xref: /openbmc/linux/fs/ocfs2/journal.c (revision 92ed1a76)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 
54 #include "buffer_head_io.h"
55 
56 DEFINE_SPINLOCK(trans_inc_lock);
57 
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59 
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62 			      int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 				      int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 				 int slot_num);
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 				 int slot);
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 					    int slot_num,
75 					    struct ocfs2_dinode *la_dinode,
76 					    struct ocfs2_dinode *tl_dinode,
77 					    struct ocfs2_quota_recovery *qrec);
78 
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80 {
81 	return __ocfs2_wait_on_mount(osb, 0);
82 }
83 
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85 {
86 	return __ocfs2_wait_on_mount(osb, 1);
87 }
88 
89 /*
90  * This replay_map is to track online/offline slots, so we could recover
91  * offline slots during recovery and mount
92  */
93 
94 enum ocfs2_replay_state {
95 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
96 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
97 	REPLAY_DONE 		/* Replay was already queued */
98 };
99 
100 struct ocfs2_replay_map {
101 	unsigned int rm_slots;
102 	enum ocfs2_replay_state rm_state;
103 	unsigned char rm_replay_slots[0];
104 };
105 
106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107 {
108 	if (!osb->replay_map)
109 		return;
110 
111 	/* If we've already queued the replay, we don't have any more to do */
112 	if (osb->replay_map->rm_state == REPLAY_DONE)
113 		return;
114 
115 	osb->replay_map->rm_state = state;
116 }
117 
118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119 {
120 	struct ocfs2_replay_map *replay_map;
121 	int i, node_num;
122 
123 	/* If replay map is already set, we don't do it again */
124 	if (osb->replay_map)
125 		return 0;
126 
127 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
129 
130 	if (!replay_map) {
131 		mlog_errno(-ENOMEM);
132 		return -ENOMEM;
133 	}
134 
135 	spin_lock(&osb->osb_lock);
136 
137 	replay_map->rm_slots = osb->max_slots;
138 	replay_map->rm_state = REPLAY_UNNEEDED;
139 
140 	/* set rm_replay_slots for offline slot(s) */
141 	for (i = 0; i < replay_map->rm_slots; i++) {
142 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 			replay_map->rm_replay_slots[i] = 1;
144 	}
145 
146 	osb->replay_map = replay_map;
147 	spin_unlock(&osb->osb_lock);
148 	return 0;
149 }
150 
151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152 {
153 	struct ocfs2_replay_map *replay_map = osb->replay_map;
154 	int i;
155 
156 	if (!replay_map)
157 		return;
158 
159 	if (replay_map->rm_state != REPLAY_NEEDED)
160 		return;
161 
162 	for (i = 0; i < replay_map->rm_slots; i++)
163 		if (replay_map->rm_replay_slots[i])
164 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 							NULL, NULL);
166 	replay_map->rm_state = REPLAY_DONE;
167 }
168 
169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170 {
171 	struct ocfs2_replay_map *replay_map = osb->replay_map;
172 
173 	if (!osb->replay_map)
174 		return;
175 
176 	kfree(replay_map);
177 	osb->replay_map = NULL;
178 }
179 
180 int ocfs2_recovery_init(struct ocfs2_super *osb)
181 {
182 	struct ocfs2_recovery_map *rm;
183 
184 	mutex_init(&osb->recovery_lock);
185 	osb->disable_recovery = 0;
186 	osb->recovery_thread_task = NULL;
187 	init_waitqueue_head(&osb->recovery_event);
188 
189 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 		     osb->max_slots * sizeof(unsigned int),
191 		     GFP_KERNEL);
192 	if (!rm) {
193 		mlog_errno(-ENOMEM);
194 		return -ENOMEM;
195 	}
196 
197 	rm->rm_entries = (unsigned int *)((char *)rm +
198 					  sizeof(struct ocfs2_recovery_map));
199 	osb->recovery_map = rm;
200 
201 	return 0;
202 }
203 
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205  * memory barriers to make sure that we'll see the null task before
206  * being woken up */
207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208 {
209 	mb();
210 	return osb->recovery_thread_task != NULL;
211 }
212 
213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
214 {
215 	struct ocfs2_recovery_map *rm;
216 
217 	/* disable any new recovery threads and wait for any currently
218 	 * running ones to exit. Do this before setting the vol_state. */
219 	mutex_lock(&osb->recovery_lock);
220 	osb->disable_recovery = 1;
221 	mutex_unlock(&osb->recovery_lock);
222 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223 
224 	/* At this point, we know that no more recovery threads can be
225 	 * launched, so wait for any recovery completion work to
226 	 * complete. */
227 	flush_workqueue(ocfs2_wq);
228 
229 	/*
230 	 * Now that recovery is shut down, and the osb is about to be
231 	 * freed,  the osb_lock is not taken here.
232 	 */
233 	rm = osb->recovery_map;
234 	/* XXX: Should we bug if there are dirty entries? */
235 
236 	kfree(rm);
237 }
238 
239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 				     unsigned int node_num)
241 {
242 	int i;
243 	struct ocfs2_recovery_map *rm = osb->recovery_map;
244 
245 	assert_spin_locked(&osb->osb_lock);
246 
247 	for (i = 0; i < rm->rm_used; i++) {
248 		if (rm->rm_entries[i] == node_num)
249 			return 1;
250 	}
251 
252 	return 0;
253 }
254 
255 /* Behaves like test-and-set.  Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 				  unsigned int node_num)
258 {
259 	struct ocfs2_recovery_map *rm = osb->recovery_map;
260 
261 	spin_lock(&osb->osb_lock);
262 	if (__ocfs2_recovery_map_test(osb, node_num)) {
263 		spin_unlock(&osb->osb_lock);
264 		return 1;
265 	}
266 
267 	/* XXX: Can this be exploited? Not from o2dlm... */
268 	BUG_ON(rm->rm_used >= osb->max_slots);
269 
270 	rm->rm_entries[rm->rm_used] = node_num;
271 	rm->rm_used++;
272 	spin_unlock(&osb->osb_lock);
273 
274 	return 0;
275 }
276 
277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 				     unsigned int node_num)
279 {
280 	int i;
281 	struct ocfs2_recovery_map *rm = osb->recovery_map;
282 
283 	spin_lock(&osb->osb_lock);
284 
285 	for (i = 0; i < rm->rm_used; i++) {
286 		if (rm->rm_entries[i] == node_num)
287 			break;
288 	}
289 
290 	if (i < rm->rm_used) {
291 		/* XXX: be careful with the pointer math */
292 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 			(rm->rm_used - i - 1) * sizeof(unsigned int));
294 		rm->rm_used--;
295 	}
296 
297 	spin_unlock(&osb->osb_lock);
298 }
299 
300 static int ocfs2_commit_cache(struct ocfs2_super *osb)
301 {
302 	int status = 0;
303 	unsigned int flushed;
304 	struct ocfs2_journal *journal = NULL;
305 
306 	mlog_entry_void();
307 
308 	journal = osb->journal;
309 
310 	/* Flush all pending commits and checkpoint the journal. */
311 	down_write(&journal->j_trans_barrier);
312 
313 	if (atomic_read(&journal->j_num_trans) == 0) {
314 		up_write(&journal->j_trans_barrier);
315 		mlog(0, "No transactions for me to flush!\n");
316 		goto finally;
317 	}
318 
319 	jbd2_journal_lock_updates(journal->j_journal);
320 	status = jbd2_journal_flush(journal->j_journal);
321 	jbd2_journal_unlock_updates(journal->j_journal);
322 	if (status < 0) {
323 		up_write(&journal->j_trans_barrier);
324 		mlog_errno(status);
325 		goto finally;
326 	}
327 
328 	ocfs2_inc_trans_id(journal);
329 
330 	flushed = atomic_read(&journal->j_num_trans);
331 	atomic_set(&journal->j_num_trans, 0);
332 	up_write(&journal->j_trans_barrier);
333 
334 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
335 	     journal->j_trans_id, flushed);
336 
337 	ocfs2_wake_downconvert_thread(osb);
338 	wake_up(&journal->j_checkpointed);
339 finally:
340 	mlog_exit(status);
341 	return status;
342 }
343 
344 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
345 {
346 	journal_t *journal = osb->journal->j_journal;
347 	handle_t *handle;
348 
349 	BUG_ON(!osb || !osb->journal->j_journal);
350 
351 	if (ocfs2_is_hard_readonly(osb))
352 		return ERR_PTR(-EROFS);
353 
354 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
355 	BUG_ON(max_buffs <= 0);
356 
357 	/* Nested transaction? Just return the handle... */
358 	if (journal_current_handle())
359 		return jbd2_journal_start(journal, max_buffs);
360 
361 	down_read(&osb->journal->j_trans_barrier);
362 
363 	handle = jbd2_journal_start(journal, max_buffs);
364 	if (IS_ERR(handle)) {
365 		up_read(&osb->journal->j_trans_barrier);
366 
367 		mlog_errno(PTR_ERR(handle));
368 
369 		if (is_journal_aborted(journal)) {
370 			ocfs2_abort(osb->sb, "Detected aborted journal");
371 			handle = ERR_PTR(-EROFS);
372 		}
373 	} else {
374 		if (!ocfs2_mount_local(osb))
375 			atomic_inc(&(osb->journal->j_num_trans));
376 	}
377 
378 	return handle;
379 }
380 
381 int ocfs2_commit_trans(struct ocfs2_super *osb,
382 		       handle_t *handle)
383 {
384 	int ret, nested;
385 	struct ocfs2_journal *journal = osb->journal;
386 
387 	BUG_ON(!handle);
388 
389 	nested = handle->h_ref > 1;
390 	ret = jbd2_journal_stop(handle);
391 	if (ret < 0)
392 		mlog_errno(ret);
393 
394 	if (!nested)
395 		up_read(&journal->j_trans_barrier);
396 
397 	return ret;
398 }
399 
400 /*
401  * 'nblocks' is what you want to add to the current transaction.
402  *
403  * This might call jbd2_journal_restart() which will commit dirty buffers
404  * and then restart the transaction. Before calling
405  * ocfs2_extend_trans(), any changed blocks should have been
406  * dirtied. After calling it, all blocks which need to be changed must
407  * go through another set of journal_access/journal_dirty calls.
408  *
409  * WARNING: This will not release any semaphores or disk locks taken
410  * during the transaction, so make sure they were taken *before*
411  * start_trans or we'll have ordering deadlocks.
412  *
413  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
414  * good because transaction ids haven't yet been recorded on the
415  * cluster locks associated with this handle.
416  */
417 int ocfs2_extend_trans(handle_t *handle, int nblocks)
418 {
419 	int status, old_nblocks;
420 
421 	BUG_ON(!handle);
422 	BUG_ON(nblocks < 0);
423 
424 	if (!nblocks)
425 		return 0;
426 
427 	old_nblocks = handle->h_buffer_credits;
428 	mlog_entry_void();
429 
430 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
431 
432 #ifdef CONFIG_OCFS2_DEBUG_FS
433 	status = 1;
434 #else
435 	status = jbd2_journal_extend(handle, nblocks);
436 	if (status < 0) {
437 		mlog_errno(status);
438 		goto bail;
439 	}
440 #endif
441 
442 	if (status > 0) {
443 		mlog(0,
444 		     "jbd2_journal_extend failed, trying "
445 		     "jbd2_journal_restart\n");
446 		status = jbd2_journal_restart(handle,
447 					      old_nblocks + nblocks);
448 		if (status < 0) {
449 			mlog_errno(status);
450 			goto bail;
451 		}
452 	}
453 
454 	status = 0;
455 bail:
456 
457 	mlog_exit(status);
458 	return status;
459 }
460 
461 struct ocfs2_triggers {
462 	struct jbd2_buffer_trigger_type	ot_triggers;
463 	int				ot_offset;
464 };
465 
466 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
467 {
468 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
469 }
470 
471 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
472 				 struct buffer_head *bh,
473 				 void *data, size_t size)
474 {
475 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
476 
477 	/*
478 	 * We aren't guaranteed to have the superblock here, so we
479 	 * must unconditionally compute the ecc data.
480 	 * __ocfs2_journal_access() will only set the triggers if
481 	 * metaecc is enabled.
482 	 */
483 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
484 }
485 
486 /*
487  * Quota blocks have their own trigger because the struct ocfs2_block_check
488  * offset depends on the blocksize.
489  */
490 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
491 				 struct buffer_head *bh,
492 				 void *data, size_t size)
493 {
494 	struct ocfs2_disk_dqtrailer *dqt =
495 		ocfs2_block_dqtrailer(size, data);
496 
497 	/*
498 	 * We aren't guaranteed to have the superblock here, so we
499 	 * must unconditionally compute the ecc data.
500 	 * __ocfs2_journal_access() will only set the triggers if
501 	 * metaecc is enabled.
502 	 */
503 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
504 }
505 
506 /*
507  * Directory blocks also have their own trigger because the
508  * struct ocfs2_block_check offset depends on the blocksize.
509  */
510 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 				 struct buffer_head *bh,
512 				 void *data, size_t size)
513 {
514 	struct ocfs2_dir_block_trailer *trailer =
515 		ocfs2_dir_trailer_from_size(size, data);
516 
517 	/*
518 	 * We aren't guaranteed to have the superblock here, so we
519 	 * must unconditionally compute the ecc data.
520 	 * __ocfs2_journal_access() will only set the triggers if
521 	 * metaecc is enabled.
522 	 */
523 	ocfs2_block_check_compute(data, size, &trailer->db_check);
524 }
525 
526 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
527 				struct buffer_head *bh)
528 {
529 	mlog(ML_ERROR,
530 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
531 	     "bh->b_blocknr = %llu\n",
532 	     (unsigned long)bh,
533 	     (unsigned long long)bh->b_blocknr);
534 
535 	/* We aren't guaranteed to have the superblock here - but if we
536 	 * don't, it'll just crash. */
537 	ocfs2_error(bh->b_assoc_map->host->i_sb,
538 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
539 }
540 
541 static struct ocfs2_triggers di_triggers = {
542 	.ot_triggers = {
543 		.t_frozen = ocfs2_frozen_trigger,
544 		.t_abort = ocfs2_abort_trigger,
545 	},
546 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
547 };
548 
549 static struct ocfs2_triggers eb_triggers = {
550 	.ot_triggers = {
551 		.t_frozen = ocfs2_frozen_trigger,
552 		.t_abort = ocfs2_abort_trigger,
553 	},
554 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
555 };
556 
557 static struct ocfs2_triggers rb_triggers = {
558 	.ot_triggers = {
559 		.t_frozen = ocfs2_frozen_trigger,
560 		.t_abort = ocfs2_abort_trigger,
561 	},
562 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
563 };
564 
565 static struct ocfs2_triggers gd_triggers = {
566 	.ot_triggers = {
567 		.t_frozen = ocfs2_frozen_trigger,
568 		.t_abort = ocfs2_abort_trigger,
569 	},
570 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
571 };
572 
573 static struct ocfs2_triggers db_triggers = {
574 	.ot_triggers = {
575 		.t_frozen = ocfs2_db_frozen_trigger,
576 		.t_abort = ocfs2_abort_trigger,
577 	},
578 };
579 
580 static struct ocfs2_triggers xb_triggers = {
581 	.ot_triggers = {
582 		.t_frozen = ocfs2_frozen_trigger,
583 		.t_abort = ocfs2_abort_trigger,
584 	},
585 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
586 };
587 
588 static struct ocfs2_triggers dq_triggers = {
589 	.ot_triggers = {
590 		.t_frozen = ocfs2_dq_frozen_trigger,
591 		.t_abort = ocfs2_abort_trigger,
592 	},
593 };
594 
595 static struct ocfs2_triggers dr_triggers = {
596 	.ot_triggers = {
597 		.t_frozen = ocfs2_frozen_trigger,
598 		.t_abort = ocfs2_abort_trigger,
599 	},
600 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
601 };
602 
603 static struct ocfs2_triggers dl_triggers = {
604 	.ot_triggers = {
605 		.t_frozen = ocfs2_frozen_trigger,
606 		.t_abort = ocfs2_abort_trigger,
607 	},
608 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
609 };
610 
611 static int __ocfs2_journal_access(handle_t *handle,
612 				  struct ocfs2_caching_info *ci,
613 				  struct buffer_head *bh,
614 				  struct ocfs2_triggers *triggers,
615 				  int type)
616 {
617 	int status;
618 	struct ocfs2_super *osb =
619 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
620 
621 	BUG_ON(!ci || !ci->ci_ops);
622 	BUG_ON(!handle);
623 	BUG_ON(!bh);
624 
625 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
626 		   (unsigned long long)bh->b_blocknr, type,
627 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
628 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
629 		   "OCFS2_JOURNAL_ACCESS_WRITE",
630 		   bh->b_size);
631 
632 	/* we can safely remove this assertion after testing. */
633 	if (!buffer_uptodate(bh)) {
634 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
635 		mlog(ML_ERROR, "b_blocknr=%llu\n",
636 		     (unsigned long long)bh->b_blocknr);
637 		BUG();
638 	}
639 
640 	/* Set the current transaction information on the ci so
641 	 * that the locking code knows whether it can drop it's locks
642 	 * on this ci or not. We're protected from the commit
643 	 * thread updating the current transaction id until
644 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
645 	 * j_trans_barrier for us. */
646 	ocfs2_set_ci_lock_trans(osb->journal, ci);
647 
648 	ocfs2_metadata_cache_io_lock(ci);
649 	switch (type) {
650 	case OCFS2_JOURNAL_ACCESS_CREATE:
651 	case OCFS2_JOURNAL_ACCESS_WRITE:
652 		status = jbd2_journal_get_write_access(handle, bh);
653 		break;
654 
655 	case OCFS2_JOURNAL_ACCESS_UNDO:
656 		status = jbd2_journal_get_undo_access(handle, bh);
657 		break;
658 
659 	default:
660 		status = -EINVAL;
661 		mlog(ML_ERROR, "Unknown access type!\n");
662 	}
663 	if (!status && ocfs2_meta_ecc(osb) && triggers)
664 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
665 	ocfs2_metadata_cache_io_unlock(ci);
666 
667 	if (status < 0)
668 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
669 		     status, type);
670 
671 	mlog_exit(status);
672 	return status;
673 }
674 
675 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
676 			    struct buffer_head *bh, int type)
677 {
678 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
679 }
680 
681 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
682 			    struct buffer_head *bh, int type)
683 {
684 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
685 }
686 
687 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
688 			    struct buffer_head *bh, int type)
689 {
690 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
691 				      type);
692 }
693 
694 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
695 			    struct buffer_head *bh, int type)
696 {
697 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
698 }
699 
700 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
701 			    struct buffer_head *bh, int type)
702 {
703 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
704 }
705 
706 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
707 			    struct buffer_head *bh, int type)
708 {
709 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
710 }
711 
712 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
713 			    struct buffer_head *bh, int type)
714 {
715 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
716 }
717 
718 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
719 			    struct buffer_head *bh, int type)
720 {
721 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
722 }
723 
724 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
725 			    struct buffer_head *bh, int type)
726 {
727 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
728 }
729 
730 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
731 			 struct buffer_head *bh, int type)
732 {
733 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
734 }
735 
736 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
737 {
738 	int status;
739 
740 	mlog_entry("(bh->b_blocknr=%llu)\n",
741 		   (unsigned long long)bh->b_blocknr);
742 
743 	status = jbd2_journal_dirty_metadata(handle, bh);
744 	BUG_ON(status);
745 
746 	mlog_exit_void();
747 }
748 
749 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
750 
751 void ocfs2_set_journal_params(struct ocfs2_super *osb)
752 {
753 	journal_t *journal = osb->journal->j_journal;
754 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
755 
756 	if (osb->osb_commit_interval)
757 		commit_interval = osb->osb_commit_interval;
758 
759 	write_lock(&journal->j_state_lock);
760 	journal->j_commit_interval = commit_interval;
761 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
762 		journal->j_flags |= JBD2_BARRIER;
763 	else
764 		journal->j_flags &= ~JBD2_BARRIER;
765 	write_unlock(&journal->j_state_lock);
766 }
767 
768 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
769 {
770 	int status = -1;
771 	struct inode *inode = NULL; /* the journal inode */
772 	journal_t *j_journal = NULL;
773 	struct ocfs2_dinode *di = NULL;
774 	struct buffer_head *bh = NULL;
775 	struct ocfs2_super *osb;
776 	int inode_lock = 0;
777 
778 	mlog_entry_void();
779 
780 	BUG_ON(!journal);
781 
782 	osb = journal->j_osb;
783 
784 	/* already have the inode for our journal */
785 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
786 					    osb->slot_num);
787 	if (inode == NULL) {
788 		status = -EACCES;
789 		mlog_errno(status);
790 		goto done;
791 	}
792 	if (is_bad_inode(inode)) {
793 		mlog(ML_ERROR, "access error (bad inode)\n");
794 		iput(inode);
795 		inode = NULL;
796 		status = -EACCES;
797 		goto done;
798 	}
799 
800 	SET_INODE_JOURNAL(inode);
801 	OCFS2_I(inode)->ip_open_count++;
802 
803 	/* Skip recovery waits here - journal inode metadata never
804 	 * changes in a live cluster so it can be considered an
805 	 * exception to the rule. */
806 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
807 	if (status < 0) {
808 		if (status != -ERESTARTSYS)
809 			mlog(ML_ERROR, "Could not get lock on journal!\n");
810 		goto done;
811 	}
812 
813 	inode_lock = 1;
814 	di = (struct ocfs2_dinode *)bh->b_data;
815 
816 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
817 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
818 		     inode->i_size);
819 		status = -EINVAL;
820 		goto done;
821 	}
822 
823 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
824 	mlog(0, "inode->i_blocks = %llu\n",
825 			(unsigned long long)inode->i_blocks);
826 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
827 
828 	/* call the kernels journal init function now */
829 	j_journal = jbd2_journal_init_inode(inode);
830 	if (j_journal == NULL) {
831 		mlog(ML_ERROR, "Linux journal layer error\n");
832 		status = -EINVAL;
833 		goto done;
834 	}
835 
836 	mlog(0, "Returned from jbd2_journal_init_inode\n");
837 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
838 
839 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
840 		  OCFS2_JOURNAL_DIRTY_FL);
841 
842 	journal->j_journal = j_journal;
843 	journal->j_inode = inode;
844 	journal->j_bh = bh;
845 
846 	ocfs2_set_journal_params(osb);
847 
848 	journal->j_state = OCFS2_JOURNAL_LOADED;
849 
850 	status = 0;
851 done:
852 	if (status < 0) {
853 		if (inode_lock)
854 			ocfs2_inode_unlock(inode, 1);
855 		brelse(bh);
856 		if (inode) {
857 			OCFS2_I(inode)->ip_open_count--;
858 			iput(inode);
859 		}
860 	}
861 
862 	mlog_exit(status);
863 	return status;
864 }
865 
866 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
867 {
868 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
869 }
870 
871 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
872 {
873 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
874 }
875 
876 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
877 				      int dirty, int replayed)
878 {
879 	int status;
880 	unsigned int flags;
881 	struct ocfs2_journal *journal = osb->journal;
882 	struct buffer_head *bh = journal->j_bh;
883 	struct ocfs2_dinode *fe;
884 
885 	mlog_entry_void();
886 
887 	fe = (struct ocfs2_dinode *)bh->b_data;
888 
889 	/* The journal bh on the osb always comes from ocfs2_journal_init()
890 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
891 	 * code bug if we mess it up. */
892 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
893 
894 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
895 	if (dirty)
896 		flags |= OCFS2_JOURNAL_DIRTY_FL;
897 	else
898 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
899 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
900 
901 	if (replayed)
902 		ocfs2_bump_recovery_generation(fe);
903 
904 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
905 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
906 	if (status < 0)
907 		mlog_errno(status);
908 
909 	mlog_exit(status);
910 	return status;
911 }
912 
913 /*
914  * If the journal has been kmalloc'd it needs to be freed after this
915  * call.
916  */
917 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
918 {
919 	struct ocfs2_journal *journal = NULL;
920 	int status = 0;
921 	struct inode *inode = NULL;
922 	int num_running_trans = 0;
923 
924 	mlog_entry_void();
925 
926 	BUG_ON(!osb);
927 
928 	journal = osb->journal;
929 	if (!journal)
930 		goto done;
931 
932 	inode = journal->j_inode;
933 
934 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
935 		goto done;
936 
937 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
938 	if (!igrab(inode))
939 		BUG();
940 
941 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
942 	if (num_running_trans > 0)
943 		mlog(0, "Shutting down journal: must wait on %d "
944 		     "running transactions!\n",
945 		     num_running_trans);
946 
947 	/* Do a commit_cache here. It will flush our journal, *and*
948 	 * release any locks that are still held.
949 	 * set the SHUTDOWN flag and release the trans lock.
950 	 * the commit thread will take the trans lock for us below. */
951 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
952 
953 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
954 	 * drop the trans_lock (which we want to hold until we
955 	 * completely destroy the journal. */
956 	if (osb->commit_task) {
957 		/* Wait for the commit thread */
958 		mlog(0, "Waiting for ocfs2commit to exit....\n");
959 		kthread_stop(osb->commit_task);
960 		osb->commit_task = NULL;
961 	}
962 
963 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
964 
965 	if (ocfs2_mount_local(osb)) {
966 		jbd2_journal_lock_updates(journal->j_journal);
967 		status = jbd2_journal_flush(journal->j_journal);
968 		jbd2_journal_unlock_updates(journal->j_journal);
969 		if (status < 0)
970 			mlog_errno(status);
971 	}
972 
973 	if (status == 0) {
974 		/*
975 		 * Do not toggle if flush was unsuccessful otherwise
976 		 * will leave dirty metadata in a "clean" journal
977 		 */
978 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
979 		if (status < 0)
980 			mlog_errno(status);
981 	}
982 
983 	/* Shutdown the kernel journal system */
984 	jbd2_journal_destroy(journal->j_journal);
985 	journal->j_journal = NULL;
986 
987 	OCFS2_I(inode)->ip_open_count--;
988 
989 	/* unlock our journal */
990 	ocfs2_inode_unlock(inode, 1);
991 
992 	brelse(journal->j_bh);
993 	journal->j_bh = NULL;
994 
995 	journal->j_state = OCFS2_JOURNAL_FREE;
996 
997 //	up_write(&journal->j_trans_barrier);
998 done:
999 	if (inode)
1000 		iput(inode);
1001 	mlog_exit_void();
1002 }
1003 
1004 static void ocfs2_clear_journal_error(struct super_block *sb,
1005 				      journal_t *journal,
1006 				      int slot)
1007 {
1008 	int olderr;
1009 
1010 	olderr = jbd2_journal_errno(journal);
1011 	if (olderr) {
1012 		mlog(ML_ERROR, "File system error %d recorded in "
1013 		     "journal %u.\n", olderr, slot);
1014 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1015 		     sb->s_id);
1016 
1017 		jbd2_journal_ack_err(journal);
1018 		jbd2_journal_clear_err(journal);
1019 	}
1020 }
1021 
1022 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1023 {
1024 	int status = 0;
1025 	struct ocfs2_super *osb;
1026 
1027 	mlog_entry_void();
1028 
1029 	BUG_ON(!journal);
1030 
1031 	osb = journal->j_osb;
1032 
1033 	status = jbd2_journal_load(journal->j_journal);
1034 	if (status < 0) {
1035 		mlog(ML_ERROR, "Failed to load journal!\n");
1036 		goto done;
1037 	}
1038 
1039 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1040 
1041 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1042 	if (status < 0) {
1043 		mlog_errno(status);
1044 		goto done;
1045 	}
1046 
1047 	/* Launch the commit thread */
1048 	if (!local) {
1049 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1050 					       "ocfs2cmt");
1051 		if (IS_ERR(osb->commit_task)) {
1052 			status = PTR_ERR(osb->commit_task);
1053 			osb->commit_task = NULL;
1054 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1055 			     "error=%d", status);
1056 			goto done;
1057 		}
1058 	} else
1059 		osb->commit_task = NULL;
1060 
1061 done:
1062 	mlog_exit(status);
1063 	return status;
1064 }
1065 
1066 
1067 /* 'full' flag tells us whether we clear out all blocks or if we just
1068  * mark the journal clean */
1069 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1070 {
1071 	int status;
1072 
1073 	mlog_entry_void();
1074 
1075 	BUG_ON(!journal);
1076 
1077 	status = jbd2_journal_wipe(journal->j_journal, full);
1078 	if (status < 0) {
1079 		mlog_errno(status);
1080 		goto bail;
1081 	}
1082 
1083 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1084 	if (status < 0)
1085 		mlog_errno(status);
1086 
1087 bail:
1088 	mlog_exit(status);
1089 	return status;
1090 }
1091 
1092 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1093 {
1094 	int empty;
1095 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1096 
1097 	spin_lock(&osb->osb_lock);
1098 	empty = (rm->rm_used == 0);
1099 	spin_unlock(&osb->osb_lock);
1100 
1101 	return empty;
1102 }
1103 
1104 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1105 {
1106 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1107 }
1108 
1109 /*
1110  * JBD Might read a cached version of another nodes journal file. We
1111  * don't want this as this file changes often and we get no
1112  * notification on those changes. The only way to be sure that we've
1113  * got the most up to date version of those blocks then is to force
1114  * read them off disk. Just searching through the buffer cache won't
1115  * work as there may be pages backing this file which are still marked
1116  * up to date. We know things can't change on this file underneath us
1117  * as we have the lock by now :)
1118  */
1119 static int ocfs2_force_read_journal(struct inode *inode)
1120 {
1121 	int status = 0;
1122 	int i;
1123 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1124 #define CONCURRENT_JOURNAL_FILL 32ULL
1125 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1126 
1127 	mlog_entry_void();
1128 
1129 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1130 
1131 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1132 	v_blkno = 0;
1133 	while (v_blkno < num_blocks) {
1134 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1135 						     &p_blkno, &p_blocks, NULL);
1136 		if (status < 0) {
1137 			mlog_errno(status);
1138 			goto bail;
1139 		}
1140 
1141 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1142 			p_blocks = CONCURRENT_JOURNAL_FILL;
1143 
1144 		/* We are reading journal data which should not
1145 		 * be put in the uptodate cache */
1146 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1147 						p_blkno, p_blocks, bhs);
1148 		if (status < 0) {
1149 			mlog_errno(status);
1150 			goto bail;
1151 		}
1152 
1153 		for(i = 0; i < p_blocks; i++) {
1154 			brelse(bhs[i]);
1155 			bhs[i] = NULL;
1156 		}
1157 
1158 		v_blkno += p_blocks;
1159 	}
1160 
1161 bail:
1162 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1163 		brelse(bhs[i]);
1164 	mlog_exit(status);
1165 	return status;
1166 }
1167 
1168 struct ocfs2_la_recovery_item {
1169 	struct list_head	lri_list;
1170 	int			lri_slot;
1171 	struct ocfs2_dinode	*lri_la_dinode;
1172 	struct ocfs2_dinode	*lri_tl_dinode;
1173 	struct ocfs2_quota_recovery *lri_qrec;
1174 };
1175 
1176 /* Does the second half of the recovery process. By this point, the
1177  * node is marked clean and can actually be considered recovered,
1178  * hence it's no longer in the recovery map, but there's still some
1179  * cleanup we can do which shouldn't happen within the recovery thread
1180  * as locking in that context becomes very difficult if we are to take
1181  * recovering nodes into account.
1182  *
1183  * NOTE: This function can and will sleep on recovery of other nodes
1184  * during cluster locking, just like any other ocfs2 process.
1185  */
1186 void ocfs2_complete_recovery(struct work_struct *work)
1187 {
1188 	int ret;
1189 	struct ocfs2_journal *journal =
1190 		container_of(work, struct ocfs2_journal, j_recovery_work);
1191 	struct ocfs2_super *osb = journal->j_osb;
1192 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1193 	struct ocfs2_la_recovery_item *item, *n;
1194 	struct ocfs2_quota_recovery *qrec;
1195 	LIST_HEAD(tmp_la_list);
1196 
1197 	mlog_entry_void();
1198 
1199 	mlog(0, "completing recovery from keventd\n");
1200 
1201 	spin_lock(&journal->j_lock);
1202 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1203 	spin_unlock(&journal->j_lock);
1204 
1205 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1206 		list_del_init(&item->lri_list);
1207 
1208 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1209 
1210 		ocfs2_wait_on_quotas(osb);
1211 
1212 		la_dinode = item->lri_la_dinode;
1213 		if (la_dinode) {
1214 			mlog(0, "Clean up local alloc %llu\n",
1215 			     (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1216 
1217 			ret = ocfs2_complete_local_alloc_recovery(osb,
1218 								  la_dinode);
1219 			if (ret < 0)
1220 				mlog_errno(ret);
1221 
1222 			kfree(la_dinode);
1223 		}
1224 
1225 		tl_dinode = item->lri_tl_dinode;
1226 		if (tl_dinode) {
1227 			mlog(0, "Clean up truncate log %llu\n",
1228 			     (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1229 
1230 			ret = ocfs2_complete_truncate_log_recovery(osb,
1231 								   tl_dinode);
1232 			if (ret < 0)
1233 				mlog_errno(ret);
1234 
1235 			kfree(tl_dinode);
1236 		}
1237 
1238 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
1239 		if (ret < 0)
1240 			mlog_errno(ret);
1241 
1242 		qrec = item->lri_qrec;
1243 		if (qrec) {
1244 			mlog(0, "Recovering quota files");
1245 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1246 							  item->lri_slot);
1247 			if (ret < 0)
1248 				mlog_errno(ret);
1249 			/* Recovery info is already freed now */
1250 		}
1251 
1252 		kfree(item);
1253 	}
1254 
1255 	mlog(0, "Recovery completion\n");
1256 	mlog_exit_void();
1257 }
1258 
1259 /* NOTE: This function always eats your references to la_dinode and
1260  * tl_dinode, either manually on error, or by passing them to
1261  * ocfs2_complete_recovery */
1262 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1263 					    int slot_num,
1264 					    struct ocfs2_dinode *la_dinode,
1265 					    struct ocfs2_dinode *tl_dinode,
1266 					    struct ocfs2_quota_recovery *qrec)
1267 {
1268 	struct ocfs2_la_recovery_item *item;
1269 
1270 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1271 	if (!item) {
1272 		/* Though we wish to avoid it, we are in fact safe in
1273 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1274 		 * than capable of reclaiming unused space. */
1275 		if (la_dinode)
1276 			kfree(la_dinode);
1277 
1278 		if (tl_dinode)
1279 			kfree(tl_dinode);
1280 
1281 		if (qrec)
1282 			ocfs2_free_quota_recovery(qrec);
1283 
1284 		mlog_errno(-ENOMEM);
1285 		return;
1286 	}
1287 
1288 	INIT_LIST_HEAD(&item->lri_list);
1289 	item->lri_la_dinode = la_dinode;
1290 	item->lri_slot = slot_num;
1291 	item->lri_tl_dinode = tl_dinode;
1292 	item->lri_qrec = qrec;
1293 
1294 	spin_lock(&journal->j_lock);
1295 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1296 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1297 	spin_unlock(&journal->j_lock);
1298 }
1299 
1300 /* Called by the mount code to queue recovery the last part of
1301  * recovery for it's own and offline slot(s). */
1302 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1303 {
1304 	struct ocfs2_journal *journal = osb->journal;
1305 
1306 	/* No need to queue up our truncate_log as regular cleanup will catch
1307 	 * that */
1308 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1309 					osb->local_alloc_copy, NULL, NULL);
1310 	ocfs2_schedule_truncate_log_flush(osb, 0);
1311 
1312 	osb->local_alloc_copy = NULL;
1313 	osb->dirty = 0;
1314 
1315 	/* queue to recover orphan slots for all offline slots */
1316 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1317 	ocfs2_queue_replay_slots(osb);
1318 	ocfs2_free_replay_slots(osb);
1319 }
1320 
1321 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1322 {
1323 	if (osb->quota_rec) {
1324 		ocfs2_queue_recovery_completion(osb->journal,
1325 						osb->slot_num,
1326 						NULL,
1327 						NULL,
1328 						osb->quota_rec);
1329 		osb->quota_rec = NULL;
1330 	}
1331 }
1332 
1333 static int __ocfs2_recovery_thread(void *arg)
1334 {
1335 	int status, node_num, slot_num;
1336 	struct ocfs2_super *osb = arg;
1337 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1338 	int *rm_quota = NULL;
1339 	int rm_quota_used = 0, i;
1340 	struct ocfs2_quota_recovery *qrec;
1341 
1342 	mlog_entry_void();
1343 
1344 	status = ocfs2_wait_on_mount(osb);
1345 	if (status < 0) {
1346 		goto bail;
1347 	}
1348 
1349 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1350 	if (!rm_quota) {
1351 		status = -ENOMEM;
1352 		goto bail;
1353 	}
1354 restart:
1355 	status = ocfs2_super_lock(osb, 1);
1356 	if (status < 0) {
1357 		mlog_errno(status);
1358 		goto bail;
1359 	}
1360 
1361 	status = ocfs2_compute_replay_slots(osb);
1362 	if (status < 0)
1363 		mlog_errno(status);
1364 
1365 	/* queue recovery for our own slot */
1366 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1367 					NULL, NULL);
1368 
1369 	spin_lock(&osb->osb_lock);
1370 	while (rm->rm_used) {
1371 		/* It's always safe to remove entry zero, as we won't
1372 		 * clear it until ocfs2_recover_node() has succeeded. */
1373 		node_num = rm->rm_entries[0];
1374 		spin_unlock(&osb->osb_lock);
1375 		mlog(0, "checking node %d\n", node_num);
1376 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1377 		if (slot_num == -ENOENT) {
1378 			status = 0;
1379 			mlog(0, "no slot for this node, so no recovery"
1380 			     "required.\n");
1381 			goto skip_recovery;
1382 		}
1383 		mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1384 
1385 		/* It is a bit subtle with quota recovery. We cannot do it
1386 		 * immediately because we have to obtain cluster locks from
1387 		 * quota files and we also don't want to just skip it because
1388 		 * then quota usage would be out of sync until some node takes
1389 		 * the slot. So we remember which nodes need quota recovery
1390 		 * and when everything else is done, we recover quotas. */
1391 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1392 		if (i == rm_quota_used)
1393 			rm_quota[rm_quota_used++] = slot_num;
1394 
1395 		status = ocfs2_recover_node(osb, node_num, slot_num);
1396 skip_recovery:
1397 		if (!status) {
1398 			ocfs2_recovery_map_clear(osb, node_num);
1399 		} else {
1400 			mlog(ML_ERROR,
1401 			     "Error %d recovering node %d on device (%u,%u)!\n",
1402 			     status, node_num,
1403 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1404 			mlog(ML_ERROR, "Volume requires unmount.\n");
1405 		}
1406 
1407 		spin_lock(&osb->osb_lock);
1408 	}
1409 	spin_unlock(&osb->osb_lock);
1410 	mlog(0, "All nodes recovered\n");
1411 
1412 	/* Refresh all journal recovery generations from disk */
1413 	status = ocfs2_check_journals_nolocks(osb);
1414 	status = (status == -EROFS) ? 0 : status;
1415 	if (status < 0)
1416 		mlog_errno(status);
1417 
1418 	/* Now it is right time to recover quotas... We have to do this under
1419 	 * superblock lock so that noone can start using the slot (and crash)
1420 	 * before we recover it */
1421 	for (i = 0; i < rm_quota_used; i++) {
1422 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1423 		if (IS_ERR(qrec)) {
1424 			status = PTR_ERR(qrec);
1425 			mlog_errno(status);
1426 			continue;
1427 		}
1428 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1429 						NULL, NULL, qrec);
1430 	}
1431 
1432 	ocfs2_super_unlock(osb, 1);
1433 
1434 	/* queue recovery for offline slots */
1435 	ocfs2_queue_replay_slots(osb);
1436 
1437 bail:
1438 	mutex_lock(&osb->recovery_lock);
1439 	if (!status && !ocfs2_recovery_completed(osb)) {
1440 		mutex_unlock(&osb->recovery_lock);
1441 		goto restart;
1442 	}
1443 
1444 	ocfs2_free_replay_slots(osb);
1445 	osb->recovery_thread_task = NULL;
1446 	mb(); /* sync with ocfs2_recovery_thread_running */
1447 	wake_up(&osb->recovery_event);
1448 
1449 	mutex_unlock(&osb->recovery_lock);
1450 
1451 	if (rm_quota)
1452 		kfree(rm_quota);
1453 
1454 	mlog_exit(status);
1455 	/* no one is callint kthread_stop() for us so the kthread() api
1456 	 * requires that we call do_exit().  And it isn't exported, but
1457 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1458 	complete_and_exit(NULL, status);
1459 	return status;
1460 }
1461 
1462 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1463 {
1464 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1465 		   node_num, osb->node_num);
1466 
1467 	mutex_lock(&osb->recovery_lock);
1468 	if (osb->disable_recovery)
1469 		goto out;
1470 
1471 	/* People waiting on recovery will wait on
1472 	 * the recovery map to empty. */
1473 	if (ocfs2_recovery_map_set(osb, node_num))
1474 		mlog(0, "node %d already in recovery map.\n", node_num);
1475 
1476 	mlog(0, "starting recovery thread...\n");
1477 
1478 	if (osb->recovery_thread_task)
1479 		goto out;
1480 
1481 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1482 						 "ocfs2rec");
1483 	if (IS_ERR(osb->recovery_thread_task)) {
1484 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1485 		osb->recovery_thread_task = NULL;
1486 	}
1487 
1488 out:
1489 	mutex_unlock(&osb->recovery_lock);
1490 	wake_up(&osb->recovery_event);
1491 
1492 	mlog_exit_void();
1493 }
1494 
1495 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1496 				    int slot_num,
1497 				    struct buffer_head **bh,
1498 				    struct inode **ret_inode)
1499 {
1500 	int status = -EACCES;
1501 	struct inode *inode = NULL;
1502 
1503 	BUG_ON(slot_num >= osb->max_slots);
1504 
1505 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1506 					    slot_num);
1507 	if (!inode || is_bad_inode(inode)) {
1508 		mlog_errno(status);
1509 		goto bail;
1510 	}
1511 	SET_INODE_JOURNAL(inode);
1512 
1513 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1514 	if (status < 0) {
1515 		mlog_errno(status);
1516 		goto bail;
1517 	}
1518 
1519 	status = 0;
1520 
1521 bail:
1522 	if (inode) {
1523 		if (status || !ret_inode)
1524 			iput(inode);
1525 		else
1526 			*ret_inode = inode;
1527 	}
1528 	return status;
1529 }
1530 
1531 /* Does the actual journal replay and marks the journal inode as
1532  * clean. Will only replay if the journal inode is marked dirty. */
1533 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1534 				int node_num,
1535 				int slot_num)
1536 {
1537 	int status;
1538 	int got_lock = 0;
1539 	unsigned int flags;
1540 	struct inode *inode = NULL;
1541 	struct ocfs2_dinode *fe;
1542 	journal_t *journal = NULL;
1543 	struct buffer_head *bh = NULL;
1544 	u32 slot_reco_gen;
1545 
1546 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1547 	if (status) {
1548 		mlog_errno(status);
1549 		goto done;
1550 	}
1551 
1552 	fe = (struct ocfs2_dinode *)bh->b_data;
1553 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1554 	brelse(bh);
1555 	bh = NULL;
1556 
1557 	/*
1558 	 * As the fs recovery is asynchronous, there is a small chance that
1559 	 * another node mounted (and recovered) the slot before the recovery
1560 	 * thread could get the lock. To handle that, we dirty read the journal
1561 	 * inode for that slot to get the recovery generation. If it is
1562 	 * different than what we expected, the slot has been recovered.
1563 	 * If not, it needs recovery.
1564 	 */
1565 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1566 		mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1567 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1568 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1569 		status = -EBUSY;
1570 		goto done;
1571 	}
1572 
1573 	/* Continue with recovery as the journal has not yet been recovered */
1574 
1575 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1576 	if (status < 0) {
1577 		mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1578 		if (status != -ERESTARTSYS)
1579 			mlog(ML_ERROR, "Could not lock journal!\n");
1580 		goto done;
1581 	}
1582 	got_lock = 1;
1583 
1584 	fe = (struct ocfs2_dinode *) bh->b_data;
1585 
1586 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1587 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1588 
1589 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1590 		mlog(0, "No recovery required for node %d\n", node_num);
1591 		/* Refresh recovery generation for the slot */
1592 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1593 		goto done;
1594 	}
1595 
1596 	/* we need to run complete recovery for offline orphan slots */
1597 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1598 
1599 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1600 	     node_num, slot_num,
1601 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1602 
1603 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1604 
1605 	status = ocfs2_force_read_journal(inode);
1606 	if (status < 0) {
1607 		mlog_errno(status);
1608 		goto done;
1609 	}
1610 
1611 	mlog(0, "calling journal_init_inode\n");
1612 	journal = jbd2_journal_init_inode(inode);
1613 	if (journal == NULL) {
1614 		mlog(ML_ERROR, "Linux journal layer error\n");
1615 		status = -EIO;
1616 		goto done;
1617 	}
1618 
1619 	status = jbd2_journal_load(journal);
1620 	if (status < 0) {
1621 		mlog_errno(status);
1622 		if (!igrab(inode))
1623 			BUG();
1624 		jbd2_journal_destroy(journal);
1625 		goto done;
1626 	}
1627 
1628 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1629 
1630 	/* wipe the journal */
1631 	mlog(0, "flushing the journal.\n");
1632 	jbd2_journal_lock_updates(journal);
1633 	status = jbd2_journal_flush(journal);
1634 	jbd2_journal_unlock_updates(journal);
1635 	if (status < 0)
1636 		mlog_errno(status);
1637 
1638 	/* This will mark the node clean */
1639 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1640 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1641 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1642 
1643 	/* Increment recovery generation to indicate successful recovery */
1644 	ocfs2_bump_recovery_generation(fe);
1645 	osb->slot_recovery_generations[slot_num] =
1646 					ocfs2_get_recovery_generation(fe);
1647 
1648 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1649 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1650 	if (status < 0)
1651 		mlog_errno(status);
1652 
1653 	if (!igrab(inode))
1654 		BUG();
1655 
1656 	jbd2_journal_destroy(journal);
1657 
1658 done:
1659 	/* drop the lock on this nodes journal */
1660 	if (got_lock)
1661 		ocfs2_inode_unlock(inode, 1);
1662 
1663 	if (inode)
1664 		iput(inode);
1665 
1666 	brelse(bh);
1667 
1668 	mlog_exit(status);
1669 	return status;
1670 }
1671 
1672 /*
1673  * Do the most important parts of node recovery:
1674  *  - Replay it's journal
1675  *  - Stamp a clean local allocator file
1676  *  - Stamp a clean truncate log
1677  *  - Mark the node clean
1678  *
1679  * If this function completes without error, a node in OCFS2 can be
1680  * said to have been safely recovered. As a result, failure during the
1681  * second part of a nodes recovery process (local alloc recovery) is
1682  * far less concerning.
1683  */
1684 static int ocfs2_recover_node(struct ocfs2_super *osb,
1685 			      int node_num, int slot_num)
1686 {
1687 	int status = 0;
1688 	struct ocfs2_dinode *la_copy = NULL;
1689 	struct ocfs2_dinode *tl_copy = NULL;
1690 
1691 	mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1692 		   node_num, slot_num, osb->node_num);
1693 
1694 	/* Should not ever be called to recover ourselves -- in that
1695 	 * case we should've called ocfs2_journal_load instead. */
1696 	BUG_ON(osb->node_num == node_num);
1697 
1698 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1699 	if (status < 0) {
1700 		if (status == -EBUSY) {
1701 			mlog(0, "Skipping recovery for slot %u (node %u) "
1702 			     "as another node has recovered it\n", slot_num,
1703 			     node_num);
1704 			status = 0;
1705 			goto done;
1706 		}
1707 		mlog_errno(status);
1708 		goto done;
1709 	}
1710 
1711 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1712 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1713 	if (status < 0) {
1714 		mlog_errno(status);
1715 		goto done;
1716 	}
1717 
1718 	/* An error from begin_truncate_log_recovery is not
1719 	 * serious enough to warrant halting the rest of
1720 	 * recovery. */
1721 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1722 	if (status < 0)
1723 		mlog_errno(status);
1724 
1725 	/* Likewise, this would be a strange but ultimately not so
1726 	 * harmful place to get an error... */
1727 	status = ocfs2_clear_slot(osb, slot_num);
1728 	if (status < 0)
1729 		mlog_errno(status);
1730 
1731 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1732 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1733 					tl_copy, NULL);
1734 
1735 	status = 0;
1736 done:
1737 
1738 	mlog_exit(status);
1739 	return status;
1740 }
1741 
1742 /* Test node liveness by trylocking his journal. If we get the lock,
1743  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1744  * still alive (we couldn't get the lock) and < 0 on error. */
1745 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1746 				 int slot_num)
1747 {
1748 	int status, flags;
1749 	struct inode *inode = NULL;
1750 
1751 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1752 					    slot_num);
1753 	if (inode == NULL) {
1754 		mlog(ML_ERROR, "access error\n");
1755 		status = -EACCES;
1756 		goto bail;
1757 	}
1758 	if (is_bad_inode(inode)) {
1759 		mlog(ML_ERROR, "access error (bad inode)\n");
1760 		iput(inode);
1761 		inode = NULL;
1762 		status = -EACCES;
1763 		goto bail;
1764 	}
1765 	SET_INODE_JOURNAL(inode);
1766 
1767 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1768 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1769 	if (status < 0) {
1770 		if (status != -EAGAIN)
1771 			mlog_errno(status);
1772 		goto bail;
1773 	}
1774 
1775 	ocfs2_inode_unlock(inode, 1);
1776 bail:
1777 	if (inode)
1778 		iput(inode);
1779 
1780 	return status;
1781 }
1782 
1783 /* Call this underneath ocfs2_super_lock. It also assumes that the
1784  * slot info struct has been updated from disk. */
1785 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1786 {
1787 	unsigned int node_num;
1788 	int status, i;
1789 	u32 gen;
1790 	struct buffer_head *bh = NULL;
1791 	struct ocfs2_dinode *di;
1792 
1793 	/* This is called with the super block cluster lock, so we
1794 	 * know that the slot map can't change underneath us. */
1795 
1796 	for (i = 0; i < osb->max_slots; i++) {
1797 		/* Read journal inode to get the recovery generation */
1798 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1799 		if (status) {
1800 			mlog_errno(status);
1801 			goto bail;
1802 		}
1803 		di = (struct ocfs2_dinode *)bh->b_data;
1804 		gen = ocfs2_get_recovery_generation(di);
1805 		brelse(bh);
1806 		bh = NULL;
1807 
1808 		spin_lock(&osb->osb_lock);
1809 		osb->slot_recovery_generations[i] = gen;
1810 
1811 		mlog(0, "Slot %u recovery generation is %u\n", i,
1812 		     osb->slot_recovery_generations[i]);
1813 
1814 		if (i == osb->slot_num) {
1815 			spin_unlock(&osb->osb_lock);
1816 			continue;
1817 		}
1818 
1819 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1820 		if (status == -ENOENT) {
1821 			spin_unlock(&osb->osb_lock);
1822 			continue;
1823 		}
1824 
1825 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1826 			spin_unlock(&osb->osb_lock);
1827 			continue;
1828 		}
1829 		spin_unlock(&osb->osb_lock);
1830 
1831 		/* Ok, we have a slot occupied by another node which
1832 		 * is not in the recovery map. We trylock his journal
1833 		 * file here to test if he's alive. */
1834 		status = ocfs2_trylock_journal(osb, i);
1835 		if (!status) {
1836 			/* Since we're called from mount, we know that
1837 			 * the recovery thread can't race us on
1838 			 * setting / checking the recovery bits. */
1839 			ocfs2_recovery_thread(osb, node_num);
1840 		} else if ((status < 0) && (status != -EAGAIN)) {
1841 			mlog_errno(status);
1842 			goto bail;
1843 		}
1844 	}
1845 
1846 	status = 0;
1847 bail:
1848 	mlog_exit(status);
1849 	return status;
1850 }
1851 
1852 /*
1853  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1854  * randomness to the timeout to minimize multple nodes firing the timer at the
1855  * same time.
1856  */
1857 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1858 {
1859 	unsigned long time;
1860 
1861 	get_random_bytes(&time, sizeof(time));
1862 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1863 	return msecs_to_jiffies(time);
1864 }
1865 
1866 /*
1867  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1868  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1869  * is done to catch any orphans that are left over in orphan directories.
1870  *
1871  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1872  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1873  * stored in LVB. If the sequence number has changed, it means some other
1874  * node has done the scan.  This node skips the scan and tracks the
1875  * sequence number.  If the sequence number didn't change, it means a scan
1876  * hasn't happened.  The node queues a scan and increments the
1877  * sequence number in the LVB.
1878  */
1879 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1880 {
1881 	struct ocfs2_orphan_scan *os;
1882 	int status, i;
1883 	u32 seqno = 0;
1884 
1885 	os = &osb->osb_orphan_scan;
1886 
1887 	mlog(0, "Begin orphan scan\n");
1888 
1889 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1890 		goto out;
1891 
1892 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1893 	if (status < 0) {
1894 		if (status != -EAGAIN)
1895 			mlog_errno(status);
1896 		goto out;
1897 	}
1898 
1899 	/* Do no queue the tasks if the volume is being umounted */
1900 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1901 		goto unlock;
1902 
1903 	if (os->os_seqno != seqno) {
1904 		os->os_seqno = seqno;
1905 		goto unlock;
1906 	}
1907 
1908 	for (i = 0; i < osb->max_slots; i++)
1909 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1910 						NULL);
1911 	/*
1912 	 * We queued a recovery on orphan slots, increment the sequence
1913 	 * number and update LVB so other node will skip the scan for a while
1914 	 */
1915 	seqno++;
1916 	os->os_count++;
1917 	os->os_scantime = CURRENT_TIME;
1918 unlock:
1919 	ocfs2_orphan_scan_unlock(osb, seqno);
1920 out:
1921 	mlog(0, "Orphan scan completed\n");
1922 	return;
1923 }
1924 
1925 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1926 void ocfs2_orphan_scan_work(struct work_struct *work)
1927 {
1928 	struct ocfs2_orphan_scan *os;
1929 	struct ocfs2_super *osb;
1930 
1931 	os = container_of(work, struct ocfs2_orphan_scan,
1932 			  os_orphan_scan_work.work);
1933 	osb = os->os_osb;
1934 
1935 	mutex_lock(&os->os_lock);
1936 	ocfs2_queue_orphan_scan(osb);
1937 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1938 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1939 				      ocfs2_orphan_scan_timeout());
1940 	mutex_unlock(&os->os_lock);
1941 }
1942 
1943 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1944 {
1945 	struct ocfs2_orphan_scan *os;
1946 
1947 	os = &osb->osb_orphan_scan;
1948 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1949 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1950 		mutex_lock(&os->os_lock);
1951 		cancel_delayed_work(&os->os_orphan_scan_work);
1952 		mutex_unlock(&os->os_lock);
1953 	}
1954 }
1955 
1956 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1957 {
1958 	struct ocfs2_orphan_scan *os;
1959 
1960 	os = &osb->osb_orphan_scan;
1961 	os->os_osb = osb;
1962 	os->os_count = 0;
1963 	os->os_seqno = 0;
1964 	mutex_init(&os->os_lock);
1965 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1966 }
1967 
1968 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1969 {
1970 	struct ocfs2_orphan_scan *os;
1971 
1972 	os = &osb->osb_orphan_scan;
1973 	os->os_scantime = CURRENT_TIME;
1974 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1975 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1976 	else {
1977 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1978 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1979 				   ocfs2_orphan_scan_timeout());
1980 	}
1981 }
1982 
1983 struct ocfs2_orphan_filldir_priv {
1984 	struct inode		*head;
1985 	struct ocfs2_super	*osb;
1986 };
1987 
1988 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1989 				loff_t pos, u64 ino, unsigned type)
1990 {
1991 	struct ocfs2_orphan_filldir_priv *p = priv;
1992 	struct inode *iter;
1993 
1994 	if (name_len == 1 && !strncmp(".", name, 1))
1995 		return 0;
1996 	if (name_len == 2 && !strncmp("..", name, 2))
1997 		return 0;
1998 
1999 	/* Skip bad inodes so that recovery can continue */
2000 	iter = ocfs2_iget(p->osb, ino,
2001 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2002 	if (IS_ERR(iter))
2003 		return 0;
2004 
2005 	mlog(0, "queue orphan %llu\n",
2006 	     (unsigned long long)OCFS2_I(iter)->ip_blkno);
2007 	/* No locking is required for the next_orphan queue as there
2008 	 * is only ever a single process doing orphan recovery. */
2009 	OCFS2_I(iter)->ip_next_orphan = p->head;
2010 	p->head = iter;
2011 
2012 	return 0;
2013 }
2014 
2015 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2016 			       int slot,
2017 			       struct inode **head)
2018 {
2019 	int status;
2020 	struct inode *orphan_dir_inode = NULL;
2021 	struct ocfs2_orphan_filldir_priv priv;
2022 	loff_t pos = 0;
2023 
2024 	priv.osb = osb;
2025 	priv.head = *head;
2026 
2027 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2028 						       ORPHAN_DIR_SYSTEM_INODE,
2029 						       slot);
2030 	if  (!orphan_dir_inode) {
2031 		status = -ENOENT;
2032 		mlog_errno(status);
2033 		return status;
2034 	}
2035 
2036 	mutex_lock(&orphan_dir_inode->i_mutex);
2037 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2038 	if (status < 0) {
2039 		mlog_errno(status);
2040 		goto out;
2041 	}
2042 
2043 	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2044 				   ocfs2_orphan_filldir);
2045 	if (status) {
2046 		mlog_errno(status);
2047 		goto out_cluster;
2048 	}
2049 
2050 	*head = priv.head;
2051 
2052 out_cluster:
2053 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2054 out:
2055 	mutex_unlock(&orphan_dir_inode->i_mutex);
2056 	iput(orphan_dir_inode);
2057 	return status;
2058 }
2059 
2060 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2061 					      int slot)
2062 {
2063 	int ret;
2064 
2065 	spin_lock(&osb->osb_lock);
2066 	ret = !osb->osb_orphan_wipes[slot];
2067 	spin_unlock(&osb->osb_lock);
2068 	return ret;
2069 }
2070 
2071 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2072 					     int slot)
2073 {
2074 	spin_lock(&osb->osb_lock);
2075 	/* Mark ourselves such that new processes in delete_inode()
2076 	 * know to quit early. */
2077 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2078 	while (osb->osb_orphan_wipes[slot]) {
2079 		/* If any processes are already in the middle of an
2080 		 * orphan wipe on this dir, then we need to wait for
2081 		 * them. */
2082 		spin_unlock(&osb->osb_lock);
2083 		wait_event_interruptible(osb->osb_wipe_event,
2084 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2085 		spin_lock(&osb->osb_lock);
2086 	}
2087 	spin_unlock(&osb->osb_lock);
2088 }
2089 
2090 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2091 					      int slot)
2092 {
2093 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2094 }
2095 
2096 /*
2097  * Orphan recovery. Each mounted node has it's own orphan dir which we
2098  * must run during recovery. Our strategy here is to build a list of
2099  * the inodes in the orphan dir and iget/iput them. The VFS does
2100  * (most) of the rest of the work.
2101  *
2102  * Orphan recovery can happen at any time, not just mount so we have a
2103  * couple of extra considerations.
2104  *
2105  * - We grab as many inodes as we can under the orphan dir lock -
2106  *   doing iget() outside the orphan dir risks getting a reference on
2107  *   an invalid inode.
2108  * - We must be sure not to deadlock with other processes on the
2109  *   system wanting to run delete_inode(). This can happen when they go
2110  *   to lock the orphan dir and the orphan recovery process attempts to
2111  *   iget() inside the orphan dir lock. This can be avoided by
2112  *   advertising our state to ocfs2_delete_inode().
2113  */
2114 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2115 				 int slot)
2116 {
2117 	int ret = 0;
2118 	struct inode *inode = NULL;
2119 	struct inode *iter;
2120 	struct ocfs2_inode_info *oi;
2121 
2122 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2123 
2124 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2125 	ret = ocfs2_queue_orphans(osb, slot, &inode);
2126 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2127 
2128 	/* Error here should be noted, but we want to continue with as
2129 	 * many queued inodes as we've got. */
2130 	if (ret)
2131 		mlog_errno(ret);
2132 
2133 	while (inode) {
2134 		oi = OCFS2_I(inode);
2135 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
2136 
2137 		iter = oi->ip_next_orphan;
2138 
2139 		spin_lock(&oi->ip_lock);
2140 		/* The remote delete code may have set these on the
2141 		 * assumption that the other node would wipe them
2142 		 * successfully.  If they are still in the node's
2143 		 * orphan dir, we need to reset that state. */
2144 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2145 
2146 		/* Set the proper information to get us going into
2147 		 * ocfs2_delete_inode. */
2148 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2149 		spin_unlock(&oi->ip_lock);
2150 
2151 		iput(inode);
2152 
2153 		inode = iter;
2154 	}
2155 
2156 	return ret;
2157 }
2158 
2159 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2160 {
2161 	/* This check is good because ocfs2 will wait on our recovery
2162 	 * thread before changing it to something other than MOUNTED
2163 	 * or DISABLED. */
2164 	wait_event(osb->osb_mount_event,
2165 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2166 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2167 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2168 
2169 	/* If there's an error on mount, then we may never get to the
2170 	 * MOUNTED flag, but this is set right before
2171 	 * dismount_volume() so we can trust it. */
2172 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2173 		mlog(0, "mount error, exiting!\n");
2174 		return -EBUSY;
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 static int ocfs2_commit_thread(void *arg)
2181 {
2182 	int status;
2183 	struct ocfs2_super *osb = arg;
2184 	struct ocfs2_journal *journal = osb->journal;
2185 
2186 	/* we can trust j_num_trans here because _should_stop() is only set in
2187 	 * shutdown and nobody other than ourselves should be able to start
2188 	 * transactions.  committing on shutdown might take a few iterations
2189 	 * as final transactions put deleted inodes on the list */
2190 	while (!(kthread_should_stop() &&
2191 		 atomic_read(&journal->j_num_trans) == 0)) {
2192 
2193 		wait_event_interruptible(osb->checkpoint_event,
2194 					 atomic_read(&journal->j_num_trans)
2195 					 || kthread_should_stop());
2196 
2197 		status = ocfs2_commit_cache(osb);
2198 		if (status < 0)
2199 			mlog_errno(status);
2200 
2201 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2202 			mlog(ML_KTHREAD,
2203 			     "commit_thread: %u transactions pending on "
2204 			     "shutdown\n",
2205 			     atomic_read(&journal->j_num_trans));
2206 		}
2207 	}
2208 
2209 	return 0;
2210 }
2211 
2212 /* Reads all the journal inodes without taking any cluster locks. Used
2213  * for hard readonly access to determine whether any journal requires
2214  * recovery. Also used to refresh the recovery generation numbers after
2215  * a journal has been recovered by another node.
2216  */
2217 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2218 {
2219 	int ret = 0;
2220 	unsigned int slot;
2221 	struct buffer_head *di_bh = NULL;
2222 	struct ocfs2_dinode *di;
2223 	int journal_dirty = 0;
2224 
2225 	for(slot = 0; slot < osb->max_slots; slot++) {
2226 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2227 		if (ret) {
2228 			mlog_errno(ret);
2229 			goto out;
2230 		}
2231 
2232 		di = (struct ocfs2_dinode *) di_bh->b_data;
2233 
2234 		osb->slot_recovery_generations[slot] =
2235 					ocfs2_get_recovery_generation(di);
2236 
2237 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2238 		    OCFS2_JOURNAL_DIRTY_FL)
2239 			journal_dirty = 1;
2240 
2241 		brelse(di_bh);
2242 		di_bh = NULL;
2243 	}
2244 
2245 out:
2246 	if (journal_dirty)
2247 		ret = -EROFS;
2248 	return ret;
2249 }
2250