1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * journal.c 4 * 5 * Defines functions of journalling api 6 * 7 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/highmem.h> 14 #include <linux/kthread.h> 15 #include <linux/time.h> 16 #include <linux/random.h> 17 #include <linux/delay.h> 18 #include <linux/writeback.h> 19 20 #include <cluster/masklog.h> 21 22 #include "ocfs2.h" 23 24 #include "alloc.h" 25 #include "blockcheck.h" 26 #include "dir.h" 27 #include "dlmglue.h" 28 #include "extent_map.h" 29 #include "heartbeat.h" 30 #include "inode.h" 31 #include "journal.h" 32 #include "localalloc.h" 33 #include "slot_map.h" 34 #include "super.h" 35 #include "sysfile.h" 36 #include "uptodate.h" 37 #include "quota.h" 38 #include "file.h" 39 #include "namei.h" 40 41 #include "buffer_head_io.h" 42 #include "ocfs2_trace.h" 43 44 DEFINE_SPINLOCK(trans_inc_lock); 45 46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 47 48 static int ocfs2_force_read_journal(struct inode *inode); 49 static int ocfs2_recover_node(struct ocfs2_super *osb, 50 int node_num, int slot_num); 51 static int __ocfs2_recovery_thread(void *arg); 52 static int ocfs2_commit_cache(struct ocfs2_super *osb); 53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 55 int dirty, int replayed); 56 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 57 int slot_num); 58 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 59 int slot, 60 enum ocfs2_orphan_reco_type orphan_reco_type); 61 static int ocfs2_commit_thread(void *arg); 62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 63 int slot_num, 64 struct ocfs2_dinode *la_dinode, 65 struct ocfs2_dinode *tl_dinode, 66 struct ocfs2_quota_recovery *qrec, 67 enum ocfs2_orphan_reco_type orphan_reco_type); 68 69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 70 { 71 return __ocfs2_wait_on_mount(osb, 0); 72 } 73 74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 75 { 76 return __ocfs2_wait_on_mount(osb, 1); 77 } 78 79 /* 80 * This replay_map is to track online/offline slots, so we could recover 81 * offline slots during recovery and mount 82 */ 83 84 enum ocfs2_replay_state { 85 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 86 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 87 REPLAY_DONE /* Replay was already queued */ 88 }; 89 90 struct ocfs2_replay_map { 91 unsigned int rm_slots; 92 enum ocfs2_replay_state rm_state; 93 unsigned char rm_replay_slots[]; 94 }; 95 96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 97 { 98 if (!osb->replay_map) 99 return; 100 101 /* If we've already queued the replay, we don't have any more to do */ 102 if (osb->replay_map->rm_state == REPLAY_DONE) 103 return; 104 105 osb->replay_map->rm_state = state; 106 } 107 108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 109 { 110 struct ocfs2_replay_map *replay_map; 111 int i, node_num; 112 113 /* If replay map is already set, we don't do it again */ 114 if (osb->replay_map) 115 return 0; 116 117 replay_map = kzalloc(struct_size(replay_map, rm_replay_slots, 118 osb->max_slots), 119 GFP_KERNEL); 120 if (!replay_map) { 121 mlog_errno(-ENOMEM); 122 return -ENOMEM; 123 } 124 125 spin_lock(&osb->osb_lock); 126 127 replay_map->rm_slots = osb->max_slots; 128 replay_map->rm_state = REPLAY_UNNEEDED; 129 130 /* set rm_replay_slots for offline slot(s) */ 131 for (i = 0; i < replay_map->rm_slots; i++) { 132 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 133 replay_map->rm_replay_slots[i] = 1; 134 } 135 136 osb->replay_map = replay_map; 137 spin_unlock(&osb->osb_lock); 138 return 0; 139 } 140 141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 142 enum ocfs2_orphan_reco_type orphan_reco_type) 143 { 144 struct ocfs2_replay_map *replay_map = osb->replay_map; 145 int i; 146 147 if (!replay_map) 148 return; 149 150 if (replay_map->rm_state != REPLAY_NEEDED) 151 return; 152 153 for (i = 0; i < replay_map->rm_slots; i++) 154 if (replay_map->rm_replay_slots[i]) 155 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 156 NULL, NULL, 157 orphan_reco_type); 158 replay_map->rm_state = REPLAY_DONE; 159 } 160 161 void ocfs2_free_replay_slots(struct ocfs2_super *osb) 162 { 163 struct ocfs2_replay_map *replay_map = osb->replay_map; 164 165 if (!osb->replay_map) 166 return; 167 168 kfree(replay_map); 169 osb->replay_map = NULL; 170 } 171 172 int ocfs2_recovery_init(struct ocfs2_super *osb) 173 { 174 struct ocfs2_recovery_map *rm; 175 176 mutex_init(&osb->recovery_lock); 177 osb->disable_recovery = 0; 178 osb->recovery_thread_task = NULL; 179 init_waitqueue_head(&osb->recovery_event); 180 181 rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots), 182 GFP_KERNEL); 183 if (!rm) { 184 mlog_errno(-ENOMEM); 185 return -ENOMEM; 186 } 187 188 osb->recovery_map = rm; 189 190 return 0; 191 } 192 193 /* we can't grab the goofy sem lock from inside wait_event, so we use 194 * memory barriers to make sure that we'll see the null task before 195 * being woken up */ 196 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 197 { 198 mb(); 199 return osb->recovery_thread_task != NULL; 200 } 201 202 void ocfs2_recovery_exit(struct ocfs2_super *osb) 203 { 204 struct ocfs2_recovery_map *rm; 205 206 /* disable any new recovery threads and wait for any currently 207 * running ones to exit. Do this before setting the vol_state. */ 208 mutex_lock(&osb->recovery_lock); 209 osb->disable_recovery = 1; 210 mutex_unlock(&osb->recovery_lock); 211 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 212 213 /* At this point, we know that no more recovery threads can be 214 * launched, so wait for any recovery completion work to 215 * complete. */ 216 if (osb->ocfs2_wq) 217 flush_workqueue(osb->ocfs2_wq); 218 219 /* 220 * Now that recovery is shut down, and the osb is about to be 221 * freed, the osb_lock is not taken here. 222 */ 223 rm = osb->recovery_map; 224 /* XXX: Should we bug if there are dirty entries? */ 225 226 kfree(rm); 227 } 228 229 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 230 unsigned int node_num) 231 { 232 int i; 233 struct ocfs2_recovery_map *rm = osb->recovery_map; 234 235 assert_spin_locked(&osb->osb_lock); 236 237 for (i = 0; i < rm->rm_used; i++) { 238 if (rm->rm_entries[i] == node_num) 239 return 1; 240 } 241 242 return 0; 243 } 244 245 /* Behaves like test-and-set. Returns the previous value */ 246 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 247 unsigned int node_num) 248 { 249 struct ocfs2_recovery_map *rm = osb->recovery_map; 250 251 spin_lock(&osb->osb_lock); 252 if (__ocfs2_recovery_map_test(osb, node_num)) { 253 spin_unlock(&osb->osb_lock); 254 return 1; 255 } 256 257 /* XXX: Can this be exploited? Not from o2dlm... */ 258 BUG_ON(rm->rm_used >= osb->max_slots); 259 260 rm->rm_entries[rm->rm_used] = node_num; 261 rm->rm_used++; 262 spin_unlock(&osb->osb_lock); 263 264 return 0; 265 } 266 267 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 268 unsigned int node_num) 269 { 270 int i; 271 struct ocfs2_recovery_map *rm = osb->recovery_map; 272 273 spin_lock(&osb->osb_lock); 274 275 for (i = 0; i < rm->rm_used; i++) { 276 if (rm->rm_entries[i] == node_num) 277 break; 278 } 279 280 if (i < rm->rm_used) { 281 /* XXX: be careful with the pointer math */ 282 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 283 (rm->rm_used - i - 1) * sizeof(unsigned int)); 284 rm->rm_used--; 285 } 286 287 spin_unlock(&osb->osb_lock); 288 } 289 290 static int ocfs2_commit_cache(struct ocfs2_super *osb) 291 { 292 int status = 0; 293 unsigned int flushed; 294 struct ocfs2_journal *journal = NULL; 295 296 journal = osb->journal; 297 298 /* Flush all pending commits and checkpoint the journal. */ 299 down_write(&journal->j_trans_barrier); 300 301 flushed = atomic_read(&journal->j_num_trans); 302 trace_ocfs2_commit_cache_begin(flushed); 303 if (flushed == 0) { 304 up_write(&journal->j_trans_barrier); 305 goto finally; 306 } 307 308 jbd2_journal_lock_updates(journal->j_journal); 309 status = jbd2_journal_flush(journal->j_journal, 0); 310 jbd2_journal_unlock_updates(journal->j_journal); 311 if (status < 0) { 312 up_write(&journal->j_trans_barrier); 313 mlog_errno(status); 314 goto finally; 315 } 316 317 ocfs2_inc_trans_id(journal); 318 319 flushed = atomic_read(&journal->j_num_trans); 320 atomic_set(&journal->j_num_trans, 0); 321 up_write(&journal->j_trans_barrier); 322 323 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 324 325 ocfs2_wake_downconvert_thread(osb); 326 wake_up(&journal->j_checkpointed); 327 finally: 328 return status; 329 } 330 331 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 332 { 333 journal_t *journal = osb->journal->j_journal; 334 handle_t *handle; 335 336 BUG_ON(!osb || !osb->journal->j_journal); 337 338 if (ocfs2_is_hard_readonly(osb)) 339 return ERR_PTR(-EROFS); 340 341 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 342 BUG_ON(max_buffs <= 0); 343 344 /* Nested transaction? Just return the handle... */ 345 if (journal_current_handle()) 346 return jbd2_journal_start(journal, max_buffs); 347 348 sb_start_intwrite(osb->sb); 349 350 down_read(&osb->journal->j_trans_barrier); 351 352 handle = jbd2_journal_start(journal, max_buffs); 353 if (IS_ERR(handle)) { 354 up_read(&osb->journal->j_trans_barrier); 355 sb_end_intwrite(osb->sb); 356 357 mlog_errno(PTR_ERR(handle)); 358 359 if (is_journal_aborted(journal)) { 360 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 361 handle = ERR_PTR(-EROFS); 362 } 363 } else { 364 if (!ocfs2_mount_local(osb)) 365 atomic_inc(&(osb->journal->j_num_trans)); 366 } 367 368 return handle; 369 } 370 371 int ocfs2_commit_trans(struct ocfs2_super *osb, 372 handle_t *handle) 373 { 374 int ret, nested; 375 struct ocfs2_journal *journal = osb->journal; 376 377 BUG_ON(!handle); 378 379 nested = handle->h_ref > 1; 380 ret = jbd2_journal_stop(handle); 381 if (ret < 0) 382 mlog_errno(ret); 383 384 if (!nested) { 385 up_read(&journal->j_trans_barrier); 386 sb_end_intwrite(osb->sb); 387 } 388 389 return ret; 390 } 391 392 /* 393 * 'nblocks' is what you want to add to the current transaction. 394 * 395 * This might call jbd2_journal_restart() which will commit dirty buffers 396 * and then restart the transaction. Before calling 397 * ocfs2_extend_trans(), any changed blocks should have been 398 * dirtied. After calling it, all blocks which need to be changed must 399 * go through another set of journal_access/journal_dirty calls. 400 * 401 * WARNING: This will not release any semaphores or disk locks taken 402 * during the transaction, so make sure they were taken *before* 403 * start_trans or we'll have ordering deadlocks. 404 * 405 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 406 * good because transaction ids haven't yet been recorded on the 407 * cluster locks associated with this handle. 408 */ 409 int ocfs2_extend_trans(handle_t *handle, int nblocks) 410 { 411 int status, old_nblocks; 412 413 BUG_ON(!handle); 414 BUG_ON(nblocks < 0); 415 416 if (!nblocks) 417 return 0; 418 419 old_nblocks = jbd2_handle_buffer_credits(handle); 420 421 trace_ocfs2_extend_trans(old_nblocks, nblocks); 422 423 #ifdef CONFIG_OCFS2_DEBUG_FS 424 status = 1; 425 #else 426 status = jbd2_journal_extend(handle, nblocks, 0); 427 if (status < 0) { 428 mlog_errno(status); 429 goto bail; 430 } 431 #endif 432 433 if (status > 0) { 434 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 435 status = jbd2_journal_restart(handle, 436 old_nblocks + nblocks); 437 if (status < 0) { 438 mlog_errno(status); 439 goto bail; 440 } 441 } 442 443 status = 0; 444 bail: 445 return status; 446 } 447 448 /* 449 * Make sure handle has at least 'nblocks' credits available. If it does not 450 * have that many credits available, we will try to extend the handle to have 451 * enough credits. If that fails, we will restart transaction to have enough 452 * credits. Similar notes regarding data consistency and locking implications 453 * as for ocfs2_extend_trans() apply here. 454 */ 455 int ocfs2_assure_trans_credits(handle_t *handle, int nblocks) 456 { 457 int old_nblks = jbd2_handle_buffer_credits(handle); 458 459 trace_ocfs2_assure_trans_credits(old_nblks); 460 if (old_nblks >= nblocks) 461 return 0; 462 return ocfs2_extend_trans(handle, nblocks - old_nblks); 463 } 464 465 /* 466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 467 * If that fails, restart the transaction & regain write access for the 468 * buffer head which is used for metadata modifications. 469 * Taken from Ext4: extend_or_restart_transaction() 470 */ 471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 472 { 473 int status, old_nblks; 474 475 BUG_ON(!handle); 476 477 old_nblks = jbd2_handle_buffer_credits(handle); 478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 479 480 if (old_nblks < thresh) 481 return 0; 482 483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0); 484 if (status < 0) { 485 mlog_errno(status); 486 goto bail; 487 } 488 489 if (status > 0) { 490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 491 if (status < 0) 492 mlog_errno(status); 493 } 494 495 bail: 496 return status; 497 } 498 499 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 500 { 501 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 502 } 503 504 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 505 struct buffer_head *bh, 506 void *data, size_t size) 507 { 508 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 509 510 /* 511 * We aren't guaranteed to have the superblock here, so we 512 * must unconditionally compute the ecc data. 513 * __ocfs2_journal_access() will only set the triggers if 514 * metaecc is enabled. 515 */ 516 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 517 } 518 519 /* 520 * Quota blocks have their own trigger because the struct ocfs2_block_check 521 * offset depends on the blocksize. 522 */ 523 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 524 struct buffer_head *bh, 525 void *data, size_t size) 526 { 527 struct ocfs2_disk_dqtrailer *dqt = 528 ocfs2_block_dqtrailer(size, data); 529 530 /* 531 * We aren't guaranteed to have the superblock here, so we 532 * must unconditionally compute the ecc data. 533 * __ocfs2_journal_access() will only set the triggers if 534 * metaecc is enabled. 535 */ 536 ocfs2_block_check_compute(data, size, &dqt->dq_check); 537 } 538 539 /* 540 * Directory blocks also have their own trigger because the 541 * struct ocfs2_block_check offset depends on the blocksize. 542 */ 543 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 544 struct buffer_head *bh, 545 void *data, size_t size) 546 { 547 struct ocfs2_dir_block_trailer *trailer = 548 ocfs2_dir_trailer_from_size(size, data); 549 550 /* 551 * We aren't guaranteed to have the superblock here, so we 552 * must unconditionally compute the ecc data. 553 * __ocfs2_journal_access() will only set the triggers if 554 * metaecc is enabled. 555 */ 556 ocfs2_block_check_compute(data, size, &trailer->db_check); 557 } 558 559 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 560 struct buffer_head *bh) 561 { 562 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 563 564 mlog(ML_ERROR, 565 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 566 "bh->b_blocknr = %llu\n", 567 (unsigned long)bh, 568 (unsigned long long)bh->b_blocknr); 569 570 ocfs2_error(ot->sb, 571 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 572 } 573 574 static void ocfs2_setup_csum_triggers(struct super_block *sb, 575 enum ocfs2_journal_trigger_type type, 576 struct ocfs2_triggers *ot) 577 { 578 BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT); 579 580 switch (type) { 581 case OCFS2_JTR_DI: 582 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 583 ot->ot_offset = offsetof(struct ocfs2_dinode, i_check); 584 break; 585 case OCFS2_JTR_EB: 586 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 587 ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check); 588 break; 589 case OCFS2_JTR_RB: 590 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 591 ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check); 592 break; 593 case OCFS2_JTR_GD: 594 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 595 ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check); 596 break; 597 case OCFS2_JTR_DB: 598 ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger; 599 break; 600 case OCFS2_JTR_XB: 601 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 602 ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check); 603 break; 604 case OCFS2_JTR_DQ: 605 ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger; 606 break; 607 case OCFS2_JTR_DR: 608 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 609 ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check); 610 break; 611 case OCFS2_JTR_DL: 612 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 613 ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check); 614 break; 615 case OCFS2_JTR_NONE: 616 /* To make compiler happy... */ 617 return; 618 } 619 620 ot->ot_triggers.t_abort = ocfs2_abort_trigger; 621 ot->sb = sb; 622 } 623 624 void ocfs2_initialize_journal_triggers(struct super_block *sb, 625 struct ocfs2_triggers triggers[]) 626 { 627 enum ocfs2_journal_trigger_type type; 628 629 for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++) 630 ocfs2_setup_csum_triggers(sb, type, &triggers[type]); 631 } 632 633 static int __ocfs2_journal_access(handle_t *handle, 634 struct ocfs2_caching_info *ci, 635 struct buffer_head *bh, 636 struct ocfs2_triggers *triggers, 637 int type) 638 { 639 int status; 640 struct ocfs2_super *osb = 641 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 642 643 BUG_ON(!ci || !ci->ci_ops); 644 BUG_ON(!handle); 645 BUG_ON(!bh); 646 647 trace_ocfs2_journal_access( 648 (unsigned long long)ocfs2_metadata_cache_owner(ci), 649 (unsigned long long)bh->b_blocknr, type, bh->b_size); 650 651 /* we can safely remove this assertion after testing. */ 652 if (!buffer_uptodate(bh)) { 653 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 654 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 655 (unsigned long long)bh->b_blocknr, bh->b_state); 656 657 lock_buffer(bh); 658 /* 659 * A previous transaction with a couple of buffer heads fail 660 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 661 * For current transaction, the bh is just among those error 662 * bhs which previous transaction handle. We can't just clear 663 * its BH_Write_EIO and reuse directly, since other bhs are 664 * not written to disk yet and that will cause metadata 665 * inconsistency. So we should set fs read-only to avoid 666 * further damage. 667 */ 668 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 669 unlock_buffer(bh); 670 return ocfs2_error(osb->sb, "A previous attempt to " 671 "write this buffer head failed\n"); 672 } 673 unlock_buffer(bh); 674 } 675 676 /* Set the current transaction information on the ci so 677 * that the locking code knows whether it can drop it's locks 678 * on this ci or not. We're protected from the commit 679 * thread updating the current transaction id until 680 * ocfs2_commit_trans() because ocfs2_start_trans() took 681 * j_trans_barrier for us. */ 682 ocfs2_set_ci_lock_trans(osb->journal, ci); 683 684 ocfs2_metadata_cache_io_lock(ci); 685 switch (type) { 686 case OCFS2_JOURNAL_ACCESS_CREATE: 687 case OCFS2_JOURNAL_ACCESS_WRITE: 688 status = jbd2_journal_get_write_access(handle, bh); 689 break; 690 691 case OCFS2_JOURNAL_ACCESS_UNDO: 692 status = jbd2_journal_get_undo_access(handle, bh); 693 break; 694 695 default: 696 status = -EINVAL; 697 mlog(ML_ERROR, "Unknown access type!\n"); 698 } 699 if (!status && ocfs2_meta_ecc(osb) && triggers) 700 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 701 ocfs2_metadata_cache_io_unlock(ci); 702 703 if (status < 0) 704 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 705 status, type); 706 707 return status; 708 } 709 710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 711 struct buffer_head *bh, int type) 712 { 713 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 714 715 return __ocfs2_journal_access(handle, ci, bh, 716 &osb->s_journal_triggers[OCFS2_JTR_DI], 717 type); 718 } 719 720 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 721 struct buffer_head *bh, int type) 722 { 723 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 724 725 return __ocfs2_journal_access(handle, ci, bh, 726 &osb->s_journal_triggers[OCFS2_JTR_EB], 727 type); 728 } 729 730 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 731 struct buffer_head *bh, int type) 732 { 733 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 734 735 return __ocfs2_journal_access(handle, ci, bh, 736 &osb->s_journal_triggers[OCFS2_JTR_RB], 737 type); 738 } 739 740 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 741 struct buffer_head *bh, int type) 742 { 743 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 744 745 return __ocfs2_journal_access(handle, ci, bh, 746 &osb->s_journal_triggers[OCFS2_JTR_GD], 747 type); 748 } 749 750 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 751 struct buffer_head *bh, int type) 752 { 753 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 754 755 return __ocfs2_journal_access(handle, ci, bh, 756 &osb->s_journal_triggers[OCFS2_JTR_DB], 757 type); 758 } 759 760 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 761 struct buffer_head *bh, int type) 762 { 763 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 764 765 return __ocfs2_journal_access(handle, ci, bh, 766 &osb->s_journal_triggers[OCFS2_JTR_XB], 767 type); 768 } 769 770 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 771 struct buffer_head *bh, int type) 772 { 773 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 774 775 return __ocfs2_journal_access(handle, ci, bh, 776 &osb->s_journal_triggers[OCFS2_JTR_DQ], 777 type); 778 } 779 780 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 781 struct buffer_head *bh, int type) 782 { 783 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 784 785 return __ocfs2_journal_access(handle, ci, bh, 786 &osb->s_journal_triggers[OCFS2_JTR_DR], 787 type); 788 } 789 790 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 791 struct buffer_head *bh, int type) 792 { 793 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 794 795 return __ocfs2_journal_access(handle, ci, bh, 796 &osb->s_journal_triggers[OCFS2_JTR_DL], 797 type); 798 } 799 800 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 801 struct buffer_head *bh, int type) 802 { 803 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 804 } 805 806 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 807 { 808 int status; 809 810 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 811 812 status = jbd2_journal_dirty_metadata(handle, bh); 813 if (status) { 814 mlog_errno(status); 815 if (!is_handle_aborted(handle)) { 816 journal_t *journal = handle->h_transaction->t_journal; 817 818 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: " 819 "handle type %u started at line %u, credits %u/%u " 820 "errcode %d. Aborting transaction and journal.\n", 821 handle->h_type, handle->h_line_no, 822 handle->h_requested_credits, 823 jbd2_handle_buffer_credits(handle), status); 824 handle->h_err = status; 825 jbd2_journal_abort_handle(handle); 826 jbd2_journal_abort(journal, status); 827 } 828 } 829 } 830 831 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 832 833 void ocfs2_set_journal_params(struct ocfs2_super *osb) 834 { 835 journal_t *journal = osb->journal->j_journal; 836 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 837 838 if (osb->osb_commit_interval) 839 commit_interval = osb->osb_commit_interval; 840 841 write_lock(&journal->j_state_lock); 842 journal->j_commit_interval = commit_interval; 843 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 844 journal->j_flags |= JBD2_BARRIER; 845 else 846 journal->j_flags &= ~JBD2_BARRIER; 847 write_unlock(&journal->j_state_lock); 848 } 849 850 /* 851 * alloc & initialize skeleton for journal structure. 852 * ocfs2_journal_init() will make fs have journal ability. 853 */ 854 int ocfs2_journal_alloc(struct ocfs2_super *osb) 855 { 856 int status = 0; 857 struct ocfs2_journal *journal; 858 859 journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL); 860 if (!journal) { 861 mlog(ML_ERROR, "unable to alloc journal\n"); 862 status = -ENOMEM; 863 goto bail; 864 } 865 osb->journal = journal; 866 journal->j_osb = osb; 867 868 atomic_set(&journal->j_num_trans, 0); 869 init_rwsem(&journal->j_trans_barrier); 870 init_waitqueue_head(&journal->j_checkpointed); 871 spin_lock_init(&journal->j_lock); 872 journal->j_trans_id = 1UL; 873 INIT_LIST_HEAD(&journal->j_la_cleanups); 874 INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery); 875 journal->j_state = OCFS2_JOURNAL_FREE; 876 877 bail: 878 return status; 879 } 880 881 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 882 { 883 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 884 struct writeback_control wbc = { 885 .sync_mode = WB_SYNC_ALL, 886 .nr_to_write = mapping->nrpages * 2, 887 .range_start = jinode->i_dirty_start, 888 .range_end = jinode->i_dirty_end, 889 }; 890 891 return filemap_fdatawrite_wbc(mapping, &wbc); 892 } 893 894 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty) 895 { 896 int status = -1; 897 struct inode *inode = NULL; /* the journal inode */ 898 journal_t *j_journal = NULL; 899 struct ocfs2_journal *journal = osb->journal; 900 struct ocfs2_dinode *di = NULL; 901 struct buffer_head *bh = NULL; 902 int inode_lock = 0; 903 904 BUG_ON(!journal); 905 /* already have the inode for our journal */ 906 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 907 osb->slot_num); 908 if (inode == NULL) { 909 status = -EACCES; 910 mlog_errno(status); 911 goto done; 912 } 913 if (is_bad_inode(inode)) { 914 mlog(ML_ERROR, "access error (bad inode)\n"); 915 iput(inode); 916 inode = NULL; 917 status = -EACCES; 918 goto done; 919 } 920 921 SET_INODE_JOURNAL(inode); 922 OCFS2_I(inode)->ip_open_count++; 923 924 /* Skip recovery waits here - journal inode metadata never 925 * changes in a live cluster so it can be considered an 926 * exception to the rule. */ 927 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 928 if (status < 0) { 929 if (status != -ERESTARTSYS) 930 mlog(ML_ERROR, "Could not get lock on journal!\n"); 931 goto done; 932 } 933 934 inode_lock = 1; 935 di = (struct ocfs2_dinode *)bh->b_data; 936 937 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 938 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 939 i_size_read(inode)); 940 status = -EINVAL; 941 goto done; 942 } 943 944 trace_ocfs2_journal_init(i_size_read(inode), 945 (unsigned long long)inode->i_blocks, 946 OCFS2_I(inode)->ip_clusters); 947 948 /* call the kernels journal init function now */ 949 j_journal = jbd2_journal_init_inode(inode); 950 if (IS_ERR(j_journal)) { 951 mlog(ML_ERROR, "Linux journal layer error\n"); 952 status = PTR_ERR(j_journal); 953 goto done; 954 } 955 956 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len); 957 958 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 959 OCFS2_JOURNAL_DIRTY_FL); 960 961 journal->j_journal = j_journal; 962 journal->j_journal->j_submit_inode_data_buffers = 963 ocfs2_journal_submit_inode_data_buffers; 964 journal->j_journal->j_finish_inode_data_buffers = 965 jbd2_journal_finish_inode_data_buffers; 966 journal->j_inode = inode; 967 journal->j_bh = bh; 968 969 ocfs2_set_journal_params(osb); 970 971 journal->j_state = OCFS2_JOURNAL_LOADED; 972 973 status = 0; 974 done: 975 if (status < 0) { 976 if (inode_lock) 977 ocfs2_inode_unlock(inode, 1); 978 brelse(bh); 979 if (inode) { 980 OCFS2_I(inode)->ip_open_count--; 981 iput(inode); 982 } 983 } 984 985 return status; 986 } 987 988 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 989 { 990 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 991 } 992 993 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 994 { 995 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 996 } 997 998 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 999 int dirty, int replayed) 1000 { 1001 int status; 1002 unsigned int flags; 1003 struct ocfs2_journal *journal = osb->journal; 1004 struct buffer_head *bh = journal->j_bh; 1005 struct ocfs2_dinode *fe; 1006 1007 fe = (struct ocfs2_dinode *)bh->b_data; 1008 1009 /* The journal bh on the osb always comes from ocfs2_journal_init() 1010 * and was validated there inside ocfs2_inode_lock_full(). It's a 1011 * code bug if we mess it up. */ 1012 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 1013 1014 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1015 if (dirty) 1016 flags |= OCFS2_JOURNAL_DIRTY_FL; 1017 else 1018 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1019 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1020 1021 if (replayed) 1022 ocfs2_bump_recovery_generation(fe); 1023 1024 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1025 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 1026 if (status < 0) 1027 mlog_errno(status); 1028 1029 return status; 1030 } 1031 1032 /* 1033 * If the journal has been kmalloc'd it needs to be freed after this 1034 * call. 1035 */ 1036 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 1037 { 1038 struct ocfs2_journal *journal = NULL; 1039 int status = 0; 1040 struct inode *inode = NULL; 1041 int num_running_trans = 0; 1042 1043 BUG_ON(!osb); 1044 1045 journal = osb->journal; 1046 if (!journal) 1047 goto done; 1048 1049 inode = journal->j_inode; 1050 1051 if (journal->j_state != OCFS2_JOURNAL_LOADED) 1052 goto done; 1053 1054 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 1055 if (!igrab(inode)) 1056 BUG(); 1057 1058 num_running_trans = atomic_read(&(journal->j_num_trans)); 1059 trace_ocfs2_journal_shutdown(num_running_trans); 1060 1061 /* Do a commit_cache here. It will flush our journal, *and* 1062 * release any locks that are still held. 1063 * set the SHUTDOWN flag and release the trans lock. 1064 * the commit thread will take the trans lock for us below. */ 1065 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 1066 1067 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 1068 * drop the trans_lock (which we want to hold until we 1069 * completely destroy the journal. */ 1070 if (osb->commit_task) { 1071 /* Wait for the commit thread */ 1072 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 1073 kthread_stop(osb->commit_task); 1074 osb->commit_task = NULL; 1075 } 1076 1077 BUG_ON(atomic_read(&(journal->j_num_trans)) != 0); 1078 1079 if (ocfs2_mount_local(osb) && 1080 (journal->j_journal->j_flags & JBD2_LOADED)) { 1081 jbd2_journal_lock_updates(journal->j_journal); 1082 status = jbd2_journal_flush(journal->j_journal, 0); 1083 jbd2_journal_unlock_updates(journal->j_journal); 1084 if (status < 0) 1085 mlog_errno(status); 1086 } 1087 1088 /* Shutdown the kernel journal system */ 1089 if (!jbd2_journal_destroy(journal->j_journal) && !status) { 1090 /* 1091 * Do not toggle if flush was unsuccessful otherwise 1092 * will leave dirty metadata in a "clean" journal 1093 */ 1094 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1095 if (status < 0) 1096 mlog_errno(status); 1097 } 1098 journal->j_journal = NULL; 1099 1100 OCFS2_I(inode)->ip_open_count--; 1101 1102 /* unlock our journal */ 1103 ocfs2_inode_unlock(inode, 1); 1104 1105 brelse(journal->j_bh); 1106 journal->j_bh = NULL; 1107 1108 journal->j_state = OCFS2_JOURNAL_FREE; 1109 1110 done: 1111 iput(inode); 1112 kfree(journal); 1113 osb->journal = NULL; 1114 } 1115 1116 static void ocfs2_clear_journal_error(struct super_block *sb, 1117 journal_t *journal, 1118 int slot) 1119 { 1120 int olderr; 1121 1122 olderr = jbd2_journal_errno(journal); 1123 if (olderr) { 1124 mlog(ML_ERROR, "File system error %d recorded in " 1125 "journal %u.\n", olderr, slot); 1126 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1127 sb->s_id); 1128 1129 jbd2_journal_ack_err(journal); 1130 jbd2_journal_clear_err(journal); 1131 } 1132 } 1133 1134 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1135 { 1136 int status = 0; 1137 struct ocfs2_super *osb; 1138 1139 BUG_ON(!journal); 1140 1141 osb = journal->j_osb; 1142 1143 status = jbd2_journal_load(journal->j_journal); 1144 if (status < 0) { 1145 mlog(ML_ERROR, "Failed to load journal!\n"); 1146 goto done; 1147 } 1148 1149 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1150 1151 if (replayed) { 1152 jbd2_journal_lock_updates(journal->j_journal); 1153 status = jbd2_journal_flush(journal->j_journal, 0); 1154 jbd2_journal_unlock_updates(journal->j_journal); 1155 if (status < 0) 1156 mlog_errno(status); 1157 } 1158 1159 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1160 if (status < 0) { 1161 mlog_errno(status); 1162 goto done; 1163 } 1164 1165 /* Launch the commit thread */ 1166 if (!local) { 1167 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1168 "ocfs2cmt-%s", osb->uuid_str); 1169 if (IS_ERR(osb->commit_task)) { 1170 status = PTR_ERR(osb->commit_task); 1171 osb->commit_task = NULL; 1172 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1173 "error=%d", status); 1174 goto done; 1175 } 1176 } else 1177 osb->commit_task = NULL; 1178 1179 done: 1180 return status; 1181 } 1182 1183 1184 /* 'full' flag tells us whether we clear out all blocks or if we just 1185 * mark the journal clean */ 1186 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1187 { 1188 int status; 1189 1190 BUG_ON(!journal); 1191 1192 status = jbd2_journal_wipe(journal->j_journal, full); 1193 if (status < 0) { 1194 mlog_errno(status); 1195 goto bail; 1196 } 1197 1198 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1199 if (status < 0) 1200 mlog_errno(status); 1201 1202 bail: 1203 return status; 1204 } 1205 1206 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1207 { 1208 int empty; 1209 struct ocfs2_recovery_map *rm = osb->recovery_map; 1210 1211 spin_lock(&osb->osb_lock); 1212 empty = (rm->rm_used == 0); 1213 spin_unlock(&osb->osb_lock); 1214 1215 return empty; 1216 } 1217 1218 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1219 { 1220 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1221 } 1222 1223 /* 1224 * JBD Might read a cached version of another nodes journal file. We 1225 * don't want this as this file changes often and we get no 1226 * notification on those changes. The only way to be sure that we've 1227 * got the most up to date version of those blocks then is to force 1228 * read them off disk. Just searching through the buffer cache won't 1229 * work as there may be pages backing this file which are still marked 1230 * up to date. We know things can't change on this file underneath us 1231 * as we have the lock by now :) 1232 */ 1233 static int ocfs2_force_read_journal(struct inode *inode) 1234 { 1235 int status = 0; 1236 int i; 1237 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1238 struct buffer_head *bh = NULL; 1239 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1240 1241 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1242 v_blkno = 0; 1243 while (v_blkno < num_blocks) { 1244 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1245 &p_blkno, &p_blocks, NULL); 1246 if (status < 0) { 1247 mlog_errno(status); 1248 goto bail; 1249 } 1250 1251 for (i = 0; i < p_blocks; i++, p_blkno++) { 1252 bh = __find_get_block(osb->sb->s_bdev, p_blkno, 1253 osb->sb->s_blocksize); 1254 /* block not cached. */ 1255 if (!bh) 1256 continue; 1257 1258 brelse(bh); 1259 bh = NULL; 1260 /* We are reading journal data which should not 1261 * be put in the uptodate cache. 1262 */ 1263 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1264 if (status < 0) { 1265 mlog_errno(status); 1266 goto bail; 1267 } 1268 1269 brelse(bh); 1270 bh = NULL; 1271 } 1272 1273 v_blkno += p_blocks; 1274 } 1275 1276 bail: 1277 return status; 1278 } 1279 1280 struct ocfs2_la_recovery_item { 1281 struct list_head lri_list; 1282 int lri_slot; 1283 struct ocfs2_dinode *lri_la_dinode; 1284 struct ocfs2_dinode *lri_tl_dinode; 1285 struct ocfs2_quota_recovery *lri_qrec; 1286 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1287 }; 1288 1289 /* Does the second half of the recovery process. By this point, the 1290 * node is marked clean and can actually be considered recovered, 1291 * hence it's no longer in the recovery map, but there's still some 1292 * cleanup we can do which shouldn't happen within the recovery thread 1293 * as locking in that context becomes very difficult if we are to take 1294 * recovering nodes into account. 1295 * 1296 * NOTE: This function can and will sleep on recovery of other nodes 1297 * during cluster locking, just like any other ocfs2 process. 1298 */ 1299 void ocfs2_complete_recovery(struct work_struct *work) 1300 { 1301 int ret = 0; 1302 struct ocfs2_journal *journal = 1303 container_of(work, struct ocfs2_journal, j_recovery_work); 1304 struct ocfs2_super *osb = journal->j_osb; 1305 struct ocfs2_dinode *la_dinode, *tl_dinode; 1306 struct ocfs2_la_recovery_item *item, *n; 1307 struct ocfs2_quota_recovery *qrec; 1308 enum ocfs2_orphan_reco_type orphan_reco_type; 1309 LIST_HEAD(tmp_la_list); 1310 1311 trace_ocfs2_complete_recovery( 1312 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1313 1314 spin_lock(&journal->j_lock); 1315 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1316 spin_unlock(&journal->j_lock); 1317 1318 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1319 list_del_init(&item->lri_list); 1320 1321 ocfs2_wait_on_quotas(osb); 1322 1323 la_dinode = item->lri_la_dinode; 1324 tl_dinode = item->lri_tl_dinode; 1325 qrec = item->lri_qrec; 1326 orphan_reco_type = item->lri_orphan_reco_type; 1327 1328 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1329 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1330 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1331 qrec); 1332 1333 if (la_dinode) { 1334 ret = ocfs2_complete_local_alloc_recovery(osb, 1335 la_dinode); 1336 if (ret < 0) 1337 mlog_errno(ret); 1338 1339 kfree(la_dinode); 1340 } 1341 1342 if (tl_dinode) { 1343 ret = ocfs2_complete_truncate_log_recovery(osb, 1344 tl_dinode); 1345 if (ret < 0) 1346 mlog_errno(ret); 1347 1348 kfree(tl_dinode); 1349 } 1350 1351 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1352 orphan_reco_type); 1353 if (ret < 0) 1354 mlog_errno(ret); 1355 1356 if (qrec) { 1357 ret = ocfs2_finish_quota_recovery(osb, qrec, 1358 item->lri_slot); 1359 if (ret < 0) 1360 mlog_errno(ret); 1361 /* Recovery info is already freed now */ 1362 } 1363 1364 kfree(item); 1365 } 1366 1367 trace_ocfs2_complete_recovery_end(ret); 1368 } 1369 1370 /* NOTE: This function always eats your references to la_dinode and 1371 * tl_dinode, either manually on error, or by passing them to 1372 * ocfs2_complete_recovery */ 1373 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1374 int slot_num, 1375 struct ocfs2_dinode *la_dinode, 1376 struct ocfs2_dinode *tl_dinode, 1377 struct ocfs2_quota_recovery *qrec, 1378 enum ocfs2_orphan_reco_type orphan_reco_type) 1379 { 1380 struct ocfs2_la_recovery_item *item; 1381 1382 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1383 if (!item) { 1384 /* Though we wish to avoid it, we are in fact safe in 1385 * skipping local alloc cleanup as fsck.ocfs2 is more 1386 * than capable of reclaiming unused space. */ 1387 kfree(la_dinode); 1388 kfree(tl_dinode); 1389 1390 if (qrec) 1391 ocfs2_free_quota_recovery(qrec); 1392 1393 mlog_errno(-ENOMEM); 1394 return; 1395 } 1396 1397 INIT_LIST_HEAD(&item->lri_list); 1398 item->lri_la_dinode = la_dinode; 1399 item->lri_slot = slot_num; 1400 item->lri_tl_dinode = tl_dinode; 1401 item->lri_qrec = qrec; 1402 item->lri_orphan_reco_type = orphan_reco_type; 1403 1404 spin_lock(&journal->j_lock); 1405 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1406 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1407 spin_unlock(&journal->j_lock); 1408 } 1409 1410 /* Called by the mount code to queue recovery the last part of 1411 * recovery for it's own and offline slot(s). */ 1412 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1413 { 1414 struct ocfs2_journal *journal = osb->journal; 1415 1416 if (ocfs2_is_hard_readonly(osb)) 1417 return; 1418 1419 /* No need to queue up our truncate_log as regular cleanup will catch 1420 * that */ 1421 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1422 osb->local_alloc_copy, NULL, NULL, 1423 ORPHAN_NEED_TRUNCATE); 1424 ocfs2_schedule_truncate_log_flush(osb, 0); 1425 1426 osb->local_alloc_copy = NULL; 1427 1428 /* queue to recover orphan slots for all offline slots */ 1429 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1430 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1431 ocfs2_free_replay_slots(osb); 1432 } 1433 1434 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1435 { 1436 if (osb->quota_rec) { 1437 ocfs2_queue_recovery_completion(osb->journal, 1438 osb->slot_num, 1439 NULL, 1440 NULL, 1441 osb->quota_rec, 1442 ORPHAN_NEED_TRUNCATE); 1443 osb->quota_rec = NULL; 1444 } 1445 } 1446 1447 static int __ocfs2_recovery_thread(void *arg) 1448 { 1449 int status, node_num, slot_num; 1450 struct ocfs2_super *osb = arg; 1451 struct ocfs2_recovery_map *rm = osb->recovery_map; 1452 int *rm_quota = NULL; 1453 int rm_quota_used = 0, i; 1454 struct ocfs2_quota_recovery *qrec; 1455 1456 /* Whether the quota supported. */ 1457 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1458 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1459 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1460 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1461 1462 status = ocfs2_wait_on_mount(osb); 1463 if (status < 0) { 1464 goto bail; 1465 } 1466 1467 if (quota_enabled) { 1468 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1469 if (!rm_quota) { 1470 status = -ENOMEM; 1471 goto bail; 1472 } 1473 } 1474 restart: 1475 status = ocfs2_super_lock(osb, 1); 1476 if (status < 0) { 1477 mlog_errno(status); 1478 goto bail; 1479 } 1480 1481 status = ocfs2_compute_replay_slots(osb); 1482 if (status < 0) 1483 mlog_errno(status); 1484 1485 /* queue recovery for our own slot */ 1486 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1487 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1488 1489 spin_lock(&osb->osb_lock); 1490 while (rm->rm_used) { 1491 /* It's always safe to remove entry zero, as we won't 1492 * clear it until ocfs2_recover_node() has succeeded. */ 1493 node_num = rm->rm_entries[0]; 1494 spin_unlock(&osb->osb_lock); 1495 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1496 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1497 if (slot_num == -ENOENT) { 1498 status = 0; 1499 goto skip_recovery; 1500 } 1501 1502 /* It is a bit subtle with quota recovery. We cannot do it 1503 * immediately because we have to obtain cluster locks from 1504 * quota files and we also don't want to just skip it because 1505 * then quota usage would be out of sync until some node takes 1506 * the slot. So we remember which nodes need quota recovery 1507 * and when everything else is done, we recover quotas. */ 1508 if (quota_enabled) { 1509 for (i = 0; i < rm_quota_used 1510 && rm_quota[i] != slot_num; i++) 1511 ; 1512 1513 if (i == rm_quota_used) 1514 rm_quota[rm_quota_used++] = slot_num; 1515 } 1516 1517 status = ocfs2_recover_node(osb, node_num, slot_num); 1518 skip_recovery: 1519 if (!status) { 1520 ocfs2_recovery_map_clear(osb, node_num); 1521 } else { 1522 mlog(ML_ERROR, 1523 "Error %d recovering node %d on device (%u,%u)!\n", 1524 status, node_num, 1525 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1526 mlog(ML_ERROR, "Volume requires unmount.\n"); 1527 } 1528 1529 spin_lock(&osb->osb_lock); 1530 } 1531 spin_unlock(&osb->osb_lock); 1532 trace_ocfs2_recovery_thread_end(status); 1533 1534 /* Refresh all journal recovery generations from disk */ 1535 status = ocfs2_check_journals_nolocks(osb); 1536 status = (status == -EROFS) ? 0 : status; 1537 if (status < 0) 1538 mlog_errno(status); 1539 1540 /* Now it is right time to recover quotas... We have to do this under 1541 * superblock lock so that no one can start using the slot (and crash) 1542 * before we recover it */ 1543 if (quota_enabled) { 1544 for (i = 0; i < rm_quota_used; i++) { 1545 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1546 if (IS_ERR(qrec)) { 1547 status = PTR_ERR(qrec); 1548 mlog_errno(status); 1549 continue; 1550 } 1551 ocfs2_queue_recovery_completion(osb->journal, 1552 rm_quota[i], 1553 NULL, NULL, qrec, 1554 ORPHAN_NEED_TRUNCATE); 1555 } 1556 } 1557 1558 ocfs2_super_unlock(osb, 1); 1559 1560 /* queue recovery for offline slots */ 1561 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1562 1563 bail: 1564 mutex_lock(&osb->recovery_lock); 1565 if (!status && !ocfs2_recovery_completed(osb)) { 1566 mutex_unlock(&osb->recovery_lock); 1567 goto restart; 1568 } 1569 1570 ocfs2_free_replay_slots(osb); 1571 osb->recovery_thread_task = NULL; 1572 mb(); /* sync with ocfs2_recovery_thread_running */ 1573 wake_up(&osb->recovery_event); 1574 1575 mutex_unlock(&osb->recovery_lock); 1576 1577 if (quota_enabled) 1578 kfree(rm_quota); 1579 1580 return status; 1581 } 1582 1583 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1584 { 1585 mutex_lock(&osb->recovery_lock); 1586 1587 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1588 osb->disable_recovery, osb->recovery_thread_task, 1589 osb->disable_recovery ? 1590 -1 : ocfs2_recovery_map_set(osb, node_num)); 1591 1592 if (osb->disable_recovery) 1593 goto out; 1594 1595 if (osb->recovery_thread_task) 1596 goto out; 1597 1598 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1599 "ocfs2rec-%s", osb->uuid_str); 1600 if (IS_ERR(osb->recovery_thread_task)) { 1601 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1602 osb->recovery_thread_task = NULL; 1603 } 1604 1605 out: 1606 mutex_unlock(&osb->recovery_lock); 1607 wake_up(&osb->recovery_event); 1608 } 1609 1610 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1611 int slot_num, 1612 struct buffer_head **bh, 1613 struct inode **ret_inode) 1614 { 1615 int status = -EACCES; 1616 struct inode *inode = NULL; 1617 1618 BUG_ON(slot_num >= osb->max_slots); 1619 1620 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1621 slot_num); 1622 if (!inode || is_bad_inode(inode)) { 1623 mlog_errno(status); 1624 goto bail; 1625 } 1626 SET_INODE_JOURNAL(inode); 1627 1628 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1629 if (status < 0) { 1630 mlog_errno(status); 1631 goto bail; 1632 } 1633 1634 status = 0; 1635 1636 bail: 1637 if (inode) { 1638 if (status || !ret_inode) 1639 iput(inode); 1640 else 1641 *ret_inode = inode; 1642 } 1643 return status; 1644 } 1645 1646 /* Does the actual journal replay and marks the journal inode as 1647 * clean. Will only replay if the journal inode is marked dirty. */ 1648 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1649 int node_num, 1650 int slot_num) 1651 { 1652 int status; 1653 int got_lock = 0; 1654 unsigned int flags; 1655 struct inode *inode = NULL; 1656 struct ocfs2_dinode *fe; 1657 journal_t *journal = NULL; 1658 struct buffer_head *bh = NULL; 1659 u32 slot_reco_gen; 1660 1661 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1662 if (status) { 1663 mlog_errno(status); 1664 goto done; 1665 } 1666 1667 fe = (struct ocfs2_dinode *)bh->b_data; 1668 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1669 brelse(bh); 1670 bh = NULL; 1671 1672 /* 1673 * As the fs recovery is asynchronous, there is a small chance that 1674 * another node mounted (and recovered) the slot before the recovery 1675 * thread could get the lock. To handle that, we dirty read the journal 1676 * inode for that slot to get the recovery generation. If it is 1677 * different than what we expected, the slot has been recovered. 1678 * If not, it needs recovery. 1679 */ 1680 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1681 trace_ocfs2_replay_journal_recovered(slot_num, 1682 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1683 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1684 status = -EBUSY; 1685 goto done; 1686 } 1687 1688 /* Continue with recovery as the journal has not yet been recovered */ 1689 1690 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1691 if (status < 0) { 1692 trace_ocfs2_replay_journal_lock_err(status); 1693 if (status != -ERESTARTSYS) 1694 mlog(ML_ERROR, "Could not lock journal!\n"); 1695 goto done; 1696 } 1697 got_lock = 1; 1698 1699 fe = (struct ocfs2_dinode *) bh->b_data; 1700 1701 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1702 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1703 1704 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1705 trace_ocfs2_replay_journal_skip(node_num); 1706 /* Refresh recovery generation for the slot */ 1707 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1708 goto done; 1709 } 1710 1711 /* we need to run complete recovery for offline orphan slots */ 1712 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1713 1714 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1715 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1716 MINOR(osb->sb->s_dev)); 1717 1718 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1719 1720 status = ocfs2_force_read_journal(inode); 1721 if (status < 0) { 1722 mlog_errno(status); 1723 goto done; 1724 } 1725 1726 journal = jbd2_journal_init_inode(inode); 1727 if (IS_ERR(journal)) { 1728 mlog(ML_ERROR, "Linux journal layer error\n"); 1729 status = PTR_ERR(journal); 1730 goto done; 1731 } 1732 1733 status = jbd2_journal_load(journal); 1734 if (status < 0) { 1735 mlog_errno(status); 1736 BUG_ON(!igrab(inode)); 1737 jbd2_journal_destroy(journal); 1738 goto done; 1739 } 1740 1741 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1742 1743 /* wipe the journal */ 1744 jbd2_journal_lock_updates(journal); 1745 status = jbd2_journal_flush(journal, 0); 1746 jbd2_journal_unlock_updates(journal); 1747 if (status < 0) 1748 mlog_errno(status); 1749 1750 /* This will mark the node clean */ 1751 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1752 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1753 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1754 1755 /* Increment recovery generation to indicate successful recovery */ 1756 ocfs2_bump_recovery_generation(fe); 1757 osb->slot_recovery_generations[slot_num] = 1758 ocfs2_get_recovery_generation(fe); 1759 1760 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1761 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1762 if (status < 0) 1763 mlog_errno(status); 1764 1765 BUG_ON(!igrab(inode)); 1766 1767 jbd2_journal_destroy(journal); 1768 1769 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1770 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1771 MINOR(osb->sb->s_dev)); 1772 done: 1773 /* drop the lock on this nodes journal */ 1774 if (got_lock) 1775 ocfs2_inode_unlock(inode, 1); 1776 1777 iput(inode); 1778 brelse(bh); 1779 1780 return status; 1781 } 1782 1783 /* 1784 * Do the most important parts of node recovery: 1785 * - Replay it's journal 1786 * - Stamp a clean local allocator file 1787 * - Stamp a clean truncate log 1788 * - Mark the node clean 1789 * 1790 * If this function completes without error, a node in OCFS2 can be 1791 * said to have been safely recovered. As a result, failure during the 1792 * second part of a nodes recovery process (local alloc recovery) is 1793 * far less concerning. 1794 */ 1795 static int ocfs2_recover_node(struct ocfs2_super *osb, 1796 int node_num, int slot_num) 1797 { 1798 int status = 0; 1799 struct ocfs2_dinode *la_copy = NULL; 1800 struct ocfs2_dinode *tl_copy = NULL; 1801 1802 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1803 1804 /* Should not ever be called to recover ourselves -- in that 1805 * case we should've called ocfs2_journal_load instead. */ 1806 BUG_ON(osb->node_num == node_num); 1807 1808 status = ocfs2_replay_journal(osb, node_num, slot_num); 1809 if (status < 0) { 1810 if (status == -EBUSY) { 1811 trace_ocfs2_recover_node_skip(slot_num, node_num); 1812 status = 0; 1813 goto done; 1814 } 1815 mlog_errno(status); 1816 goto done; 1817 } 1818 1819 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1820 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1821 if (status < 0) { 1822 mlog_errno(status); 1823 goto done; 1824 } 1825 1826 /* An error from begin_truncate_log_recovery is not 1827 * serious enough to warrant halting the rest of 1828 * recovery. */ 1829 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1830 if (status < 0) 1831 mlog_errno(status); 1832 1833 /* Likewise, this would be a strange but ultimately not so 1834 * harmful place to get an error... */ 1835 status = ocfs2_clear_slot(osb, slot_num); 1836 if (status < 0) 1837 mlog_errno(status); 1838 1839 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1840 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1841 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1842 1843 status = 0; 1844 done: 1845 1846 return status; 1847 } 1848 1849 /* Test node liveness by trylocking his journal. If we get the lock, 1850 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1851 * still alive (we couldn't get the lock) and < 0 on error. */ 1852 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1853 int slot_num) 1854 { 1855 int status, flags; 1856 struct inode *inode = NULL; 1857 1858 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1859 slot_num); 1860 if (inode == NULL) { 1861 mlog(ML_ERROR, "access error\n"); 1862 status = -EACCES; 1863 goto bail; 1864 } 1865 if (is_bad_inode(inode)) { 1866 mlog(ML_ERROR, "access error (bad inode)\n"); 1867 iput(inode); 1868 inode = NULL; 1869 status = -EACCES; 1870 goto bail; 1871 } 1872 SET_INODE_JOURNAL(inode); 1873 1874 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1875 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1876 if (status < 0) { 1877 if (status != -EAGAIN) 1878 mlog_errno(status); 1879 goto bail; 1880 } 1881 1882 ocfs2_inode_unlock(inode, 1); 1883 bail: 1884 iput(inode); 1885 1886 return status; 1887 } 1888 1889 /* Call this underneath ocfs2_super_lock. It also assumes that the 1890 * slot info struct has been updated from disk. */ 1891 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1892 { 1893 unsigned int node_num; 1894 int status, i; 1895 u32 gen; 1896 struct buffer_head *bh = NULL; 1897 struct ocfs2_dinode *di; 1898 1899 /* This is called with the super block cluster lock, so we 1900 * know that the slot map can't change underneath us. */ 1901 1902 for (i = 0; i < osb->max_slots; i++) { 1903 /* Read journal inode to get the recovery generation */ 1904 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1905 if (status) { 1906 mlog_errno(status); 1907 goto bail; 1908 } 1909 di = (struct ocfs2_dinode *)bh->b_data; 1910 gen = ocfs2_get_recovery_generation(di); 1911 brelse(bh); 1912 bh = NULL; 1913 1914 spin_lock(&osb->osb_lock); 1915 osb->slot_recovery_generations[i] = gen; 1916 1917 trace_ocfs2_mark_dead_nodes(i, 1918 osb->slot_recovery_generations[i]); 1919 1920 if (i == osb->slot_num) { 1921 spin_unlock(&osb->osb_lock); 1922 continue; 1923 } 1924 1925 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1926 if (status == -ENOENT) { 1927 spin_unlock(&osb->osb_lock); 1928 continue; 1929 } 1930 1931 if (__ocfs2_recovery_map_test(osb, node_num)) { 1932 spin_unlock(&osb->osb_lock); 1933 continue; 1934 } 1935 spin_unlock(&osb->osb_lock); 1936 1937 /* Ok, we have a slot occupied by another node which 1938 * is not in the recovery map. We trylock his journal 1939 * file here to test if he's alive. */ 1940 status = ocfs2_trylock_journal(osb, i); 1941 if (!status) { 1942 /* Since we're called from mount, we know that 1943 * the recovery thread can't race us on 1944 * setting / checking the recovery bits. */ 1945 ocfs2_recovery_thread(osb, node_num); 1946 } else if ((status < 0) && (status != -EAGAIN)) { 1947 mlog_errno(status); 1948 goto bail; 1949 } 1950 } 1951 1952 status = 0; 1953 bail: 1954 return status; 1955 } 1956 1957 /* 1958 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1959 * randomness to the timeout to minimize multple nodes firing the timer at the 1960 * same time. 1961 */ 1962 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1963 { 1964 unsigned long time; 1965 1966 get_random_bytes(&time, sizeof(time)); 1967 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1968 return msecs_to_jiffies(time); 1969 } 1970 1971 /* 1972 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1973 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1974 * is done to catch any orphans that are left over in orphan directories. 1975 * 1976 * It scans all slots, even ones that are in use. It does so to handle the 1977 * case described below: 1978 * 1979 * Node 1 has an inode it was using. The dentry went away due to memory 1980 * pressure. Node 1 closes the inode, but it's on the free list. The node 1981 * has the open lock. 1982 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1983 * but node 1 has no dentry and doesn't get the message. It trylocks the 1984 * open lock, sees that another node has a PR, and does nothing. 1985 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1986 * open lock, sees the PR still, and does nothing. 1987 * Basically, we have to trigger an orphan iput on node 1. The only way 1988 * for this to happen is if node 1 runs node 2's orphan dir. 1989 * 1990 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1991 * seconds. It gets an EX lock on os_lockres and checks sequence number 1992 * stored in LVB. If the sequence number has changed, it means some other 1993 * node has done the scan. This node skips the scan and tracks the 1994 * sequence number. If the sequence number didn't change, it means a scan 1995 * hasn't happened. The node queues a scan and increments the 1996 * sequence number in the LVB. 1997 */ 1998 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1999 { 2000 struct ocfs2_orphan_scan *os; 2001 int status, i; 2002 u32 seqno = 0; 2003 2004 os = &osb->osb_orphan_scan; 2005 2006 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 2007 goto out; 2008 2009 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 2010 atomic_read(&os->os_state)); 2011 2012 status = ocfs2_orphan_scan_lock(osb, &seqno); 2013 if (status < 0) { 2014 if (status != -EAGAIN) 2015 mlog_errno(status); 2016 goto out; 2017 } 2018 2019 /* Do no queue the tasks if the volume is being umounted */ 2020 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 2021 goto unlock; 2022 2023 if (os->os_seqno != seqno) { 2024 os->os_seqno = seqno; 2025 goto unlock; 2026 } 2027 2028 for (i = 0; i < osb->max_slots; i++) 2029 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 2030 NULL, ORPHAN_NO_NEED_TRUNCATE); 2031 /* 2032 * We queued a recovery on orphan slots, increment the sequence 2033 * number and update LVB so other node will skip the scan for a while 2034 */ 2035 seqno++; 2036 os->os_count++; 2037 os->os_scantime = ktime_get_seconds(); 2038 unlock: 2039 ocfs2_orphan_scan_unlock(osb, seqno); 2040 out: 2041 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 2042 atomic_read(&os->os_state)); 2043 return; 2044 } 2045 2046 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 2047 static void ocfs2_orphan_scan_work(struct work_struct *work) 2048 { 2049 struct ocfs2_orphan_scan *os; 2050 struct ocfs2_super *osb; 2051 2052 os = container_of(work, struct ocfs2_orphan_scan, 2053 os_orphan_scan_work.work); 2054 osb = os->os_osb; 2055 2056 mutex_lock(&os->os_lock); 2057 ocfs2_queue_orphan_scan(osb); 2058 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 2059 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2060 ocfs2_orphan_scan_timeout()); 2061 mutex_unlock(&os->os_lock); 2062 } 2063 2064 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 2065 { 2066 struct ocfs2_orphan_scan *os; 2067 2068 os = &osb->osb_orphan_scan; 2069 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 2070 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2071 mutex_lock(&os->os_lock); 2072 cancel_delayed_work(&os->os_orphan_scan_work); 2073 mutex_unlock(&os->os_lock); 2074 } 2075 } 2076 2077 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 2078 { 2079 struct ocfs2_orphan_scan *os; 2080 2081 os = &osb->osb_orphan_scan; 2082 os->os_osb = osb; 2083 os->os_count = 0; 2084 os->os_seqno = 0; 2085 mutex_init(&os->os_lock); 2086 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2087 } 2088 2089 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2090 { 2091 struct ocfs2_orphan_scan *os; 2092 2093 os = &osb->osb_orphan_scan; 2094 os->os_scantime = ktime_get_seconds(); 2095 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2096 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2097 else { 2098 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2099 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2100 ocfs2_orphan_scan_timeout()); 2101 } 2102 } 2103 2104 struct ocfs2_orphan_filldir_priv { 2105 struct dir_context ctx; 2106 struct inode *head; 2107 struct ocfs2_super *osb; 2108 enum ocfs2_orphan_reco_type orphan_reco_type; 2109 }; 2110 2111 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2112 int name_len, loff_t pos, u64 ino, 2113 unsigned type) 2114 { 2115 struct ocfs2_orphan_filldir_priv *p = 2116 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2117 struct inode *iter; 2118 2119 if (name_len == 1 && !strncmp(".", name, 1)) 2120 return true; 2121 if (name_len == 2 && !strncmp("..", name, 2)) 2122 return true; 2123 2124 /* do not include dio entry in case of orphan scan */ 2125 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2126 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2127 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2128 return true; 2129 2130 /* Skip bad inodes so that recovery can continue */ 2131 iter = ocfs2_iget(p->osb, ino, 2132 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2133 if (IS_ERR(iter)) 2134 return true; 2135 2136 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2137 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2138 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2139 2140 /* Skip inodes which are already added to recover list, since dio may 2141 * happen concurrently with unlink/rename */ 2142 if (OCFS2_I(iter)->ip_next_orphan) { 2143 iput(iter); 2144 return true; 2145 } 2146 2147 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2148 /* No locking is required for the next_orphan queue as there 2149 * is only ever a single process doing orphan recovery. */ 2150 OCFS2_I(iter)->ip_next_orphan = p->head; 2151 p->head = iter; 2152 2153 return true; 2154 } 2155 2156 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2157 int slot, 2158 struct inode **head, 2159 enum ocfs2_orphan_reco_type orphan_reco_type) 2160 { 2161 int status; 2162 struct inode *orphan_dir_inode = NULL; 2163 struct ocfs2_orphan_filldir_priv priv = { 2164 .ctx.actor = ocfs2_orphan_filldir, 2165 .osb = osb, 2166 .head = *head, 2167 .orphan_reco_type = orphan_reco_type 2168 }; 2169 2170 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2171 ORPHAN_DIR_SYSTEM_INODE, 2172 slot); 2173 if (!orphan_dir_inode) { 2174 status = -ENOENT; 2175 mlog_errno(status); 2176 return status; 2177 } 2178 2179 inode_lock(orphan_dir_inode); 2180 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2181 if (status < 0) { 2182 mlog_errno(status); 2183 goto out; 2184 } 2185 2186 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2187 if (status) { 2188 mlog_errno(status); 2189 goto out_cluster; 2190 } 2191 2192 *head = priv.head; 2193 2194 out_cluster: 2195 ocfs2_inode_unlock(orphan_dir_inode, 0); 2196 out: 2197 inode_unlock(orphan_dir_inode); 2198 iput(orphan_dir_inode); 2199 return status; 2200 } 2201 2202 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2203 int slot) 2204 { 2205 int ret; 2206 2207 spin_lock(&osb->osb_lock); 2208 ret = !osb->osb_orphan_wipes[slot]; 2209 spin_unlock(&osb->osb_lock); 2210 return ret; 2211 } 2212 2213 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2214 int slot) 2215 { 2216 spin_lock(&osb->osb_lock); 2217 /* Mark ourselves such that new processes in delete_inode() 2218 * know to quit early. */ 2219 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2220 while (osb->osb_orphan_wipes[slot]) { 2221 /* If any processes are already in the middle of an 2222 * orphan wipe on this dir, then we need to wait for 2223 * them. */ 2224 spin_unlock(&osb->osb_lock); 2225 wait_event_interruptible(osb->osb_wipe_event, 2226 ocfs2_orphan_recovery_can_continue(osb, slot)); 2227 spin_lock(&osb->osb_lock); 2228 } 2229 spin_unlock(&osb->osb_lock); 2230 } 2231 2232 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2233 int slot) 2234 { 2235 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2236 } 2237 2238 /* 2239 * Orphan recovery. Each mounted node has it's own orphan dir which we 2240 * must run during recovery. Our strategy here is to build a list of 2241 * the inodes in the orphan dir and iget/iput them. The VFS does 2242 * (most) of the rest of the work. 2243 * 2244 * Orphan recovery can happen at any time, not just mount so we have a 2245 * couple of extra considerations. 2246 * 2247 * - We grab as many inodes as we can under the orphan dir lock - 2248 * doing iget() outside the orphan dir risks getting a reference on 2249 * an invalid inode. 2250 * - We must be sure not to deadlock with other processes on the 2251 * system wanting to run delete_inode(). This can happen when they go 2252 * to lock the orphan dir and the orphan recovery process attempts to 2253 * iget() inside the orphan dir lock. This can be avoided by 2254 * advertising our state to ocfs2_delete_inode(). 2255 */ 2256 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2257 int slot, 2258 enum ocfs2_orphan_reco_type orphan_reco_type) 2259 { 2260 int ret = 0; 2261 struct inode *inode = NULL; 2262 struct inode *iter; 2263 struct ocfs2_inode_info *oi; 2264 struct buffer_head *di_bh = NULL; 2265 struct ocfs2_dinode *di = NULL; 2266 2267 trace_ocfs2_recover_orphans(slot); 2268 2269 ocfs2_mark_recovering_orphan_dir(osb, slot); 2270 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2271 ocfs2_clear_recovering_orphan_dir(osb, slot); 2272 2273 /* Error here should be noted, but we want to continue with as 2274 * many queued inodes as we've got. */ 2275 if (ret) 2276 mlog_errno(ret); 2277 2278 while (inode) { 2279 oi = OCFS2_I(inode); 2280 trace_ocfs2_recover_orphans_iput( 2281 (unsigned long long)oi->ip_blkno); 2282 2283 iter = oi->ip_next_orphan; 2284 oi->ip_next_orphan = NULL; 2285 2286 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2287 inode_lock(inode); 2288 ret = ocfs2_rw_lock(inode, 1); 2289 if (ret < 0) { 2290 mlog_errno(ret); 2291 goto unlock_mutex; 2292 } 2293 /* 2294 * We need to take and drop the inode lock to 2295 * force read inode from disk. 2296 */ 2297 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2298 if (ret) { 2299 mlog_errno(ret); 2300 goto unlock_rw; 2301 } 2302 2303 di = (struct ocfs2_dinode *)di_bh->b_data; 2304 2305 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2306 ret = ocfs2_truncate_file(inode, di_bh, 2307 i_size_read(inode)); 2308 if (ret < 0) { 2309 if (ret != -ENOSPC) 2310 mlog_errno(ret); 2311 goto unlock_inode; 2312 } 2313 2314 ret = ocfs2_del_inode_from_orphan(osb, inode, 2315 di_bh, 0, 0); 2316 if (ret) 2317 mlog_errno(ret); 2318 } 2319 unlock_inode: 2320 ocfs2_inode_unlock(inode, 1); 2321 brelse(di_bh); 2322 di_bh = NULL; 2323 unlock_rw: 2324 ocfs2_rw_unlock(inode, 1); 2325 unlock_mutex: 2326 inode_unlock(inode); 2327 2328 /* clear dio flag in ocfs2_inode_info */ 2329 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2330 } else { 2331 spin_lock(&oi->ip_lock); 2332 /* Set the proper information to get us going into 2333 * ocfs2_delete_inode. */ 2334 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2335 spin_unlock(&oi->ip_lock); 2336 } 2337 2338 iput(inode); 2339 inode = iter; 2340 } 2341 2342 return ret; 2343 } 2344 2345 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2346 { 2347 /* This check is good because ocfs2 will wait on our recovery 2348 * thread before changing it to something other than MOUNTED 2349 * or DISABLED. */ 2350 wait_event(osb->osb_mount_event, 2351 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2352 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2353 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2354 2355 /* If there's an error on mount, then we may never get to the 2356 * MOUNTED flag, but this is set right before 2357 * dismount_volume() so we can trust it. */ 2358 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2359 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2360 mlog(0, "mount error, exiting!\n"); 2361 return -EBUSY; 2362 } 2363 2364 return 0; 2365 } 2366 2367 static int ocfs2_commit_thread(void *arg) 2368 { 2369 int status; 2370 struct ocfs2_super *osb = arg; 2371 struct ocfs2_journal *journal = osb->journal; 2372 2373 /* we can trust j_num_trans here because _should_stop() is only set in 2374 * shutdown and nobody other than ourselves should be able to start 2375 * transactions. committing on shutdown might take a few iterations 2376 * as final transactions put deleted inodes on the list */ 2377 while (!(kthread_should_stop() && 2378 atomic_read(&journal->j_num_trans) == 0)) { 2379 2380 wait_event_interruptible(osb->checkpoint_event, 2381 atomic_read(&journal->j_num_trans) 2382 || kthread_should_stop()); 2383 2384 status = ocfs2_commit_cache(osb); 2385 if (status < 0) { 2386 static unsigned long abort_warn_time; 2387 2388 /* Warn about this once per minute */ 2389 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2390 mlog(ML_ERROR, "status = %d, journal is " 2391 "already aborted.\n", status); 2392 /* 2393 * After ocfs2_commit_cache() fails, j_num_trans has a 2394 * non-zero value. Sleep here to avoid a busy-wait 2395 * loop. 2396 */ 2397 msleep_interruptible(1000); 2398 } 2399 2400 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2401 mlog(ML_KTHREAD, 2402 "commit_thread: %u transactions pending on " 2403 "shutdown\n", 2404 atomic_read(&journal->j_num_trans)); 2405 } 2406 } 2407 2408 return 0; 2409 } 2410 2411 /* Reads all the journal inodes without taking any cluster locks. Used 2412 * for hard readonly access to determine whether any journal requires 2413 * recovery. Also used to refresh the recovery generation numbers after 2414 * a journal has been recovered by another node. 2415 */ 2416 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2417 { 2418 int ret = 0; 2419 unsigned int slot; 2420 struct buffer_head *di_bh = NULL; 2421 struct ocfs2_dinode *di; 2422 int journal_dirty = 0; 2423 2424 for(slot = 0; slot < osb->max_slots; slot++) { 2425 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2426 if (ret) { 2427 mlog_errno(ret); 2428 goto out; 2429 } 2430 2431 di = (struct ocfs2_dinode *) di_bh->b_data; 2432 2433 osb->slot_recovery_generations[slot] = 2434 ocfs2_get_recovery_generation(di); 2435 2436 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2437 OCFS2_JOURNAL_DIRTY_FL) 2438 journal_dirty = 1; 2439 2440 brelse(di_bh); 2441 di_bh = NULL; 2442 } 2443 2444 out: 2445 if (journal_dirty) 2446 ret = -EROFS; 2447 return ret; 2448 } 2449