1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * journal.c 4 * 5 * Defines functions of journalling api 6 * 7 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/highmem.h> 14 #include <linux/kthread.h> 15 #include <linux/time.h> 16 #include <linux/random.h> 17 #include <linux/delay.h> 18 #include <linux/writeback.h> 19 20 #include <cluster/masklog.h> 21 22 #include "ocfs2.h" 23 24 #include "alloc.h" 25 #include "blockcheck.h" 26 #include "dir.h" 27 #include "dlmglue.h" 28 #include "extent_map.h" 29 #include "heartbeat.h" 30 #include "inode.h" 31 #include "journal.h" 32 #include "localalloc.h" 33 #include "slot_map.h" 34 #include "super.h" 35 #include "sysfile.h" 36 #include "uptodate.h" 37 #include "quota.h" 38 #include "file.h" 39 #include "namei.h" 40 41 #include "buffer_head_io.h" 42 #include "ocfs2_trace.h" 43 44 DEFINE_SPINLOCK(trans_inc_lock); 45 46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 47 48 static int ocfs2_force_read_journal(struct inode *inode); 49 static int ocfs2_recover_node(struct ocfs2_super *osb, 50 int node_num, int slot_num); 51 static int __ocfs2_recovery_thread(void *arg); 52 static int ocfs2_commit_cache(struct ocfs2_super *osb); 53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 55 int dirty, int replayed); 56 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 57 int slot_num); 58 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 59 int slot, 60 enum ocfs2_orphan_reco_type orphan_reco_type); 61 static int ocfs2_commit_thread(void *arg); 62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 63 int slot_num, 64 struct ocfs2_dinode *la_dinode, 65 struct ocfs2_dinode *tl_dinode, 66 struct ocfs2_quota_recovery *qrec, 67 enum ocfs2_orphan_reco_type orphan_reco_type); 68 69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 70 { 71 return __ocfs2_wait_on_mount(osb, 0); 72 } 73 74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 75 { 76 return __ocfs2_wait_on_mount(osb, 1); 77 } 78 79 /* 80 * This replay_map is to track online/offline slots, so we could recover 81 * offline slots during recovery and mount 82 */ 83 84 enum ocfs2_replay_state { 85 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 86 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 87 REPLAY_DONE /* Replay was already queued */ 88 }; 89 90 struct ocfs2_replay_map { 91 unsigned int rm_slots; 92 enum ocfs2_replay_state rm_state; 93 unsigned char rm_replay_slots[]; 94 }; 95 96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 97 { 98 if (!osb->replay_map) 99 return; 100 101 /* If we've already queued the replay, we don't have any more to do */ 102 if (osb->replay_map->rm_state == REPLAY_DONE) 103 return; 104 105 osb->replay_map->rm_state = state; 106 } 107 108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 109 { 110 struct ocfs2_replay_map *replay_map; 111 int i, node_num; 112 113 /* If replay map is already set, we don't do it again */ 114 if (osb->replay_map) 115 return 0; 116 117 replay_map = kzalloc(struct_size(replay_map, rm_replay_slots, 118 osb->max_slots), 119 GFP_KERNEL); 120 if (!replay_map) { 121 mlog_errno(-ENOMEM); 122 return -ENOMEM; 123 } 124 125 spin_lock(&osb->osb_lock); 126 127 replay_map->rm_slots = osb->max_slots; 128 replay_map->rm_state = REPLAY_UNNEEDED; 129 130 /* set rm_replay_slots for offline slot(s) */ 131 for (i = 0; i < replay_map->rm_slots; i++) { 132 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 133 replay_map->rm_replay_slots[i] = 1; 134 } 135 136 osb->replay_map = replay_map; 137 spin_unlock(&osb->osb_lock); 138 return 0; 139 } 140 141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 142 enum ocfs2_orphan_reco_type orphan_reco_type) 143 { 144 struct ocfs2_replay_map *replay_map = osb->replay_map; 145 int i; 146 147 if (!replay_map) 148 return; 149 150 if (replay_map->rm_state != REPLAY_NEEDED) 151 return; 152 153 for (i = 0; i < replay_map->rm_slots; i++) 154 if (replay_map->rm_replay_slots[i]) 155 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 156 NULL, NULL, 157 orphan_reco_type); 158 replay_map->rm_state = REPLAY_DONE; 159 } 160 161 void ocfs2_free_replay_slots(struct ocfs2_super *osb) 162 { 163 struct ocfs2_replay_map *replay_map = osb->replay_map; 164 165 if (!osb->replay_map) 166 return; 167 168 kfree(replay_map); 169 osb->replay_map = NULL; 170 } 171 172 int ocfs2_recovery_init(struct ocfs2_super *osb) 173 { 174 struct ocfs2_recovery_map *rm; 175 176 mutex_init(&osb->recovery_lock); 177 osb->disable_recovery = 0; 178 osb->recovery_thread_task = NULL; 179 init_waitqueue_head(&osb->recovery_event); 180 181 rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots), 182 GFP_KERNEL); 183 if (!rm) { 184 mlog_errno(-ENOMEM); 185 return -ENOMEM; 186 } 187 188 osb->recovery_map = rm; 189 190 return 0; 191 } 192 193 /* we can't grab the goofy sem lock from inside wait_event, so we use 194 * memory barriers to make sure that we'll see the null task before 195 * being woken up */ 196 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 197 { 198 mb(); 199 return osb->recovery_thread_task != NULL; 200 } 201 202 void ocfs2_recovery_exit(struct ocfs2_super *osb) 203 { 204 struct ocfs2_recovery_map *rm; 205 206 /* disable any new recovery threads and wait for any currently 207 * running ones to exit. Do this before setting the vol_state. */ 208 mutex_lock(&osb->recovery_lock); 209 osb->disable_recovery = 1; 210 mutex_unlock(&osb->recovery_lock); 211 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 212 213 /* At this point, we know that no more recovery threads can be 214 * launched, so wait for any recovery completion work to 215 * complete. */ 216 if (osb->ocfs2_wq) 217 flush_workqueue(osb->ocfs2_wq); 218 219 /* 220 * Now that recovery is shut down, and the osb is about to be 221 * freed, the osb_lock is not taken here. 222 */ 223 rm = osb->recovery_map; 224 /* XXX: Should we bug if there are dirty entries? */ 225 226 kfree(rm); 227 } 228 229 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 230 unsigned int node_num) 231 { 232 int i; 233 struct ocfs2_recovery_map *rm = osb->recovery_map; 234 235 assert_spin_locked(&osb->osb_lock); 236 237 for (i = 0; i < rm->rm_used; i++) { 238 if (rm->rm_entries[i] == node_num) 239 return 1; 240 } 241 242 return 0; 243 } 244 245 /* Behaves like test-and-set. Returns the previous value */ 246 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 247 unsigned int node_num) 248 { 249 struct ocfs2_recovery_map *rm = osb->recovery_map; 250 251 spin_lock(&osb->osb_lock); 252 if (__ocfs2_recovery_map_test(osb, node_num)) { 253 spin_unlock(&osb->osb_lock); 254 return 1; 255 } 256 257 /* XXX: Can this be exploited? Not from o2dlm... */ 258 BUG_ON(rm->rm_used >= osb->max_slots); 259 260 rm->rm_entries[rm->rm_used] = node_num; 261 rm->rm_used++; 262 spin_unlock(&osb->osb_lock); 263 264 return 0; 265 } 266 267 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 268 unsigned int node_num) 269 { 270 int i; 271 struct ocfs2_recovery_map *rm = osb->recovery_map; 272 273 spin_lock(&osb->osb_lock); 274 275 for (i = 0; i < rm->rm_used; i++) { 276 if (rm->rm_entries[i] == node_num) 277 break; 278 } 279 280 if (i < rm->rm_used) { 281 /* XXX: be careful with the pointer math */ 282 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 283 (rm->rm_used - i - 1) * sizeof(unsigned int)); 284 rm->rm_used--; 285 } 286 287 spin_unlock(&osb->osb_lock); 288 } 289 290 static int ocfs2_commit_cache(struct ocfs2_super *osb) 291 { 292 int status = 0; 293 unsigned int flushed; 294 struct ocfs2_journal *journal = NULL; 295 296 journal = osb->journal; 297 298 /* Flush all pending commits and checkpoint the journal. */ 299 down_write(&journal->j_trans_barrier); 300 301 flushed = atomic_read(&journal->j_num_trans); 302 trace_ocfs2_commit_cache_begin(flushed); 303 if (flushed == 0) { 304 up_write(&journal->j_trans_barrier); 305 goto finally; 306 } 307 308 jbd2_journal_lock_updates(journal->j_journal); 309 status = jbd2_journal_flush(journal->j_journal, 0); 310 jbd2_journal_unlock_updates(journal->j_journal); 311 if (status < 0) { 312 up_write(&journal->j_trans_barrier); 313 mlog_errno(status); 314 goto finally; 315 } 316 317 ocfs2_inc_trans_id(journal); 318 319 flushed = atomic_read(&journal->j_num_trans); 320 atomic_set(&journal->j_num_trans, 0); 321 up_write(&journal->j_trans_barrier); 322 323 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 324 325 ocfs2_wake_downconvert_thread(osb); 326 wake_up(&journal->j_checkpointed); 327 finally: 328 return status; 329 } 330 331 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 332 { 333 journal_t *journal = osb->journal->j_journal; 334 handle_t *handle; 335 336 BUG_ON(!osb || !osb->journal->j_journal); 337 338 if (ocfs2_is_hard_readonly(osb)) 339 return ERR_PTR(-EROFS); 340 341 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 342 BUG_ON(max_buffs <= 0); 343 344 /* Nested transaction? Just return the handle... */ 345 if (journal_current_handle()) 346 return jbd2_journal_start(journal, max_buffs); 347 348 sb_start_intwrite(osb->sb); 349 350 down_read(&osb->journal->j_trans_barrier); 351 352 handle = jbd2_journal_start(journal, max_buffs); 353 if (IS_ERR(handle)) { 354 up_read(&osb->journal->j_trans_barrier); 355 sb_end_intwrite(osb->sb); 356 357 mlog_errno(PTR_ERR(handle)); 358 359 if (is_journal_aborted(journal)) { 360 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 361 handle = ERR_PTR(-EROFS); 362 } 363 } else { 364 if (!ocfs2_mount_local(osb)) 365 atomic_inc(&(osb->journal->j_num_trans)); 366 } 367 368 return handle; 369 } 370 371 int ocfs2_commit_trans(struct ocfs2_super *osb, 372 handle_t *handle) 373 { 374 int ret, nested; 375 struct ocfs2_journal *journal = osb->journal; 376 377 BUG_ON(!handle); 378 379 nested = handle->h_ref > 1; 380 ret = jbd2_journal_stop(handle); 381 if (ret < 0) 382 mlog_errno(ret); 383 384 if (!nested) { 385 up_read(&journal->j_trans_barrier); 386 sb_end_intwrite(osb->sb); 387 } 388 389 return ret; 390 } 391 392 /* 393 * 'nblocks' is what you want to add to the current transaction. 394 * 395 * This might call jbd2_journal_restart() which will commit dirty buffers 396 * and then restart the transaction. Before calling 397 * ocfs2_extend_trans(), any changed blocks should have been 398 * dirtied. After calling it, all blocks which need to be changed must 399 * go through another set of journal_access/journal_dirty calls. 400 * 401 * WARNING: This will not release any semaphores or disk locks taken 402 * during the transaction, so make sure they were taken *before* 403 * start_trans or we'll have ordering deadlocks. 404 * 405 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 406 * good because transaction ids haven't yet been recorded on the 407 * cluster locks associated with this handle. 408 */ 409 int ocfs2_extend_trans(handle_t *handle, int nblocks) 410 { 411 int status, old_nblocks; 412 413 BUG_ON(!handle); 414 BUG_ON(nblocks < 0); 415 416 if (!nblocks) 417 return 0; 418 419 old_nblocks = jbd2_handle_buffer_credits(handle); 420 421 trace_ocfs2_extend_trans(old_nblocks, nblocks); 422 423 #ifdef CONFIG_OCFS2_DEBUG_FS 424 status = 1; 425 #else 426 status = jbd2_journal_extend(handle, nblocks, 0); 427 if (status < 0) { 428 mlog_errno(status); 429 goto bail; 430 } 431 #endif 432 433 if (status > 0) { 434 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 435 status = jbd2_journal_restart(handle, 436 old_nblocks + nblocks); 437 if (status < 0) { 438 mlog_errno(status); 439 goto bail; 440 } 441 } 442 443 status = 0; 444 bail: 445 return status; 446 } 447 448 /* 449 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 450 * If that fails, restart the transaction & regain write access for the 451 * buffer head which is used for metadata modifications. 452 * Taken from Ext4: extend_or_restart_transaction() 453 */ 454 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 455 { 456 int status, old_nblks; 457 458 BUG_ON(!handle); 459 460 old_nblks = jbd2_handle_buffer_credits(handle); 461 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 462 463 if (old_nblks < thresh) 464 return 0; 465 466 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0); 467 if (status < 0) { 468 mlog_errno(status); 469 goto bail; 470 } 471 472 if (status > 0) { 473 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 474 if (status < 0) 475 mlog_errno(status); 476 } 477 478 bail: 479 return status; 480 } 481 482 483 struct ocfs2_triggers { 484 struct jbd2_buffer_trigger_type ot_triggers; 485 int ot_offset; 486 }; 487 488 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 489 { 490 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 491 } 492 493 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 494 struct buffer_head *bh, 495 void *data, size_t size) 496 { 497 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 498 499 /* 500 * We aren't guaranteed to have the superblock here, so we 501 * must unconditionally compute the ecc data. 502 * __ocfs2_journal_access() will only set the triggers if 503 * metaecc is enabled. 504 */ 505 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 506 } 507 508 /* 509 * Quota blocks have their own trigger because the struct ocfs2_block_check 510 * offset depends on the blocksize. 511 */ 512 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 513 struct buffer_head *bh, 514 void *data, size_t size) 515 { 516 struct ocfs2_disk_dqtrailer *dqt = 517 ocfs2_block_dqtrailer(size, data); 518 519 /* 520 * We aren't guaranteed to have the superblock here, so we 521 * must unconditionally compute the ecc data. 522 * __ocfs2_journal_access() will only set the triggers if 523 * metaecc is enabled. 524 */ 525 ocfs2_block_check_compute(data, size, &dqt->dq_check); 526 } 527 528 /* 529 * Directory blocks also have their own trigger because the 530 * struct ocfs2_block_check offset depends on the blocksize. 531 */ 532 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 533 struct buffer_head *bh, 534 void *data, size_t size) 535 { 536 struct ocfs2_dir_block_trailer *trailer = 537 ocfs2_dir_trailer_from_size(size, data); 538 539 /* 540 * We aren't guaranteed to have the superblock here, so we 541 * must unconditionally compute the ecc data. 542 * __ocfs2_journal_access() will only set the triggers if 543 * metaecc is enabled. 544 */ 545 ocfs2_block_check_compute(data, size, &trailer->db_check); 546 } 547 548 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 549 struct buffer_head *bh) 550 { 551 mlog(ML_ERROR, 552 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 553 "bh->b_blocknr = %llu\n", 554 (unsigned long)bh, 555 (unsigned long long)bh->b_blocknr); 556 557 ocfs2_error(bh->b_bdev->bd_super, 558 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 559 } 560 561 static struct ocfs2_triggers di_triggers = { 562 .ot_triggers = { 563 .t_frozen = ocfs2_frozen_trigger, 564 .t_abort = ocfs2_abort_trigger, 565 }, 566 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 567 }; 568 569 static struct ocfs2_triggers eb_triggers = { 570 .ot_triggers = { 571 .t_frozen = ocfs2_frozen_trigger, 572 .t_abort = ocfs2_abort_trigger, 573 }, 574 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 575 }; 576 577 static struct ocfs2_triggers rb_triggers = { 578 .ot_triggers = { 579 .t_frozen = ocfs2_frozen_trigger, 580 .t_abort = ocfs2_abort_trigger, 581 }, 582 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 583 }; 584 585 static struct ocfs2_triggers gd_triggers = { 586 .ot_triggers = { 587 .t_frozen = ocfs2_frozen_trigger, 588 .t_abort = ocfs2_abort_trigger, 589 }, 590 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 591 }; 592 593 static struct ocfs2_triggers db_triggers = { 594 .ot_triggers = { 595 .t_frozen = ocfs2_db_frozen_trigger, 596 .t_abort = ocfs2_abort_trigger, 597 }, 598 }; 599 600 static struct ocfs2_triggers xb_triggers = { 601 .ot_triggers = { 602 .t_frozen = ocfs2_frozen_trigger, 603 .t_abort = ocfs2_abort_trigger, 604 }, 605 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 606 }; 607 608 static struct ocfs2_triggers dq_triggers = { 609 .ot_triggers = { 610 .t_frozen = ocfs2_dq_frozen_trigger, 611 .t_abort = ocfs2_abort_trigger, 612 }, 613 }; 614 615 static struct ocfs2_triggers dr_triggers = { 616 .ot_triggers = { 617 .t_frozen = ocfs2_frozen_trigger, 618 .t_abort = ocfs2_abort_trigger, 619 }, 620 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 621 }; 622 623 static struct ocfs2_triggers dl_triggers = { 624 .ot_triggers = { 625 .t_frozen = ocfs2_frozen_trigger, 626 .t_abort = ocfs2_abort_trigger, 627 }, 628 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 629 }; 630 631 static int __ocfs2_journal_access(handle_t *handle, 632 struct ocfs2_caching_info *ci, 633 struct buffer_head *bh, 634 struct ocfs2_triggers *triggers, 635 int type) 636 { 637 int status; 638 struct ocfs2_super *osb = 639 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 640 641 BUG_ON(!ci || !ci->ci_ops); 642 BUG_ON(!handle); 643 BUG_ON(!bh); 644 645 trace_ocfs2_journal_access( 646 (unsigned long long)ocfs2_metadata_cache_owner(ci), 647 (unsigned long long)bh->b_blocknr, type, bh->b_size); 648 649 /* we can safely remove this assertion after testing. */ 650 if (!buffer_uptodate(bh)) { 651 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 652 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 653 (unsigned long long)bh->b_blocknr, bh->b_state); 654 655 lock_buffer(bh); 656 /* 657 * A previous transaction with a couple of buffer heads fail 658 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 659 * For current transaction, the bh is just among those error 660 * bhs which previous transaction handle. We can't just clear 661 * its BH_Write_EIO and reuse directly, since other bhs are 662 * not written to disk yet and that will cause metadata 663 * inconsistency. So we should set fs read-only to avoid 664 * further damage. 665 */ 666 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 667 unlock_buffer(bh); 668 return ocfs2_error(osb->sb, "A previous attempt to " 669 "write this buffer head failed\n"); 670 } 671 unlock_buffer(bh); 672 } 673 674 /* Set the current transaction information on the ci so 675 * that the locking code knows whether it can drop it's locks 676 * on this ci or not. We're protected from the commit 677 * thread updating the current transaction id until 678 * ocfs2_commit_trans() because ocfs2_start_trans() took 679 * j_trans_barrier for us. */ 680 ocfs2_set_ci_lock_trans(osb->journal, ci); 681 682 ocfs2_metadata_cache_io_lock(ci); 683 switch (type) { 684 case OCFS2_JOURNAL_ACCESS_CREATE: 685 case OCFS2_JOURNAL_ACCESS_WRITE: 686 status = jbd2_journal_get_write_access(handle, bh); 687 break; 688 689 case OCFS2_JOURNAL_ACCESS_UNDO: 690 status = jbd2_journal_get_undo_access(handle, bh); 691 break; 692 693 default: 694 status = -EINVAL; 695 mlog(ML_ERROR, "Unknown access type!\n"); 696 } 697 if (!status && ocfs2_meta_ecc(osb) && triggers) 698 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 699 ocfs2_metadata_cache_io_unlock(ci); 700 701 if (status < 0) 702 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 703 status, type); 704 705 return status; 706 } 707 708 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 709 struct buffer_head *bh, int type) 710 { 711 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 712 } 713 714 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 715 struct buffer_head *bh, int type) 716 { 717 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 718 } 719 720 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 721 struct buffer_head *bh, int type) 722 { 723 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 724 type); 725 } 726 727 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 728 struct buffer_head *bh, int type) 729 { 730 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 731 } 732 733 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 734 struct buffer_head *bh, int type) 735 { 736 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 737 } 738 739 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 740 struct buffer_head *bh, int type) 741 { 742 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 743 } 744 745 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 746 struct buffer_head *bh, int type) 747 { 748 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 749 } 750 751 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 752 struct buffer_head *bh, int type) 753 { 754 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 755 } 756 757 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 758 struct buffer_head *bh, int type) 759 { 760 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 761 } 762 763 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 764 struct buffer_head *bh, int type) 765 { 766 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 767 } 768 769 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 770 { 771 int status; 772 773 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 774 775 status = jbd2_journal_dirty_metadata(handle, bh); 776 if (status) { 777 mlog_errno(status); 778 if (!is_handle_aborted(handle)) { 779 journal_t *journal = handle->h_transaction->t_journal; 780 struct super_block *sb = bh->b_bdev->bd_super; 781 782 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " 783 "Aborting transaction and journal.\n"); 784 handle->h_err = status; 785 jbd2_journal_abort_handle(handle); 786 jbd2_journal_abort(journal, status); 787 ocfs2_abort(sb, "Journal already aborted.\n"); 788 } 789 } 790 } 791 792 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 793 794 void ocfs2_set_journal_params(struct ocfs2_super *osb) 795 { 796 journal_t *journal = osb->journal->j_journal; 797 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 798 799 if (osb->osb_commit_interval) 800 commit_interval = osb->osb_commit_interval; 801 802 write_lock(&journal->j_state_lock); 803 journal->j_commit_interval = commit_interval; 804 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 805 journal->j_flags |= JBD2_BARRIER; 806 else 807 journal->j_flags &= ~JBD2_BARRIER; 808 write_unlock(&journal->j_state_lock); 809 } 810 811 /* 812 * alloc & initialize skeleton for journal structure. 813 * ocfs2_journal_init() will make fs have journal ability. 814 */ 815 int ocfs2_journal_alloc(struct ocfs2_super *osb) 816 { 817 int status = 0; 818 struct ocfs2_journal *journal; 819 820 journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL); 821 if (!journal) { 822 mlog(ML_ERROR, "unable to alloc journal\n"); 823 status = -ENOMEM; 824 goto bail; 825 } 826 osb->journal = journal; 827 journal->j_osb = osb; 828 829 atomic_set(&journal->j_num_trans, 0); 830 init_rwsem(&journal->j_trans_barrier); 831 init_waitqueue_head(&journal->j_checkpointed); 832 spin_lock_init(&journal->j_lock); 833 journal->j_trans_id = 1UL; 834 INIT_LIST_HEAD(&journal->j_la_cleanups); 835 INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery); 836 journal->j_state = OCFS2_JOURNAL_FREE; 837 838 bail: 839 return status; 840 } 841 842 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 843 { 844 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 845 struct writeback_control wbc = { 846 .sync_mode = WB_SYNC_ALL, 847 .nr_to_write = mapping->nrpages * 2, 848 .range_start = jinode->i_dirty_start, 849 .range_end = jinode->i_dirty_end, 850 }; 851 852 return filemap_fdatawrite_wbc(mapping, &wbc); 853 } 854 855 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty) 856 { 857 int status = -1; 858 struct inode *inode = NULL; /* the journal inode */ 859 journal_t *j_journal = NULL; 860 struct ocfs2_journal *journal = osb->journal; 861 struct ocfs2_dinode *di = NULL; 862 struct buffer_head *bh = NULL; 863 int inode_lock = 0; 864 865 BUG_ON(!journal); 866 /* already have the inode for our journal */ 867 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 868 osb->slot_num); 869 if (inode == NULL) { 870 status = -EACCES; 871 mlog_errno(status); 872 goto done; 873 } 874 if (is_bad_inode(inode)) { 875 mlog(ML_ERROR, "access error (bad inode)\n"); 876 iput(inode); 877 inode = NULL; 878 status = -EACCES; 879 goto done; 880 } 881 882 SET_INODE_JOURNAL(inode); 883 OCFS2_I(inode)->ip_open_count++; 884 885 /* Skip recovery waits here - journal inode metadata never 886 * changes in a live cluster so it can be considered an 887 * exception to the rule. */ 888 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 889 if (status < 0) { 890 if (status != -ERESTARTSYS) 891 mlog(ML_ERROR, "Could not get lock on journal!\n"); 892 goto done; 893 } 894 895 inode_lock = 1; 896 di = (struct ocfs2_dinode *)bh->b_data; 897 898 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 899 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 900 i_size_read(inode)); 901 status = -EINVAL; 902 goto done; 903 } 904 905 trace_ocfs2_journal_init(i_size_read(inode), 906 (unsigned long long)inode->i_blocks, 907 OCFS2_I(inode)->ip_clusters); 908 909 /* call the kernels journal init function now */ 910 j_journal = jbd2_journal_init_inode(inode); 911 if (j_journal == NULL) { 912 mlog(ML_ERROR, "Linux journal layer error\n"); 913 status = -EINVAL; 914 goto done; 915 } 916 917 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len); 918 919 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 920 OCFS2_JOURNAL_DIRTY_FL); 921 922 journal->j_journal = j_journal; 923 journal->j_journal->j_submit_inode_data_buffers = 924 ocfs2_journal_submit_inode_data_buffers; 925 journal->j_journal->j_finish_inode_data_buffers = 926 jbd2_journal_finish_inode_data_buffers; 927 journal->j_inode = inode; 928 journal->j_bh = bh; 929 930 ocfs2_set_journal_params(osb); 931 932 journal->j_state = OCFS2_JOURNAL_LOADED; 933 934 status = 0; 935 done: 936 if (status < 0) { 937 if (inode_lock) 938 ocfs2_inode_unlock(inode, 1); 939 brelse(bh); 940 if (inode) { 941 OCFS2_I(inode)->ip_open_count--; 942 iput(inode); 943 } 944 } 945 946 return status; 947 } 948 949 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 950 { 951 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 952 } 953 954 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 955 { 956 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 957 } 958 959 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 960 int dirty, int replayed) 961 { 962 int status; 963 unsigned int flags; 964 struct ocfs2_journal *journal = osb->journal; 965 struct buffer_head *bh = journal->j_bh; 966 struct ocfs2_dinode *fe; 967 968 fe = (struct ocfs2_dinode *)bh->b_data; 969 970 /* The journal bh on the osb always comes from ocfs2_journal_init() 971 * and was validated there inside ocfs2_inode_lock_full(). It's a 972 * code bug if we mess it up. */ 973 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 974 975 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 976 if (dirty) 977 flags |= OCFS2_JOURNAL_DIRTY_FL; 978 else 979 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 980 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 981 982 if (replayed) 983 ocfs2_bump_recovery_generation(fe); 984 985 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 986 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 987 if (status < 0) 988 mlog_errno(status); 989 990 return status; 991 } 992 993 /* 994 * If the journal has been kmalloc'd it needs to be freed after this 995 * call. 996 */ 997 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 998 { 999 struct ocfs2_journal *journal = NULL; 1000 int status = 0; 1001 struct inode *inode = NULL; 1002 int num_running_trans = 0; 1003 1004 BUG_ON(!osb); 1005 1006 journal = osb->journal; 1007 if (!journal) 1008 goto done; 1009 1010 inode = journal->j_inode; 1011 1012 if (journal->j_state != OCFS2_JOURNAL_LOADED) 1013 goto done; 1014 1015 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 1016 if (!igrab(inode)) 1017 BUG(); 1018 1019 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 1020 trace_ocfs2_journal_shutdown(num_running_trans); 1021 1022 /* Do a commit_cache here. It will flush our journal, *and* 1023 * release any locks that are still held. 1024 * set the SHUTDOWN flag and release the trans lock. 1025 * the commit thread will take the trans lock for us below. */ 1026 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 1027 1028 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 1029 * drop the trans_lock (which we want to hold until we 1030 * completely destroy the journal. */ 1031 if (osb->commit_task) { 1032 /* Wait for the commit thread */ 1033 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 1034 kthread_stop(osb->commit_task); 1035 osb->commit_task = NULL; 1036 } 1037 1038 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 1039 1040 if (ocfs2_mount_local(osb)) { 1041 jbd2_journal_lock_updates(journal->j_journal); 1042 status = jbd2_journal_flush(journal->j_journal, 0); 1043 jbd2_journal_unlock_updates(journal->j_journal); 1044 if (status < 0) 1045 mlog_errno(status); 1046 } 1047 1048 /* Shutdown the kernel journal system */ 1049 if (!jbd2_journal_destroy(journal->j_journal) && !status) { 1050 /* 1051 * Do not toggle if flush was unsuccessful otherwise 1052 * will leave dirty metadata in a "clean" journal 1053 */ 1054 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1055 if (status < 0) 1056 mlog_errno(status); 1057 } 1058 journal->j_journal = NULL; 1059 1060 OCFS2_I(inode)->ip_open_count--; 1061 1062 /* unlock our journal */ 1063 ocfs2_inode_unlock(inode, 1); 1064 1065 brelse(journal->j_bh); 1066 journal->j_bh = NULL; 1067 1068 journal->j_state = OCFS2_JOURNAL_FREE; 1069 1070 done: 1071 iput(inode); 1072 kfree(journal); 1073 osb->journal = NULL; 1074 } 1075 1076 static void ocfs2_clear_journal_error(struct super_block *sb, 1077 journal_t *journal, 1078 int slot) 1079 { 1080 int olderr; 1081 1082 olderr = jbd2_journal_errno(journal); 1083 if (olderr) { 1084 mlog(ML_ERROR, "File system error %d recorded in " 1085 "journal %u.\n", olderr, slot); 1086 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1087 sb->s_id); 1088 1089 jbd2_journal_ack_err(journal); 1090 jbd2_journal_clear_err(journal); 1091 } 1092 } 1093 1094 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1095 { 1096 int status = 0; 1097 struct ocfs2_super *osb; 1098 1099 BUG_ON(!journal); 1100 1101 osb = journal->j_osb; 1102 1103 status = jbd2_journal_load(journal->j_journal); 1104 if (status < 0) { 1105 mlog(ML_ERROR, "Failed to load journal!\n"); 1106 goto done; 1107 } 1108 1109 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1110 1111 if (replayed) { 1112 jbd2_journal_lock_updates(journal->j_journal); 1113 status = jbd2_journal_flush(journal->j_journal, 0); 1114 jbd2_journal_unlock_updates(journal->j_journal); 1115 if (status < 0) 1116 mlog_errno(status); 1117 } 1118 1119 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1120 if (status < 0) { 1121 mlog_errno(status); 1122 goto done; 1123 } 1124 1125 /* Launch the commit thread */ 1126 if (!local) { 1127 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1128 "ocfs2cmt-%s", osb->uuid_str); 1129 if (IS_ERR(osb->commit_task)) { 1130 status = PTR_ERR(osb->commit_task); 1131 osb->commit_task = NULL; 1132 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1133 "error=%d", status); 1134 goto done; 1135 } 1136 } else 1137 osb->commit_task = NULL; 1138 1139 done: 1140 return status; 1141 } 1142 1143 1144 /* 'full' flag tells us whether we clear out all blocks or if we just 1145 * mark the journal clean */ 1146 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1147 { 1148 int status; 1149 1150 BUG_ON(!journal); 1151 1152 status = jbd2_journal_wipe(journal->j_journal, full); 1153 if (status < 0) { 1154 mlog_errno(status); 1155 goto bail; 1156 } 1157 1158 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1159 if (status < 0) 1160 mlog_errno(status); 1161 1162 bail: 1163 return status; 1164 } 1165 1166 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1167 { 1168 int empty; 1169 struct ocfs2_recovery_map *rm = osb->recovery_map; 1170 1171 spin_lock(&osb->osb_lock); 1172 empty = (rm->rm_used == 0); 1173 spin_unlock(&osb->osb_lock); 1174 1175 return empty; 1176 } 1177 1178 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1179 { 1180 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1181 } 1182 1183 /* 1184 * JBD Might read a cached version of another nodes journal file. We 1185 * don't want this as this file changes often and we get no 1186 * notification on those changes. The only way to be sure that we've 1187 * got the most up to date version of those blocks then is to force 1188 * read them off disk. Just searching through the buffer cache won't 1189 * work as there may be pages backing this file which are still marked 1190 * up to date. We know things can't change on this file underneath us 1191 * as we have the lock by now :) 1192 */ 1193 static int ocfs2_force_read_journal(struct inode *inode) 1194 { 1195 int status = 0; 1196 int i; 1197 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1198 struct buffer_head *bh = NULL; 1199 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1200 1201 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1202 v_blkno = 0; 1203 while (v_blkno < num_blocks) { 1204 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1205 &p_blkno, &p_blocks, NULL); 1206 if (status < 0) { 1207 mlog_errno(status); 1208 goto bail; 1209 } 1210 1211 for (i = 0; i < p_blocks; i++, p_blkno++) { 1212 bh = __find_get_block(osb->sb->s_bdev, p_blkno, 1213 osb->sb->s_blocksize); 1214 /* block not cached. */ 1215 if (!bh) 1216 continue; 1217 1218 brelse(bh); 1219 bh = NULL; 1220 /* We are reading journal data which should not 1221 * be put in the uptodate cache. 1222 */ 1223 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1224 if (status < 0) { 1225 mlog_errno(status); 1226 goto bail; 1227 } 1228 1229 brelse(bh); 1230 bh = NULL; 1231 } 1232 1233 v_blkno += p_blocks; 1234 } 1235 1236 bail: 1237 return status; 1238 } 1239 1240 struct ocfs2_la_recovery_item { 1241 struct list_head lri_list; 1242 int lri_slot; 1243 struct ocfs2_dinode *lri_la_dinode; 1244 struct ocfs2_dinode *lri_tl_dinode; 1245 struct ocfs2_quota_recovery *lri_qrec; 1246 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1247 }; 1248 1249 /* Does the second half of the recovery process. By this point, the 1250 * node is marked clean and can actually be considered recovered, 1251 * hence it's no longer in the recovery map, but there's still some 1252 * cleanup we can do which shouldn't happen within the recovery thread 1253 * as locking in that context becomes very difficult if we are to take 1254 * recovering nodes into account. 1255 * 1256 * NOTE: This function can and will sleep on recovery of other nodes 1257 * during cluster locking, just like any other ocfs2 process. 1258 */ 1259 void ocfs2_complete_recovery(struct work_struct *work) 1260 { 1261 int ret = 0; 1262 struct ocfs2_journal *journal = 1263 container_of(work, struct ocfs2_journal, j_recovery_work); 1264 struct ocfs2_super *osb = journal->j_osb; 1265 struct ocfs2_dinode *la_dinode, *tl_dinode; 1266 struct ocfs2_la_recovery_item *item, *n; 1267 struct ocfs2_quota_recovery *qrec; 1268 enum ocfs2_orphan_reco_type orphan_reco_type; 1269 LIST_HEAD(tmp_la_list); 1270 1271 trace_ocfs2_complete_recovery( 1272 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1273 1274 spin_lock(&journal->j_lock); 1275 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1276 spin_unlock(&journal->j_lock); 1277 1278 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1279 list_del_init(&item->lri_list); 1280 1281 ocfs2_wait_on_quotas(osb); 1282 1283 la_dinode = item->lri_la_dinode; 1284 tl_dinode = item->lri_tl_dinode; 1285 qrec = item->lri_qrec; 1286 orphan_reco_type = item->lri_orphan_reco_type; 1287 1288 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1289 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1290 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1291 qrec); 1292 1293 if (la_dinode) { 1294 ret = ocfs2_complete_local_alloc_recovery(osb, 1295 la_dinode); 1296 if (ret < 0) 1297 mlog_errno(ret); 1298 1299 kfree(la_dinode); 1300 } 1301 1302 if (tl_dinode) { 1303 ret = ocfs2_complete_truncate_log_recovery(osb, 1304 tl_dinode); 1305 if (ret < 0) 1306 mlog_errno(ret); 1307 1308 kfree(tl_dinode); 1309 } 1310 1311 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1312 orphan_reco_type); 1313 if (ret < 0) 1314 mlog_errno(ret); 1315 1316 if (qrec) { 1317 ret = ocfs2_finish_quota_recovery(osb, qrec, 1318 item->lri_slot); 1319 if (ret < 0) 1320 mlog_errno(ret); 1321 /* Recovery info is already freed now */ 1322 } 1323 1324 kfree(item); 1325 } 1326 1327 trace_ocfs2_complete_recovery_end(ret); 1328 } 1329 1330 /* NOTE: This function always eats your references to la_dinode and 1331 * tl_dinode, either manually on error, or by passing them to 1332 * ocfs2_complete_recovery */ 1333 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1334 int slot_num, 1335 struct ocfs2_dinode *la_dinode, 1336 struct ocfs2_dinode *tl_dinode, 1337 struct ocfs2_quota_recovery *qrec, 1338 enum ocfs2_orphan_reco_type orphan_reco_type) 1339 { 1340 struct ocfs2_la_recovery_item *item; 1341 1342 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1343 if (!item) { 1344 /* Though we wish to avoid it, we are in fact safe in 1345 * skipping local alloc cleanup as fsck.ocfs2 is more 1346 * than capable of reclaiming unused space. */ 1347 kfree(la_dinode); 1348 kfree(tl_dinode); 1349 1350 if (qrec) 1351 ocfs2_free_quota_recovery(qrec); 1352 1353 mlog_errno(-ENOMEM); 1354 return; 1355 } 1356 1357 INIT_LIST_HEAD(&item->lri_list); 1358 item->lri_la_dinode = la_dinode; 1359 item->lri_slot = slot_num; 1360 item->lri_tl_dinode = tl_dinode; 1361 item->lri_qrec = qrec; 1362 item->lri_orphan_reco_type = orphan_reco_type; 1363 1364 spin_lock(&journal->j_lock); 1365 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1366 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1367 spin_unlock(&journal->j_lock); 1368 } 1369 1370 /* Called by the mount code to queue recovery the last part of 1371 * recovery for it's own and offline slot(s). */ 1372 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1373 { 1374 struct ocfs2_journal *journal = osb->journal; 1375 1376 if (ocfs2_is_hard_readonly(osb)) 1377 return; 1378 1379 /* No need to queue up our truncate_log as regular cleanup will catch 1380 * that */ 1381 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1382 osb->local_alloc_copy, NULL, NULL, 1383 ORPHAN_NEED_TRUNCATE); 1384 ocfs2_schedule_truncate_log_flush(osb, 0); 1385 1386 osb->local_alloc_copy = NULL; 1387 1388 /* queue to recover orphan slots for all offline slots */ 1389 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1390 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1391 ocfs2_free_replay_slots(osb); 1392 } 1393 1394 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1395 { 1396 if (osb->quota_rec) { 1397 ocfs2_queue_recovery_completion(osb->journal, 1398 osb->slot_num, 1399 NULL, 1400 NULL, 1401 osb->quota_rec, 1402 ORPHAN_NEED_TRUNCATE); 1403 osb->quota_rec = NULL; 1404 } 1405 } 1406 1407 static int __ocfs2_recovery_thread(void *arg) 1408 { 1409 int status, node_num, slot_num; 1410 struct ocfs2_super *osb = arg; 1411 struct ocfs2_recovery_map *rm = osb->recovery_map; 1412 int *rm_quota = NULL; 1413 int rm_quota_used = 0, i; 1414 struct ocfs2_quota_recovery *qrec; 1415 1416 /* Whether the quota supported. */ 1417 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1418 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1419 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1420 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1421 1422 status = ocfs2_wait_on_mount(osb); 1423 if (status < 0) { 1424 goto bail; 1425 } 1426 1427 if (quota_enabled) { 1428 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1429 if (!rm_quota) { 1430 status = -ENOMEM; 1431 goto bail; 1432 } 1433 } 1434 restart: 1435 status = ocfs2_super_lock(osb, 1); 1436 if (status < 0) { 1437 mlog_errno(status); 1438 goto bail; 1439 } 1440 1441 status = ocfs2_compute_replay_slots(osb); 1442 if (status < 0) 1443 mlog_errno(status); 1444 1445 /* queue recovery for our own slot */ 1446 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1447 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1448 1449 spin_lock(&osb->osb_lock); 1450 while (rm->rm_used) { 1451 /* It's always safe to remove entry zero, as we won't 1452 * clear it until ocfs2_recover_node() has succeeded. */ 1453 node_num = rm->rm_entries[0]; 1454 spin_unlock(&osb->osb_lock); 1455 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1456 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1457 if (slot_num == -ENOENT) { 1458 status = 0; 1459 goto skip_recovery; 1460 } 1461 1462 /* It is a bit subtle with quota recovery. We cannot do it 1463 * immediately because we have to obtain cluster locks from 1464 * quota files and we also don't want to just skip it because 1465 * then quota usage would be out of sync until some node takes 1466 * the slot. So we remember which nodes need quota recovery 1467 * and when everything else is done, we recover quotas. */ 1468 if (quota_enabled) { 1469 for (i = 0; i < rm_quota_used 1470 && rm_quota[i] != slot_num; i++) 1471 ; 1472 1473 if (i == rm_quota_used) 1474 rm_quota[rm_quota_used++] = slot_num; 1475 } 1476 1477 status = ocfs2_recover_node(osb, node_num, slot_num); 1478 skip_recovery: 1479 if (!status) { 1480 ocfs2_recovery_map_clear(osb, node_num); 1481 } else { 1482 mlog(ML_ERROR, 1483 "Error %d recovering node %d on device (%u,%u)!\n", 1484 status, node_num, 1485 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1486 mlog(ML_ERROR, "Volume requires unmount.\n"); 1487 } 1488 1489 spin_lock(&osb->osb_lock); 1490 } 1491 spin_unlock(&osb->osb_lock); 1492 trace_ocfs2_recovery_thread_end(status); 1493 1494 /* Refresh all journal recovery generations from disk */ 1495 status = ocfs2_check_journals_nolocks(osb); 1496 status = (status == -EROFS) ? 0 : status; 1497 if (status < 0) 1498 mlog_errno(status); 1499 1500 /* Now it is right time to recover quotas... We have to do this under 1501 * superblock lock so that no one can start using the slot (and crash) 1502 * before we recover it */ 1503 if (quota_enabled) { 1504 for (i = 0; i < rm_quota_used; i++) { 1505 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1506 if (IS_ERR(qrec)) { 1507 status = PTR_ERR(qrec); 1508 mlog_errno(status); 1509 continue; 1510 } 1511 ocfs2_queue_recovery_completion(osb->journal, 1512 rm_quota[i], 1513 NULL, NULL, qrec, 1514 ORPHAN_NEED_TRUNCATE); 1515 } 1516 } 1517 1518 ocfs2_super_unlock(osb, 1); 1519 1520 /* queue recovery for offline slots */ 1521 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1522 1523 bail: 1524 mutex_lock(&osb->recovery_lock); 1525 if (!status && !ocfs2_recovery_completed(osb)) { 1526 mutex_unlock(&osb->recovery_lock); 1527 goto restart; 1528 } 1529 1530 ocfs2_free_replay_slots(osb); 1531 osb->recovery_thread_task = NULL; 1532 mb(); /* sync with ocfs2_recovery_thread_running */ 1533 wake_up(&osb->recovery_event); 1534 1535 mutex_unlock(&osb->recovery_lock); 1536 1537 if (quota_enabled) 1538 kfree(rm_quota); 1539 1540 return status; 1541 } 1542 1543 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1544 { 1545 mutex_lock(&osb->recovery_lock); 1546 1547 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1548 osb->disable_recovery, osb->recovery_thread_task, 1549 osb->disable_recovery ? 1550 -1 : ocfs2_recovery_map_set(osb, node_num)); 1551 1552 if (osb->disable_recovery) 1553 goto out; 1554 1555 if (osb->recovery_thread_task) 1556 goto out; 1557 1558 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1559 "ocfs2rec-%s", osb->uuid_str); 1560 if (IS_ERR(osb->recovery_thread_task)) { 1561 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1562 osb->recovery_thread_task = NULL; 1563 } 1564 1565 out: 1566 mutex_unlock(&osb->recovery_lock); 1567 wake_up(&osb->recovery_event); 1568 } 1569 1570 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1571 int slot_num, 1572 struct buffer_head **bh, 1573 struct inode **ret_inode) 1574 { 1575 int status = -EACCES; 1576 struct inode *inode = NULL; 1577 1578 BUG_ON(slot_num >= osb->max_slots); 1579 1580 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1581 slot_num); 1582 if (!inode || is_bad_inode(inode)) { 1583 mlog_errno(status); 1584 goto bail; 1585 } 1586 SET_INODE_JOURNAL(inode); 1587 1588 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1589 if (status < 0) { 1590 mlog_errno(status); 1591 goto bail; 1592 } 1593 1594 status = 0; 1595 1596 bail: 1597 if (inode) { 1598 if (status || !ret_inode) 1599 iput(inode); 1600 else 1601 *ret_inode = inode; 1602 } 1603 return status; 1604 } 1605 1606 /* Does the actual journal replay and marks the journal inode as 1607 * clean. Will only replay if the journal inode is marked dirty. */ 1608 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1609 int node_num, 1610 int slot_num) 1611 { 1612 int status; 1613 int got_lock = 0; 1614 unsigned int flags; 1615 struct inode *inode = NULL; 1616 struct ocfs2_dinode *fe; 1617 journal_t *journal = NULL; 1618 struct buffer_head *bh = NULL; 1619 u32 slot_reco_gen; 1620 1621 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1622 if (status) { 1623 mlog_errno(status); 1624 goto done; 1625 } 1626 1627 fe = (struct ocfs2_dinode *)bh->b_data; 1628 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1629 brelse(bh); 1630 bh = NULL; 1631 1632 /* 1633 * As the fs recovery is asynchronous, there is a small chance that 1634 * another node mounted (and recovered) the slot before the recovery 1635 * thread could get the lock. To handle that, we dirty read the journal 1636 * inode for that slot to get the recovery generation. If it is 1637 * different than what we expected, the slot has been recovered. 1638 * If not, it needs recovery. 1639 */ 1640 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1641 trace_ocfs2_replay_journal_recovered(slot_num, 1642 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1643 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1644 status = -EBUSY; 1645 goto done; 1646 } 1647 1648 /* Continue with recovery as the journal has not yet been recovered */ 1649 1650 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1651 if (status < 0) { 1652 trace_ocfs2_replay_journal_lock_err(status); 1653 if (status != -ERESTARTSYS) 1654 mlog(ML_ERROR, "Could not lock journal!\n"); 1655 goto done; 1656 } 1657 got_lock = 1; 1658 1659 fe = (struct ocfs2_dinode *) bh->b_data; 1660 1661 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1662 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1663 1664 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1665 trace_ocfs2_replay_journal_skip(node_num); 1666 /* Refresh recovery generation for the slot */ 1667 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1668 goto done; 1669 } 1670 1671 /* we need to run complete recovery for offline orphan slots */ 1672 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1673 1674 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1675 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1676 MINOR(osb->sb->s_dev)); 1677 1678 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1679 1680 status = ocfs2_force_read_journal(inode); 1681 if (status < 0) { 1682 mlog_errno(status); 1683 goto done; 1684 } 1685 1686 journal = jbd2_journal_init_inode(inode); 1687 if (journal == NULL) { 1688 mlog(ML_ERROR, "Linux journal layer error\n"); 1689 status = -EIO; 1690 goto done; 1691 } 1692 1693 status = jbd2_journal_load(journal); 1694 if (status < 0) { 1695 mlog_errno(status); 1696 BUG_ON(!igrab(inode)); 1697 jbd2_journal_destroy(journal); 1698 goto done; 1699 } 1700 1701 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1702 1703 /* wipe the journal */ 1704 jbd2_journal_lock_updates(journal); 1705 status = jbd2_journal_flush(journal, 0); 1706 jbd2_journal_unlock_updates(journal); 1707 if (status < 0) 1708 mlog_errno(status); 1709 1710 /* This will mark the node clean */ 1711 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1712 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1713 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1714 1715 /* Increment recovery generation to indicate successful recovery */ 1716 ocfs2_bump_recovery_generation(fe); 1717 osb->slot_recovery_generations[slot_num] = 1718 ocfs2_get_recovery_generation(fe); 1719 1720 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1721 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1722 if (status < 0) 1723 mlog_errno(status); 1724 1725 BUG_ON(!igrab(inode)); 1726 1727 jbd2_journal_destroy(journal); 1728 1729 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1730 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1731 MINOR(osb->sb->s_dev)); 1732 done: 1733 /* drop the lock on this nodes journal */ 1734 if (got_lock) 1735 ocfs2_inode_unlock(inode, 1); 1736 1737 iput(inode); 1738 brelse(bh); 1739 1740 return status; 1741 } 1742 1743 /* 1744 * Do the most important parts of node recovery: 1745 * - Replay it's journal 1746 * - Stamp a clean local allocator file 1747 * - Stamp a clean truncate log 1748 * - Mark the node clean 1749 * 1750 * If this function completes without error, a node in OCFS2 can be 1751 * said to have been safely recovered. As a result, failure during the 1752 * second part of a nodes recovery process (local alloc recovery) is 1753 * far less concerning. 1754 */ 1755 static int ocfs2_recover_node(struct ocfs2_super *osb, 1756 int node_num, int slot_num) 1757 { 1758 int status = 0; 1759 struct ocfs2_dinode *la_copy = NULL; 1760 struct ocfs2_dinode *tl_copy = NULL; 1761 1762 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1763 1764 /* Should not ever be called to recover ourselves -- in that 1765 * case we should've called ocfs2_journal_load instead. */ 1766 BUG_ON(osb->node_num == node_num); 1767 1768 status = ocfs2_replay_journal(osb, node_num, slot_num); 1769 if (status < 0) { 1770 if (status == -EBUSY) { 1771 trace_ocfs2_recover_node_skip(slot_num, node_num); 1772 status = 0; 1773 goto done; 1774 } 1775 mlog_errno(status); 1776 goto done; 1777 } 1778 1779 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1780 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1781 if (status < 0) { 1782 mlog_errno(status); 1783 goto done; 1784 } 1785 1786 /* An error from begin_truncate_log_recovery is not 1787 * serious enough to warrant halting the rest of 1788 * recovery. */ 1789 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1790 if (status < 0) 1791 mlog_errno(status); 1792 1793 /* Likewise, this would be a strange but ultimately not so 1794 * harmful place to get an error... */ 1795 status = ocfs2_clear_slot(osb, slot_num); 1796 if (status < 0) 1797 mlog_errno(status); 1798 1799 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1800 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1801 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1802 1803 status = 0; 1804 done: 1805 1806 return status; 1807 } 1808 1809 /* Test node liveness by trylocking his journal. If we get the lock, 1810 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1811 * still alive (we couldn't get the lock) and < 0 on error. */ 1812 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1813 int slot_num) 1814 { 1815 int status, flags; 1816 struct inode *inode = NULL; 1817 1818 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1819 slot_num); 1820 if (inode == NULL) { 1821 mlog(ML_ERROR, "access error\n"); 1822 status = -EACCES; 1823 goto bail; 1824 } 1825 if (is_bad_inode(inode)) { 1826 mlog(ML_ERROR, "access error (bad inode)\n"); 1827 iput(inode); 1828 inode = NULL; 1829 status = -EACCES; 1830 goto bail; 1831 } 1832 SET_INODE_JOURNAL(inode); 1833 1834 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1835 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1836 if (status < 0) { 1837 if (status != -EAGAIN) 1838 mlog_errno(status); 1839 goto bail; 1840 } 1841 1842 ocfs2_inode_unlock(inode, 1); 1843 bail: 1844 iput(inode); 1845 1846 return status; 1847 } 1848 1849 /* Call this underneath ocfs2_super_lock. It also assumes that the 1850 * slot info struct has been updated from disk. */ 1851 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1852 { 1853 unsigned int node_num; 1854 int status, i; 1855 u32 gen; 1856 struct buffer_head *bh = NULL; 1857 struct ocfs2_dinode *di; 1858 1859 /* This is called with the super block cluster lock, so we 1860 * know that the slot map can't change underneath us. */ 1861 1862 for (i = 0; i < osb->max_slots; i++) { 1863 /* Read journal inode to get the recovery generation */ 1864 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1865 if (status) { 1866 mlog_errno(status); 1867 goto bail; 1868 } 1869 di = (struct ocfs2_dinode *)bh->b_data; 1870 gen = ocfs2_get_recovery_generation(di); 1871 brelse(bh); 1872 bh = NULL; 1873 1874 spin_lock(&osb->osb_lock); 1875 osb->slot_recovery_generations[i] = gen; 1876 1877 trace_ocfs2_mark_dead_nodes(i, 1878 osb->slot_recovery_generations[i]); 1879 1880 if (i == osb->slot_num) { 1881 spin_unlock(&osb->osb_lock); 1882 continue; 1883 } 1884 1885 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1886 if (status == -ENOENT) { 1887 spin_unlock(&osb->osb_lock); 1888 continue; 1889 } 1890 1891 if (__ocfs2_recovery_map_test(osb, node_num)) { 1892 spin_unlock(&osb->osb_lock); 1893 continue; 1894 } 1895 spin_unlock(&osb->osb_lock); 1896 1897 /* Ok, we have a slot occupied by another node which 1898 * is not in the recovery map. We trylock his journal 1899 * file here to test if he's alive. */ 1900 status = ocfs2_trylock_journal(osb, i); 1901 if (!status) { 1902 /* Since we're called from mount, we know that 1903 * the recovery thread can't race us on 1904 * setting / checking the recovery bits. */ 1905 ocfs2_recovery_thread(osb, node_num); 1906 } else if ((status < 0) && (status != -EAGAIN)) { 1907 mlog_errno(status); 1908 goto bail; 1909 } 1910 } 1911 1912 status = 0; 1913 bail: 1914 return status; 1915 } 1916 1917 /* 1918 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1919 * randomness to the timeout to minimize multple nodes firing the timer at the 1920 * same time. 1921 */ 1922 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1923 { 1924 unsigned long time; 1925 1926 get_random_bytes(&time, sizeof(time)); 1927 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1928 return msecs_to_jiffies(time); 1929 } 1930 1931 /* 1932 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1933 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1934 * is done to catch any orphans that are left over in orphan directories. 1935 * 1936 * It scans all slots, even ones that are in use. It does so to handle the 1937 * case described below: 1938 * 1939 * Node 1 has an inode it was using. The dentry went away due to memory 1940 * pressure. Node 1 closes the inode, but it's on the free list. The node 1941 * has the open lock. 1942 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1943 * but node 1 has no dentry and doesn't get the message. It trylocks the 1944 * open lock, sees that another node has a PR, and does nothing. 1945 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1946 * open lock, sees the PR still, and does nothing. 1947 * Basically, we have to trigger an orphan iput on node 1. The only way 1948 * for this to happen is if node 1 runs node 2's orphan dir. 1949 * 1950 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1951 * seconds. It gets an EX lock on os_lockres and checks sequence number 1952 * stored in LVB. If the sequence number has changed, it means some other 1953 * node has done the scan. This node skips the scan and tracks the 1954 * sequence number. If the sequence number didn't change, it means a scan 1955 * hasn't happened. The node queues a scan and increments the 1956 * sequence number in the LVB. 1957 */ 1958 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1959 { 1960 struct ocfs2_orphan_scan *os; 1961 int status, i; 1962 u32 seqno = 0; 1963 1964 os = &osb->osb_orphan_scan; 1965 1966 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1967 goto out; 1968 1969 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1970 atomic_read(&os->os_state)); 1971 1972 status = ocfs2_orphan_scan_lock(osb, &seqno); 1973 if (status < 0) { 1974 if (status != -EAGAIN) 1975 mlog_errno(status); 1976 goto out; 1977 } 1978 1979 /* Do no queue the tasks if the volume is being umounted */ 1980 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1981 goto unlock; 1982 1983 if (os->os_seqno != seqno) { 1984 os->os_seqno = seqno; 1985 goto unlock; 1986 } 1987 1988 for (i = 0; i < osb->max_slots; i++) 1989 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1990 NULL, ORPHAN_NO_NEED_TRUNCATE); 1991 /* 1992 * We queued a recovery on orphan slots, increment the sequence 1993 * number and update LVB so other node will skip the scan for a while 1994 */ 1995 seqno++; 1996 os->os_count++; 1997 os->os_scantime = ktime_get_seconds(); 1998 unlock: 1999 ocfs2_orphan_scan_unlock(osb, seqno); 2000 out: 2001 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 2002 atomic_read(&os->os_state)); 2003 return; 2004 } 2005 2006 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 2007 static void ocfs2_orphan_scan_work(struct work_struct *work) 2008 { 2009 struct ocfs2_orphan_scan *os; 2010 struct ocfs2_super *osb; 2011 2012 os = container_of(work, struct ocfs2_orphan_scan, 2013 os_orphan_scan_work.work); 2014 osb = os->os_osb; 2015 2016 mutex_lock(&os->os_lock); 2017 ocfs2_queue_orphan_scan(osb); 2018 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 2019 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2020 ocfs2_orphan_scan_timeout()); 2021 mutex_unlock(&os->os_lock); 2022 } 2023 2024 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 2025 { 2026 struct ocfs2_orphan_scan *os; 2027 2028 os = &osb->osb_orphan_scan; 2029 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 2030 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2031 mutex_lock(&os->os_lock); 2032 cancel_delayed_work(&os->os_orphan_scan_work); 2033 mutex_unlock(&os->os_lock); 2034 } 2035 } 2036 2037 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 2038 { 2039 struct ocfs2_orphan_scan *os; 2040 2041 os = &osb->osb_orphan_scan; 2042 os->os_osb = osb; 2043 os->os_count = 0; 2044 os->os_seqno = 0; 2045 mutex_init(&os->os_lock); 2046 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2047 } 2048 2049 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2050 { 2051 struct ocfs2_orphan_scan *os; 2052 2053 os = &osb->osb_orphan_scan; 2054 os->os_scantime = ktime_get_seconds(); 2055 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2056 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2057 else { 2058 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2059 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2060 ocfs2_orphan_scan_timeout()); 2061 } 2062 } 2063 2064 struct ocfs2_orphan_filldir_priv { 2065 struct dir_context ctx; 2066 struct inode *head; 2067 struct ocfs2_super *osb; 2068 enum ocfs2_orphan_reco_type orphan_reco_type; 2069 }; 2070 2071 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2072 int name_len, loff_t pos, u64 ino, 2073 unsigned type) 2074 { 2075 struct ocfs2_orphan_filldir_priv *p = 2076 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2077 struct inode *iter; 2078 2079 if (name_len == 1 && !strncmp(".", name, 1)) 2080 return true; 2081 if (name_len == 2 && !strncmp("..", name, 2)) 2082 return true; 2083 2084 /* do not include dio entry in case of orphan scan */ 2085 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2086 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2087 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2088 return true; 2089 2090 /* Skip bad inodes so that recovery can continue */ 2091 iter = ocfs2_iget(p->osb, ino, 2092 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2093 if (IS_ERR(iter)) 2094 return true; 2095 2096 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2097 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2098 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2099 2100 /* Skip inodes which are already added to recover list, since dio may 2101 * happen concurrently with unlink/rename */ 2102 if (OCFS2_I(iter)->ip_next_orphan) { 2103 iput(iter); 2104 return true; 2105 } 2106 2107 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2108 /* No locking is required for the next_orphan queue as there 2109 * is only ever a single process doing orphan recovery. */ 2110 OCFS2_I(iter)->ip_next_orphan = p->head; 2111 p->head = iter; 2112 2113 return true; 2114 } 2115 2116 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2117 int slot, 2118 struct inode **head, 2119 enum ocfs2_orphan_reco_type orphan_reco_type) 2120 { 2121 int status; 2122 struct inode *orphan_dir_inode = NULL; 2123 struct ocfs2_orphan_filldir_priv priv = { 2124 .ctx.actor = ocfs2_orphan_filldir, 2125 .osb = osb, 2126 .head = *head, 2127 .orphan_reco_type = orphan_reco_type 2128 }; 2129 2130 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2131 ORPHAN_DIR_SYSTEM_INODE, 2132 slot); 2133 if (!orphan_dir_inode) { 2134 status = -ENOENT; 2135 mlog_errno(status); 2136 return status; 2137 } 2138 2139 inode_lock(orphan_dir_inode); 2140 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2141 if (status < 0) { 2142 mlog_errno(status); 2143 goto out; 2144 } 2145 2146 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2147 if (status) { 2148 mlog_errno(status); 2149 goto out_cluster; 2150 } 2151 2152 *head = priv.head; 2153 2154 out_cluster: 2155 ocfs2_inode_unlock(orphan_dir_inode, 0); 2156 out: 2157 inode_unlock(orphan_dir_inode); 2158 iput(orphan_dir_inode); 2159 return status; 2160 } 2161 2162 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2163 int slot) 2164 { 2165 int ret; 2166 2167 spin_lock(&osb->osb_lock); 2168 ret = !osb->osb_orphan_wipes[slot]; 2169 spin_unlock(&osb->osb_lock); 2170 return ret; 2171 } 2172 2173 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2174 int slot) 2175 { 2176 spin_lock(&osb->osb_lock); 2177 /* Mark ourselves such that new processes in delete_inode() 2178 * know to quit early. */ 2179 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2180 while (osb->osb_orphan_wipes[slot]) { 2181 /* If any processes are already in the middle of an 2182 * orphan wipe on this dir, then we need to wait for 2183 * them. */ 2184 spin_unlock(&osb->osb_lock); 2185 wait_event_interruptible(osb->osb_wipe_event, 2186 ocfs2_orphan_recovery_can_continue(osb, slot)); 2187 spin_lock(&osb->osb_lock); 2188 } 2189 spin_unlock(&osb->osb_lock); 2190 } 2191 2192 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2193 int slot) 2194 { 2195 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2196 } 2197 2198 /* 2199 * Orphan recovery. Each mounted node has it's own orphan dir which we 2200 * must run during recovery. Our strategy here is to build a list of 2201 * the inodes in the orphan dir and iget/iput them. The VFS does 2202 * (most) of the rest of the work. 2203 * 2204 * Orphan recovery can happen at any time, not just mount so we have a 2205 * couple of extra considerations. 2206 * 2207 * - We grab as many inodes as we can under the orphan dir lock - 2208 * doing iget() outside the orphan dir risks getting a reference on 2209 * an invalid inode. 2210 * - We must be sure not to deadlock with other processes on the 2211 * system wanting to run delete_inode(). This can happen when they go 2212 * to lock the orphan dir and the orphan recovery process attempts to 2213 * iget() inside the orphan dir lock. This can be avoided by 2214 * advertising our state to ocfs2_delete_inode(). 2215 */ 2216 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2217 int slot, 2218 enum ocfs2_orphan_reco_type orphan_reco_type) 2219 { 2220 int ret = 0; 2221 struct inode *inode = NULL; 2222 struct inode *iter; 2223 struct ocfs2_inode_info *oi; 2224 struct buffer_head *di_bh = NULL; 2225 struct ocfs2_dinode *di = NULL; 2226 2227 trace_ocfs2_recover_orphans(slot); 2228 2229 ocfs2_mark_recovering_orphan_dir(osb, slot); 2230 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2231 ocfs2_clear_recovering_orphan_dir(osb, slot); 2232 2233 /* Error here should be noted, but we want to continue with as 2234 * many queued inodes as we've got. */ 2235 if (ret) 2236 mlog_errno(ret); 2237 2238 while (inode) { 2239 oi = OCFS2_I(inode); 2240 trace_ocfs2_recover_orphans_iput( 2241 (unsigned long long)oi->ip_blkno); 2242 2243 iter = oi->ip_next_orphan; 2244 oi->ip_next_orphan = NULL; 2245 2246 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2247 inode_lock(inode); 2248 ret = ocfs2_rw_lock(inode, 1); 2249 if (ret < 0) { 2250 mlog_errno(ret); 2251 goto unlock_mutex; 2252 } 2253 /* 2254 * We need to take and drop the inode lock to 2255 * force read inode from disk. 2256 */ 2257 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2258 if (ret) { 2259 mlog_errno(ret); 2260 goto unlock_rw; 2261 } 2262 2263 di = (struct ocfs2_dinode *)di_bh->b_data; 2264 2265 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2266 ret = ocfs2_truncate_file(inode, di_bh, 2267 i_size_read(inode)); 2268 if (ret < 0) { 2269 if (ret != -ENOSPC) 2270 mlog_errno(ret); 2271 goto unlock_inode; 2272 } 2273 2274 ret = ocfs2_del_inode_from_orphan(osb, inode, 2275 di_bh, 0, 0); 2276 if (ret) 2277 mlog_errno(ret); 2278 } 2279 unlock_inode: 2280 ocfs2_inode_unlock(inode, 1); 2281 brelse(di_bh); 2282 di_bh = NULL; 2283 unlock_rw: 2284 ocfs2_rw_unlock(inode, 1); 2285 unlock_mutex: 2286 inode_unlock(inode); 2287 2288 /* clear dio flag in ocfs2_inode_info */ 2289 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2290 } else { 2291 spin_lock(&oi->ip_lock); 2292 /* Set the proper information to get us going into 2293 * ocfs2_delete_inode. */ 2294 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2295 spin_unlock(&oi->ip_lock); 2296 } 2297 2298 iput(inode); 2299 inode = iter; 2300 } 2301 2302 return ret; 2303 } 2304 2305 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2306 { 2307 /* This check is good because ocfs2 will wait on our recovery 2308 * thread before changing it to something other than MOUNTED 2309 * or DISABLED. */ 2310 wait_event(osb->osb_mount_event, 2311 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2312 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2313 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2314 2315 /* If there's an error on mount, then we may never get to the 2316 * MOUNTED flag, but this is set right before 2317 * dismount_volume() so we can trust it. */ 2318 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2319 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2320 mlog(0, "mount error, exiting!\n"); 2321 return -EBUSY; 2322 } 2323 2324 return 0; 2325 } 2326 2327 static int ocfs2_commit_thread(void *arg) 2328 { 2329 int status; 2330 struct ocfs2_super *osb = arg; 2331 struct ocfs2_journal *journal = osb->journal; 2332 2333 /* we can trust j_num_trans here because _should_stop() is only set in 2334 * shutdown and nobody other than ourselves should be able to start 2335 * transactions. committing on shutdown might take a few iterations 2336 * as final transactions put deleted inodes on the list */ 2337 while (!(kthread_should_stop() && 2338 atomic_read(&journal->j_num_trans) == 0)) { 2339 2340 wait_event_interruptible(osb->checkpoint_event, 2341 atomic_read(&journal->j_num_trans) 2342 || kthread_should_stop()); 2343 2344 status = ocfs2_commit_cache(osb); 2345 if (status < 0) { 2346 static unsigned long abort_warn_time; 2347 2348 /* Warn about this once per minute */ 2349 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2350 mlog(ML_ERROR, "status = %d, journal is " 2351 "already aborted.\n", status); 2352 /* 2353 * After ocfs2_commit_cache() fails, j_num_trans has a 2354 * non-zero value. Sleep here to avoid a busy-wait 2355 * loop. 2356 */ 2357 msleep_interruptible(1000); 2358 } 2359 2360 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2361 mlog(ML_KTHREAD, 2362 "commit_thread: %u transactions pending on " 2363 "shutdown\n", 2364 atomic_read(&journal->j_num_trans)); 2365 } 2366 } 2367 2368 return 0; 2369 } 2370 2371 /* Reads all the journal inodes without taking any cluster locks. Used 2372 * for hard readonly access to determine whether any journal requires 2373 * recovery. Also used to refresh the recovery generation numbers after 2374 * a journal has been recovered by another node. 2375 */ 2376 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2377 { 2378 int ret = 0; 2379 unsigned int slot; 2380 struct buffer_head *di_bh = NULL; 2381 struct ocfs2_dinode *di; 2382 int journal_dirty = 0; 2383 2384 for(slot = 0; slot < osb->max_slots; slot++) { 2385 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2386 if (ret) { 2387 mlog_errno(ret); 2388 goto out; 2389 } 2390 2391 di = (struct ocfs2_dinode *) di_bh->b_data; 2392 2393 osb->slot_recovery_generations[slot] = 2394 ocfs2_get_recovery_generation(di); 2395 2396 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2397 OCFS2_JOURNAL_DIRTY_FL) 2398 journal_dirty = 1; 2399 2400 brelse(di_bh); 2401 di_bh = NULL; 2402 } 2403 2404 out: 2405 if (journal_dirty) 2406 ret = -EROFS; 2407 return ret; 2408 } 2409