1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 #include <linux/time.h> 32 #include <linux/random.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "blockcheck.h" 40 #include "dir.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "heartbeat.h" 44 #include "inode.h" 45 #include "journal.h" 46 #include "localalloc.h" 47 #include "slot_map.h" 48 #include "super.h" 49 #include "sysfile.h" 50 #include "uptodate.h" 51 #include "quota.h" 52 53 #include "buffer_head_io.h" 54 #include "ocfs2_trace.h" 55 56 DEFINE_SPINLOCK(trans_inc_lock); 57 58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 59 60 static int ocfs2_force_read_journal(struct inode *inode); 61 static int ocfs2_recover_node(struct ocfs2_super *osb, 62 int node_num, int slot_num); 63 static int __ocfs2_recovery_thread(void *arg); 64 static int ocfs2_commit_cache(struct ocfs2_super *osb); 65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 67 int dirty, int replayed); 68 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 69 int slot_num); 70 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 71 int slot); 72 static int ocfs2_commit_thread(void *arg); 73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 74 int slot_num, 75 struct ocfs2_dinode *la_dinode, 76 struct ocfs2_dinode *tl_dinode, 77 struct ocfs2_quota_recovery *qrec); 78 79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 80 { 81 return __ocfs2_wait_on_mount(osb, 0); 82 } 83 84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 85 { 86 return __ocfs2_wait_on_mount(osb, 1); 87 } 88 89 /* 90 * This replay_map is to track online/offline slots, so we could recover 91 * offline slots during recovery and mount 92 */ 93 94 enum ocfs2_replay_state { 95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 97 REPLAY_DONE /* Replay was already queued */ 98 }; 99 100 struct ocfs2_replay_map { 101 unsigned int rm_slots; 102 enum ocfs2_replay_state rm_state; 103 unsigned char rm_replay_slots[0]; 104 }; 105 106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 107 { 108 if (!osb->replay_map) 109 return; 110 111 /* If we've already queued the replay, we don't have any more to do */ 112 if (osb->replay_map->rm_state == REPLAY_DONE) 113 return; 114 115 osb->replay_map->rm_state = state; 116 } 117 118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 119 { 120 struct ocfs2_replay_map *replay_map; 121 int i, node_num; 122 123 /* If replay map is already set, we don't do it again */ 124 if (osb->replay_map) 125 return 0; 126 127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 128 (osb->max_slots * sizeof(char)), GFP_KERNEL); 129 130 if (!replay_map) { 131 mlog_errno(-ENOMEM); 132 return -ENOMEM; 133 } 134 135 spin_lock(&osb->osb_lock); 136 137 replay_map->rm_slots = osb->max_slots; 138 replay_map->rm_state = REPLAY_UNNEEDED; 139 140 /* set rm_replay_slots for offline slot(s) */ 141 for (i = 0; i < replay_map->rm_slots; i++) { 142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 143 replay_map->rm_replay_slots[i] = 1; 144 } 145 146 osb->replay_map = replay_map; 147 spin_unlock(&osb->osb_lock); 148 return 0; 149 } 150 151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb) 152 { 153 struct ocfs2_replay_map *replay_map = osb->replay_map; 154 int i; 155 156 if (!replay_map) 157 return; 158 159 if (replay_map->rm_state != REPLAY_NEEDED) 160 return; 161 162 for (i = 0; i < replay_map->rm_slots; i++) 163 if (replay_map->rm_replay_slots[i]) 164 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 165 NULL, NULL); 166 replay_map->rm_state = REPLAY_DONE; 167 } 168 169 void ocfs2_free_replay_slots(struct ocfs2_super *osb) 170 { 171 struct ocfs2_replay_map *replay_map = osb->replay_map; 172 173 if (!osb->replay_map) 174 return; 175 176 kfree(replay_map); 177 osb->replay_map = NULL; 178 } 179 180 int ocfs2_recovery_init(struct ocfs2_super *osb) 181 { 182 struct ocfs2_recovery_map *rm; 183 184 mutex_init(&osb->recovery_lock); 185 osb->disable_recovery = 0; 186 osb->recovery_thread_task = NULL; 187 init_waitqueue_head(&osb->recovery_event); 188 189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 190 osb->max_slots * sizeof(unsigned int), 191 GFP_KERNEL); 192 if (!rm) { 193 mlog_errno(-ENOMEM); 194 return -ENOMEM; 195 } 196 197 rm->rm_entries = (unsigned int *)((char *)rm + 198 sizeof(struct ocfs2_recovery_map)); 199 osb->recovery_map = rm; 200 201 return 0; 202 } 203 204 /* we can't grab the goofy sem lock from inside wait_event, so we use 205 * memory barriers to make sure that we'll see the null task before 206 * being woken up */ 207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 208 { 209 mb(); 210 return osb->recovery_thread_task != NULL; 211 } 212 213 void ocfs2_recovery_exit(struct ocfs2_super *osb) 214 { 215 struct ocfs2_recovery_map *rm; 216 217 /* disable any new recovery threads and wait for any currently 218 * running ones to exit. Do this before setting the vol_state. */ 219 mutex_lock(&osb->recovery_lock); 220 osb->disable_recovery = 1; 221 mutex_unlock(&osb->recovery_lock); 222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 223 224 /* At this point, we know that no more recovery threads can be 225 * launched, so wait for any recovery completion work to 226 * complete. */ 227 flush_workqueue(ocfs2_wq); 228 229 /* 230 * Now that recovery is shut down, and the osb is about to be 231 * freed, the osb_lock is not taken here. 232 */ 233 rm = osb->recovery_map; 234 /* XXX: Should we bug if there are dirty entries? */ 235 236 kfree(rm); 237 } 238 239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 240 unsigned int node_num) 241 { 242 int i; 243 struct ocfs2_recovery_map *rm = osb->recovery_map; 244 245 assert_spin_locked(&osb->osb_lock); 246 247 for (i = 0; i < rm->rm_used; i++) { 248 if (rm->rm_entries[i] == node_num) 249 return 1; 250 } 251 252 return 0; 253 } 254 255 /* Behaves like test-and-set. Returns the previous value */ 256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 257 unsigned int node_num) 258 { 259 struct ocfs2_recovery_map *rm = osb->recovery_map; 260 261 spin_lock(&osb->osb_lock); 262 if (__ocfs2_recovery_map_test(osb, node_num)) { 263 spin_unlock(&osb->osb_lock); 264 return 1; 265 } 266 267 /* XXX: Can this be exploited? Not from o2dlm... */ 268 BUG_ON(rm->rm_used >= osb->max_slots); 269 270 rm->rm_entries[rm->rm_used] = node_num; 271 rm->rm_used++; 272 spin_unlock(&osb->osb_lock); 273 274 return 0; 275 } 276 277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 278 unsigned int node_num) 279 { 280 int i; 281 struct ocfs2_recovery_map *rm = osb->recovery_map; 282 283 spin_lock(&osb->osb_lock); 284 285 for (i = 0; i < rm->rm_used; i++) { 286 if (rm->rm_entries[i] == node_num) 287 break; 288 } 289 290 if (i < rm->rm_used) { 291 /* XXX: be careful with the pointer math */ 292 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 293 (rm->rm_used - i - 1) * sizeof(unsigned int)); 294 rm->rm_used--; 295 } 296 297 spin_unlock(&osb->osb_lock); 298 } 299 300 static int ocfs2_commit_cache(struct ocfs2_super *osb) 301 { 302 int status = 0; 303 unsigned int flushed; 304 struct ocfs2_journal *journal = NULL; 305 306 journal = osb->journal; 307 308 /* Flush all pending commits and checkpoint the journal. */ 309 down_write(&journal->j_trans_barrier); 310 311 flushed = atomic_read(&journal->j_num_trans); 312 trace_ocfs2_commit_cache_begin(flushed); 313 if (flushed == 0) { 314 up_write(&journal->j_trans_barrier); 315 goto finally; 316 } 317 318 jbd2_journal_lock_updates(journal->j_journal); 319 status = jbd2_journal_flush(journal->j_journal); 320 jbd2_journal_unlock_updates(journal->j_journal); 321 if (status < 0) { 322 up_write(&journal->j_trans_barrier); 323 mlog_errno(status); 324 goto finally; 325 } 326 327 ocfs2_inc_trans_id(journal); 328 329 flushed = atomic_read(&journal->j_num_trans); 330 atomic_set(&journal->j_num_trans, 0); 331 up_write(&journal->j_trans_barrier); 332 333 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 334 335 ocfs2_wake_downconvert_thread(osb); 336 wake_up(&journal->j_checkpointed); 337 finally: 338 return status; 339 } 340 341 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 342 { 343 journal_t *journal = osb->journal->j_journal; 344 handle_t *handle; 345 346 BUG_ON(!osb || !osb->journal->j_journal); 347 348 if (ocfs2_is_hard_readonly(osb)) 349 return ERR_PTR(-EROFS); 350 351 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 352 BUG_ON(max_buffs <= 0); 353 354 /* Nested transaction? Just return the handle... */ 355 if (journal_current_handle()) 356 return jbd2_journal_start(journal, max_buffs); 357 358 sb_start_intwrite(osb->sb); 359 360 down_read(&osb->journal->j_trans_barrier); 361 362 handle = jbd2_journal_start(journal, max_buffs); 363 if (IS_ERR(handle)) { 364 up_read(&osb->journal->j_trans_barrier); 365 sb_end_intwrite(osb->sb); 366 367 mlog_errno(PTR_ERR(handle)); 368 369 if (is_journal_aborted(journal)) { 370 ocfs2_abort(osb->sb, "Detected aborted journal"); 371 handle = ERR_PTR(-EROFS); 372 } 373 } else { 374 if (!ocfs2_mount_local(osb)) 375 atomic_inc(&(osb->journal->j_num_trans)); 376 } 377 378 return handle; 379 } 380 381 int ocfs2_commit_trans(struct ocfs2_super *osb, 382 handle_t *handle) 383 { 384 int ret, nested; 385 struct ocfs2_journal *journal = osb->journal; 386 387 BUG_ON(!handle); 388 389 nested = handle->h_ref > 1; 390 ret = jbd2_journal_stop(handle); 391 if (ret < 0) 392 mlog_errno(ret); 393 394 if (!nested) { 395 up_read(&journal->j_trans_barrier); 396 sb_end_intwrite(osb->sb); 397 } 398 399 return ret; 400 } 401 402 /* 403 * 'nblocks' is what you want to add to the current transaction. 404 * 405 * This might call jbd2_journal_restart() which will commit dirty buffers 406 * and then restart the transaction. Before calling 407 * ocfs2_extend_trans(), any changed blocks should have been 408 * dirtied. After calling it, all blocks which need to be changed must 409 * go through another set of journal_access/journal_dirty calls. 410 * 411 * WARNING: This will not release any semaphores or disk locks taken 412 * during the transaction, so make sure they were taken *before* 413 * start_trans or we'll have ordering deadlocks. 414 * 415 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 416 * good because transaction ids haven't yet been recorded on the 417 * cluster locks associated with this handle. 418 */ 419 int ocfs2_extend_trans(handle_t *handle, int nblocks) 420 { 421 int status, old_nblocks; 422 423 BUG_ON(!handle); 424 BUG_ON(nblocks < 0); 425 426 if (!nblocks) 427 return 0; 428 429 old_nblocks = handle->h_buffer_credits; 430 431 trace_ocfs2_extend_trans(old_nblocks, nblocks); 432 433 #ifdef CONFIG_OCFS2_DEBUG_FS 434 status = 1; 435 #else 436 status = jbd2_journal_extend(handle, nblocks); 437 if (status < 0) { 438 mlog_errno(status); 439 goto bail; 440 } 441 #endif 442 443 if (status > 0) { 444 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 445 status = jbd2_journal_restart(handle, 446 old_nblocks + nblocks); 447 if (status < 0) { 448 mlog_errno(status); 449 goto bail; 450 } 451 } 452 453 status = 0; 454 bail: 455 return status; 456 } 457 458 /* 459 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 460 * If that fails, restart the transaction & regain write access for the 461 * buffer head which is used for metadata modifications. 462 * Taken from Ext4: extend_or_restart_transaction() 463 */ 464 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 465 { 466 int status, old_nblks; 467 468 BUG_ON(!handle); 469 470 old_nblks = handle->h_buffer_credits; 471 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 472 473 if (old_nblks < thresh) 474 return 0; 475 476 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA); 477 if (status < 0) { 478 mlog_errno(status); 479 goto bail; 480 } 481 482 if (status > 0) { 483 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 484 if (status < 0) 485 mlog_errno(status); 486 } 487 488 bail: 489 return status; 490 } 491 492 493 struct ocfs2_triggers { 494 struct jbd2_buffer_trigger_type ot_triggers; 495 int ot_offset; 496 }; 497 498 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 499 { 500 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 501 } 502 503 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 504 struct buffer_head *bh, 505 void *data, size_t size) 506 { 507 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 508 509 /* 510 * We aren't guaranteed to have the superblock here, so we 511 * must unconditionally compute the ecc data. 512 * __ocfs2_journal_access() will only set the triggers if 513 * metaecc is enabled. 514 */ 515 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 516 } 517 518 /* 519 * Quota blocks have their own trigger because the struct ocfs2_block_check 520 * offset depends on the blocksize. 521 */ 522 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 523 struct buffer_head *bh, 524 void *data, size_t size) 525 { 526 struct ocfs2_disk_dqtrailer *dqt = 527 ocfs2_block_dqtrailer(size, data); 528 529 /* 530 * We aren't guaranteed to have the superblock here, so we 531 * must unconditionally compute the ecc data. 532 * __ocfs2_journal_access() will only set the triggers if 533 * metaecc is enabled. 534 */ 535 ocfs2_block_check_compute(data, size, &dqt->dq_check); 536 } 537 538 /* 539 * Directory blocks also have their own trigger because the 540 * struct ocfs2_block_check offset depends on the blocksize. 541 */ 542 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 543 struct buffer_head *bh, 544 void *data, size_t size) 545 { 546 struct ocfs2_dir_block_trailer *trailer = 547 ocfs2_dir_trailer_from_size(size, data); 548 549 /* 550 * We aren't guaranteed to have the superblock here, so we 551 * must unconditionally compute the ecc data. 552 * __ocfs2_journal_access() will only set the triggers if 553 * metaecc is enabled. 554 */ 555 ocfs2_block_check_compute(data, size, &trailer->db_check); 556 } 557 558 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 559 struct buffer_head *bh) 560 { 561 mlog(ML_ERROR, 562 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 563 "bh->b_blocknr = %llu\n", 564 (unsigned long)bh, 565 (unsigned long long)bh->b_blocknr); 566 567 /* We aren't guaranteed to have the superblock here - but if we 568 * don't, it'll just crash. */ 569 ocfs2_error(bh->b_assoc_map->host->i_sb, 570 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 571 } 572 573 static struct ocfs2_triggers di_triggers = { 574 .ot_triggers = { 575 .t_frozen = ocfs2_frozen_trigger, 576 .t_abort = ocfs2_abort_trigger, 577 }, 578 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 579 }; 580 581 static struct ocfs2_triggers eb_triggers = { 582 .ot_triggers = { 583 .t_frozen = ocfs2_frozen_trigger, 584 .t_abort = ocfs2_abort_trigger, 585 }, 586 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 587 }; 588 589 static struct ocfs2_triggers rb_triggers = { 590 .ot_triggers = { 591 .t_frozen = ocfs2_frozen_trigger, 592 .t_abort = ocfs2_abort_trigger, 593 }, 594 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 595 }; 596 597 static struct ocfs2_triggers gd_triggers = { 598 .ot_triggers = { 599 .t_frozen = ocfs2_frozen_trigger, 600 .t_abort = ocfs2_abort_trigger, 601 }, 602 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 603 }; 604 605 static struct ocfs2_triggers db_triggers = { 606 .ot_triggers = { 607 .t_frozen = ocfs2_db_frozen_trigger, 608 .t_abort = ocfs2_abort_trigger, 609 }, 610 }; 611 612 static struct ocfs2_triggers xb_triggers = { 613 .ot_triggers = { 614 .t_frozen = ocfs2_frozen_trigger, 615 .t_abort = ocfs2_abort_trigger, 616 }, 617 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 618 }; 619 620 static struct ocfs2_triggers dq_triggers = { 621 .ot_triggers = { 622 .t_frozen = ocfs2_dq_frozen_trigger, 623 .t_abort = ocfs2_abort_trigger, 624 }, 625 }; 626 627 static struct ocfs2_triggers dr_triggers = { 628 .ot_triggers = { 629 .t_frozen = ocfs2_frozen_trigger, 630 .t_abort = ocfs2_abort_trigger, 631 }, 632 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 633 }; 634 635 static struct ocfs2_triggers dl_triggers = { 636 .ot_triggers = { 637 .t_frozen = ocfs2_frozen_trigger, 638 .t_abort = ocfs2_abort_trigger, 639 }, 640 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 641 }; 642 643 static int __ocfs2_journal_access(handle_t *handle, 644 struct ocfs2_caching_info *ci, 645 struct buffer_head *bh, 646 struct ocfs2_triggers *triggers, 647 int type) 648 { 649 int status; 650 struct ocfs2_super *osb = 651 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 652 653 BUG_ON(!ci || !ci->ci_ops); 654 BUG_ON(!handle); 655 BUG_ON(!bh); 656 657 trace_ocfs2_journal_access( 658 (unsigned long long)ocfs2_metadata_cache_owner(ci), 659 (unsigned long long)bh->b_blocknr, type, bh->b_size); 660 661 /* we can safely remove this assertion after testing. */ 662 if (!buffer_uptodate(bh)) { 663 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 664 mlog(ML_ERROR, "b_blocknr=%llu\n", 665 (unsigned long long)bh->b_blocknr); 666 BUG(); 667 } 668 669 /* Set the current transaction information on the ci so 670 * that the locking code knows whether it can drop it's locks 671 * on this ci or not. We're protected from the commit 672 * thread updating the current transaction id until 673 * ocfs2_commit_trans() because ocfs2_start_trans() took 674 * j_trans_barrier for us. */ 675 ocfs2_set_ci_lock_trans(osb->journal, ci); 676 677 ocfs2_metadata_cache_io_lock(ci); 678 switch (type) { 679 case OCFS2_JOURNAL_ACCESS_CREATE: 680 case OCFS2_JOURNAL_ACCESS_WRITE: 681 status = jbd2_journal_get_write_access(handle, bh); 682 break; 683 684 case OCFS2_JOURNAL_ACCESS_UNDO: 685 status = jbd2_journal_get_undo_access(handle, bh); 686 break; 687 688 default: 689 status = -EINVAL; 690 mlog(ML_ERROR, "Unknown access type!\n"); 691 } 692 if (!status && ocfs2_meta_ecc(osb) && triggers) 693 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 694 ocfs2_metadata_cache_io_unlock(ci); 695 696 if (status < 0) 697 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 698 status, type); 699 700 return status; 701 } 702 703 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 704 struct buffer_head *bh, int type) 705 { 706 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 707 } 708 709 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 710 struct buffer_head *bh, int type) 711 { 712 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 713 } 714 715 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 716 struct buffer_head *bh, int type) 717 { 718 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 719 type); 720 } 721 722 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 723 struct buffer_head *bh, int type) 724 { 725 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 726 } 727 728 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 729 struct buffer_head *bh, int type) 730 { 731 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 732 } 733 734 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 735 struct buffer_head *bh, int type) 736 { 737 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 738 } 739 740 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 741 struct buffer_head *bh, int type) 742 { 743 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 744 } 745 746 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 747 struct buffer_head *bh, int type) 748 { 749 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 750 } 751 752 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 753 struct buffer_head *bh, int type) 754 { 755 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 756 } 757 758 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 759 struct buffer_head *bh, int type) 760 { 761 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 762 } 763 764 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 765 { 766 int status; 767 768 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 769 770 status = jbd2_journal_dirty_metadata(handle, bh); 771 BUG_ON(status); 772 } 773 774 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 775 776 void ocfs2_set_journal_params(struct ocfs2_super *osb) 777 { 778 journal_t *journal = osb->journal->j_journal; 779 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 780 781 if (osb->osb_commit_interval) 782 commit_interval = osb->osb_commit_interval; 783 784 write_lock(&journal->j_state_lock); 785 journal->j_commit_interval = commit_interval; 786 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 787 journal->j_flags |= JBD2_BARRIER; 788 else 789 journal->j_flags &= ~JBD2_BARRIER; 790 write_unlock(&journal->j_state_lock); 791 } 792 793 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 794 { 795 int status = -1; 796 struct inode *inode = NULL; /* the journal inode */ 797 journal_t *j_journal = NULL; 798 struct ocfs2_dinode *di = NULL; 799 struct buffer_head *bh = NULL; 800 struct ocfs2_super *osb; 801 int inode_lock = 0; 802 803 BUG_ON(!journal); 804 805 osb = journal->j_osb; 806 807 /* already have the inode for our journal */ 808 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 809 osb->slot_num); 810 if (inode == NULL) { 811 status = -EACCES; 812 mlog_errno(status); 813 goto done; 814 } 815 if (is_bad_inode(inode)) { 816 mlog(ML_ERROR, "access error (bad inode)\n"); 817 iput(inode); 818 inode = NULL; 819 status = -EACCES; 820 goto done; 821 } 822 823 SET_INODE_JOURNAL(inode); 824 OCFS2_I(inode)->ip_open_count++; 825 826 /* Skip recovery waits here - journal inode metadata never 827 * changes in a live cluster so it can be considered an 828 * exception to the rule. */ 829 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 830 if (status < 0) { 831 if (status != -ERESTARTSYS) 832 mlog(ML_ERROR, "Could not get lock on journal!\n"); 833 goto done; 834 } 835 836 inode_lock = 1; 837 di = (struct ocfs2_dinode *)bh->b_data; 838 839 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 840 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 841 i_size_read(inode)); 842 status = -EINVAL; 843 goto done; 844 } 845 846 trace_ocfs2_journal_init(i_size_read(inode), 847 (unsigned long long)inode->i_blocks, 848 OCFS2_I(inode)->ip_clusters); 849 850 /* call the kernels journal init function now */ 851 j_journal = jbd2_journal_init_inode(inode); 852 if (j_journal == NULL) { 853 mlog(ML_ERROR, "Linux journal layer error\n"); 854 status = -EINVAL; 855 goto done; 856 } 857 858 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen); 859 860 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 861 OCFS2_JOURNAL_DIRTY_FL); 862 863 journal->j_journal = j_journal; 864 journal->j_inode = inode; 865 journal->j_bh = bh; 866 867 ocfs2_set_journal_params(osb); 868 869 journal->j_state = OCFS2_JOURNAL_LOADED; 870 871 status = 0; 872 done: 873 if (status < 0) { 874 if (inode_lock) 875 ocfs2_inode_unlock(inode, 1); 876 brelse(bh); 877 if (inode) { 878 OCFS2_I(inode)->ip_open_count--; 879 iput(inode); 880 } 881 } 882 883 return status; 884 } 885 886 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 887 { 888 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 889 } 890 891 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 892 { 893 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 894 } 895 896 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 897 int dirty, int replayed) 898 { 899 int status; 900 unsigned int flags; 901 struct ocfs2_journal *journal = osb->journal; 902 struct buffer_head *bh = journal->j_bh; 903 struct ocfs2_dinode *fe; 904 905 fe = (struct ocfs2_dinode *)bh->b_data; 906 907 /* The journal bh on the osb always comes from ocfs2_journal_init() 908 * and was validated there inside ocfs2_inode_lock_full(). It's a 909 * code bug if we mess it up. */ 910 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 911 912 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 913 if (dirty) 914 flags |= OCFS2_JOURNAL_DIRTY_FL; 915 else 916 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 917 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 918 919 if (replayed) 920 ocfs2_bump_recovery_generation(fe); 921 922 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 923 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 924 if (status < 0) 925 mlog_errno(status); 926 927 return status; 928 } 929 930 /* 931 * If the journal has been kmalloc'd it needs to be freed after this 932 * call. 933 */ 934 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 935 { 936 struct ocfs2_journal *journal = NULL; 937 int status = 0; 938 struct inode *inode = NULL; 939 int num_running_trans = 0; 940 941 BUG_ON(!osb); 942 943 journal = osb->journal; 944 if (!journal) 945 goto done; 946 947 inode = journal->j_inode; 948 949 if (journal->j_state != OCFS2_JOURNAL_LOADED) 950 goto done; 951 952 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 953 if (!igrab(inode)) 954 BUG(); 955 956 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 957 trace_ocfs2_journal_shutdown(num_running_trans); 958 959 /* Do a commit_cache here. It will flush our journal, *and* 960 * release any locks that are still held. 961 * set the SHUTDOWN flag and release the trans lock. 962 * the commit thread will take the trans lock for us below. */ 963 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 964 965 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 966 * drop the trans_lock (which we want to hold until we 967 * completely destroy the journal. */ 968 if (osb->commit_task) { 969 /* Wait for the commit thread */ 970 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 971 kthread_stop(osb->commit_task); 972 osb->commit_task = NULL; 973 } 974 975 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 976 977 if (ocfs2_mount_local(osb)) { 978 jbd2_journal_lock_updates(journal->j_journal); 979 status = jbd2_journal_flush(journal->j_journal); 980 jbd2_journal_unlock_updates(journal->j_journal); 981 if (status < 0) 982 mlog_errno(status); 983 } 984 985 if (status == 0) { 986 /* 987 * Do not toggle if flush was unsuccessful otherwise 988 * will leave dirty metadata in a "clean" journal 989 */ 990 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 991 if (status < 0) 992 mlog_errno(status); 993 } 994 995 /* Shutdown the kernel journal system */ 996 jbd2_journal_destroy(journal->j_journal); 997 journal->j_journal = NULL; 998 999 OCFS2_I(inode)->ip_open_count--; 1000 1001 /* unlock our journal */ 1002 ocfs2_inode_unlock(inode, 1); 1003 1004 brelse(journal->j_bh); 1005 journal->j_bh = NULL; 1006 1007 journal->j_state = OCFS2_JOURNAL_FREE; 1008 1009 // up_write(&journal->j_trans_barrier); 1010 done: 1011 if (inode) 1012 iput(inode); 1013 } 1014 1015 static void ocfs2_clear_journal_error(struct super_block *sb, 1016 journal_t *journal, 1017 int slot) 1018 { 1019 int olderr; 1020 1021 olderr = jbd2_journal_errno(journal); 1022 if (olderr) { 1023 mlog(ML_ERROR, "File system error %d recorded in " 1024 "journal %u.\n", olderr, slot); 1025 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1026 sb->s_id); 1027 1028 jbd2_journal_ack_err(journal); 1029 jbd2_journal_clear_err(journal); 1030 } 1031 } 1032 1033 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1034 { 1035 int status = 0; 1036 struct ocfs2_super *osb; 1037 1038 BUG_ON(!journal); 1039 1040 osb = journal->j_osb; 1041 1042 status = jbd2_journal_load(journal->j_journal); 1043 if (status < 0) { 1044 mlog(ML_ERROR, "Failed to load journal!\n"); 1045 goto done; 1046 } 1047 1048 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1049 1050 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1051 if (status < 0) { 1052 mlog_errno(status); 1053 goto done; 1054 } 1055 1056 /* Launch the commit thread */ 1057 if (!local) { 1058 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1059 "ocfs2cmt"); 1060 if (IS_ERR(osb->commit_task)) { 1061 status = PTR_ERR(osb->commit_task); 1062 osb->commit_task = NULL; 1063 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1064 "error=%d", status); 1065 goto done; 1066 } 1067 } else 1068 osb->commit_task = NULL; 1069 1070 done: 1071 return status; 1072 } 1073 1074 1075 /* 'full' flag tells us whether we clear out all blocks or if we just 1076 * mark the journal clean */ 1077 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1078 { 1079 int status; 1080 1081 BUG_ON(!journal); 1082 1083 status = jbd2_journal_wipe(journal->j_journal, full); 1084 if (status < 0) { 1085 mlog_errno(status); 1086 goto bail; 1087 } 1088 1089 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1090 if (status < 0) 1091 mlog_errno(status); 1092 1093 bail: 1094 return status; 1095 } 1096 1097 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1098 { 1099 int empty; 1100 struct ocfs2_recovery_map *rm = osb->recovery_map; 1101 1102 spin_lock(&osb->osb_lock); 1103 empty = (rm->rm_used == 0); 1104 spin_unlock(&osb->osb_lock); 1105 1106 return empty; 1107 } 1108 1109 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1110 { 1111 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1112 } 1113 1114 /* 1115 * JBD Might read a cached version of another nodes journal file. We 1116 * don't want this as this file changes often and we get no 1117 * notification on those changes. The only way to be sure that we've 1118 * got the most up to date version of those blocks then is to force 1119 * read them off disk. Just searching through the buffer cache won't 1120 * work as there may be pages backing this file which are still marked 1121 * up to date. We know things can't change on this file underneath us 1122 * as we have the lock by now :) 1123 */ 1124 static int ocfs2_force_read_journal(struct inode *inode) 1125 { 1126 int status = 0; 1127 int i; 1128 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1129 #define CONCURRENT_JOURNAL_FILL 32ULL 1130 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 1131 1132 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 1133 1134 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1135 v_blkno = 0; 1136 while (v_blkno < num_blocks) { 1137 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1138 &p_blkno, &p_blocks, NULL); 1139 if (status < 0) { 1140 mlog_errno(status); 1141 goto bail; 1142 } 1143 1144 if (p_blocks > CONCURRENT_JOURNAL_FILL) 1145 p_blocks = CONCURRENT_JOURNAL_FILL; 1146 1147 /* We are reading journal data which should not 1148 * be put in the uptodate cache */ 1149 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb), 1150 p_blkno, p_blocks, bhs); 1151 if (status < 0) { 1152 mlog_errno(status); 1153 goto bail; 1154 } 1155 1156 for(i = 0; i < p_blocks; i++) { 1157 brelse(bhs[i]); 1158 bhs[i] = NULL; 1159 } 1160 1161 v_blkno += p_blocks; 1162 } 1163 1164 bail: 1165 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 1166 brelse(bhs[i]); 1167 return status; 1168 } 1169 1170 struct ocfs2_la_recovery_item { 1171 struct list_head lri_list; 1172 int lri_slot; 1173 struct ocfs2_dinode *lri_la_dinode; 1174 struct ocfs2_dinode *lri_tl_dinode; 1175 struct ocfs2_quota_recovery *lri_qrec; 1176 }; 1177 1178 /* Does the second half of the recovery process. By this point, the 1179 * node is marked clean and can actually be considered recovered, 1180 * hence it's no longer in the recovery map, but there's still some 1181 * cleanup we can do which shouldn't happen within the recovery thread 1182 * as locking in that context becomes very difficult if we are to take 1183 * recovering nodes into account. 1184 * 1185 * NOTE: This function can and will sleep on recovery of other nodes 1186 * during cluster locking, just like any other ocfs2 process. 1187 */ 1188 void ocfs2_complete_recovery(struct work_struct *work) 1189 { 1190 int ret = 0; 1191 struct ocfs2_journal *journal = 1192 container_of(work, struct ocfs2_journal, j_recovery_work); 1193 struct ocfs2_super *osb = journal->j_osb; 1194 struct ocfs2_dinode *la_dinode, *tl_dinode; 1195 struct ocfs2_la_recovery_item *item, *n; 1196 struct ocfs2_quota_recovery *qrec; 1197 LIST_HEAD(tmp_la_list); 1198 1199 trace_ocfs2_complete_recovery( 1200 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1201 1202 spin_lock(&journal->j_lock); 1203 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1204 spin_unlock(&journal->j_lock); 1205 1206 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1207 list_del_init(&item->lri_list); 1208 1209 ocfs2_wait_on_quotas(osb); 1210 1211 la_dinode = item->lri_la_dinode; 1212 tl_dinode = item->lri_tl_dinode; 1213 qrec = item->lri_qrec; 1214 1215 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1216 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1217 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1218 qrec); 1219 1220 if (la_dinode) { 1221 ret = ocfs2_complete_local_alloc_recovery(osb, 1222 la_dinode); 1223 if (ret < 0) 1224 mlog_errno(ret); 1225 1226 kfree(la_dinode); 1227 } 1228 1229 if (tl_dinode) { 1230 ret = ocfs2_complete_truncate_log_recovery(osb, 1231 tl_dinode); 1232 if (ret < 0) 1233 mlog_errno(ret); 1234 1235 kfree(tl_dinode); 1236 } 1237 1238 ret = ocfs2_recover_orphans(osb, item->lri_slot); 1239 if (ret < 0) 1240 mlog_errno(ret); 1241 1242 if (qrec) { 1243 ret = ocfs2_finish_quota_recovery(osb, qrec, 1244 item->lri_slot); 1245 if (ret < 0) 1246 mlog_errno(ret); 1247 /* Recovery info is already freed now */ 1248 } 1249 1250 kfree(item); 1251 } 1252 1253 trace_ocfs2_complete_recovery_end(ret); 1254 } 1255 1256 /* NOTE: This function always eats your references to la_dinode and 1257 * tl_dinode, either manually on error, or by passing them to 1258 * ocfs2_complete_recovery */ 1259 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1260 int slot_num, 1261 struct ocfs2_dinode *la_dinode, 1262 struct ocfs2_dinode *tl_dinode, 1263 struct ocfs2_quota_recovery *qrec) 1264 { 1265 struct ocfs2_la_recovery_item *item; 1266 1267 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1268 if (!item) { 1269 /* Though we wish to avoid it, we are in fact safe in 1270 * skipping local alloc cleanup as fsck.ocfs2 is more 1271 * than capable of reclaiming unused space. */ 1272 kfree(la_dinode); 1273 kfree(tl_dinode); 1274 1275 if (qrec) 1276 ocfs2_free_quota_recovery(qrec); 1277 1278 mlog_errno(-ENOMEM); 1279 return; 1280 } 1281 1282 INIT_LIST_HEAD(&item->lri_list); 1283 item->lri_la_dinode = la_dinode; 1284 item->lri_slot = slot_num; 1285 item->lri_tl_dinode = tl_dinode; 1286 item->lri_qrec = qrec; 1287 1288 spin_lock(&journal->j_lock); 1289 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1290 queue_work(ocfs2_wq, &journal->j_recovery_work); 1291 spin_unlock(&journal->j_lock); 1292 } 1293 1294 /* Called by the mount code to queue recovery the last part of 1295 * recovery for it's own and offline slot(s). */ 1296 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1297 { 1298 struct ocfs2_journal *journal = osb->journal; 1299 1300 if (ocfs2_is_hard_readonly(osb)) 1301 return; 1302 1303 /* No need to queue up our truncate_log as regular cleanup will catch 1304 * that */ 1305 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1306 osb->local_alloc_copy, NULL, NULL); 1307 ocfs2_schedule_truncate_log_flush(osb, 0); 1308 1309 osb->local_alloc_copy = NULL; 1310 osb->dirty = 0; 1311 1312 /* queue to recover orphan slots for all offline slots */ 1313 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1314 ocfs2_queue_replay_slots(osb); 1315 ocfs2_free_replay_slots(osb); 1316 } 1317 1318 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1319 { 1320 if (osb->quota_rec) { 1321 ocfs2_queue_recovery_completion(osb->journal, 1322 osb->slot_num, 1323 NULL, 1324 NULL, 1325 osb->quota_rec); 1326 osb->quota_rec = NULL; 1327 } 1328 } 1329 1330 static int __ocfs2_recovery_thread(void *arg) 1331 { 1332 int status, node_num, slot_num; 1333 struct ocfs2_super *osb = arg; 1334 struct ocfs2_recovery_map *rm = osb->recovery_map; 1335 int *rm_quota = NULL; 1336 int rm_quota_used = 0, i; 1337 struct ocfs2_quota_recovery *qrec; 1338 1339 status = ocfs2_wait_on_mount(osb); 1340 if (status < 0) { 1341 goto bail; 1342 } 1343 1344 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS); 1345 if (!rm_quota) { 1346 status = -ENOMEM; 1347 goto bail; 1348 } 1349 restart: 1350 status = ocfs2_super_lock(osb, 1); 1351 if (status < 0) { 1352 mlog_errno(status); 1353 goto bail; 1354 } 1355 1356 status = ocfs2_compute_replay_slots(osb); 1357 if (status < 0) 1358 mlog_errno(status); 1359 1360 /* queue recovery for our own slot */ 1361 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1362 NULL, NULL); 1363 1364 spin_lock(&osb->osb_lock); 1365 while (rm->rm_used) { 1366 /* It's always safe to remove entry zero, as we won't 1367 * clear it until ocfs2_recover_node() has succeeded. */ 1368 node_num = rm->rm_entries[0]; 1369 spin_unlock(&osb->osb_lock); 1370 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1371 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1372 if (slot_num == -ENOENT) { 1373 status = 0; 1374 goto skip_recovery; 1375 } 1376 1377 /* It is a bit subtle with quota recovery. We cannot do it 1378 * immediately because we have to obtain cluster locks from 1379 * quota files and we also don't want to just skip it because 1380 * then quota usage would be out of sync until some node takes 1381 * the slot. So we remember which nodes need quota recovery 1382 * and when everything else is done, we recover quotas. */ 1383 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++); 1384 if (i == rm_quota_used) 1385 rm_quota[rm_quota_used++] = slot_num; 1386 1387 status = ocfs2_recover_node(osb, node_num, slot_num); 1388 skip_recovery: 1389 if (!status) { 1390 ocfs2_recovery_map_clear(osb, node_num); 1391 } else { 1392 mlog(ML_ERROR, 1393 "Error %d recovering node %d on device (%u,%u)!\n", 1394 status, node_num, 1395 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1396 mlog(ML_ERROR, "Volume requires unmount.\n"); 1397 } 1398 1399 spin_lock(&osb->osb_lock); 1400 } 1401 spin_unlock(&osb->osb_lock); 1402 trace_ocfs2_recovery_thread_end(status); 1403 1404 /* Refresh all journal recovery generations from disk */ 1405 status = ocfs2_check_journals_nolocks(osb); 1406 status = (status == -EROFS) ? 0 : status; 1407 if (status < 0) 1408 mlog_errno(status); 1409 1410 /* Now it is right time to recover quotas... We have to do this under 1411 * superblock lock so that no one can start using the slot (and crash) 1412 * before we recover it */ 1413 for (i = 0; i < rm_quota_used; i++) { 1414 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1415 if (IS_ERR(qrec)) { 1416 status = PTR_ERR(qrec); 1417 mlog_errno(status); 1418 continue; 1419 } 1420 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i], 1421 NULL, NULL, qrec); 1422 } 1423 1424 ocfs2_super_unlock(osb, 1); 1425 1426 /* queue recovery for offline slots */ 1427 ocfs2_queue_replay_slots(osb); 1428 1429 bail: 1430 mutex_lock(&osb->recovery_lock); 1431 if (!status && !ocfs2_recovery_completed(osb)) { 1432 mutex_unlock(&osb->recovery_lock); 1433 goto restart; 1434 } 1435 1436 ocfs2_free_replay_slots(osb); 1437 osb->recovery_thread_task = NULL; 1438 mb(); /* sync with ocfs2_recovery_thread_running */ 1439 wake_up(&osb->recovery_event); 1440 1441 mutex_unlock(&osb->recovery_lock); 1442 1443 kfree(rm_quota); 1444 1445 /* no one is callint kthread_stop() for us so the kthread() api 1446 * requires that we call do_exit(). And it isn't exported, but 1447 * complete_and_exit() seems to be a minimal wrapper around it. */ 1448 complete_and_exit(NULL, status); 1449 return status; 1450 } 1451 1452 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1453 { 1454 mutex_lock(&osb->recovery_lock); 1455 1456 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1457 osb->disable_recovery, osb->recovery_thread_task, 1458 osb->disable_recovery ? 1459 -1 : ocfs2_recovery_map_set(osb, node_num)); 1460 1461 if (osb->disable_recovery) 1462 goto out; 1463 1464 if (osb->recovery_thread_task) 1465 goto out; 1466 1467 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1468 "ocfs2rec"); 1469 if (IS_ERR(osb->recovery_thread_task)) { 1470 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1471 osb->recovery_thread_task = NULL; 1472 } 1473 1474 out: 1475 mutex_unlock(&osb->recovery_lock); 1476 wake_up(&osb->recovery_event); 1477 } 1478 1479 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1480 int slot_num, 1481 struct buffer_head **bh, 1482 struct inode **ret_inode) 1483 { 1484 int status = -EACCES; 1485 struct inode *inode = NULL; 1486 1487 BUG_ON(slot_num >= osb->max_slots); 1488 1489 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1490 slot_num); 1491 if (!inode || is_bad_inode(inode)) { 1492 mlog_errno(status); 1493 goto bail; 1494 } 1495 SET_INODE_JOURNAL(inode); 1496 1497 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1498 if (status < 0) { 1499 mlog_errno(status); 1500 goto bail; 1501 } 1502 1503 status = 0; 1504 1505 bail: 1506 if (inode) { 1507 if (status || !ret_inode) 1508 iput(inode); 1509 else 1510 *ret_inode = inode; 1511 } 1512 return status; 1513 } 1514 1515 /* Does the actual journal replay and marks the journal inode as 1516 * clean. Will only replay if the journal inode is marked dirty. */ 1517 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1518 int node_num, 1519 int slot_num) 1520 { 1521 int status; 1522 int got_lock = 0; 1523 unsigned int flags; 1524 struct inode *inode = NULL; 1525 struct ocfs2_dinode *fe; 1526 journal_t *journal = NULL; 1527 struct buffer_head *bh = NULL; 1528 u32 slot_reco_gen; 1529 1530 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1531 if (status) { 1532 mlog_errno(status); 1533 goto done; 1534 } 1535 1536 fe = (struct ocfs2_dinode *)bh->b_data; 1537 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1538 brelse(bh); 1539 bh = NULL; 1540 1541 /* 1542 * As the fs recovery is asynchronous, there is a small chance that 1543 * another node mounted (and recovered) the slot before the recovery 1544 * thread could get the lock. To handle that, we dirty read the journal 1545 * inode for that slot to get the recovery generation. If it is 1546 * different than what we expected, the slot has been recovered. 1547 * If not, it needs recovery. 1548 */ 1549 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1550 trace_ocfs2_replay_journal_recovered(slot_num, 1551 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1552 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1553 status = -EBUSY; 1554 goto done; 1555 } 1556 1557 /* Continue with recovery as the journal has not yet been recovered */ 1558 1559 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1560 if (status < 0) { 1561 trace_ocfs2_replay_journal_lock_err(status); 1562 if (status != -ERESTARTSYS) 1563 mlog(ML_ERROR, "Could not lock journal!\n"); 1564 goto done; 1565 } 1566 got_lock = 1; 1567 1568 fe = (struct ocfs2_dinode *) bh->b_data; 1569 1570 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1571 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1572 1573 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1574 trace_ocfs2_replay_journal_skip(node_num); 1575 /* Refresh recovery generation for the slot */ 1576 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1577 goto done; 1578 } 1579 1580 /* we need to run complete recovery for offline orphan slots */ 1581 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1582 1583 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1584 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1585 MINOR(osb->sb->s_dev)); 1586 1587 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1588 1589 status = ocfs2_force_read_journal(inode); 1590 if (status < 0) { 1591 mlog_errno(status); 1592 goto done; 1593 } 1594 1595 journal = jbd2_journal_init_inode(inode); 1596 if (journal == NULL) { 1597 mlog(ML_ERROR, "Linux journal layer error\n"); 1598 status = -EIO; 1599 goto done; 1600 } 1601 1602 status = jbd2_journal_load(journal); 1603 if (status < 0) { 1604 mlog_errno(status); 1605 if (!igrab(inode)) 1606 BUG(); 1607 jbd2_journal_destroy(journal); 1608 goto done; 1609 } 1610 1611 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1612 1613 /* wipe the journal */ 1614 jbd2_journal_lock_updates(journal); 1615 status = jbd2_journal_flush(journal); 1616 jbd2_journal_unlock_updates(journal); 1617 if (status < 0) 1618 mlog_errno(status); 1619 1620 /* This will mark the node clean */ 1621 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1622 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1623 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1624 1625 /* Increment recovery generation to indicate successful recovery */ 1626 ocfs2_bump_recovery_generation(fe); 1627 osb->slot_recovery_generations[slot_num] = 1628 ocfs2_get_recovery_generation(fe); 1629 1630 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1631 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1632 if (status < 0) 1633 mlog_errno(status); 1634 1635 if (!igrab(inode)) 1636 BUG(); 1637 1638 jbd2_journal_destroy(journal); 1639 1640 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1641 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1642 MINOR(osb->sb->s_dev)); 1643 done: 1644 /* drop the lock on this nodes journal */ 1645 if (got_lock) 1646 ocfs2_inode_unlock(inode, 1); 1647 1648 if (inode) 1649 iput(inode); 1650 1651 brelse(bh); 1652 1653 return status; 1654 } 1655 1656 /* 1657 * Do the most important parts of node recovery: 1658 * - Replay it's journal 1659 * - Stamp a clean local allocator file 1660 * - Stamp a clean truncate log 1661 * - Mark the node clean 1662 * 1663 * If this function completes without error, a node in OCFS2 can be 1664 * said to have been safely recovered. As a result, failure during the 1665 * second part of a nodes recovery process (local alloc recovery) is 1666 * far less concerning. 1667 */ 1668 static int ocfs2_recover_node(struct ocfs2_super *osb, 1669 int node_num, int slot_num) 1670 { 1671 int status = 0; 1672 struct ocfs2_dinode *la_copy = NULL; 1673 struct ocfs2_dinode *tl_copy = NULL; 1674 1675 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1676 1677 /* Should not ever be called to recover ourselves -- in that 1678 * case we should've called ocfs2_journal_load instead. */ 1679 BUG_ON(osb->node_num == node_num); 1680 1681 status = ocfs2_replay_journal(osb, node_num, slot_num); 1682 if (status < 0) { 1683 if (status == -EBUSY) { 1684 trace_ocfs2_recover_node_skip(slot_num, node_num); 1685 status = 0; 1686 goto done; 1687 } 1688 mlog_errno(status); 1689 goto done; 1690 } 1691 1692 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1693 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1694 if (status < 0) { 1695 mlog_errno(status); 1696 goto done; 1697 } 1698 1699 /* An error from begin_truncate_log_recovery is not 1700 * serious enough to warrant halting the rest of 1701 * recovery. */ 1702 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1703 if (status < 0) 1704 mlog_errno(status); 1705 1706 /* Likewise, this would be a strange but ultimately not so 1707 * harmful place to get an error... */ 1708 status = ocfs2_clear_slot(osb, slot_num); 1709 if (status < 0) 1710 mlog_errno(status); 1711 1712 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1713 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1714 tl_copy, NULL); 1715 1716 status = 0; 1717 done: 1718 1719 return status; 1720 } 1721 1722 /* Test node liveness by trylocking his journal. If we get the lock, 1723 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1724 * still alive (we couldn't get the lock) and < 0 on error. */ 1725 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1726 int slot_num) 1727 { 1728 int status, flags; 1729 struct inode *inode = NULL; 1730 1731 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1732 slot_num); 1733 if (inode == NULL) { 1734 mlog(ML_ERROR, "access error\n"); 1735 status = -EACCES; 1736 goto bail; 1737 } 1738 if (is_bad_inode(inode)) { 1739 mlog(ML_ERROR, "access error (bad inode)\n"); 1740 iput(inode); 1741 inode = NULL; 1742 status = -EACCES; 1743 goto bail; 1744 } 1745 SET_INODE_JOURNAL(inode); 1746 1747 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1748 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1749 if (status < 0) { 1750 if (status != -EAGAIN) 1751 mlog_errno(status); 1752 goto bail; 1753 } 1754 1755 ocfs2_inode_unlock(inode, 1); 1756 bail: 1757 if (inode) 1758 iput(inode); 1759 1760 return status; 1761 } 1762 1763 /* Call this underneath ocfs2_super_lock. It also assumes that the 1764 * slot info struct has been updated from disk. */ 1765 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1766 { 1767 unsigned int node_num; 1768 int status, i; 1769 u32 gen; 1770 struct buffer_head *bh = NULL; 1771 struct ocfs2_dinode *di; 1772 1773 /* This is called with the super block cluster lock, so we 1774 * know that the slot map can't change underneath us. */ 1775 1776 for (i = 0; i < osb->max_slots; i++) { 1777 /* Read journal inode to get the recovery generation */ 1778 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1779 if (status) { 1780 mlog_errno(status); 1781 goto bail; 1782 } 1783 di = (struct ocfs2_dinode *)bh->b_data; 1784 gen = ocfs2_get_recovery_generation(di); 1785 brelse(bh); 1786 bh = NULL; 1787 1788 spin_lock(&osb->osb_lock); 1789 osb->slot_recovery_generations[i] = gen; 1790 1791 trace_ocfs2_mark_dead_nodes(i, 1792 osb->slot_recovery_generations[i]); 1793 1794 if (i == osb->slot_num) { 1795 spin_unlock(&osb->osb_lock); 1796 continue; 1797 } 1798 1799 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1800 if (status == -ENOENT) { 1801 spin_unlock(&osb->osb_lock); 1802 continue; 1803 } 1804 1805 if (__ocfs2_recovery_map_test(osb, node_num)) { 1806 spin_unlock(&osb->osb_lock); 1807 continue; 1808 } 1809 spin_unlock(&osb->osb_lock); 1810 1811 /* Ok, we have a slot occupied by another node which 1812 * is not in the recovery map. We trylock his journal 1813 * file here to test if he's alive. */ 1814 status = ocfs2_trylock_journal(osb, i); 1815 if (!status) { 1816 /* Since we're called from mount, we know that 1817 * the recovery thread can't race us on 1818 * setting / checking the recovery bits. */ 1819 ocfs2_recovery_thread(osb, node_num); 1820 } else if ((status < 0) && (status != -EAGAIN)) { 1821 mlog_errno(status); 1822 goto bail; 1823 } 1824 } 1825 1826 status = 0; 1827 bail: 1828 return status; 1829 } 1830 1831 /* 1832 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1833 * randomness to the timeout to minimize multple nodes firing the timer at the 1834 * same time. 1835 */ 1836 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1837 { 1838 unsigned long time; 1839 1840 get_random_bytes(&time, sizeof(time)); 1841 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1842 return msecs_to_jiffies(time); 1843 } 1844 1845 /* 1846 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1847 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1848 * is done to catch any orphans that are left over in orphan directories. 1849 * 1850 * It scans all slots, even ones that are in use. It does so to handle the 1851 * case described below: 1852 * 1853 * Node 1 has an inode it was using. The dentry went away due to memory 1854 * pressure. Node 1 closes the inode, but it's on the free list. The node 1855 * has the open lock. 1856 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1857 * but node 1 has no dentry and doesn't get the message. It trylocks the 1858 * open lock, sees that another node has a PR, and does nothing. 1859 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1860 * open lock, sees the PR still, and does nothing. 1861 * Basically, we have to trigger an orphan iput on node 1. The only way 1862 * for this to happen is if node 1 runs node 2's orphan dir. 1863 * 1864 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1865 * seconds. It gets an EX lock on os_lockres and checks sequence number 1866 * stored in LVB. If the sequence number has changed, it means some other 1867 * node has done the scan. This node skips the scan and tracks the 1868 * sequence number. If the sequence number didn't change, it means a scan 1869 * hasn't happened. The node queues a scan and increments the 1870 * sequence number in the LVB. 1871 */ 1872 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1873 { 1874 struct ocfs2_orphan_scan *os; 1875 int status, i; 1876 u32 seqno = 0; 1877 1878 os = &osb->osb_orphan_scan; 1879 1880 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1881 goto out; 1882 1883 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1884 atomic_read(&os->os_state)); 1885 1886 status = ocfs2_orphan_scan_lock(osb, &seqno); 1887 if (status < 0) { 1888 if (status != -EAGAIN) 1889 mlog_errno(status); 1890 goto out; 1891 } 1892 1893 /* Do no queue the tasks if the volume is being umounted */ 1894 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1895 goto unlock; 1896 1897 if (os->os_seqno != seqno) { 1898 os->os_seqno = seqno; 1899 goto unlock; 1900 } 1901 1902 for (i = 0; i < osb->max_slots; i++) 1903 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1904 NULL); 1905 /* 1906 * We queued a recovery on orphan slots, increment the sequence 1907 * number and update LVB so other node will skip the scan for a while 1908 */ 1909 seqno++; 1910 os->os_count++; 1911 os->os_scantime = CURRENT_TIME; 1912 unlock: 1913 ocfs2_orphan_scan_unlock(osb, seqno); 1914 out: 1915 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 1916 atomic_read(&os->os_state)); 1917 return; 1918 } 1919 1920 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1921 void ocfs2_orphan_scan_work(struct work_struct *work) 1922 { 1923 struct ocfs2_orphan_scan *os; 1924 struct ocfs2_super *osb; 1925 1926 os = container_of(work, struct ocfs2_orphan_scan, 1927 os_orphan_scan_work.work); 1928 osb = os->os_osb; 1929 1930 mutex_lock(&os->os_lock); 1931 ocfs2_queue_orphan_scan(osb); 1932 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 1933 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work, 1934 ocfs2_orphan_scan_timeout()); 1935 mutex_unlock(&os->os_lock); 1936 } 1937 1938 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 1939 { 1940 struct ocfs2_orphan_scan *os; 1941 1942 os = &osb->osb_orphan_scan; 1943 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 1944 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1945 mutex_lock(&os->os_lock); 1946 cancel_delayed_work(&os->os_orphan_scan_work); 1947 mutex_unlock(&os->os_lock); 1948 } 1949 } 1950 1951 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 1952 { 1953 struct ocfs2_orphan_scan *os; 1954 1955 os = &osb->osb_orphan_scan; 1956 os->os_osb = osb; 1957 os->os_count = 0; 1958 os->os_seqno = 0; 1959 mutex_init(&os->os_lock); 1960 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 1961 } 1962 1963 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 1964 { 1965 struct ocfs2_orphan_scan *os; 1966 1967 os = &osb->osb_orphan_scan; 1968 os->os_scantime = CURRENT_TIME; 1969 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 1970 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1971 else { 1972 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 1973 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work, 1974 ocfs2_orphan_scan_timeout()); 1975 } 1976 } 1977 1978 struct ocfs2_orphan_filldir_priv { 1979 struct dir_context ctx; 1980 struct inode *head; 1981 struct ocfs2_super *osb; 1982 }; 1983 1984 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len, 1985 loff_t pos, u64 ino, unsigned type) 1986 { 1987 struct ocfs2_orphan_filldir_priv *p = priv; 1988 struct inode *iter; 1989 1990 if (name_len == 1 && !strncmp(".", name, 1)) 1991 return 0; 1992 if (name_len == 2 && !strncmp("..", name, 2)) 1993 return 0; 1994 1995 /* Skip bad inodes so that recovery can continue */ 1996 iter = ocfs2_iget(p->osb, ino, 1997 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 1998 if (IS_ERR(iter)) 1999 return 0; 2000 2001 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2002 /* No locking is required for the next_orphan queue as there 2003 * is only ever a single process doing orphan recovery. */ 2004 OCFS2_I(iter)->ip_next_orphan = p->head; 2005 p->head = iter; 2006 2007 return 0; 2008 } 2009 2010 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2011 int slot, 2012 struct inode **head) 2013 { 2014 int status; 2015 struct inode *orphan_dir_inode = NULL; 2016 struct ocfs2_orphan_filldir_priv priv = { 2017 .ctx.actor = ocfs2_orphan_filldir, 2018 .osb = osb, 2019 .head = *head 2020 }; 2021 2022 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2023 ORPHAN_DIR_SYSTEM_INODE, 2024 slot); 2025 if (!orphan_dir_inode) { 2026 status = -ENOENT; 2027 mlog_errno(status); 2028 return status; 2029 } 2030 2031 mutex_lock(&orphan_dir_inode->i_mutex); 2032 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2033 if (status < 0) { 2034 mlog_errno(status); 2035 goto out; 2036 } 2037 2038 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2039 if (status) { 2040 mlog_errno(status); 2041 goto out_cluster; 2042 } 2043 2044 *head = priv.head; 2045 2046 out_cluster: 2047 ocfs2_inode_unlock(orphan_dir_inode, 0); 2048 out: 2049 mutex_unlock(&orphan_dir_inode->i_mutex); 2050 iput(orphan_dir_inode); 2051 return status; 2052 } 2053 2054 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2055 int slot) 2056 { 2057 int ret; 2058 2059 spin_lock(&osb->osb_lock); 2060 ret = !osb->osb_orphan_wipes[slot]; 2061 spin_unlock(&osb->osb_lock); 2062 return ret; 2063 } 2064 2065 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2066 int slot) 2067 { 2068 spin_lock(&osb->osb_lock); 2069 /* Mark ourselves such that new processes in delete_inode() 2070 * know to quit early. */ 2071 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2072 while (osb->osb_orphan_wipes[slot]) { 2073 /* If any processes are already in the middle of an 2074 * orphan wipe on this dir, then we need to wait for 2075 * them. */ 2076 spin_unlock(&osb->osb_lock); 2077 wait_event_interruptible(osb->osb_wipe_event, 2078 ocfs2_orphan_recovery_can_continue(osb, slot)); 2079 spin_lock(&osb->osb_lock); 2080 } 2081 spin_unlock(&osb->osb_lock); 2082 } 2083 2084 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2085 int slot) 2086 { 2087 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2088 } 2089 2090 /* 2091 * Orphan recovery. Each mounted node has it's own orphan dir which we 2092 * must run during recovery. Our strategy here is to build a list of 2093 * the inodes in the orphan dir and iget/iput them. The VFS does 2094 * (most) of the rest of the work. 2095 * 2096 * Orphan recovery can happen at any time, not just mount so we have a 2097 * couple of extra considerations. 2098 * 2099 * - We grab as many inodes as we can under the orphan dir lock - 2100 * doing iget() outside the orphan dir risks getting a reference on 2101 * an invalid inode. 2102 * - We must be sure not to deadlock with other processes on the 2103 * system wanting to run delete_inode(). This can happen when they go 2104 * to lock the orphan dir and the orphan recovery process attempts to 2105 * iget() inside the orphan dir lock. This can be avoided by 2106 * advertising our state to ocfs2_delete_inode(). 2107 */ 2108 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2109 int slot) 2110 { 2111 int ret = 0; 2112 struct inode *inode = NULL; 2113 struct inode *iter; 2114 struct ocfs2_inode_info *oi; 2115 2116 trace_ocfs2_recover_orphans(slot); 2117 2118 ocfs2_mark_recovering_orphan_dir(osb, slot); 2119 ret = ocfs2_queue_orphans(osb, slot, &inode); 2120 ocfs2_clear_recovering_orphan_dir(osb, slot); 2121 2122 /* Error here should be noted, but we want to continue with as 2123 * many queued inodes as we've got. */ 2124 if (ret) 2125 mlog_errno(ret); 2126 2127 while (inode) { 2128 oi = OCFS2_I(inode); 2129 trace_ocfs2_recover_orphans_iput( 2130 (unsigned long long)oi->ip_blkno); 2131 2132 iter = oi->ip_next_orphan; 2133 2134 spin_lock(&oi->ip_lock); 2135 /* The remote delete code may have set these on the 2136 * assumption that the other node would wipe them 2137 * successfully. If they are still in the node's 2138 * orphan dir, we need to reset that state. */ 2139 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); 2140 2141 /* Set the proper information to get us going into 2142 * ocfs2_delete_inode. */ 2143 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2144 spin_unlock(&oi->ip_lock); 2145 2146 iput(inode); 2147 2148 inode = iter; 2149 } 2150 2151 return ret; 2152 } 2153 2154 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2155 { 2156 /* This check is good because ocfs2 will wait on our recovery 2157 * thread before changing it to something other than MOUNTED 2158 * or DISABLED. */ 2159 wait_event(osb->osb_mount_event, 2160 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2161 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2162 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2163 2164 /* If there's an error on mount, then we may never get to the 2165 * MOUNTED flag, but this is set right before 2166 * dismount_volume() so we can trust it. */ 2167 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2168 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2169 mlog(0, "mount error, exiting!\n"); 2170 return -EBUSY; 2171 } 2172 2173 return 0; 2174 } 2175 2176 static int ocfs2_commit_thread(void *arg) 2177 { 2178 int status; 2179 struct ocfs2_super *osb = arg; 2180 struct ocfs2_journal *journal = osb->journal; 2181 2182 /* we can trust j_num_trans here because _should_stop() is only set in 2183 * shutdown and nobody other than ourselves should be able to start 2184 * transactions. committing on shutdown might take a few iterations 2185 * as final transactions put deleted inodes on the list */ 2186 while (!(kthread_should_stop() && 2187 atomic_read(&journal->j_num_trans) == 0)) { 2188 2189 wait_event_interruptible(osb->checkpoint_event, 2190 atomic_read(&journal->j_num_trans) 2191 || kthread_should_stop()); 2192 2193 status = ocfs2_commit_cache(osb); 2194 if (status < 0) 2195 mlog_errno(status); 2196 2197 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2198 mlog(ML_KTHREAD, 2199 "commit_thread: %u transactions pending on " 2200 "shutdown\n", 2201 atomic_read(&journal->j_num_trans)); 2202 } 2203 } 2204 2205 return 0; 2206 } 2207 2208 /* Reads all the journal inodes without taking any cluster locks. Used 2209 * for hard readonly access to determine whether any journal requires 2210 * recovery. Also used to refresh the recovery generation numbers after 2211 * a journal has been recovered by another node. 2212 */ 2213 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2214 { 2215 int ret = 0; 2216 unsigned int slot; 2217 struct buffer_head *di_bh = NULL; 2218 struct ocfs2_dinode *di; 2219 int journal_dirty = 0; 2220 2221 for(slot = 0; slot < osb->max_slots; slot++) { 2222 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2223 if (ret) { 2224 mlog_errno(ret); 2225 goto out; 2226 } 2227 2228 di = (struct ocfs2_dinode *) di_bh->b_data; 2229 2230 osb->slot_recovery_generations[slot] = 2231 ocfs2_get_recovery_generation(di); 2232 2233 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2234 OCFS2_JOURNAL_DIRTY_FL) 2235 journal_dirty = 1; 2236 2237 brelse(di_bh); 2238 di_bh = NULL; 2239 } 2240 2241 out: 2242 if (journal_dirty) 2243 ret = -EROFS; 2244 return ret; 2245 } 2246