xref: /openbmc/linux/fs/ocfs2/journal.c (revision 87c2ce3b)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "heartbeat.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "namei.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "vote.h"
48 #include "sysfile.h"
49 
50 #include "buffer_head_io.h"
51 
52 spinlock_t trans_inc_lock = SPIN_LOCK_UNLOCKED;
53 
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 			      int node_num);
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
61 				       struct ocfs2_journal_handle *handle);
62 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle);
63 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
64 				      int dirty);
65 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
66 				 int slot_num);
67 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
68 				 int slot);
69 static int ocfs2_commit_thread(void *arg);
70 
71 static int ocfs2_commit_cache(struct ocfs2_super *osb)
72 {
73 	int status = 0;
74 	unsigned int flushed;
75 	unsigned long old_id;
76 	struct ocfs2_journal *journal = NULL;
77 
78 	mlog_entry_void();
79 
80 	journal = osb->journal;
81 
82 	/* Flush all pending commits and checkpoint the journal. */
83 	down_write(&journal->j_trans_barrier);
84 
85 	if (atomic_read(&journal->j_num_trans) == 0) {
86 		up_write(&journal->j_trans_barrier);
87 		mlog(0, "No transactions for me to flush!\n");
88 		goto finally;
89 	}
90 
91 	journal_lock_updates(journal->j_journal);
92 	status = journal_flush(journal->j_journal);
93 	journal_unlock_updates(journal->j_journal);
94 	if (status < 0) {
95 		up_write(&journal->j_trans_barrier);
96 		mlog_errno(status);
97 		goto finally;
98 	}
99 
100 	old_id = ocfs2_inc_trans_id(journal);
101 
102 	flushed = atomic_read(&journal->j_num_trans);
103 	atomic_set(&journal->j_num_trans, 0);
104 	up_write(&journal->j_trans_barrier);
105 
106 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
107 	     journal->j_trans_id, flushed);
108 
109 	ocfs2_kick_vote_thread(osb);
110 	wake_up(&journal->j_checkpointed);
111 finally:
112 	mlog_exit(status);
113 	return status;
114 }
115 
116 struct ocfs2_journal_handle *ocfs2_alloc_handle(struct ocfs2_super *osb)
117 {
118 	struct ocfs2_journal_handle *retval = NULL;
119 
120 	retval = kcalloc(1, sizeof(*retval), GFP_KERNEL);
121 	if (!retval) {
122 		mlog(ML_ERROR, "Failed to allocate memory for journal "
123 		     "handle!\n");
124 		return NULL;
125 	}
126 
127 	retval->max_buffs = 0;
128 	retval->num_locks = 0;
129 	retval->k_handle = NULL;
130 
131 	INIT_LIST_HEAD(&retval->locks);
132 	INIT_LIST_HEAD(&retval->inode_list);
133 	retval->journal = osb->journal;
134 
135 	return retval;
136 }
137 
138 /* pass it NULL and it will allocate a new handle object for you.  If
139  * you pass it a handle however, it may still return error, in which
140  * case it has free'd the passed handle for you. */
141 struct ocfs2_journal_handle *ocfs2_start_trans(struct ocfs2_super *osb,
142 					       struct ocfs2_journal_handle *handle,
143 					       int max_buffs)
144 {
145 	int ret;
146 	journal_t *journal = osb->journal->j_journal;
147 
148 	mlog_entry("(max_buffs = %d)\n", max_buffs);
149 
150 	if (!osb || !osb->journal->j_journal)
151 		BUG();
152 
153 	if (ocfs2_is_hard_readonly(osb)) {
154 		ret = -EROFS;
155 		goto done_free;
156 	}
157 
158 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
159 	BUG_ON(max_buffs <= 0);
160 
161 	/* JBD might support this, but our journalling code doesn't yet. */
162 	if (journal_current_handle()) {
163 		mlog(ML_ERROR, "Recursive transaction attempted!\n");
164 		BUG();
165 	}
166 
167 	if (!handle)
168 		handle = ocfs2_alloc_handle(osb);
169 	if (!handle) {
170 		ret = -ENOMEM;
171 		mlog(ML_ERROR, "Failed to allocate memory for journal "
172 		     "handle!\n");
173 		goto done_free;
174 	}
175 
176 	handle->max_buffs = max_buffs;
177 
178 	down_read(&osb->journal->j_trans_barrier);
179 
180 	/* actually start the transaction now */
181 	handle->k_handle = journal_start(journal, max_buffs);
182 	if (IS_ERR(handle->k_handle)) {
183 		up_read(&osb->journal->j_trans_barrier);
184 
185 		ret = PTR_ERR(handle->k_handle);
186 		handle->k_handle = NULL;
187 		mlog_errno(ret);
188 
189 		if (is_journal_aborted(journal)) {
190 			ocfs2_abort(osb->sb, "Detected aborted journal");
191 			ret = -EROFS;
192 		}
193 		goto done_free;
194 	}
195 
196 	atomic_inc(&(osb->journal->j_num_trans));
197 	handle->flags |= OCFS2_HANDLE_STARTED;
198 
199 	mlog_exit_ptr(handle);
200 	return handle;
201 
202 done_free:
203 	if (handle)
204 		ocfs2_commit_unstarted_handle(handle); /* will kfree handle */
205 
206 	mlog_exit(ret);
207 	return ERR_PTR(ret);
208 }
209 
210 void ocfs2_handle_add_inode(struct ocfs2_journal_handle *handle,
211 			    struct inode *inode)
212 {
213 	BUG_ON(!handle);
214 	BUG_ON(!inode);
215 
216 	atomic_inc(&inode->i_count);
217 
218 	/* we're obviously changing it... */
219 	mutex_lock(&inode->i_mutex);
220 
221 	/* sanity check */
222 	BUG_ON(OCFS2_I(inode)->ip_handle);
223 	BUG_ON(!list_empty(&OCFS2_I(inode)->ip_handle_list));
224 
225 	OCFS2_I(inode)->ip_handle = handle;
226 	list_del(&(OCFS2_I(inode)->ip_handle_list));
227 	list_add_tail(&(OCFS2_I(inode)->ip_handle_list), &(handle->inode_list));
228 }
229 
230 static void ocfs2_handle_unlock_inodes(struct ocfs2_journal_handle *handle)
231 {
232 	struct list_head *p, *n;
233 	struct inode *inode;
234 	struct ocfs2_inode_info *oi;
235 
236 	list_for_each_safe(p, n, &handle->inode_list) {
237 		oi = list_entry(p, struct ocfs2_inode_info,
238 				ip_handle_list);
239 		inode = &oi->vfs_inode;
240 
241 		OCFS2_I(inode)->ip_handle = NULL;
242 		list_del_init(&OCFS2_I(inode)->ip_handle_list);
243 
244 		mutex_unlock(&inode->i_mutex);
245 		iput(inode);
246 	}
247 }
248 
249 /* This is trivial so we do it out of the main commit
250  * paths. Beware, it can be called from start_trans too! */
251 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle)
252 {
253 	mlog_entry_void();
254 
255 	BUG_ON(handle->flags & OCFS2_HANDLE_STARTED);
256 
257 	ocfs2_handle_unlock_inodes(handle);
258 	/* You are allowed to add journal locks before the transaction
259 	 * has started. */
260 	ocfs2_handle_cleanup_locks(handle->journal, handle);
261 
262 	kfree(handle);
263 
264 	mlog_exit_void();
265 }
266 
267 void ocfs2_commit_trans(struct ocfs2_journal_handle *handle)
268 {
269 	handle_t *jbd_handle;
270 	int retval;
271 	struct ocfs2_journal *journal = handle->journal;
272 
273 	mlog_entry_void();
274 
275 	BUG_ON(!handle);
276 
277 	if (!(handle->flags & OCFS2_HANDLE_STARTED)) {
278 		ocfs2_commit_unstarted_handle(handle);
279 		mlog_exit_void();
280 		return;
281 	}
282 
283 	/* release inode semaphores we took during this transaction */
284 	ocfs2_handle_unlock_inodes(handle);
285 
286 	/* ocfs2_extend_trans may have had to call journal_restart
287 	 * which will always commit the transaction, but may return
288 	 * error for any number of reasons. If this is the case, we
289 	 * clear k_handle as it's not valid any more. */
290 	if (handle->k_handle) {
291 		jbd_handle = handle->k_handle;
292 
293 		if (handle->flags & OCFS2_HANDLE_SYNC)
294 			jbd_handle->h_sync = 1;
295 		else
296 			jbd_handle->h_sync = 0;
297 
298 		/* actually stop the transaction. if we've set h_sync,
299 		 * it'll have been committed when we return */
300 		retval = journal_stop(jbd_handle);
301 		if (retval < 0) {
302 			mlog_errno(retval);
303 			mlog(ML_ERROR, "Could not commit transaction\n");
304 			BUG();
305 		}
306 
307 		handle->k_handle = NULL; /* it's been free'd in journal_stop */
308 	}
309 
310 	ocfs2_handle_cleanup_locks(journal, handle);
311 
312 	up_read(&journal->j_trans_barrier);
313 
314 	kfree(handle);
315 	mlog_exit_void();
316 }
317 
318 /*
319  * 'nblocks' is what you want to add to the current
320  * transaction. extend_trans will either extend the current handle by
321  * nblocks, or commit it and start a new one with nblocks credits.
322  *
323  * WARNING: This will not release any semaphores or disk locks taken
324  * during the transaction, so make sure they were taken *before*
325  * start_trans or we'll have ordering deadlocks.
326  *
327  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
328  * good because transaction ids haven't yet been recorded on the
329  * cluster locks associated with this handle.
330  */
331 int ocfs2_extend_trans(struct ocfs2_journal_handle *handle,
332 		       int nblocks)
333 {
334 	int status;
335 
336 	BUG_ON(!handle);
337 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
338 	BUG_ON(!nblocks);
339 
340 	mlog_entry_void();
341 
342 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
343 
344 	status = journal_extend(handle->k_handle, nblocks);
345 	if (status < 0) {
346 		mlog_errno(status);
347 		goto bail;
348 	}
349 
350 	if (status > 0) {
351 		mlog(0, "journal_extend failed, trying journal_restart\n");
352 		status = journal_restart(handle->k_handle, nblocks);
353 		if (status < 0) {
354 			handle->k_handle = NULL;
355 			mlog_errno(status);
356 			goto bail;
357 		}
358 		handle->max_buffs = nblocks;
359 	} else
360 		handle->max_buffs += nblocks;
361 
362 	status = 0;
363 bail:
364 
365 	mlog_exit(status);
366 	return status;
367 }
368 
369 int ocfs2_journal_access(struct ocfs2_journal_handle *handle,
370 			 struct inode *inode,
371 			 struct buffer_head *bh,
372 			 int type)
373 {
374 	int status;
375 
376 	BUG_ON(!inode);
377 	BUG_ON(!handle);
378 	BUG_ON(!bh);
379 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
380 
381 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %hu\n",
382 		   (unsigned long long)bh->b_blocknr, type,
383 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
384 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
385 		   "OCFS2_JOURNAL_ACCESS_WRITE",
386 		   bh->b_size);
387 
388 	/* we can safely remove this assertion after testing. */
389 	if (!buffer_uptodate(bh)) {
390 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
391 		mlog(ML_ERROR, "b_blocknr=%llu\n",
392 		     (unsigned long long)bh->b_blocknr);
393 		BUG();
394 	}
395 
396 	/* Set the current transaction information on the inode so
397 	 * that the locking code knows whether it can drop it's locks
398 	 * on this inode or not. We're protected from the commit
399 	 * thread updating the current transaction id until
400 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
401 	 * j_trans_barrier for us. */
402 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
403 
404 	down(&OCFS2_I(inode)->ip_io_sem);
405 	switch (type) {
406 	case OCFS2_JOURNAL_ACCESS_CREATE:
407 	case OCFS2_JOURNAL_ACCESS_WRITE:
408 		status = journal_get_write_access(handle->k_handle, bh);
409 		break;
410 
411 	case OCFS2_JOURNAL_ACCESS_UNDO:
412 		status = journal_get_undo_access(handle->k_handle, bh);
413 		break;
414 
415 	default:
416 		status = -EINVAL;
417 		mlog(ML_ERROR, "Uknown access type!\n");
418 	}
419 	up(&OCFS2_I(inode)->ip_io_sem);
420 
421 	if (status < 0)
422 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
423 		     status, type);
424 
425 	mlog_exit(status);
426 	return status;
427 }
428 
429 int ocfs2_journal_dirty(struct ocfs2_journal_handle *handle,
430 			struct buffer_head *bh)
431 {
432 	int status;
433 
434 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
435 
436 	mlog_entry("(bh->b_blocknr=%llu)\n",
437 		   (unsigned long long)bh->b_blocknr);
438 
439 	status = journal_dirty_metadata(handle->k_handle, bh);
440 	if (status < 0)
441 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
442 		     "(bh->b_blocknr=%llu)\n",
443 		     (unsigned long long)bh->b_blocknr);
444 
445 	mlog_exit(status);
446 	return status;
447 }
448 
449 int ocfs2_journal_dirty_data(handle_t *handle,
450 			     struct buffer_head *bh)
451 {
452 	int err = journal_dirty_data(handle, bh);
453 	if (err)
454 		mlog_errno(err);
455 	/* TODO: When we can handle it, abort the handle and go RO on
456 	 * error here. */
457 
458 	return err;
459 }
460 
461 /* We always assume you're adding a metadata lock at level 'ex' */
462 int ocfs2_handle_add_lock(struct ocfs2_journal_handle *handle,
463 			  struct inode *inode)
464 {
465 	int status;
466 	struct ocfs2_journal_lock *lock;
467 
468 	BUG_ON(!inode);
469 
470 	lock = kmem_cache_alloc(ocfs2_lock_cache, GFP_NOFS);
471 	if (!lock) {
472 		status = -ENOMEM;
473 		mlog_errno(-ENOMEM);
474 		goto bail;
475 	}
476 
477 	if (!igrab(inode))
478 		BUG();
479 	lock->jl_inode = inode;
480 
481 	list_add_tail(&(lock->jl_lock_list), &(handle->locks));
482 	handle->num_locks++;
483 
484 	status = 0;
485 bail:
486 	mlog_exit(status);
487 	return status;
488 }
489 
490 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
491 				       struct ocfs2_journal_handle *handle)
492 {
493 	struct list_head *p, *n;
494 	struct ocfs2_journal_lock *lock;
495 	struct inode *inode;
496 
497 	list_for_each_safe(p, n, &(handle->locks)) {
498 		lock = list_entry(p, struct ocfs2_journal_lock,
499 				  jl_lock_list);
500 		list_del(&lock->jl_lock_list);
501 		handle->num_locks--;
502 
503 		inode = lock->jl_inode;
504 		ocfs2_meta_unlock(inode, 1);
505 		if (atomic_read(&inode->i_count) == 1)
506 			mlog(ML_ERROR,
507 			     "Inode %"MLFu64", I'm doing a last iput for!",
508 			     OCFS2_I(inode)->ip_blkno);
509 		iput(inode);
510 		kmem_cache_free(ocfs2_lock_cache, lock);
511 	}
512 }
513 
514 #define OCFS2_DEFAULT_COMMIT_INTERVAL 	(HZ * 5)
515 
516 void ocfs2_set_journal_params(struct ocfs2_super *osb)
517 {
518 	journal_t *journal = osb->journal->j_journal;
519 
520 	spin_lock(&journal->j_state_lock);
521 	journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
522 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
523 		journal->j_flags |= JFS_BARRIER;
524 	else
525 		journal->j_flags &= ~JFS_BARRIER;
526 	spin_unlock(&journal->j_state_lock);
527 }
528 
529 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
530 {
531 	int status = -1;
532 	struct inode *inode = NULL; /* the journal inode */
533 	journal_t *j_journal = NULL;
534 	struct ocfs2_dinode *di = NULL;
535 	struct buffer_head *bh = NULL;
536 	struct ocfs2_super *osb;
537 	int meta_lock = 0;
538 
539 	mlog_entry_void();
540 
541 	BUG_ON(!journal);
542 
543 	osb = journal->j_osb;
544 
545 	/* already have the inode for our journal */
546 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
547 					    osb->slot_num);
548 	if (inode == NULL) {
549 		status = -EACCES;
550 		mlog_errno(status);
551 		goto done;
552 	}
553 	if (is_bad_inode(inode)) {
554 		mlog(ML_ERROR, "access error (bad inode)\n");
555 		iput(inode);
556 		inode = NULL;
557 		status = -EACCES;
558 		goto done;
559 	}
560 
561 	SET_INODE_JOURNAL(inode);
562 	OCFS2_I(inode)->ip_open_count++;
563 
564 	status = ocfs2_meta_lock(inode, NULL, &bh, 1);
565 	if (status < 0) {
566 		if (status != -ERESTARTSYS)
567 			mlog(ML_ERROR, "Could not get lock on journal!\n");
568 		goto done;
569 	}
570 
571 	meta_lock = 1;
572 	di = (struct ocfs2_dinode *)bh->b_data;
573 
574 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
575 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
576 		     inode->i_size);
577 		status = -EINVAL;
578 		goto done;
579 	}
580 
581 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
582 	mlog(0, "inode->i_blocks = %lu\n", inode->i_blocks);
583 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
584 
585 	/* call the kernels journal init function now */
586 	j_journal = journal_init_inode(inode);
587 	if (j_journal == NULL) {
588 		mlog(ML_ERROR, "Linux journal layer error\n");
589 		status = -EINVAL;
590 		goto done;
591 	}
592 
593 	mlog(0, "Returned from journal_init_inode\n");
594 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
595 
596 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
597 		  OCFS2_JOURNAL_DIRTY_FL);
598 
599 	journal->j_journal = j_journal;
600 	journal->j_inode = inode;
601 	journal->j_bh = bh;
602 
603 	ocfs2_set_journal_params(osb);
604 
605 	journal->j_state = OCFS2_JOURNAL_LOADED;
606 
607 	status = 0;
608 done:
609 	if (status < 0) {
610 		if (meta_lock)
611 			ocfs2_meta_unlock(inode, 1);
612 		if (bh != NULL)
613 			brelse(bh);
614 		if (inode) {
615 			OCFS2_I(inode)->ip_open_count--;
616 			iput(inode);
617 		}
618 	}
619 
620 	mlog_exit(status);
621 	return status;
622 }
623 
624 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
625 				      int dirty)
626 {
627 	int status;
628 	unsigned int flags;
629 	struct ocfs2_journal *journal = osb->journal;
630 	struct buffer_head *bh = journal->j_bh;
631 	struct ocfs2_dinode *fe;
632 
633 	mlog_entry_void();
634 
635 	fe = (struct ocfs2_dinode *)bh->b_data;
636 	if (!OCFS2_IS_VALID_DINODE(fe)) {
637 		/* This is called from startup/shutdown which will
638 		 * handle the errors in a specific manner, so no need
639 		 * to call ocfs2_error() here. */
640 		mlog(ML_ERROR, "Journal dinode %"MLFu64"  has invalid "
641 		     "signature: %.*s", fe->i_blkno, 7, fe->i_signature);
642 		status = -EIO;
643 		goto out;
644 	}
645 
646 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
647 	if (dirty)
648 		flags |= OCFS2_JOURNAL_DIRTY_FL;
649 	else
650 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
651 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
652 
653 	status = ocfs2_write_block(osb, bh, journal->j_inode);
654 	if (status < 0)
655 		mlog_errno(status);
656 
657 out:
658 	mlog_exit(status);
659 	return status;
660 }
661 
662 /*
663  * If the journal has been kmalloc'd it needs to be freed after this
664  * call.
665  */
666 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
667 {
668 	struct ocfs2_journal *journal = NULL;
669 	int status = 0;
670 	struct inode *inode = NULL;
671 	int num_running_trans = 0;
672 
673 	mlog_entry_void();
674 
675 	if (!osb)
676 		BUG();
677 
678 	journal = osb->journal;
679 	if (!journal)
680 		goto done;
681 
682 	inode = journal->j_inode;
683 
684 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
685 		goto done;
686 
687 	/* need to inc inode use count as journal_destroy will iput. */
688 	if (!igrab(inode))
689 		BUG();
690 
691 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
692 	if (num_running_trans > 0)
693 		mlog(0, "Shutting down journal: must wait on %d "
694 		     "running transactions!\n",
695 		     num_running_trans);
696 
697 	/* Do a commit_cache here. It will flush our journal, *and*
698 	 * release any locks that are still held.
699 	 * set the SHUTDOWN flag and release the trans lock.
700 	 * the commit thread will take the trans lock for us below. */
701 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
702 
703 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
704 	 * drop the trans_lock (which we want to hold until we
705 	 * completely destroy the journal. */
706 	if (osb->commit_task) {
707 		/* Wait for the commit thread */
708 		mlog(0, "Waiting for ocfs2commit to exit....\n");
709 		kthread_stop(osb->commit_task);
710 		osb->commit_task = NULL;
711 	}
712 
713 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
714 
715 	status = ocfs2_journal_toggle_dirty(osb, 0);
716 	if (status < 0)
717 		mlog_errno(status);
718 
719 	/* Shutdown the kernel journal system */
720 	journal_destroy(journal->j_journal);
721 
722 	OCFS2_I(inode)->ip_open_count--;
723 
724 	/* unlock our journal */
725 	ocfs2_meta_unlock(inode, 1);
726 
727 	brelse(journal->j_bh);
728 	journal->j_bh = NULL;
729 
730 	journal->j_state = OCFS2_JOURNAL_FREE;
731 
732 //	up_write(&journal->j_trans_barrier);
733 done:
734 	if (inode)
735 		iput(inode);
736 	mlog_exit_void();
737 }
738 
739 static void ocfs2_clear_journal_error(struct super_block *sb,
740 				      journal_t *journal,
741 				      int slot)
742 {
743 	int olderr;
744 
745 	olderr = journal_errno(journal);
746 	if (olderr) {
747 		mlog(ML_ERROR, "File system error %d recorded in "
748 		     "journal %u.\n", olderr, slot);
749 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
750 		     sb->s_id);
751 
752 		journal_ack_err(journal);
753 		journal_clear_err(journal);
754 	}
755 }
756 
757 int ocfs2_journal_load(struct ocfs2_journal *journal)
758 {
759 	int status = 0;
760 	struct ocfs2_super *osb;
761 
762 	mlog_entry_void();
763 
764 	if (!journal)
765 		BUG();
766 
767 	osb = journal->j_osb;
768 
769 	status = journal_load(journal->j_journal);
770 	if (status < 0) {
771 		mlog(ML_ERROR, "Failed to load journal!\n");
772 		goto done;
773 	}
774 
775 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
776 
777 	status = ocfs2_journal_toggle_dirty(osb, 1);
778 	if (status < 0) {
779 		mlog_errno(status);
780 		goto done;
781 	}
782 
783 	/* Launch the commit thread */
784 	osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt-%d",
785 				       osb->osb_id);
786 	if (IS_ERR(osb->commit_task)) {
787 		status = PTR_ERR(osb->commit_task);
788 		osb->commit_task = NULL;
789 		mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
790 		     status);
791 		goto done;
792 	}
793 
794 done:
795 	mlog_exit(status);
796 	return status;
797 }
798 
799 
800 /* 'full' flag tells us whether we clear out all blocks or if we just
801  * mark the journal clean */
802 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
803 {
804 	int status;
805 
806 	mlog_entry_void();
807 
808 	if (!journal)
809 		BUG();
810 
811 	status = journal_wipe(journal->j_journal, full);
812 	if (status < 0) {
813 		mlog_errno(status);
814 		goto bail;
815 	}
816 
817 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
818 	if (status < 0)
819 		mlog_errno(status);
820 
821 bail:
822 	mlog_exit(status);
823 	return status;
824 }
825 
826 /*
827  * JBD Might read a cached version of another nodes journal file. We
828  * don't want this as this file changes often and we get no
829  * notification on those changes. The only way to be sure that we've
830  * got the most up to date version of those blocks then is to force
831  * read them off disk. Just searching through the buffer cache won't
832  * work as there may be pages backing this file which are still marked
833  * up to date. We know things can't change on this file underneath us
834  * as we have the lock by now :)
835  */
836 static int ocfs2_force_read_journal(struct inode *inode)
837 {
838 	int status = 0;
839 	int i, p_blocks;
840 	u64 v_blkno, p_blkno;
841 #define CONCURRENT_JOURNAL_FILL 32
842 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
843 
844 	mlog_entry_void();
845 
846 	BUG_ON(inode->i_blocks !=
847 		     ocfs2_align_bytes_to_sectors(i_size_read(inode)));
848 
849 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
850 
851 	mlog(0, "Force reading %lu blocks\n",
852 	     (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9)));
853 
854 	v_blkno = 0;
855 	while (v_blkno <
856 	       (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
857 
858 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
859 						     1, &p_blkno,
860 						     &p_blocks);
861 		if (status < 0) {
862 			mlog_errno(status);
863 			goto bail;
864 		}
865 
866 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
867 			p_blocks = CONCURRENT_JOURNAL_FILL;
868 
869 		status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
870 					   p_blkno, p_blocks, bhs, 0,
871 					   inode);
872 		if (status < 0) {
873 			mlog_errno(status);
874 			goto bail;
875 		}
876 
877 		for(i = 0; i < p_blocks; i++) {
878 			brelse(bhs[i]);
879 			bhs[i] = NULL;
880 		}
881 
882 		v_blkno += p_blocks;
883 	}
884 
885 bail:
886 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
887 		if (bhs[i])
888 			brelse(bhs[i]);
889 	mlog_exit(status);
890 	return status;
891 }
892 
893 struct ocfs2_la_recovery_item {
894 	struct list_head	lri_list;
895 	int			lri_slot;
896 	struct ocfs2_dinode	*lri_la_dinode;
897 	struct ocfs2_dinode	*lri_tl_dinode;
898 };
899 
900 /* Does the second half of the recovery process. By this point, the
901  * node is marked clean and can actually be considered recovered,
902  * hence it's no longer in the recovery map, but there's still some
903  * cleanup we can do which shouldn't happen within the recovery thread
904  * as locking in that context becomes very difficult if we are to take
905  * recovering nodes into account.
906  *
907  * NOTE: This function can and will sleep on recovery of other nodes
908  * during cluster locking, just like any other ocfs2 process.
909  */
910 void ocfs2_complete_recovery(void *data)
911 {
912 	int ret;
913 	struct ocfs2_super *osb = data;
914 	struct ocfs2_journal *journal = osb->journal;
915 	struct ocfs2_dinode *la_dinode, *tl_dinode;
916 	struct ocfs2_la_recovery_item *item;
917 	struct list_head *p, *n;
918 	LIST_HEAD(tmp_la_list);
919 
920 	mlog_entry_void();
921 
922 	mlog(0, "completing recovery from keventd\n");
923 
924 	spin_lock(&journal->j_lock);
925 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
926 	spin_unlock(&journal->j_lock);
927 
928 	list_for_each_safe(p, n, &tmp_la_list) {
929 		item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
930 		list_del_init(&item->lri_list);
931 
932 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
933 
934 		la_dinode = item->lri_la_dinode;
935 		if (la_dinode) {
936 			mlog(0, "Clean up local alloc %"MLFu64"\n",
937 			     la_dinode->i_blkno);
938 
939 			ret = ocfs2_complete_local_alloc_recovery(osb,
940 								  la_dinode);
941 			if (ret < 0)
942 				mlog_errno(ret);
943 
944 			kfree(la_dinode);
945 		}
946 
947 		tl_dinode = item->lri_tl_dinode;
948 		if (tl_dinode) {
949 			mlog(0, "Clean up truncate log %"MLFu64"\n",
950 			     tl_dinode->i_blkno);
951 
952 			ret = ocfs2_complete_truncate_log_recovery(osb,
953 								   tl_dinode);
954 			if (ret < 0)
955 				mlog_errno(ret);
956 
957 			kfree(tl_dinode);
958 		}
959 
960 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
961 		if (ret < 0)
962 			mlog_errno(ret);
963 
964 		kfree(item);
965 	}
966 
967 	mlog(0, "Recovery completion\n");
968 	mlog_exit_void();
969 }
970 
971 /* NOTE: This function always eats your references to la_dinode and
972  * tl_dinode, either manually on error, or by passing them to
973  * ocfs2_complete_recovery */
974 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
975 					    int slot_num,
976 					    struct ocfs2_dinode *la_dinode,
977 					    struct ocfs2_dinode *tl_dinode)
978 {
979 	struct ocfs2_la_recovery_item *item;
980 
981 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_KERNEL);
982 	if (!item) {
983 		/* Though we wish to avoid it, we are in fact safe in
984 		 * skipping local alloc cleanup as fsck.ocfs2 is more
985 		 * than capable of reclaiming unused space. */
986 		if (la_dinode)
987 			kfree(la_dinode);
988 
989 		if (tl_dinode)
990 			kfree(tl_dinode);
991 
992 		mlog_errno(-ENOMEM);
993 		return;
994 	}
995 
996 	INIT_LIST_HEAD(&item->lri_list);
997 	item->lri_la_dinode = la_dinode;
998 	item->lri_slot = slot_num;
999 	item->lri_tl_dinode = tl_dinode;
1000 
1001 	spin_lock(&journal->j_lock);
1002 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1003 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1004 	spin_unlock(&journal->j_lock);
1005 }
1006 
1007 /* Called by the mount code to queue recovery the last part of
1008  * recovery for it's own slot. */
1009 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1010 {
1011 	struct ocfs2_journal *journal = osb->journal;
1012 
1013 	if (osb->dirty) {
1014 		/* No need to queue up our truncate_log as regular
1015 		 * cleanup will catch that. */
1016 		ocfs2_queue_recovery_completion(journal,
1017 						osb->slot_num,
1018 						osb->local_alloc_copy,
1019 						NULL);
1020 		ocfs2_schedule_truncate_log_flush(osb, 0);
1021 
1022 		osb->local_alloc_copy = NULL;
1023 		osb->dirty = 0;
1024 	}
1025 }
1026 
1027 static int __ocfs2_recovery_thread(void *arg)
1028 {
1029 	int status, node_num;
1030 	struct ocfs2_super *osb = arg;
1031 
1032 	mlog_entry_void();
1033 
1034 	status = ocfs2_wait_on_mount(osb);
1035 	if (status < 0) {
1036 		goto bail;
1037 	}
1038 
1039 restart:
1040 	status = ocfs2_super_lock(osb, 1);
1041 	if (status < 0) {
1042 		mlog_errno(status);
1043 		goto bail;
1044 	}
1045 
1046 	while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1047 		node_num = ocfs2_node_map_first_set_bit(osb,
1048 							&osb->recovery_map);
1049 		if (node_num == O2NM_INVALID_NODE_NUM) {
1050 			mlog(0, "Out of nodes to recover.\n");
1051 			break;
1052 		}
1053 
1054 		status = ocfs2_recover_node(osb, node_num);
1055 		if (status < 0) {
1056 			mlog(ML_ERROR,
1057 			     "Error %d recovering node %d on device (%u,%u)!\n",
1058 			     status, node_num,
1059 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1060 			mlog(ML_ERROR, "Volume requires unmount.\n");
1061 			continue;
1062 		}
1063 
1064 		ocfs2_recovery_map_clear(osb, node_num);
1065 	}
1066 	ocfs2_super_unlock(osb, 1);
1067 
1068 	/* We always run recovery on our own orphan dir - the dead
1069 	 * node(s) may have voted "no" on an inode delete earlier. A
1070 	 * revote is therefore required. */
1071 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1072 					NULL);
1073 
1074 bail:
1075 	down(&osb->recovery_lock);
1076 	if (!status &&
1077 	    !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1078 		up(&osb->recovery_lock);
1079 		goto restart;
1080 	}
1081 
1082 	osb->recovery_thread_task = NULL;
1083 	mb(); /* sync with ocfs2_recovery_thread_running */
1084 	wake_up(&osb->recovery_event);
1085 
1086 	up(&osb->recovery_lock);
1087 
1088 	mlog_exit(status);
1089 	/* no one is callint kthread_stop() for us so the kthread() api
1090 	 * requires that we call do_exit().  And it isn't exported, but
1091 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1092 	complete_and_exit(NULL, status);
1093 	return status;
1094 }
1095 
1096 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1097 {
1098 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1099 		   node_num, osb->node_num);
1100 
1101 	down(&osb->recovery_lock);
1102 	if (osb->disable_recovery)
1103 		goto out;
1104 
1105 	/* People waiting on recovery will wait on
1106 	 * the recovery map to empty. */
1107 	if (!ocfs2_recovery_map_set(osb, node_num))
1108 		mlog(0, "node %d already be in recovery.\n", node_num);
1109 
1110 	mlog(0, "starting recovery thread...\n");
1111 
1112 	if (osb->recovery_thread_task)
1113 		goto out;
1114 
1115 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1116 						 "ocfs2rec-%d", osb->osb_id);
1117 	if (IS_ERR(osb->recovery_thread_task)) {
1118 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1119 		osb->recovery_thread_task = NULL;
1120 	}
1121 
1122 out:
1123 	up(&osb->recovery_lock);
1124 	wake_up(&osb->recovery_event);
1125 
1126 	mlog_exit_void();
1127 }
1128 
1129 /* Does the actual journal replay and marks the journal inode as
1130  * clean. Will only replay if the journal inode is marked dirty. */
1131 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1132 				int node_num,
1133 				int slot_num)
1134 {
1135 	int status;
1136 	int got_lock = 0;
1137 	unsigned int flags;
1138 	struct inode *inode = NULL;
1139 	struct ocfs2_dinode *fe;
1140 	journal_t *journal = NULL;
1141 	struct buffer_head *bh = NULL;
1142 
1143 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1144 					    slot_num);
1145 	if (inode == NULL) {
1146 		status = -EACCES;
1147 		mlog_errno(status);
1148 		goto done;
1149 	}
1150 	if (is_bad_inode(inode)) {
1151 		status = -EACCES;
1152 		iput(inode);
1153 		inode = NULL;
1154 		mlog_errno(status);
1155 		goto done;
1156 	}
1157 	SET_INODE_JOURNAL(inode);
1158 
1159 	status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
1160 				      OCFS2_META_LOCK_RECOVERY);
1161 	if (status < 0) {
1162 		mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
1163 		if (status != -ERESTARTSYS)
1164 			mlog(ML_ERROR, "Could not lock journal!\n");
1165 		goto done;
1166 	}
1167 	got_lock = 1;
1168 
1169 	fe = (struct ocfs2_dinode *) bh->b_data;
1170 
1171 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1172 
1173 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1174 		mlog(0, "No recovery required for node %d\n", node_num);
1175 		goto done;
1176 	}
1177 
1178 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1179 	     node_num, slot_num,
1180 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1181 
1182 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1183 
1184 	status = ocfs2_force_read_journal(inode);
1185 	if (status < 0) {
1186 		mlog_errno(status);
1187 		goto done;
1188 	}
1189 
1190 	mlog(0, "calling journal_init_inode\n");
1191 	journal = journal_init_inode(inode);
1192 	if (journal == NULL) {
1193 		mlog(ML_ERROR, "Linux journal layer error\n");
1194 		status = -EIO;
1195 		goto done;
1196 	}
1197 
1198 	status = journal_load(journal);
1199 	if (status < 0) {
1200 		mlog_errno(status);
1201 		if (!igrab(inode))
1202 			BUG();
1203 		journal_destroy(journal);
1204 		goto done;
1205 	}
1206 
1207 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1208 
1209 	/* wipe the journal */
1210 	mlog(0, "flushing the journal.\n");
1211 	journal_lock_updates(journal);
1212 	status = journal_flush(journal);
1213 	journal_unlock_updates(journal);
1214 	if (status < 0)
1215 		mlog_errno(status);
1216 
1217 	/* This will mark the node clean */
1218 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1219 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1220 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1221 
1222 	status = ocfs2_write_block(osb, bh, inode);
1223 	if (status < 0)
1224 		mlog_errno(status);
1225 
1226 	if (!igrab(inode))
1227 		BUG();
1228 
1229 	journal_destroy(journal);
1230 
1231 done:
1232 	/* drop the lock on this nodes journal */
1233 	if (got_lock)
1234 		ocfs2_meta_unlock(inode, 1);
1235 
1236 	if (inode)
1237 		iput(inode);
1238 
1239 	if (bh)
1240 		brelse(bh);
1241 
1242 	mlog_exit(status);
1243 	return status;
1244 }
1245 
1246 /*
1247  * Do the most important parts of node recovery:
1248  *  - Replay it's journal
1249  *  - Stamp a clean local allocator file
1250  *  - Stamp a clean truncate log
1251  *  - Mark the node clean
1252  *
1253  * If this function completes without error, a node in OCFS2 can be
1254  * said to have been safely recovered. As a result, failure during the
1255  * second part of a nodes recovery process (local alloc recovery) is
1256  * far less concerning.
1257  */
1258 static int ocfs2_recover_node(struct ocfs2_super *osb,
1259 			      int node_num)
1260 {
1261 	int status = 0;
1262 	int slot_num;
1263 	struct ocfs2_slot_info *si = osb->slot_info;
1264 	struct ocfs2_dinode *la_copy = NULL;
1265 	struct ocfs2_dinode *tl_copy = NULL;
1266 
1267 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1268 		   node_num, osb->node_num);
1269 
1270 	mlog(0, "checking node %d\n", node_num);
1271 
1272 	/* Should not ever be called to recover ourselves -- in that
1273 	 * case we should've called ocfs2_journal_load instead. */
1274 	if (osb->node_num == node_num)
1275 		BUG();
1276 
1277 	slot_num = ocfs2_node_num_to_slot(si, node_num);
1278 	if (slot_num == OCFS2_INVALID_SLOT) {
1279 		status = 0;
1280 		mlog(0, "no slot for this node, so no recovery required.\n");
1281 		goto done;
1282 	}
1283 
1284 	mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1285 
1286 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1287 	if (status < 0) {
1288 		mlog_errno(status);
1289 		goto done;
1290 	}
1291 
1292 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1293 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1294 	if (status < 0) {
1295 		mlog_errno(status);
1296 		goto done;
1297 	}
1298 
1299 	/* An error from begin_truncate_log_recovery is not
1300 	 * serious enough to warrant halting the rest of
1301 	 * recovery. */
1302 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1303 	if (status < 0)
1304 		mlog_errno(status);
1305 
1306 	/* Likewise, this would be a strange but ultimately not so
1307 	 * harmful place to get an error... */
1308 	ocfs2_clear_slot(si, slot_num);
1309 	status = ocfs2_update_disk_slots(osb, si);
1310 	if (status < 0)
1311 		mlog_errno(status);
1312 
1313 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1314 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1315 					tl_copy);
1316 
1317 	status = 0;
1318 done:
1319 
1320 	mlog_exit(status);
1321 	return status;
1322 }
1323 
1324 /* Test node liveness by trylocking his journal. If we get the lock,
1325  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1326  * still alive (we couldn't get the lock) and < 0 on error. */
1327 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1328 				 int slot_num)
1329 {
1330 	int status, flags;
1331 	struct inode *inode = NULL;
1332 
1333 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1334 					    slot_num);
1335 	if (inode == NULL) {
1336 		mlog(ML_ERROR, "access error\n");
1337 		status = -EACCES;
1338 		goto bail;
1339 	}
1340 	if (is_bad_inode(inode)) {
1341 		mlog(ML_ERROR, "access error (bad inode)\n");
1342 		iput(inode);
1343 		inode = NULL;
1344 		status = -EACCES;
1345 		goto bail;
1346 	}
1347 	SET_INODE_JOURNAL(inode);
1348 
1349 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1350 	status = ocfs2_meta_lock_full(inode, NULL, NULL, 1, flags);
1351 	if (status < 0) {
1352 		if (status != -EAGAIN)
1353 			mlog_errno(status);
1354 		goto bail;
1355 	}
1356 
1357 	ocfs2_meta_unlock(inode, 1);
1358 bail:
1359 	if (inode)
1360 		iput(inode);
1361 
1362 	return status;
1363 }
1364 
1365 /* Call this underneath ocfs2_super_lock. It also assumes that the
1366  * slot info struct has been updated from disk. */
1367 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1368 {
1369 	int status, i, node_num;
1370 	struct ocfs2_slot_info *si = osb->slot_info;
1371 
1372 	/* This is called with the super block cluster lock, so we
1373 	 * know that the slot map can't change underneath us. */
1374 
1375 	spin_lock(&si->si_lock);
1376 	for(i = 0; i < si->si_num_slots; i++) {
1377 		if (i == osb->slot_num)
1378 			continue;
1379 		if (ocfs2_is_empty_slot(si, i))
1380 			continue;
1381 
1382 		node_num = si->si_global_node_nums[i];
1383 		if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1384 			continue;
1385 		spin_unlock(&si->si_lock);
1386 
1387 		/* Ok, we have a slot occupied by another node which
1388 		 * is not in the recovery map. We trylock his journal
1389 		 * file here to test if he's alive. */
1390 		status = ocfs2_trylock_journal(osb, i);
1391 		if (!status) {
1392 			/* Since we're called from mount, we know that
1393 			 * the recovery thread can't race us on
1394 			 * setting / checking the recovery bits. */
1395 			ocfs2_recovery_thread(osb, node_num);
1396 		} else if ((status < 0) && (status != -EAGAIN)) {
1397 			mlog_errno(status);
1398 			goto bail;
1399 		}
1400 
1401 		spin_lock(&si->si_lock);
1402 	}
1403 	spin_unlock(&si->si_lock);
1404 
1405 	status = 0;
1406 bail:
1407 	mlog_exit(status);
1408 	return status;
1409 }
1410 
1411 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1412 				 int slot)
1413 {
1414 	int status = 0;
1415 	int have_disk_lock = 0;
1416 	struct inode *inode = NULL;
1417 	struct inode *iter;
1418 	struct inode *orphan_dir_inode = NULL;
1419 	unsigned long offset, blk, local;
1420 	struct buffer_head *bh = NULL;
1421 	struct ocfs2_dir_entry *de;
1422 	struct super_block *sb = osb->sb;
1423 	struct ocfs2_inode_info *oi;
1424 
1425 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1426 
1427 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1428 						       ORPHAN_DIR_SYSTEM_INODE,
1429 						       slot);
1430 	if  (!orphan_dir_inode) {
1431 		status = -ENOENT;
1432 		mlog_errno(status);
1433 		goto out;
1434 	}
1435 
1436 	mutex_lock(&orphan_dir_inode->i_mutex);
1437 	status = ocfs2_meta_lock(orphan_dir_inode, NULL, NULL, 0);
1438 	if (status < 0) {
1439 		mutex_unlock(&orphan_dir_inode->i_mutex);
1440 		mlog_errno(status);
1441 		goto out;
1442 	}
1443 	have_disk_lock = 1;
1444 
1445 	offset = 0;
1446 	iter = NULL;
1447 	while(offset < i_size_read(orphan_dir_inode)) {
1448 		blk = offset >> sb->s_blocksize_bits;
1449 
1450 		bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1451 		if (!bh)
1452 			status = -EINVAL;
1453 		if (status < 0) {
1454 			mutex_unlock(&orphan_dir_inode->i_mutex);
1455 			if (bh)
1456 				brelse(bh);
1457 			mlog_errno(status);
1458 			goto out;
1459 		}
1460 
1461 		local = 0;
1462 		while(offset < i_size_read(orphan_dir_inode)
1463 		      && local < sb->s_blocksize) {
1464 			de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1465 
1466 			if (!ocfs2_check_dir_entry(orphan_dir_inode,
1467 						  de, bh, local)) {
1468 				mutex_unlock(&orphan_dir_inode->i_mutex);
1469 				status = -EINVAL;
1470 				mlog_errno(status);
1471 				brelse(bh);
1472 				goto out;
1473 			}
1474 
1475 			local += le16_to_cpu(de->rec_len);
1476 			offset += le16_to_cpu(de->rec_len);
1477 
1478 			/* I guess we silently fail on no inode? */
1479 			if (!le64_to_cpu(de->inode))
1480 				continue;
1481 			if (de->file_type > OCFS2_FT_MAX) {
1482 				mlog(ML_ERROR,
1483 				     "block %llu contains invalid de: "
1484 				     "inode = %"MLFu64", rec_len = %u, "
1485 				     "name_len = %u, file_type = %u, "
1486 				     "name='%.*s'\n",
1487 				     (unsigned long long)bh->b_blocknr,
1488 				     le64_to_cpu(de->inode),
1489 				     le16_to_cpu(de->rec_len),
1490 				     de->name_len,
1491 				     de->file_type,
1492 				     de->name_len,
1493 				     de->name);
1494 				continue;
1495 			}
1496 			if (de->name_len == 1 && !strncmp(".", de->name, 1))
1497 				continue;
1498 			if (de->name_len == 2 && !strncmp("..", de->name, 2))
1499 				continue;
1500 
1501 			iter = ocfs2_iget(osb, le64_to_cpu(de->inode));
1502 			if (IS_ERR(iter))
1503 				continue;
1504 
1505 			mlog(0, "queue orphan %"MLFu64"\n",
1506 			     OCFS2_I(iter)->ip_blkno);
1507 			OCFS2_I(iter)->ip_next_orphan = inode;
1508 			inode = iter;
1509 		}
1510 		brelse(bh);
1511 	}
1512 	mutex_unlock(&orphan_dir_inode->i_mutex);
1513 
1514 	ocfs2_meta_unlock(orphan_dir_inode, 0);
1515 	have_disk_lock = 0;
1516 
1517 	iput(orphan_dir_inode);
1518 	orphan_dir_inode = NULL;
1519 
1520 	while (inode) {
1521 		oi = OCFS2_I(inode);
1522 		mlog(0, "iput orphan %"MLFu64"\n", oi->ip_blkno);
1523 
1524 		iter = oi->ip_next_orphan;
1525 
1526 		spin_lock(&oi->ip_lock);
1527 		/* Delete voting may have set these on the assumption
1528 		 * that the other node would wipe them successfully.
1529 		 * If they are still in the node's orphan dir, we need
1530 		 * to reset that state. */
1531 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1532 
1533 		/* Set the proper information to get us going into
1534 		 * ocfs2_delete_inode. */
1535 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1536 		oi->ip_orphaned_slot = slot;
1537 		spin_unlock(&oi->ip_lock);
1538 
1539 		iput(inode);
1540 
1541 		inode = iter;
1542 	}
1543 
1544 out:
1545 	if (have_disk_lock)
1546 		ocfs2_meta_unlock(orphan_dir_inode, 0);
1547 
1548 	if (orphan_dir_inode)
1549 		iput(orphan_dir_inode);
1550 
1551 	return status;
1552 }
1553 
1554 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1555 {
1556 	/* This check is good because ocfs2 will wait on our recovery
1557 	 * thread before changing it to something other than MOUNTED
1558 	 * or DISABLED. */
1559 	wait_event(osb->osb_mount_event,
1560 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1561 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1562 
1563 	/* If there's an error on mount, then we may never get to the
1564 	 * MOUNTED flag, but this is set right before
1565 	 * dismount_volume() so we can trust it. */
1566 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1567 		mlog(0, "mount error, exiting!\n");
1568 		return -EBUSY;
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 static int ocfs2_commit_thread(void *arg)
1575 {
1576 	int status;
1577 	struct ocfs2_super *osb = arg;
1578 	struct ocfs2_journal *journal = osb->journal;
1579 
1580 	/* we can trust j_num_trans here because _should_stop() is only set in
1581 	 * shutdown and nobody other than ourselves should be able to start
1582 	 * transactions.  committing on shutdown might take a few iterations
1583 	 * as final transactions put deleted inodes on the list */
1584 	while (!(kthread_should_stop() &&
1585 		 atomic_read(&journal->j_num_trans) == 0)) {
1586 
1587 		wait_event_interruptible_timeout(osb->checkpoint_event,
1588 						 atomic_read(&journal->j_num_trans)
1589 						 || kthread_should_stop(),
1590 						 OCFS2_CHECKPOINT_INTERVAL);
1591 
1592 		status = ocfs2_commit_cache(osb);
1593 		if (status < 0)
1594 			mlog_errno(status);
1595 
1596 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1597 			mlog(ML_KTHREAD,
1598 			     "commit_thread: %u transactions pending on "
1599 			     "shutdown\n",
1600 			     atomic_read(&journal->j_num_trans));
1601 		}
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 /* Look for a dirty journal without taking any cluster locks. Used for
1608  * hard readonly access to determine whether the file system journals
1609  * require recovery. */
1610 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1611 {
1612 	int ret = 0;
1613 	unsigned int slot;
1614 	struct buffer_head *di_bh;
1615 	struct ocfs2_dinode *di;
1616 	struct inode *journal = NULL;
1617 
1618 	for(slot = 0; slot < osb->max_slots; slot++) {
1619 		journal = ocfs2_get_system_file_inode(osb,
1620 						      JOURNAL_SYSTEM_INODE,
1621 						      slot);
1622 		if (!journal || is_bad_inode(journal)) {
1623 			ret = -EACCES;
1624 			mlog_errno(ret);
1625 			goto out;
1626 		}
1627 
1628 		di_bh = NULL;
1629 		ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1630 				       0, journal);
1631 		if (ret < 0) {
1632 			mlog_errno(ret);
1633 			goto out;
1634 		}
1635 
1636 		di = (struct ocfs2_dinode *) di_bh->b_data;
1637 
1638 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
1639 		    OCFS2_JOURNAL_DIRTY_FL)
1640 			ret = -EROFS;
1641 
1642 		brelse(di_bh);
1643 		if (ret)
1644 			break;
1645 	}
1646 
1647 out:
1648 	if (journal)
1649 		iput(journal);
1650 
1651 	return ret;
1652 }
1653