ocfs2_quota_recovery *qrec; 1378 1379 /* Whether the quota supported. */ 1380 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1381 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1382 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1383 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1384 1385 status = ocfs2_wait_on_mount(osb); 1386 if (status < 0) { 1387 goto bail; 1388 } 1389 1390 if (quota_enabled) { 1391 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1392 if (!rm_quota) { 1393 status = -ENOMEM; 1394 goto bail; 1395 } 1396 } 1397 restart: 1398 status = ocfs2_super_lock(osb, 1); 1399 if (status < 0) { 1400 mlog_errno(status); 1401 goto bail; 1402 } 1403 1404 status = ocfs2_compute_replay_slots(osb); 1405 if (status < 0) 1406 mlog_errno(status); 1407 1408 /* queue recovery for our own slot */ 1409 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1410 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1411 1412 spin_lock(&osb->osb_lock); 1413 while (rm->rm_used) { 1414 /* It's always safe to remove entry zero, as we won't 1415 * clear it until ocfs2_recover_node() has succeeded. */ 1416 node_num = rm->rm_entries[0]; 1417 spin_unlock(&osb->osb_lock); 1418 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1419 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1420 if (slot_num == -ENOENT) { 1421 status = 0; 1422 goto skip_recovery; 1423 } 1424 1425 /* It is a bit subtle with quota recovery. We cannot do it 1426 * immediately because we have to obtain cluster locks from 1427 * quota files and we also don't want to just skip it because 1428 * then quota usage would be out of sync until some node takes 1429 * the slot. So we remember which nodes need quota recovery 1430 * and when everything else is done, we recover quotas. */ 1431 if (quota_enabled) { 1432 for (i = 0; i < rm_quota_used 1433 && rm_quota[i] != slot_num; i++) 1434 ; 1435 1436 if (i == rm_quota_used) 1437 rm_quota[rm_quota_used++] = slot_num; 1438 } 1439 1440 status = ocfs2_recover_node(osb, node_num, slot_num); 1441 skip_recovery: 1442 if (!status) { 1443 ocfs2_recovery_map_clear(osb, node_num); 1444 } else { 1445 mlog(ML_ERROR, 1446 "Error %d recovering node %d on device (%u,%u)!\n", 1447 status, node_num, 1448 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1449 mlog(ML_ERROR, "Volume requires unmount.\n"); 1450 } 1451 1452 spin_lock(&osb->osb_lock); 1453 } 1454 spin_unlock(&osb->osb_lock); 1455 trace_ocfs2_recovery_thread_end(status); 1456 1457 /* Refresh all journal recovery generations from disk */ 1458 status = ocfs2_check_journals_nolocks(osb); 1459 status = (status == -EROFS) ? 0 : status; 1460 if (status < 0) 1461 mlog_errno(status); 1462 1463 /* Now it is right time to recover quotas... We have to do this under 1464 * superblock lock so that no one can start using the slot (and crash) 1465 * before we recover it */ 1466 if (quota_enabled) { 1467 for (i = 0; i < rm_quota_used; i++) { 1468 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1469 if (IS_ERR(qrec)) { 1470 status = PTR_ERR(qrec); 1471 mlog_errno(status); 1472 continue; 1473 } 1474 ocfs2_queue_recovery_completion(osb->journal, 1475 rm_quota[i], 1476 NULL, NULL, qrec, 1477 ORPHAN_NEED_TRUNCATE); 1478 } 1479 } 1480 1481 ocfs2_super_unlock(osb, 1); 1482 1483 /* queue recovery for offline slots */ 1484 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1485 1486 bail: 1487 mutex_lock(&osb->recovery_lock); 1488 if (!status && !ocfs2_recovery_completed(osb)) { 1489 mutex_unlock(&osb->recovery_lock); 1490 goto restart; 1491 } 1492 1493 ocfs2_free_replay_slots(osb); 1494 osb->recovery_thread_task = NULL; 1495 mb(); /* sync with ocfs2_recovery_thread_running */ 1496 wake_up(&osb->recovery_event); 1497 1498 mutex_unlock(&osb->recovery_lock); 1499 1500 if (quota_enabled) 1501 kfree(rm_quota); 1502 1503 /* no one is callint kthread_stop() for us so the kthread() api 1504 * requires that we call do_exit(). And it isn't exported, but 1505 * complete_and_exit() seems to be a minimal wrapper around it. */ 1506 complete_and_exit(NULL, status); 1507 } 1508 1509 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1510 { 1511 mutex_lock(&osb->recovery_lock); 1512 1513 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1514 osb->disable_recovery, osb->recovery_thread_task, 1515 osb->disable_recovery ? 1516 -1 : ocfs2_recovery_map_set(osb, node_num)); 1517 1518 if (osb->disable_recovery) 1519 goto out; 1520 1521 if (osb->recovery_thread_task) 1522 goto out; 1523 1524 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1525 "ocfs2rec-%s", osb->uuid_str); 1526 if (IS_ERR(osb->recovery_thread_task)) { 1527 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1528 osb->recovery_thread_task = NULL; 1529 } 1530 1531 out: 1532 mutex_unlock(&osb->recovery_lock); 1533 wake_up(&osb->recovery_event); 1534 } 1535 1536 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1537 int slot_num, 1538 struct buffer_head **bh, 1539 struct inode **ret_inode) 1540 { 1541 int status = -EACCES; 1542 struct inode *inode = NULL; 1543 1544 BUG_ON(slot_num >= osb->max_slots); 1545 1546 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1547 slot_num); 1548 if (!inode || is_bad_inode(inode)) { 1549 mlog_errno(status); 1550 goto bail; 1551 } 1552 SET_INODE_JOURNAL(inode); 1553 1554 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1555 if (status < 0) { 1556 mlog_errno(status); 1557 goto bail; 1558 } 1559 1560 status = 0; 1561 1562 bail: 1563 if (inode) { 1564 if (status || !ret_inode) 1565 iput(inode); 1566 else 1567 *ret_inode = inode; 1568 } 1569 return status; 1570 } 1571 1572 /* Does the actual journal replay and marks the journal inode as 1573 * clean. Will only replay if the journal inode is marked dirty. */ 1574 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1575 int node_num, 1576 int slot_num) 1577 { 1578 int status; 1579 int got_lock = 0; 1580 unsigned int flags; 1581 struct inode *inode = NULL; 1582 struct ocfs2_dinode *fe; 1583 journal_t *journal = NULL; 1584 struct buffer_head *bh = NULL; 1585 u32 slot_reco_gen; 1586 1587 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1588 if (status) { 1589 mlog_errno(status); 1590 goto done; 1591 } 1592 1593 fe = (struct ocfs2_dinode *)bh->b_data; 1594 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1595 brelse(bh); 1596 bh = NULL; 1597 1598 /* 1599 * As the fs recovery is asynchronous, there is a small chance that 1600 * another node mounted (and recovered) the slot before the recovery 1601 * thread could get the lock. To handle that, we dirty read the journal 1602 * inode for that slot to get the recovery generation. If it is 1603 * different than what we expected, the slot has been recovered. 1604 * If not, it needs recovery. 1605 */ 1606 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1607 trace_ocfs2_replay_journal_recovered(slot_num, 1608 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1609 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1610 status = -EBUSY; 1611 goto done; 1612 } 1613 1614 /* Continue with recovery as the journal has not yet been recovered */ 1615 1616 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1617 if (status < 0) { 1618 trace_ocfs2_replay_journal_lock_err(status); 1619 if (status != -ERESTARTSYS) 1620 mlog(ML_ERROR, "Could not lock journal!\n"); 1621 goto done; 1622 } 1623 got_lock = 1; 1624 1625 fe = (struct ocfs2_dinode *) bh->b_data; 1626 1627 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1628 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1629 1630 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1631 trace_ocfs2_replay_journal_skip(node_num); 1632 /* Refresh recovery generation for the slot */ 1633 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1634 goto done; 1635 } 1636 1637 /* we need to run complete recovery for offline orphan slots */ 1638 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1639 1640 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1641 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1642 MINOR(osb->sb->s_dev)); 1643 1644 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1645 1646 status = ocfs2_force_read_journal(inode); 1647 if (status < 0) { 1648 mlog_errno(status); 1649 goto done; 1650 } 1651 1652 journal = jbd2_journal_init_inode(inode); 1653 if (journal == NULL) { 1654 mlog(ML_ERROR, "Linux journal layer error\n"); 1655 status = -EIO; 1656 goto done; 1657 } 1658 1659 status = jbd2_journal_load(journal); 1660 if (status < 0) { 1661 mlog_errno(status); 1662 if (!igrab(inode)) 1663 BUG(); 1664 jbd2_journal_destroy(journal); 1665 goto done; 1666 } 1667 1668 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1669 1670 /* wipe the journal */ 1671 jbd2_journal_lock_updates(journal); 1672 status = jbd2_journal_flush(journal); 1673 jbd2_journal_unlock_updates(journal); 1674 if (status < 0) 1675 mlog_errno(status); 1676 1677 /* This will mark the node clean */ 1678 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1679 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1680 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1681 1682 /* Increment recovery generation to indicate successful recovery */ 1683 ocfs2_bump_recovery_generation(fe); 1684 osb->slot_recovery_generations[slot_num] = 1685 ocfs2_get_recovery_generation(fe); 1686 1687 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1688 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1689 if (status < 0) 1690 mlog_errno(status); 1691 1692 if (!igrab(inode)) 1693 BUG(); 1694 1695 jbd2_journal_destroy(journal); 1696 1697 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1698 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1699 MINOR(osb->sb->s_dev)); 1700 done: 1701 /* drop the lock on this nodes journal */ 1702 if (got_lock) 1703 ocfs2_inode_unlock(inode, 1); 1704 1705 iput(inode); 1706 brelse(bh); 1707 1708 return status; 1709 } 1710 1711 /* 1712 * Do the most important parts of node recovery: 1713 * - Replay it's journal 1714 * - Stamp a clean local allocator file 1715 * - Stamp a clean truncate log 1716 * - Mark the node clean 1717 * 1718 * If this function completes without error, a node in OCFS2 can be 1719 * said to have been safely recovered. As a result, failure during the 1720 * second part of a nodes recovery process (local alloc recovery) is 1721 * far less concerning. 1722 */ 1723 static int ocfs2_recover_node(struct ocfs2_super *osb, 1724 int node_num, int slot_num) 1725 { 1726 int status = 0; 1727 struct ocfs2_dinode *la_copy = NULL; 1728 struct ocfs2_dinode *tl_copy = NULL; 1729 1730 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1731 1732 /* Should not ever be called to recover ourselves -- in that 1733 * case we should've called ocfs2_journal_load instead. */ 1734 BUG_ON(osb->node_num == node_num); 1735 1736 status = ocfs2_replay_journal(osb, node_num, slot_num); 1737 if (status < 0) { 1738 if (status == -EBUSY) { 1739 trace_ocfs2_recover_node_skip(slot_num, node_num); 1740 status = 0; 1741 goto done; 1742 } 1743 mlog_errno(status); 1744 goto done; 1745 } 1746 1747 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1748 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1749 if (status < 0) { 1750 mlog_errno(status); 1751 goto done; 1752 } 1753 1754 /* An error from begin_truncate_log_recovery is not 1755 * serious enough to warrant halting the rest of 1756 * recovery. */ 1757 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1758 if (status < 0) 1759 mlog_errno(status); 1760 1761 /* Likewise, this would be a strange but ultimately not so 1762 * harmful place to get an error... */ 1763 status = ocfs2_clear_slot(osb, slot_num); 1764 if (status < 0) 1765 mlog_errno(status); 1766 1767 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1768 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1769 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1770 1771 status = 0; 1772 done: 1773 1774 return status; 1775 } 1776 1777 /* Test node liveness by trylocking his journal. If we get the lock, 1778 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1779 * still alive (we couldn't get the lock) and < 0 on error. */ 1780 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1781 int slot_num) 1782 { 1783 int status, flags; 1784 struct inode *inode = NULL; 1785 1786 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1787 slot_num); 1788 if (inode == NULL) { 1789 mlog(ML_ERROR, "access error\n"); 1790 status = -EACCES; 1791 goto bail; 1792 } 1793 if (is_bad_inode(inode)) { 1794 mlog(ML_ERROR, "access error (bad inode)\n"); 1795 iput(inode); 1796 inode = NULL; 1797 status = -EACCES; 1798 goto bail; 1799 } 1800 SET_INODE_JOURNAL(inode); 1801 1802 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1803 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1804 if (status < 0) { 1805 if (status != -EAGAIN) 1806 mlog_errno(status); 1807 goto bail; 1808 } 1809 1810 ocfs2_inode_unlock(inode, 1); 1811 bail: 1812 iput(inode); 1813 1814 return status; 1815 } 1816 1817 /* Call this underneath ocfs2_super_lock. It also assumes that the 1818 * slot info struct has been updated from disk. */ 1819 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1820 { 1821 unsigned int node_num; 1822 int status, i; 1823 u32 gen; 1824 struct buffer_head *bh = NULL; 1825 struct ocfs2_dinode *di; 1826 1827 /* This is called with the super block cluster lock, so we 1828 * know that the slot map can't change underneath us. */ 1829 1830 for (i = 0; i < osb->max_slots; i++) { 1831 /* Read journal inode to get the recovery generation */ 1832 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1833 if (status) { 1834 mlog_errno(status); 1835 goto bail; 1836 } 1837 di = (struct ocfs2_dinode *)bh->b_data; 1838 gen = ocfs2_get_recovery_generation(di); 1839 brelse(bh); 1840 bh = NULL; 1841 1842 spin_lock(&osb->osb_lock); 1843 osb->slot_recovery_generations[i] = gen; 1844 1845 trace_ocfs2_mark_dead_nodes(i, 1846 osb->slot_recovery_generations[i]); 1847 1848 if (i == osb->slot_num) { 1849 spin_unlock(&osb->osb_lock); 1850 continue; 1851 } 1852 1853 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1854 if (status == -ENOENT) { 1855 spin_unlock(&osb->osb_lock); 1856 continue; 1857 } 1858 1859 if (__ocfs2_recovery_map_test(osb, node_num)) { 1860 spin_unlock(&osb->osb_lock); 1861 continue; 1862 } 1863 spin_unlock(&osb->osb_lock); 1864 1865 /* Ok, we have a slot occupied by another node which 1866 * is not in the recovery map. We trylock his journal 1867 * file here to test if he's alive. */ 1868 status = ocfs2_trylock_journal(osb, i); 1869 if (!status) { 1870 /* Since we're called from mount, we know that 1871 * the recovery thread can't race us on 1872 * setting / checking the recovery bits. */ 1873 ocfs2_recovery_thread(osb, node_num); 1874 } else if ((status < 0) && (status != -EAGAIN)) { 1875 mlog_errno(status); 1876 goto bail; 1877 } 1878 } 1879 1880 status = 0; 1881 bail: 1882 return status; 1883 } 1884 1885 /* 1886 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1887 * randomness to the timeout to minimize multple nodes firing the timer at the 1888 * same time. 1889 */ 1890 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1891 { 1892 unsigned long time; 1893 1894 get_random_bytes(&time, sizeof(time)); 1895 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1896 return msecs_to_jiffies(time); 1897 } 1898 1899 /* 1900 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1901 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1902 * is done to catch any orphans that are left over in orphan directories. 1903 * 1904 * It scans all slots, even ones that are in use. It does so to handle the 1905 * case described below: 1906 * 1907 * Node 1 has an inode it was using. The dentry went away due to memory 1908 * pressure. Node 1 closes the inode, but it's on the free list. The node 1909 * has the open lock. 1910 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1911 * but node 1 has no dentry and doesn't get the message. It trylocks the 1912 * open lock, sees that another node has a PR, and does nothing. 1913 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1914 * open lock, sees the PR still, and does nothing. 1915 * Basically, we have to trigger an orphan iput on node 1. The only way 1916 * for this to happen is if node 1 runs node 2's orphan dir. 1917 * 1918 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1919 * seconds. It gets an EX lock on os_lockres and checks sequence number 1920 * stored in LVB. If the sequence number has changed, it means some other 1921 * node has done the scan. This node skips the scan and tracks the 1922 * sequence number. If the sequence number didn't change, it means a scan 1923 * hasn't happened. The node queues a scan and increments the 1924 * sequence number in the LVB. 1925 */ 1926 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1927 { 1928 struct ocfs2_orphan_scan *os; 1929 int status, i; 1930 u32 seqno = 0; 1931 1932 os = &osb->osb_orphan_scan; 1933 1934 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1935 goto out; 1936 1937 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1938 atomic_read(&os->os_state)); 1939 1940 status = ocfs2_orphan_scan_lock(osb, &seqno); 1941 if (status < 0) { 1942 if (status != -EAGAIN) 1943 mlog_errno(status); 1944 goto out; 1945 } 1946 1947 /* Do no queue the tasks if the volume is being umounted */ 1948 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1949 goto unlock; 1950 1951 if (os->os_seqno != seqno) { 1952 os->os_seqno = seqno; 1953 goto unlock; 1954 } 1955 1956 for (i = 0; i < osb->max_slots; i++) 1957 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1958 NULL, ORPHAN_NO_NEED_TRUNCATE); 1959 /* 1960 * We queued a recovery on orphan slots, increment the sequence 1961 * number and update LVB so other node will skip the scan for a while 1962 */ 1963 seqno++; 1964 os->os_count++; 1965 os->os_scantime = ktime_get_seconds(); 1966 unlock: 1967 ocfs2_orphan_scan_unlock(osb, seqno); 1968 out: 1969 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 1970 atomic_read(&os->os_state)); 1971 return; 1972 } 1973 1974 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1975 static void ocfs2_orphan_scan_work(struct work_struct *work) 1976 { 1977 struct ocfs2_orphan_scan *os; 1978 struct ocfs2_super *osb; 1979 1980 os = container_of(work, struct ocfs2_orphan_scan, 1981 os_orphan_scan_work.work); 1982 osb = os->os_osb; 1983 1984 mutex_lock(&os->os_lock); 1985 ocfs2_queue_orphan_scan(osb); 1986 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 1987 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 1988 ocfs2_orphan_scan_timeout()); 1989 mutex_unlock(&os->os_lock); 1990 } 1991 1992 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 1993 { 1994 struct ocfs2_orphan_scan *os; 1995 1996 os = &osb->osb_orphan_scan; 1997 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 1998 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1999 mutex_lock(&os->os_lock); 2000 cancel_delayed_work(&os->os_orphan_scan_work); 2001 mutex_unlock(&os->os_lock); 2002 } 2003 } 2004 2005 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 2006 { 2007 struct ocfs2_orphan_scan *os; 2008 2009 os = &osb->osb_orphan_scan; 2010 os->os_osb = osb; 2011 os->os_count = 0; 2012 os->os_seqno = 0; 2013 mutex_init(&os->os_lock); 2014 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2015 } 2016 2017 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2018 { 2019 struct ocfs2_orphan_scan *os; 2020 2021 os = &osb->osb_orphan_scan; 2022 os->os_scantime = ktime_get_seconds(); 2023 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2024 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2025 else { 2026 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2027 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2028 ocfs2_orphan_scan_timeout()); 2029 } 2030 } 2031 2032 struct ocfs2_orphan_filldir_priv { 2033 struct dir_context ctx; 2034 struct inode *head; 2035 struct ocfs2_super *osb; 2036 enum ocfs2_orphan_reco_type orphan_reco_type; 2037 }; 2038 2039 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2040 int name_len, loff_t pos, u64 ino, 2041 unsigned type) 2042 { 2043 struct ocfs2_orphan_filldir_priv *p = 2044 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2045 struct inode *iter; 2046 2047 if (name_len == 1 && !strncmp(".", name, 1)) 2048 return 0; 2049 if (name_len == 2 && !strncmp("..", name, 2)) 2050 return 0; 2051 2052 /* do not include dio entry in case of orphan scan */ 2053 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2054 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2055 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2056 return 0; 2057 2058 /* Skip bad inodes so that recovery can continue */ 2059 iter = ocfs2_iget(p->osb, ino, 2060 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2061 if (IS_ERR(iter)) 2062 return 0; 2063 2064 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2065 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2066 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2067 2068 /* Skip inodes which are already added to recover list, since dio may 2069 * happen concurrently with unlink/rename */ 2070 if (OCFS2_I(iter)->ip_next_orphan) { 2071 iput(iter); 2072 return 0; 2073 } 2074 2075 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2076 /* No locking is required for the next_orphan queue as there 2077 * is only ever a single process doing orphan recovery. */ 2078 OCFS2_I(iter)->ip_next_orphan = p->head; 2079 p->head = iter; 2080 2081 return 0; 2082 } 2083 2084 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2085 int slot, 2086 struct inode **head, 2087 enum ocfs2_orphan_reco_type orphan_reco_type) 2088 { 2089 int status; 2090 struct inode *orphan_dir_inode = NULL; 2091 struct ocfs2_orphan_filldir_priv priv = { 2092 .ctx.actor = ocfs2_orphan_filldir, 2093 .osb = osb, 2094 .head = *head, 2095 .orphan_reco_type = orphan_reco_type 2096 }; 2097 2098 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2099 ORPHAN_DIR_SYSTEM_INODE, 2100 slot); 2101 if (!orphan_dir_inode) { 2102 status = -ENOENT; 2103 mlog_errno(status); 2104 return status; 2105 } 2106 2107 inode_lock(orphan_dir_inode); 2108 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2109 if (status < 0) { 2110 mlog_errno(status); 2111 goto out; 2112 } 2113 2114 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2115 if (status) { 2116 mlog_errno(status); 2117 goto out_cluster; 2118 } 2119 2120 *head = priv.head; 2121 2122 out_cluster: 2123 ocfs2_inode_unlock(orphan_dir_inode, 0); 2124 out: 2125 inode_unlock(orphan_dir_inode); 2126 iput(orphan_dir_inode); 2127 return status; 2128 } 2129 2130 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2131 int slot) 2132 { 2133 int ret; 2134 2135 spin_lock(&osb->osb_lock); 2136 ret = !osb->osb_orphan_wipes[slot]; 2137 spin_unlock(&osb->osb_lock); 2138 return ret; 2139 } 2140 2141 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2142 int slot) 2143 { 2144 spin_lock(&osb->osb_lock); 2145 /* Mark ourselves such that new processes in delete_inode() 2146 * know to quit early. */ 2147 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2148 while (osb->osb_orphan_wipes[slot]) { 2149 /* If any processes are already in the middle of an 2150 * orphan wipe on this dir, then we need to wait for 2151 * them. */ 2152 spin_unlock(&osb->osb_lock); 2153 wait_event_interruptible(osb->osb_wipe_event, 2154 ocfs2_orphan_recovery_can_continue(osb, slot)); 2155 spin_lock(&osb->osb_lock); 2156 } 2157 spin_unlock(&osb->osb_lock); 2158 } 2159 2160 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2161 int slot) 2162 { 2163 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2164 } 2165 2166 /* 2167 * Orphan recovery. Each mounted node has it's own orphan dir which we 2168 * must run during recovery. Our strategy here is to build a list of 2169 * the inodes in the orphan dir and iget/iput them. The VFS does 2170 * (most) of the rest of the work. 2171 * 2172 * Orphan recovery can happen at any time, not just mount so we have a 2173 * couple of extra considerations. 2174 * 2175 * - We grab as many inodes as we can under the orphan dir lock - 2176 * doing iget() outside the orphan dir risks getting a reference on 2177 * an invalid inode. 2178 * - We must be sure not to deadlock with other processes on the 2179 * system wanting to run delete_inode(). This can happen when they go 2180 * to lock the orphan dir and the orphan recovery process attempts to 2181 * iget() inside the orphan dir lock. This can be avoided by 2182 * advertising our state to ocfs2_delete_inode(). 2183 */ 2184 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2185 int slot, 2186 enum ocfs2_orphan_reco_type orphan_reco_type) 2187 { 2188 int ret = 0; 2189 struct inode *inode = NULL; 2190 struct inode *iter; 2191 struct ocfs2_inode_info *oi; 2192 struct buffer_head *di_bh = NULL; 2193 struct ocfs2_dinode *di = NULL; 2194 2195 trace_ocfs2_recover_orphans(slot); 2196 2197 ocfs2_mark_recovering_orphan_dir(osb, slot); 2198 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2199 ocfs2_clear_recovering_orphan_dir(osb, slot); 2200 2201 /* Error here should be noted, but we want to continue with as 2202 * many queued inodes as we've got. */ 2203 if (ret) 2204 mlog_errno(ret); 2205 2206 while (inode) { 2207 oi = OCFS2_I(inode); 2208 trace_ocfs2_recover_orphans_iput( 2209 (unsigned long long)oi->ip_blkno); 2210 2211 iter = oi->ip_next_orphan; 2212 oi->ip_next_orphan = NULL; 2213 2214 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2215 inode_lock(inode); 2216 ret = ocfs2_rw_lock(inode, 1); 2217 if (ret < 0) { 2218 mlog_errno(ret); 2219 goto unlock_mutex; 2220 } 2221 /* 2222 * We need to take and drop the inode lock to 2223 * force read inode from disk. 2224 */ 2225 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2226 if (ret) { 2227 mlog_errno(ret); 2228 goto unlock_rw; 2229 } 2230 2231 di = (struct ocfs2_dinode *)di_bh->b_data; 2232 2233 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2234 ret = ocfs2_truncate_file(inode, di_bh, 2235 i_size_read(inode)); 2236 if (ret < 0) { 2237 if (ret != -ENOSPC) 2238 mlog_errno(ret); 2239 goto unlock_inode; 2240 } 2241 2242 ret = ocfs2_del_inode_from_orphan(osb, inode, 2243 di_bh, 0, 0); 2244 if (ret) 2245 mlog_errno(ret); 2246 } 2247 unlock_inode: 2248 ocfs2_inode_unlock(inode, 1); 2249 brelse(di_bh); 2250 di_bh = NULL; 2251 unlock_rw: 2252 ocfs2_rw_unlock(inode, 1); 2253 unlock_mutex: 2254 inode_unlock(inode); 2255 2256 /* clear dio flag in ocfs2_inode_info */ 2257 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2258 } else { 2259 spin_lock(&oi->ip_lock); 2260 /* Set the proper information to get us going into 2261 * ocfs2_delete_inode. */ 2262 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2263 spin_unlock(&oi->ip_lock); 2264 } 2265 2266 iput(inode); 2267 inode = iter; 2268 } 2269 2270 return ret; 2271 } 2272 2273 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2274 { 2275 /* This check is good because ocfs2 will wait on our recovery 2276 * thread before changing it to something other than MOUNTED 2277 * or DISABLED. */ 2278 wait_event(osb->osb_mount_event, 2279 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2280 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2281 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2282 2283 /* If there's an error on mount, then we may never get to the 2284 * MOUNTED flag, but this is set right before 2285 * dismount_volume() so we can trust it. */ 2286 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2287 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2288 mlog(0, "mount error, exiting!\n"); 2289 return -EBUSY; 2290 } 2291 2292 return 0; 2293 } 2294 2295 static int ocfs2_commit_thread(void *arg) 2296 { 2297 int status; 2298 struct ocfs2_super *osb = arg; 2299 struct ocfs2_journal *journal = osb->journal; 2300 2301 /* we can trust j_num_trans here because _should_stop() is only set in 2302 * shutdown and nobody other than ourselves should be able to start 2303 * transactions. committing on shutdown might take a few iterations 2304 * as final transactions put deleted inodes on the list */ 2305 while (!(kthread_should_stop() && 2306 atomic_read(&journal->j_num_trans) == 0)) { 2307 2308 wait_event_interruptible(osb->checkpoint_event, 2309 atomic_read(&journal->j_num_trans) 2310 || kthread_should_stop()); 2311 2312 status = ocfs2_commit_cache(osb); 2313 if (status < 0) { 2314 static unsigned long abort_warn_time; 2315 2316 /* Warn about this once per minute */ 2317 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2318 mlog(ML_ERROR, "status = %d, journal is " 2319 "already aborted.\n", status); 2320 /* 2321 * After ocfs2_commit_cache() fails, j_num_trans has a 2322 * non-zero value. Sleep here to avoid a busy-wait 2323 * loop. 2324 */ 2325 msleep_interruptible(1000); 2326 } 2327 2328 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2329 mlog(ML_KTHREAD, 2330 "commit_thread: %u transactions pending on " 2331 "shutdown\n", 2332 atomic_read(&journal->j_num_trans)); 2333 } 2334 } 2335 2336 return 0; 2337 } 2338 2339 /* Reads all the journal inodes without taking any cluster locks. Used 2340 * for hard readonly access to determine whether any journal requires 2341 * recovery. Also used to refresh the recovery generation numbers after 2342 * a journal has been recovered by another node. 2343 */ 2344 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2345 { 2346 int ret = 0; 2347 unsigned int slot; 2348 struct buffer_head *di_bh = NULL; 2349 struct ocfs2_dinode *di; 2350 int journal_dirty = 0; 2351 2352 for(slot = 0; slot < osb->max_slots; slot++) { 2353 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2354 if (ret) { 2355 mlog_errno(ret); 2356 goto out; 2357 } 2358 2359 di = (struct ocfs2_dinode *) di_bh->b_data; 2360 2361 osb->slot_recovery_generations[slot] = 2362 ocfs2_get_recovery_generation(di); 2363 2364 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2365 OCFS2_JOURNAL_DIRTY_FL) 2366 journal_dirty = 1; 2367 2368 brelse(di_bh); 2369 di_bh = NULL; 2370 } 2371 2372 out: 2373 if (journal_dirty) 2374 ret = -EROFS; 2375 return ret; 2376 } 2377