1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 #include <linux/time.h> 32 #include <linux/random.h> 33 #include <linux/delay.h> 34 35 #include <cluster/masklog.h> 36 37 #include "ocfs2.h" 38 39 #include "alloc.h" 40 #include "blockcheck.h" 41 #include "dir.h" 42 #include "dlmglue.h" 43 #include "extent_map.h" 44 #include "heartbeat.h" 45 #include "inode.h" 46 #include "journal.h" 47 #include "localalloc.h" 48 #include "slot_map.h" 49 #include "super.h" 50 #include "sysfile.h" 51 #include "uptodate.h" 52 #include "quota.h" 53 54 #include "buffer_head_io.h" 55 #include "ocfs2_trace.h" 56 57 DEFINE_SPINLOCK(trans_inc_lock); 58 59 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 60 61 static int ocfs2_force_read_journal(struct inode *inode); 62 static int ocfs2_recover_node(struct ocfs2_super *osb, 63 int node_num, int slot_num); 64 static int __ocfs2_recovery_thread(void *arg); 65 static int ocfs2_commit_cache(struct ocfs2_super *osb); 66 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 67 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 68 int dirty, int replayed); 69 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 70 int slot_num); 71 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 72 int slot); 73 static int ocfs2_commit_thread(void *arg); 74 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 75 int slot_num, 76 struct ocfs2_dinode *la_dinode, 77 struct ocfs2_dinode *tl_dinode, 78 struct ocfs2_quota_recovery *qrec); 79 80 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 81 { 82 return __ocfs2_wait_on_mount(osb, 0); 83 } 84 85 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 86 { 87 return __ocfs2_wait_on_mount(osb, 1); 88 } 89 90 /* 91 * This replay_map is to track online/offline slots, so we could recover 92 * offline slots during recovery and mount 93 */ 94 95 enum ocfs2_replay_state { 96 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 97 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 98 REPLAY_DONE /* Replay was already queued */ 99 }; 100 101 struct ocfs2_replay_map { 102 unsigned int rm_slots; 103 enum ocfs2_replay_state rm_state; 104 unsigned char rm_replay_slots[0]; 105 }; 106 107 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 108 { 109 if (!osb->replay_map) 110 return; 111 112 /* If we've already queued the replay, we don't have any more to do */ 113 if (osb->replay_map->rm_state == REPLAY_DONE) 114 return; 115 116 osb->replay_map->rm_state = state; 117 } 118 119 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 120 { 121 struct ocfs2_replay_map *replay_map; 122 int i, node_num; 123 124 /* If replay map is already set, we don't do it again */ 125 if (osb->replay_map) 126 return 0; 127 128 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 129 (osb->max_slots * sizeof(char)), GFP_KERNEL); 130 131 if (!replay_map) { 132 mlog_errno(-ENOMEM); 133 return -ENOMEM; 134 } 135 136 spin_lock(&osb->osb_lock); 137 138 replay_map->rm_slots = osb->max_slots; 139 replay_map->rm_state = REPLAY_UNNEEDED; 140 141 /* set rm_replay_slots for offline slot(s) */ 142 for (i = 0; i < replay_map->rm_slots; i++) { 143 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 144 replay_map->rm_replay_slots[i] = 1; 145 } 146 147 osb->replay_map = replay_map; 148 spin_unlock(&osb->osb_lock); 149 return 0; 150 } 151 152 void ocfs2_queue_replay_slots(struct ocfs2_super *osb) 153 { 154 struct ocfs2_replay_map *replay_map = osb->replay_map; 155 int i; 156 157 if (!replay_map) 158 return; 159 160 if (replay_map->rm_state != REPLAY_NEEDED) 161 return; 162 163 for (i = 0; i < replay_map->rm_slots; i++) 164 if (replay_map->rm_replay_slots[i]) 165 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 166 NULL, NULL); 167 replay_map->rm_state = REPLAY_DONE; 168 } 169 170 void ocfs2_free_replay_slots(struct ocfs2_super *osb) 171 { 172 struct ocfs2_replay_map *replay_map = osb->replay_map; 173 174 if (!osb->replay_map) 175 return; 176 177 kfree(replay_map); 178 osb->replay_map = NULL; 179 } 180 181 int ocfs2_recovery_init(struct ocfs2_super *osb) 182 { 183 struct ocfs2_recovery_map *rm; 184 185 mutex_init(&osb->recovery_lock); 186 osb->disable_recovery = 0; 187 osb->recovery_thread_task = NULL; 188 init_waitqueue_head(&osb->recovery_event); 189 190 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 191 osb->max_slots * sizeof(unsigned int), 192 GFP_KERNEL); 193 if (!rm) { 194 mlog_errno(-ENOMEM); 195 return -ENOMEM; 196 } 197 198 rm->rm_entries = (unsigned int *)((char *)rm + 199 sizeof(struct ocfs2_recovery_map)); 200 osb->recovery_map = rm; 201 202 return 0; 203 } 204 205 /* we can't grab the goofy sem lock from inside wait_event, so we use 206 * memory barriers to make sure that we'll see the null task before 207 * being woken up */ 208 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 209 { 210 mb(); 211 return osb->recovery_thread_task != NULL; 212 } 213 214 void ocfs2_recovery_exit(struct ocfs2_super *osb) 215 { 216 struct ocfs2_recovery_map *rm; 217 218 /* disable any new recovery threads and wait for any currently 219 * running ones to exit. Do this before setting the vol_state. */ 220 mutex_lock(&osb->recovery_lock); 221 osb->disable_recovery = 1; 222 mutex_unlock(&osb->recovery_lock); 223 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 224 225 /* At this point, we know that no more recovery threads can be 226 * launched, so wait for any recovery completion work to 227 * complete. */ 228 flush_workqueue(ocfs2_wq); 229 230 /* 231 * Now that recovery is shut down, and the osb is about to be 232 * freed, the osb_lock is not taken here. 233 */ 234 rm = osb->recovery_map; 235 /* XXX: Should we bug if there are dirty entries? */ 236 237 kfree(rm); 238 } 239 240 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 241 unsigned int node_num) 242 { 243 int i; 244 struct ocfs2_recovery_map *rm = osb->recovery_map; 245 246 assert_spin_locked(&osb->osb_lock); 247 248 for (i = 0; i < rm->rm_used; i++) { 249 if (rm->rm_entries[i] == node_num) 250 return 1; 251 } 252 253 return 0; 254 } 255 256 /* Behaves like test-and-set. Returns the previous value */ 257 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 258 unsigned int node_num) 259 { 260 struct ocfs2_recovery_map *rm = osb->recovery_map; 261 262 spin_lock(&osb->osb_lock); 263 if (__ocfs2_recovery_map_test(osb, node_num)) { 264 spin_unlock(&osb->osb_lock); 265 return 1; 266 } 267 268 /* XXX: Can this be exploited? Not from o2dlm... */ 269 BUG_ON(rm->rm_used >= osb->max_slots); 270 271 rm->rm_entries[rm->rm_used] = node_num; 272 rm->rm_used++; 273 spin_unlock(&osb->osb_lock); 274 275 return 0; 276 } 277 278 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 279 unsigned int node_num) 280 { 281 int i; 282 struct ocfs2_recovery_map *rm = osb->recovery_map; 283 284 spin_lock(&osb->osb_lock); 285 286 for (i = 0; i < rm->rm_used; i++) { 287 if (rm->rm_entries[i] == node_num) 288 break; 289 } 290 291 if (i < rm->rm_used) { 292 /* XXX: be careful with the pointer math */ 293 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 294 (rm->rm_used - i - 1) * sizeof(unsigned int)); 295 rm->rm_used--; 296 } 297 298 spin_unlock(&osb->osb_lock); 299 } 300 301 static int ocfs2_commit_cache(struct ocfs2_super *osb) 302 { 303 int status = 0; 304 unsigned int flushed; 305 struct ocfs2_journal *journal = NULL; 306 307 journal = osb->journal; 308 309 /* Flush all pending commits and checkpoint the journal. */ 310 down_write(&journal->j_trans_barrier); 311 312 flushed = atomic_read(&journal->j_num_trans); 313 trace_ocfs2_commit_cache_begin(flushed); 314 if (flushed == 0) { 315 up_write(&journal->j_trans_barrier); 316 goto finally; 317 } 318 319 jbd2_journal_lock_updates(journal->j_journal); 320 status = jbd2_journal_flush(journal->j_journal); 321 jbd2_journal_unlock_updates(journal->j_journal); 322 if (status < 0) { 323 up_write(&journal->j_trans_barrier); 324 mlog_errno(status); 325 goto finally; 326 } 327 328 ocfs2_inc_trans_id(journal); 329 330 flushed = atomic_read(&journal->j_num_trans); 331 atomic_set(&journal->j_num_trans, 0); 332 up_write(&journal->j_trans_barrier); 333 334 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 335 336 ocfs2_wake_downconvert_thread(osb); 337 wake_up(&journal->j_checkpointed); 338 finally: 339 return status; 340 } 341 342 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 343 { 344 journal_t *journal = osb->journal->j_journal; 345 handle_t *handle; 346 347 BUG_ON(!osb || !osb->journal->j_journal); 348 349 if (ocfs2_is_hard_readonly(osb)) 350 return ERR_PTR(-EROFS); 351 352 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 353 BUG_ON(max_buffs <= 0); 354 355 /* Nested transaction? Just return the handle... */ 356 if (journal_current_handle()) 357 return jbd2_journal_start(journal, max_buffs); 358 359 sb_start_intwrite(osb->sb); 360 361 down_read(&osb->journal->j_trans_barrier); 362 363 handle = jbd2_journal_start(journal, max_buffs); 364 if (IS_ERR(handle)) { 365 up_read(&osb->journal->j_trans_barrier); 366 sb_end_intwrite(osb->sb); 367 368 mlog_errno(PTR_ERR(handle)); 369 370 if (is_journal_aborted(journal)) { 371 ocfs2_abort(osb->sb, "Detected aborted journal"); 372 handle = ERR_PTR(-EROFS); 373 } 374 } else { 375 if (!ocfs2_mount_local(osb)) 376 atomic_inc(&(osb->journal->j_num_trans)); 377 } 378 379 return handle; 380 } 381 382 int ocfs2_commit_trans(struct ocfs2_super *osb, 383 handle_t *handle) 384 { 385 int ret, nested; 386 struct ocfs2_journal *journal = osb->journal; 387 388 BUG_ON(!handle); 389 390 nested = handle->h_ref > 1; 391 ret = jbd2_journal_stop(handle); 392 if (ret < 0) 393 mlog_errno(ret); 394 395 if (!nested) { 396 up_read(&journal->j_trans_barrier); 397 sb_end_intwrite(osb->sb); 398 } 399 400 return ret; 401 } 402 403 /* 404 * 'nblocks' is what you want to add to the current transaction. 405 * 406 * This might call jbd2_journal_restart() which will commit dirty buffers 407 * and then restart the transaction. Before calling 408 * ocfs2_extend_trans(), any changed blocks should have been 409 * dirtied. After calling it, all blocks which need to be changed must 410 * go through another set of journal_access/journal_dirty calls. 411 * 412 * WARNING: This will not release any semaphores or disk locks taken 413 * during the transaction, so make sure they were taken *before* 414 * start_trans or we'll have ordering deadlocks. 415 * 416 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 417 * good because transaction ids haven't yet been recorded on the 418 * cluster locks associated with this handle. 419 */ 420 int ocfs2_extend_trans(handle_t *handle, int nblocks) 421 { 422 int status, old_nblocks; 423 424 BUG_ON(!handle); 425 BUG_ON(nblocks < 0); 426 427 if (!nblocks) 428 return 0; 429 430 old_nblocks = handle->h_buffer_credits; 431 432 trace_ocfs2_extend_trans(old_nblocks, nblocks); 433 434 #ifdef CONFIG_OCFS2_DEBUG_FS 435 status = 1; 436 #else 437 status = jbd2_journal_extend(handle, nblocks); 438 if (status < 0) { 439 mlog_errno(status); 440 goto bail; 441 } 442 #endif 443 444 if (status > 0) { 445 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 446 status = jbd2_journal_restart(handle, 447 old_nblocks + nblocks); 448 if (status < 0) { 449 mlog_errno(status); 450 goto bail; 451 } 452 } 453 454 status = 0; 455 bail: 456 return status; 457 } 458 459 /* 460 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 461 * If that fails, restart the transaction & regain write access for the 462 * buffer head which is used for metadata modifications. 463 * Taken from Ext4: extend_or_restart_transaction() 464 */ 465 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 466 { 467 int status, old_nblks; 468 469 BUG_ON(!handle); 470 471 old_nblks = handle->h_buffer_credits; 472 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 473 474 if (old_nblks < thresh) 475 return 0; 476 477 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA); 478 if (status < 0) { 479 mlog_errno(status); 480 goto bail; 481 } 482 483 if (status > 0) { 484 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 485 if (status < 0) 486 mlog_errno(status); 487 } 488 489 bail: 490 return status; 491 } 492 493 494 struct ocfs2_triggers { 495 struct jbd2_buffer_trigger_type ot_triggers; 496 int ot_offset; 497 }; 498 499 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 500 { 501 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 502 } 503 504 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 505 struct buffer_head *bh, 506 void *data, size_t size) 507 { 508 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 509 510 /* 511 * We aren't guaranteed to have the superblock here, so we 512 * must unconditionally compute the ecc data. 513 * __ocfs2_journal_access() will only set the triggers if 514 * metaecc is enabled. 515 */ 516 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 517 } 518 519 /* 520 * Quota blocks have their own trigger because the struct ocfs2_block_check 521 * offset depends on the blocksize. 522 */ 523 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 524 struct buffer_head *bh, 525 void *data, size_t size) 526 { 527 struct ocfs2_disk_dqtrailer *dqt = 528 ocfs2_block_dqtrailer(size, data); 529 530 /* 531 * We aren't guaranteed to have the superblock here, so we 532 * must unconditionally compute the ecc data. 533 * __ocfs2_journal_access() will only set the triggers if 534 * metaecc is enabled. 535 */ 536 ocfs2_block_check_compute(data, size, &dqt->dq_check); 537 } 538 539 /* 540 * Directory blocks also have their own trigger because the 541 * struct ocfs2_block_check offset depends on the blocksize. 542 */ 543 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 544 struct buffer_head *bh, 545 void *data, size_t size) 546 { 547 struct ocfs2_dir_block_trailer *trailer = 548 ocfs2_dir_trailer_from_size(size, data); 549 550 /* 551 * We aren't guaranteed to have the superblock here, so we 552 * must unconditionally compute the ecc data. 553 * __ocfs2_journal_access() will only set the triggers if 554 * metaecc is enabled. 555 */ 556 ocfs2_block_check_compute(data, size, &trailer->db_check); 557 } 558 559 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 560 struct buffer_head *bh) 561 { 562 mlog(ML_ERROR, 563 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 564 "bh->b_blocknr = %llu\n", 565 (unsigned long)bh, 566 (unsigned long long)bh->b_blocknr); 567 568 /* We aren't guaranteed to have the superblock here - but if we 569 * don't, it'll just crash. */ 570 ocfs2_error(bh->b_assoc_map->host->i_sb, 571 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 572 } 573 574 static struct ocfs2_triggers di_triggers = { 575 .ot_triggers = { 576 .t_frozen = ocfs2_frozen_trigger, 577 .t_abort = ocfs2_abort_trigger, 578 }, 579 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 580 }; 581 582 static struct ocfs2_triggers eb_triggers = { 583 .ot_triggers = { 584 .t_frozen = ocfs2_frozen_trigger, 585 .t_abort = ocfs2_abort_trigger, 586 }, 587 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 588 }; 589 590 static struct ocfs2_triggers rb_triggers = { 591 .ot_triggers = { 592 .t_frozen = ocfs2_frozen_trigger, 593 .t_abort = ocfs2_abort_trigger, 594 }, 595 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 596 }; 597 598 static struct ocfs2_triggers gd_triggers = { 599 .ot_triggers = { 600 .t_frozen = ocfs2_frozen_trigger, 601 .t_abort = ocfs2_abort_trigger, 602 }, 603 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 604 }; 605 606 static struct ocfs2_triggers db_triggers = { 607 .ot_triggers = { 608 .t_frozen = ocfs2_db_frozen_trigger, 609 .t_abort = ocfs2_abort_trigger, 610 }, 611 }; 612 613 static struct ocfs2_triggers xb_triggers = { 614 .ot_triggers = { 615 .t_frozen = ocfs2_frozen_trigger, 616 .t_abort = ocfs2_abort_trigger, 617 }, 618 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 619 }; 620 621 static struct ocfs2_triggers dq_triggers = { 622 .ot_triggers = { 623 .t_frozen = ocfs2_dq_frozen_trigger, 624 .t_abort = ocfs2_abort_trigger, 625 }, 626 }; 627 628 static struct ocfs2_triggers dr_triggers = { 629 .ot_triggers = { 630 .t_frozen = ocfs2_frozen_trigger, 631 .t_abort = ocfs2_abort_trigger, 632 }, 633 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 634 }; 635 636 static struct ocfs2_triggers dl_triggers = { 637 .ot_triggers = { 638 .t_frozen = ocfs2_frozen_trigger, 639 .t_abort = ocfs2_abort_trigger, 640 }, 641 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 642 }; 643 644 static int __ocfs2_journal_access(handle_t *handle, 645 struct ocfs2_caching_info *ci, 646 struct buffer_head *bh, 647 struct ocfs2_triggers *triggers, 648 int type) 649 { 650 int status; 651 struct ocfs2_super *osb = 652 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 653 654 BUG_ON(!ci || !ci->ci_ops); 655 BUG_ON(!handle); 656 BUG_ON(!bh); 657 658 trace_ocfs2_journal_access( 659 (unsigned long long)ocfs2_metadata_cache_owner(ci), 660 (unsigned long long)bh->b_blocknr, type, bh->b_size); 661 662 /* we can safely remove this assertion after testing. */ 663 if (!buffer_uptodate(bh)) { 664 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 665 mlog(ML_ERROR, "b_blocknr=%llu\n", 666 (unsigned long long)bh->b_blocknr); 667 BUG(); 668 } 669 670 /* Set the current transaction information on the ci so 671 * that the locking code knows whether it can drop it's locks 672 * on this ci or not. We're protected from the commit 673 * thread updating the current transaction id until 674 * ocfs2_commit_trans() because ocfs2_start_trans() took 675 * j_trans_barrier for us. */ 676 ocfs2_set_ci_lock_trans(osb->journal, ci); 677 678 ocfs2_metadata_cache_io_lock(ci); 679 switch (type) { 680 case OCFS2_JOURNAL_ACCESS_CREATE: 681 case OCFS2_JOURNAL_ACCESS_WRITE: 682 status = jbd2_journal_get_write_access(handle, bh); 683 break; 684 685 case OCFS2_JOURNAL_ACCESS_UNDO: 686 status = jbd2_journal_get_undo_access(handle, bh); 687 break; 688 689 default: 690 status = -EINVAL; 691 mlog(ML_ERROR, "Unknown access type!\n"); 692 } 693 if (!status && ocfs2_meta_ecc(osb) && triggers) 694 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 695 ocfs2_metadata_cache_io_unlock(ci); 696 697 if (status < 0) 698 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 699 status, type); 700 701 return status; 702 } 703 704 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 705 struct buffer_head *bh, int type) 706 { 707 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 708 } 709 710 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 711 struct buffer_head *bh, int type) 712 { 713 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 714 } 715 716 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 717 struct buffer_head *bh, int type) 718 { 719 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 720 type); 721 } 722 723 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 724 struct buffer_head *bh, int type) 725 { 726 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 727 } 728 729 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 730 struct buffer_head *bh, int type) 731 { 732 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 733 } 734 735 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 736 struct buffer_head *bh, int type) 737 { 738 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 739 } 740 741 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 742 struct buffer_head *bh, int type) 743 { 744 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 745 } 746 747 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 748 struct buffer_head *bh, int type) 749 { 750 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 751 } 752 753 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 754 struct buffer_head *bh, int type) 755 { 756 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 757 } 758 759 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 760 struct buffer_head *bh, int type) 761 { 762 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 763 } 764 765 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 766 { 767 int status; 768 769 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 770 771 status = jbd2_journal_dirty_metadata(handle, bh); 772 BUG_ON(status); 773 } 774 775 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 776 777 void ocfs2_set_journal_params(struct ocfs2_super *osb) 778 { 779 journal_t *journal = osb->journal->j_journal; 780 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 781 782 if (osb->osb_commit_interval) 783 commit_interval = osb->osb_commit_interval; 784 785 write_lock(&journal->j_state_lock); 786 journal->j_commit_interval = commit_interval; 787 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 788 journal->j_flags |= JBD2_BARRIER; 789 else 790 journal->j_flags &= ~JBD2_BARRIER; 791 write_unlock(&journal->j_state_lock); 792 } 793 794 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 795 { 796 int status = -1; 797 struct inode *inode = NULL; /* the journal inode */ 798 journal_t *j_journal = NULL; 799 struct ocfs2_dinode *di = NULL; 800 struct buffer_head *bh = NULL; 801 struct ocfs2_super *osb; 802 int inode_lock = 0; 803 804 BUG_ON(!journal); 805 806 osb = journal->j_osb; 807 808 /* already have the inode for our journal */ 809 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 810 osb->slot_num); 811 if (inode == NULL) { 812 status = -EACCES; 813 mlog_errno(status); 814 goto done; 815 } 816 if (is_bad_inode(inode)) { 817 mlog(ML_ERROR, "access error (bad inode)\n"); 818 iput(inode); 819 inode = NULL; 820 status = -EACCES; 821 goto done; 822 } 823 824 SET_INODE_JOURNAL(inode); 825 OCFS2_I(inode)->ip_open_count++; 826 827 /* Skip recovery waits here - journal inode metadata never 828 * changes in a live cluster so it can be considered an 829 * exception to the rule. */ 830 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 831 if (status < 0) { 832 if (status != -ERESTARTSYS) 833 mlog(ML_ERROR, "Could not get lock on journal!\n"); 834 goto done; 835 } 836 837 inode_lock = 1; 838 di = (struct ocfs2_dinode *)bh->b_data; 839 840 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 841 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 842 i_size_read(inode)); 843 status = -EINVAL; 844 goto done; 845 } 846 847 trace_ocfs2_journal_init(i_size_read(inode), 848 (unsigned long long)inode->i_blocks, 849 OCFS2_I(inode)->ip_clusters); 850 851 /* call the kernels journal init function now */ 852 j_journal = jbd2_journal_init_inode(inode); 853 if (j_journal == NULL) { 854 mlog(ML_ERROR, "Linux journal layer error\n"); 855 status = -EINVAL; 856 goto done; 857 } 858 859 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen); 860 861 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 862 OCFS2_JOURNAL_DIRTY_FL); 863 864 journal->j_journal = j_journal; 865 journal->j_inode = inode; 866 journal->j_bh = bh; 867 868 ocfs2_set_journal_params(osb); 869 870 journal->j_state = OCFS2_JOURNAL_LOADED; 871 872 status = 0; 873 done: 874 if (status < 0) { 875 if (inode_lock) 876 ocfs2_inode_unlock(inode, 1); 877 brelse(bh); 878 if (inode) { 879 OCFS2_I(inode)->ip_open_count--; 880 iput(inode); 881 } 882 } 883 884 return status; 885 } 886 887 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 888 { 889 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 890 } 891 892 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 893 { 894 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 895 } 896 897 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 898 int dirty, int replayed) 899 { 900 int status; 901 unsigned int flags; 902 struct ocfs2_journal *journal = osb->journal; 903 struct buffer_head *bh = journal->j_bh; 904 struct ocfs2_dinode *fe; 905 906 fe = (struct ocfs2_dinode *)bh->b_data; 907 908 /* The journal bh on the osb always comes from ocfs2_journal_init() 909 * and was validated there inside ocfs2_inode_lock_full(). It's a 910 * code bug if we mess it up. */ 911 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 912 913 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 914 if (dirty) 915 flags |= OCFS2_JOURNAL_DIRTY_FL; 916 else 917 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 918 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 919 920 if (replayed) 921 ocfs2_bump_recovery_generation(fe); 922 923 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 924 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 925 if (status < 0) 926 mlog_errno(status); 927 928 return status; 929 } 930 931 /* 932 * If the journal has been kmalloc'd it needs to be freed after this 933 * call. 934 */ 935 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 936 { 937 struct ocfs2_journal *journal = NULL; 938 int status = 0; 939 struct inode *inode = NULL; 940 int num_running_trans = 0; 941 942 BUG_ON(!osb); 943 944 journal = osb->journal; 945 if (!journal) 946 goto done; 947 948 inode = journal->j_inode; 949 950 if (journal->j_state != OCFS2_JOURNAL_LOADED) 951 goto done; 952 953 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 954 if (!igrab(inode)) 955 BUG(); 956 957 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 958 trace_ocfs2_journal_shutdown(num_running_trans); 959 960 /* Do a commit_cache here. It will flush our journal, *and* 961 * release any locks that are still held. 962 * set the SHUTDOWN flag and release the trans lock. 963 * the commit thread will take the trans lock for us below. */ 964 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 965 966 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 967 * drop the trans_lock (which we want to hold until we 968 * completely destroy the journal. */ 969 if (osb->commit_task) { 970 /* Wait for the commit thread */ 971 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 972 kthread_stop(osb->commit_task); 973 osb->commit_task = NULL; 974 } 975 976 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 977 978 if (ocfs2_mount_local(osb)) { 979 jbd2_journal_lock_updates(journal->j_journal); 980 status = jbd2_journal_flush(journal->j_journal); 981 jbd2_journal_unlock_updates(journal->j_journal); 982 if (status < 0) 983 mlog_errno(status); 984 } 985 986 if (status == 0) { 987 /* 988 * Do not toggle if flush was unsuccessful otherwise 989 * will leave dirty metadata in a "clean" journal 990 */ 991 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 992 if (status < 0) 993 mlog_errno(status); 994 } 995 996 /* Shutdown the kernel journal system */ 997 jbd2_journal_destroy(journal->j_journal); 998 journal->j_journal = NULL; 999 1000 OCFS2_I(inode)->ip_open_count--; 1001 1002 /* unlock our journal */ 1003 ocfs2_inode_unlock(inode, 1); 1004 1005 brelse(journal->j_bh); 1006 journal->j_bh = NULL; 1007 1008 journal->j_state = OCFS2_JOURNAL_FREE; 1009 1010 // up_write(&journal->j_trans_barrier); 1011 done: 1012 if (inode) 1013 iput(inode); 1014 } 1015 1016 static void ocfs2_clear_journal_error(struct super_block *sb, 1017 journal_t *journal, 1018 int slot) 1019 { 1020 int olderr; 1021 1022 olderr = jbd2_journal_errno(journal); 1023 if (olderr) { 1024 mlog(ML_ERROR, "File system error %d recorded in " 1025 "journal %u.\n", olderr, slot); 1026 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1027 sb->s_id); 1028 1029 jbd2_journal_ack_err(journal); 1030 jbd2_journal_clear_err(journal); 1031 } 1032 } 1033 1034 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1035 { 1036 int status = 0; 1037 struct ocfs2_super *osb; 1038 1039 BUG_ON(!journal); 1040 1041 osb = journal->j_osb; 1042 1043 status = jbd2_journal_load(journal->j_journal); 1044 if (status < 0) { 1045 mlog(ML_ERROR, "Failed to load journal!\n"); 1046 goto done; 1047 } 1048 1049 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1050 1051 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1052 if (status < 0) { 1053 mlog_errno(status); 1054 goto done; 1055 } 1056 1057 /* Launch the commit thread */ 1058 if (!local) { 1059 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1060 "ocfs2cmt"); 1061 if (IS_ERR(osb->commit_task)) { 1062 status = PTR_ERR(osb->commit_task); 1063 osb->commit_task = NULL; 1064 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1065 "error=%d", status); 1066 goto done; 1067 } 1068 } else 1069 osb->commit_task = NULL; 1070 1071 done: 1072 return status; 1073 } 1074 1075 1076 /* 'full' flag tells us whether we clear out all blocks or if we just 1077 * mark the journal clean */ 1078 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1079 { 1080 int status; 1081 1082 BUG_ON(!journal); 1083 1084 status = jbd2_journal_wipe(journal->j_journal, full); 1085 if (status < 0) { 1086 mlog_errno(status); 1087 goto bail; 1088 } 1089 1090 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1091 if (status < 0) 1092 mlog_errno(status); 1093 1094 bail: 1095 return status; 1096 } 1097 1098 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1099 { 1100 int empty; 1101 struct ocfs2_recovery_map *rm = osb->recovery_map; 1102 1103 spin_lock(&osb->osb_lock); 1104 empty = (rm->rm_used == 0); 1105 spin_unlock(&osb->osb_lock); 1106 1107 return empty; 1108 } 1109 1110 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1111 { 1112 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1113 } 1114 1115 /* 1116 * JBD Might read a cached version of another nodes journal file. We 1117 * don't want this as this file changes often and we get no 1118 * notification on those changes. The only way to be sure that we've 1119 * got the most up to date version of those blocks then is to force 1120 * read them off disk. Just searching through the buffer cache won't 1121 * work as there may be pages backing this file which are still marked 1122 * up to date. We know things can't change on this file underneath us 1123 * as we have the lock by now :) 1124 */ 1125 static int ocfs2_force_read_journal(struct inode *inode) 1126 { 1127 int status = 0; 1128 int i; 1129 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1130 #define CONCURRENT_JOURNAL_FILL 32ULL 1131 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 1132 1133 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 1134 1135 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1136 v_blkno = 0; 1137 while (v_blkno < num_blocks) { 1138 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1139 &p_blkno, &p_blocks, NULL); 1140 if (status < 0) { 1141 mlog_errno(status); 1142 goto bail; 1143 } 1144 1145 if (p_blocks > CONCURRENT_JOURNAL_FILL) 1146 p_blocks = CONCURRENT_JOURNAL_FILL; 1147 1148 /* We are reading journal data which should not 1149 * be put in the uptodate cache */ 1150 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb), 1151 p_blkno, p_blocks, bhs); 1152 if (status < 0) { 1153 mlog_errno(status); 1154 goto bail; 1155 } 1156 1157 for(i = 0; i < p_blocks; i++) { 1158 brelse(bhs[i]); 1159 bhs[i] = NULL; 1160 } 1161 1162 v_blkno += p_blocks; 1163 } 1164 1165 bail: 1166 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 1167 brelse(bhs[i]); 1168 return status; 1169 } 1170 1171 struct ocfs2_la_recovery_item { 1172 struct list_head lri_list; 1173 int lri_slot; 1174 struct ocfs2_dinode *lri_la_dinode; 1175 struct ocfs2_dinode *lri_tl_dinode; 1176 struct ocfs2_quota_recovery *lri_qrec; 1177 }; 1178 1179 /* Does the second half of the recovery process. By this point, the 1180 * node is marked clean and can actually be considered recovered, 1181 * hence it's no longer in the recovery map, but there's still some 1182 * cleanup we can do which shouldn't happen within the recovery thread 1183 * as locking in that context becomes very difficult if we are to take 1184 * recovering nodes into account. 1185 * 1186 * NOTE: This function can and will sleep on recovery of other nodes 1187 * during cluster locking, just like any other ocfs2 process. 1188 */ 1189 void ocfs2_complete_recovery(struct work_struct *work) 1190 { 1191 int ret = 0; 1192 struct ocfs2_journal *journal = 1193 container_of(work, struct ocfs2_journal, j_recovery_work); 1194 struct ocfs2_super *osb = journal->j_osb; 1195 struct ocfs2_dinode *la_dinode, *tl_dinode; 1196 struct ocfs2_la_recovery_item *item, *n; 1197 struct ocfs2_quota_recovery *qrec; 1198 LIST_HEAD(tmp_la_list); 1199 1200 trace_ocfs2_complete_recovery( 1201 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1202 1203 spin_lock(&journal->j_lock); 1204 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1205 spin_unlock(&journal->j_lock); 1206 1207 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1208 list_del_init(&item->lri_list); 1209 1210 ocfs2_wait_on_quotas(osb); 1211 1212 la_dinode = item->lri_la_dinode; 1213 tl_dinode = item->lri_tl_dinode; 1214 qrec = item->lri_qrec; 1215 1216 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1217 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1218 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1219 qrec); 1220 1221 if (la_dinode) { 1222 ret = ocfs2_complete_local_alloc_recovery(osb, 1223 la_dinode); 1224 if (ret < 0) 1225 mlog_errno(ret); 1226 1227 kfree(la_dinode); 1228 } 1229 1230 if (tl_dinode) { 1231 ret = ocfs2_complete_truncate_log_recovery(osb, 1232 tl_dinode); 1233 if (ret < 0) 1234 mlog_errno(ret); 1235 1236 kfree(tl_dinode); 1237 } 1238 1239 ret = ocfs2_recover_orphans(osb, item->lri_slot); 1240 if (ret < 0) 1241 mlog_errno(ret); 1242 1243 if (qrec) { 1244 ret = ocfs2_finish_quota_recovery(osb, qrec, 1245 item->lri_slot); 1246 if (ret < 0) 1247 mlog_errno(ret); 1248 /* Recovery info is already freed now */ 1249 } 1250 1251 kfree(item); 1252 } 1253 1254 trace_ocfs2_complete_recovery_end(ret); 1255 } 1256 1257 /* NOTE: This function always eats your references to la_dinode and 1258 * tl_dinode, either manually on error, or by passing them to 1259 * ocfs2_complete_recovery */ 1260 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1261 int slot_num, 1262 struct ocfs2_dinode *la_dinode, 1263 struct ocfs2_dinode *tl_dinode, 1264 struct ocfs2_quota_recovery *qrec) 1265 { 1266 struct ocfs2_la_recovery_item *item; 1267 1268 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1269 if (!item) { 1270 /* Though we wish to avoid it, we are in fact safe in 1271 * skipping local alloc cleanup as fsck.ocfs2 is more 1272 * than capable of reclaiming unused space. */ 1273 kfree(la_dinode); 1274 kfree(tl_dinode); 1275 1276 if (qrec) 1277 ocfs2_free_quota_recovery(qrec); 1278 1279 mlog_errno(-ENOMEM); 1280 return; 1281 } 1282 1283 INIT_LIST_HEAD(&item->lri_list); 1284 item->lri_la_dinode = la_dinode; 1285 item->lri_slot = slot_num; 1286 item->lri_tl_dinode = tl_dinode; 1287 item->lri_qrec = qrec; 1288 1289 spin_lock(&journal->j_lock); 1290 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1291 queue_work(ocfs2_wq, &journal->j_recovery_work); 1292 spin_unlock(&journal->j_lock); 1293 } 1294 1295 /* Called by the mount code to queue recovery the last part of 1296 * recovery for it's own and offline slot(s). */ 1297 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1298 { 1299 struct ocfs2_journal *journal = osb->journal; 1300 1301 if (ocfs2_is_hard_readonly(osb)) 1302 return; 1303 1304 /* No need to queue up our truncate_log as regular cleanup will catch 1305 * that */ 1306 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1307 osb->local_alloc_copy, NULL, NULL); 1308 ocfs2_schedule_truncate_log_flush(osb, 0); 1309 1310 osb->local_alloc_copy = NULL; 1311 osb->dirty = 0; 1312 1313 /* queue to recover orphan slots for all offline slots */ 1314 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1315 ocfs2_queue_replay_slots(osb); 1316 ocfs2_free_replay_slots(osb); 1317 } 1318 1319 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1320 { 1321 if (osb->quota_rec) { 1322 ocfs2_queue_recovery_completion(osb->journal, 1323 osb->slot_num, 1324 NULL, 1325 NULL, 1326 osb->quota_rec); 1327 osb->quota_rec = NULL; 1328 } 1329 } 1330 1331 static int __ocfs2_recovery_thread(void *arg) 1332 { 1333 int status, node_num, slot_num; 1334 struct ocfs2_super *osb = arg; 1335 struct ocfs2_recovery_map *rm = osb->recovery_map; 1336 int *rm_quota = NULL; 1337 int rm_quota_used = 0, i; 1338 struct ocfs2_quota_recovery *qrec; 1339 1340 status = ocfs2_wait_on_mount(osb); 1341 if (status < 0) { 1342 goto bail; 1343 } 1344 1345 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS); 1346 if (!rm_quota) { 1347 status = -ENOMEM; 1348 goto bail; 1349 } 1350 restart: 1351 status = ocfs2_super_lock(osb, 1); 1352 if (status < 0) { 1353 mlog_errno(status); 1354 goto bail; 1355 } 1356 1357 status = ocfs2_compute_replay_slots(osb); 1358 if (status < 0) 1359 mlog_errno(status); 1360 1361 /* queue recovery for our own slot */ 1362 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1363 NULL, NULL); 1364 1365 spin_lock(&osb->osb_lock); 1366 while (rm->rm_used) { 1367 /* It's always safe to remove entry zero, as we won't 1368 * clear it until ocfs2_recover_node() has succeeded. */ 1369 node_num = rm->rm_entries[0]; 1370 spin_unlock(&osb->osb_lock); 1371 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1372 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1373 if (slot_num == -ENOENT) { 1374 status = 0; 1375 goto skip_recovery; 1376 } 1377 1378 /* It is a bit subtle with quota recovery. We cannot do it 1379 * immediately because we have to obtain cluster locks from 1380 * quota files and we also don't want to just skip it because 1381 * then quota usage would be out of sync until some node takes 1382 * the slot. So we remember which nodes need quota recovery 1383 * and when everything else is done, we recover quotas. */ 1384 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++); 1385 if (i == rm_quota_used) 1386 rm_quota[rm_quota_used++] = slot_num; 1387 1388 status = ocfs2_recover_node(osb, node_num, slot_num); 1389 skip_recovery: 1390 if (!status) { 1391 ocfs2_recovery_map_clear(osb, node_num); 1392 } else { 1393 mlog(ML_ERROR, 1394 "Error %d recovering node %d on device (%u,%u)!\n", 1395 status, node_num, 1396 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1397 mlog(ML_ERROR, "Volume requires unmount.\n"); 1398 } 1399 1400 spin_lock(&osb->osb_lock); 1401 } 1402 spin_unlock(&osb->osb_lock); 1403 trace_ocfs2_recovery_thread_end(status); 1404 1405 /* Refresh all journal recovery generations from disk */ 1406 status = ocfs2_check_journals_nolocks(osb); 1407 status = (status == -EROFS) ? 0 : status; 1408 if (status < 0) 1409 mlog_errno(status); 1410 1411 /* Now it is right time to recover quotas... We have to do this under 1412 * superblock lock so that no one can start using the slot (and crash) 1413 * before we recover it */ 1414 for (i = 0; i < rm_quota_used; i++) { 1415 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1416 if (IS_ERR(qrec)) { 1417 status = PTR_ERR(qrec); 1418 mlog_errno(status); 1419 continue; 1420 } 1421 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i], 1422 NULL, NULL, qrec); 1423 } 1424 1425 ocfs2_super_unlock(osb, 1); 1426 1427 /* queue recovery for offline slots */ 1428 ocfs2_queue_replay_slots(osb); 1429 1430 bail: 1431 mutex_lock(&osb->recovery_lock); 1432 if (!status && !ocfs2_recovery_completed(osb)) { 1433 mutex_unlock(&osb->recovery_lock); 1434 goto restart; 1435 } 1436 1437 ocfs2_free_replay_slots(osb); 1438 osb->recovery_thread_task = NULL; 1439 mb(); /* sync with ocfs2_recovery_thread_running */ 1440 wake_up(&osb->recovery_event); 1441 1442 mutex_unlock(&osb->recovery_lock); 1443 1444 kfree(rm_quota); 1445 1446 /* no one is callint kthread_stop() for us so the kthread() api 1447 * requires that we call do_exit(). And it isn't exported, but 1448 * complete_and_exit() seems to be a minimal wrapper around it. */ 1449 complete_and_exit(NULL, status); 1450 return status; 1451 } 1452 1453 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1454 { 1455 mutex_lock(&osb->recovery_lock); 1456 1457 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1458 osb->disable_recovery, osb->recovery_thread_task, 1459 osb->disable_recovery ? 1460 -1 : ocfs2_recovery_map_set(osb, node_num)); 1461 1462 if (osb->disable_recovery) 1463 goto out; 1464 1465 if (osb->recovery_thread_task) 1466 goto out; 1467 1468 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1469 "ocfs2rec"); 1470 if (IS_ERR(osb->recovery_thread_task)) { 1471 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1472 osb->recovery_thread_task = NULL; 1473 } 1474 1475 out: 1476 mutex_unlock(&osb->recovery_lock); 1477 wake_up(&osb->recovery_event); 1478 } 1479 1480 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1481 int slot_num, 1482 struct buffer_head **bh, 1483 struct inode **ret_inode) 1484 { 1485 int status = -EACCES; 1486 struct inode *inode = NULL; 1487 1488 BUG_ON(slot_num >= osb->max_slots); 1489 1490 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1491 slot_num); 1492 if (!inode || is_bad_inode(inode)) { 1493 mlog_errno(status); 1494 goto bail; 1495 } 1496 SET_INODE_JOURNAL(inode); 1497 1498 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1499 if (status < 0) { 1500 mlog_errno(status); 1501 goto bail; 1502 } 1503 1504 status = 0; 1505 1506 bail: 1507 if (inode) { 1508 if (status || !ret_inode) 1509 iput(inode); 1510 else 1511 *ret_inode = inode; 1512 } 1513 return status; 1514 } 1515 1516 /* Does the actual journal replay and marks the journal inode as 1517 * clean. Will only replay if the journal inode is marked dirty. */ 1518 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1519 int node_num, 1520 int slot_num) 1521 { 1522 int status; 1523 int got_lock = 0; 1524 unsigned int flags; 1525 struct inode *inode = NULL; 1526 struct ocfs2_dinode *fe; 1527 journal_t *journal = NULL; 1528 struct buffer_head *bh = NULL; 1529 u32 slot_reco_gen; 1530 1531 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1532 if (status) { 1533 mlog_errno(status); 1534 goto done; 1535 } 1536 1537 fe = (struct ocfs2_dinode *)bh->b_data; 1538 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1539 brelse(bh); 1540 bh = NULL; 1541 1542 /* 1543 * As the fs recovery is asynchronous, there is a small chance that 1544 * another node mounted (and recovered) the slot before the recovery 1545 * thread could get the lock. To handle that, we dirty read the journal 1546 * inode for that slot to get the recovery generation. If it is 1547 * different than what we expected, the slot has been recovered. 1548 * If not, it needs recovery. 1549 */ 1550 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1551 trace_ocfs2_replay_journal_recovered(slot_num, 1552 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1553 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1554 status = -EBUSY; 1555 goto done; 1556 } 1557 1558 /* Continue with recovery as the journal has not yet been recovered */ 1559 1560 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1561 if (status < 0) { 1562 trace_ocfs2_replay_journal_lock_err(status); 1563 if (status != -ERESTARTSYS) 1564 mlog(ML_ERROR, "Could not lock journal!\n"); 1565 goto done; 1566 } 1567 got_lock = 1; 1568 1569 fe = (struct ocfs2_dinode *) bh->b_data; 1570 1571 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1572 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1573 1574 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1575 trace_ocfs2_replay_journal_skip(node_num); 1576 /* Refresh recovery generation for the slot */ 1577 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1578 goto done; 1579 } 1580 1581 /* we need to run complete recovery for offline orphan slots */ 1582 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1583 1584 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1585 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1586 MINOR(osb->sb->s_dev)); 1587 1588 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1589 1590 status = ocfs2_force_read_journal(inode); 1591 if (status < 0) { 1592 mlog_errno(status); 1593 goto done; 1594 } 1595 1596 journal = jbd2_journal_init_inode(inode); 1597 if (journal == NULL) { 1598 mlog(ML_ERROR, "Linux journal layer error\n"); 1599 status = -EIO; 1600 goto done; 1601 } 1602 1603 status = jbd2_journal_load(journal); 1604 if (status < 0) { 1605 mlog_errno(status); 1606 if (!igrab(inode)) 1607 BUG(); 1608 jbd2_journal_destroy(journal); 1609 goto done; 1610 } 1611 1612 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1613 1614 /* wipe the journal */ 1615 jbd2_journal_lock_updates(journal); 1616 status = jbd2_journal_flush(journal); 1617 jbd2_journal_unlock_updates(journal); 1618 if (status < 0) 1619 mlog_errno(status); 1620 1621 /* This will mark the node clean */ 1622 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1623 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1624 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1625 1626 /* Increment recovery generation to indicate successful recovery */ 1627 ocfs2_bump_recovery_generation(fe); 1628 osb->slot_recovery_generations[slot_num] = 1629 ocfs2_get_recovery_generation(fe); 1630 1631 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1632 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1633 if (status < 0) 1634 mlog_errno(status); 1635 1636 if (!igrab(inode)) 1637 BUG(); 1638 1639 jbd2_journal_destroy(journal); 1640 1641 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1642 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1643 MINOR(osb->sb->s_dev)); 1644 done: 1645 /* drop the lock on this nodes journal */ 1646 if (got_lock) 1647 ocfs2_inode_unlock(inode, 1); 1648 1649 if (inode) 1650 iput(inode); 1651 1652 brelse(bh); 1653 1654 return status; 1655 } 1656 1657 /* 1658 * Do the most important parts of node recovery: 1659 * - Replay it's journal 1660 * - Stamp a clean local allocator file 1661 * - Stamp a clean truncate log 1662 * - Mark the node clean 1663 * 1664 * If this function completes without error, a node in OCFS2 can be 1665 * said to have been safely recovered. As a result, failure during the 1666 * second part of a nodes recovery process (local alloc recovery) is 1667 * far less concerning. 1668 */ 1669 static int ocfs2_recover_node(struct ocfs2_super *osb, 1670 int node_num, int slot_num) 1671 { 1672 int status = 0; 1673 struct ocfs2_dinode *la_copy = NULL; 1674 struct ocfs2_dinode *tl_copy = NULL; 1675 1676 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1677 1678 /* Should not ever be called to recover ourselves -- in that 1679 * case we should've called ocfs2_journal_load instead. */ 1680 BUG_ON(osb->node_num == node_num); 1681 1682 status = ocfs2_replay_journal(osb, node_num, slot_num); 1683 if (status < 0) { 1684 if (status == -EBUSY) { 1685 trace_ocfs2_recover_node_skip(slot_num, node_num); 1686 status = 0; 1687 goto done; 1688 } 1689 mlog_errno(status); 1690 goto done; 1691 } 1692 1693 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1694 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1695 if (status < 0) { 1696 mlog_errno(status); 1697 goto done; 1698 } 1699 1700 /* An error from begin_truncate_log_recovery is not 1701 * serious enough to warrant halting the rest of 1702 * recovery. */ 1703 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1704 if (status < 0) 1705 mlog_errno(status); 1706 1707 /* Likewise, this would be a strange but ultimately not so 1708 * harmful place to get an error... */ 1709 status = ocfs2_clear_slot(osb, slot_num); 1710 if (status < 0) 1711 mlog_errno(status); 1712 1713 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1714 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1715 tl_copy, NULL); 1716 1717 status = 0; 1718 done: 1719 1720 return status; 1721 } 1722 1723 /* Test node liveness by trylocking his journal. If we get the lock, 1724 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1725 * still alive (we couldn't get the lock) and < 0 on error. */ 1726 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1727 int slot_num) 1728 { 1729 int status, flags; 1730 struct inode *inode = NULL; 1731 1732 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1733 slot_num); 1734 if (inode == NULL) { 1735 mlog(ML_ERROR, "access error\n"); 1736 status = -EACCES; 1737 goto bail; 1738 } 1739 if (is_bad_inode(inode)) { 1740 mlog(ML_ERROR, "access error (bad inode)\n"); 1741 iput(inode); 1742 inode = NULL; 1743 status = -EACCES; 1744 goto bail; 1745 } 1746 SET_INODE_JOURNAL(inode); 1747 1748 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1749 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1750 if (status < 0) { 1751 if (status != -EAGAIN) 1752 mlog_errno(status); 1753 goto bail; 1754 } 1755 1756 ocfs2_inode_unlock(inode, 1); 1757 bail: 1758 if (inode) 1759 iput(inode); 1760 1761 return status; 1762 } 1763 1764 /* Call this underneath ocfs2_super_lock. It also assumes that the 1765 * slot info struct has been updated from disk. */ 1766 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1767 { 1768 unsigned int node_num; 1769 int status, i; 1770 u32 gen; 1771 struct buffer_head *bh = NULL; 1772 struct ocfs2_dinode *di; 1773 1774 /* This is called with the super block cluster lock, so we 1775 * know that the slot map can't change underneath us. */ 1776 1777 for (i = 0; i < osb->max_slots; i++) { 1778 /* Read journal inode to get the recovery generation */ 1779 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1780 if (status) { 1781 mlog_errno(status); 1782 goto bail; 1783 } 1784 di = (struct ocfs2_dinode *)bh->b_data; 1785 gen = ocfs2_get_recovery_generation(di); 1786 brelse(bh); 1787 bh = NULL; 1788 1789 spin_lock(&osb->osb_lock); 1790 osb->slot_recovery_generations[i] = gen; 1791 1792 trace_ocfs2_mark_dead_nodes(i, 1793 osb->slot_recovery_generations[i]); 1794 1795 if (i == osb->slot_num) { 1796 spin_unlock(&osb->osb_lock); 1797 continue; 1798 } 1799 1800 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1801 if (status == -ENOENT) { 1802 spin_unlock(&osb->osb_lock); 1803 continue; 1804 } 1805 1806 if (__ocfs2_recovery_map_test(osb, node_num)) { 1807 spin_unlock(&osb->osb_lock); 1808 continue; 1809 } 1810 spin_unlock(&osb->osb_lock); 1811 1812 /* Ok, we have a slot occupied by another node which 1813 * is not in the recovery map. We trylock his journal 1814 * file here to test if he's alive. */ 1815 status = ocfs2_trylock_journal(osb, i); 1816 if (!status) { 1817 /* Since we're called from mount, we know that 1818 * the recovery thread can't race us on 1819 * setting / checking the recovery bits. */ 1820 ocfs2_recovery_thread(osb, node_num); 1821 } else if ((status < 0) && (status != -EAGAIN)) { 1822 mlog_errno(status); 1823 goto bail; 1824 } 1825 } 1826 1827 status = 0; 1828 bail: 1829 return status; 1830 } 1831 1832 /* 1833 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1834 * randomness to the timeout to minimize multple nodes firing the timer at the 1835 * same time. 1836 */ 1837 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1838 { 1839 unsigned long time; 1840 1841 get_random_bytes(&time, sizeof(time)); 1842 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1843 return msecs_to_jiffies(time); 1844 } 1845 1846 /* 1847 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1848 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1849 * is done to catch any orphans that are left over in orphan directories. 1850 * 1851 * It scans all slots, even ones that are in use. It does so to handle the 1852 * case described below: 1853 * 1854 * Node 1 has an inode it was using. The dentry went away due to memory 1855 * pressure. Node 1 closes the inode, but it's on the free list. The node 1856 * has the open lock. 1857 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1858 * but node 1 has no dentry and doesn't get the message. It trylocks the 1859 * open lock, sees that another node has a PR, and does nothing. 1860 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1861 * open lock, sees the PR still, and does nothing. 1862 * Basically, we have to trigger an orphan iput on node 1. The only way 1863 * for this to happen is if node 1 runs node 2's orphan dir. 1864 * 1865 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1866 * seconds. It gets an EX lock on os_lockres and checks sequence number 1867 * stored in LVB. If the sequence number has changed, it means some other 1868 * node has done the scan. This node skips the scan and tracks the 1869 * sequence number. If the sequence number didn't change, it means a scan 1870 * hasn't happened. The node queues a scan and increments the 1871 * sequence number in the LVB. 1872 */ 1873 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1874 { 1875 struct ocfs2_orphan_scan *os; 1876 int status, i; 1877 u32 seqno = 0; 1878 1879 os = &osb->osb_orphan_scan; 1880 1881 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1882 goto out; 1883 1884 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1885 atomic_read(&os->os_state)); 1886 1887 status = ocfs2_orphan_scan_lock(osb, &seqno); 1888 if (status < 0) { 1889 if (status != -EAGAIN) 1890 mlog_errno(status); 1891 goto out; 1892 } 1893 1894 /* Do no queue the tasks if the volume is being umounted */ 1895 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1896 goto unlock; 1897 1898 if (os->os_seqno != seqno) { 1899 os->os_seqno = seqno; 1900 goto unlock; 1901 } 1902 1903 for (i = 0; i < osb->max_slots; i++) 1904 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1905 NULL); 1906 /* 1907 * We queued a recovery on orphan slots, increment the sequence 1908 * number and update LVB so other node will skip the scan for a while 1909 */ 1910 seqno++; 1911 os->os_count++; 1912 os->os_scantime = CURRENT_TIME; 1913 unlock: 1914 ocfs2_orphan_scan_unlock(osb, seqno); 1915 out: 1916 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 1917 atomic_read(&os->os_state)); 1918 return; 1919 } 1920 1921 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1922 void ocfs2_orphan_scan_work(struct work_struct *work) 1923 { 1924 struct ocfs2_orphan_scan *os; 1925 struct ocfs2_super *osb; 1926 1927 os = container_of(work, struct ocfs2_orphan_scan, 1928 os_orphan_scan_work.work); 1929 osb = os->os_osb; 1930 1931 mutex_lock(&os->os_lock); 1932 ocfs2_queue_orphan_scan(osb); 1933 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 1934 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work, 1935 ocfs2_orphan_scan_timeout()); 1936 mutex_unlock(&os->os_lock); 1937 } 1938 1939 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 1940 { 1941 struct ocfs2_orphan_scan *os; 1942 1943 os = &osb->osb_orphan_scan; 1944 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 1945 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1946 mutex_lock(&os->os_lock); 1947 cancel_delayed_work(&os->os_orphan_scan_work); 1948 mutex_unlock(&os->os_lock); 1949 } 1950 } 1951 1952 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 1953 { 1954 struct ocfs2_orphan_scan *os; 1955 1956 os = &osb->osb_orphan_scan; 1957 os->os_osb = osb; 1958 os->os_count = 0; 1959 os->os_seqno = 0; 1960 mutex_init(&os->os_lock); 1961 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 1962 } 1963 1964 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 1965 { 1966 struct ocfs2_orphan_scan *os; 1967 1968 os = &osb->osb_orphan_scan; 1969 os->os_scantime = CURRENT_TIME; 1970 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 1971 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1972 else { 1973 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 1974 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work, 1975 ocfs2_orphan_scan_timeout()); 1976 } 1977 } 1978 1979 struct ocfs2_orphan_filldir_priv { 1980 struct dir_context ctx; 1981 struct inode *head; 1982 struct ocfs2_super *osb; 1983 }; 1984 1985 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 1986 int name_len, loff_t pos, u64 ino, 1987 unsigned type) 1988 { 1989 struct ocfs2_orphan_filldir_priv *p = 1990 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 1991 struct inode *iter; 1992 1993 if (name_len == 1 && !strncmp(".", name, 1)) 1994 return 0; 1995 if (name_len == 2 && !strncmp("..", name, 2)) 1996 return 0; 1997 1998 /* Skip bad inodes so that recovery can continue */ 1999 iter = ocfs2_iget(p->osb, ino, 2000 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2001 if (IS_ERR(iter)) 2002 return 0; 2003 2004 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2005 /* No locking is required for the next_orphan queue as there 2006 * is only ever a single process doing orphan recovery. */ 2007 OCFS2_I(iter)->ip_next_orphan = p->head; 2008 p->head = iter; 2009 2010 return 0; 2011 } 2012 2013 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2014 int slot, 2015 struct inode **head) 2016 { 2017 int status; 2018 struct inode *orphan_dir_inode = NULL; 2019 struct ocfs2_orphan_filldir_priv priv = { 2020 .ctx.actor = ocfs2_orphan_filldir, 2021 .osb = osb, 2022 .head = *head 2023 }; 2024 2025 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2026 ORPHAN_DIR_SYSTEM_INODE, 2027 slot); 2028 if (!orphan_dir_inode) { 2029 status = -ENOENT; 2030 mlog_errno(status); 2031 return status; 2032 } 2033 2034 mutex_lock(&orphan_dir_inode->i_mutex); 2035 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2036 if (status < 0) { 2037 mlog_errno(status); 2038 goto out; 2039 } 2040 2041 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2042 if (status) { 2043 mlog_errno(status); 2044 goto out_cluster; 2045 } 2046 2047 *head = priv.head; 2048 2049 out_cluster: 2050 ocfs2_inode_unlock(orphan_dir_inode, 0); 2051 out: 2052 mutex_unlock(&orphan_dir_inode->i_mutex); 2053 iput(orphan_dir_inode); 2054 return status; 2055 } 2056 2057 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2058 int slot) 2059 { 2060 int ret; 2061 2062 spin_lock(&osb->osb_lock); 2063 ret = !osb->osb_orphan_wipes[slot]; 2064 spin_unlock(&osb->osb_lock); 2065 return ret; 2066 } 2067 2068 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2069 int slot) 2070 { 2071 spin_lock(&osb->osb_lock); 2072 /* Mark ourselves such that new processes in delete_inode() 2073 * know to quit early. */ 2074 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2075 while (osb->osb_orphan_wipes[slot]) { 2076 /* If any processes are already in the middle of an 2077 * orphan wipe on this dir, then we need to wait for 2078 * them. */ 2079 spin_unlock(&osb->osb_lock); 2080 wait_event_interruptible(osb->osb_wipe_event, 2081 ocfs2_orphan_recovery_can_continue(osb, slot)); 2082 spin_lock(&osb->osb_lock); 2083 } 2084 spin_unlock(&osb->osb_lock); 2085 } 2086 2087 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2088 int slot) 2089 { 2090 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2091 } 2092 2093 /* 2094 * Orphan recovery. Each mounted node has it's own orphan dir which we 2095 * must run during recovery. Our strategy here is to build a list of 2096 * the inodes in the orphan dir and iget/iput them. The VFS does 2097 * (most) of the rest of the work. 2098 * 2099 * Orphan recovery can happen at any time, not just mount so we have a 2100 * couple of extra considerations. 2101 * 2102 * - We grab as many inodes as we can under the orphan dir lock - 2103 * doing iget() outside the orphan dir risks getting a reference on 2104 * an invalid inode. 2105 * - We must be sure not to deadlock with other processes on the 2106 * system wanting to run delete_inode(). This can happen when they go 2107 * to lock the orphan dir and the orphan recovery process attempts to 2108 * iget() inside the orphan dir lock. This can be avoided by 2109 * advertising our state to ocfs2_delete_inode(). 2110 */ 2111 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2112 int slot) 2113 { 2114 int ret = 0; 2115 struct inode *inode = NULL; 2116 struct inode *iter; 2117 struct ocfs2_inode_info *oi; 2118 2119 trace_ocfs2_recover_orphans(slot); 2120 2121 ocfs2_mark_recovering_orphan_dir(osb, slot); 2122 ret = ocfs2_queue_orphans(osb, slot, &inode); 2123 ocfs2_clear_recovering_orphan_dir(osb, slot); 2124 2125 /* Error here should be noted, but we want to continue with as 2126 * many queued inodes as we've got. */ 2127 if (ret) 2128 mlog_errno(ret); 2129 2130 while (inode) { 2131 oi = OCFS2_I(inode); 2132 trace_ocfs2_recover_orphans_iput( 2133 (unsigned long long)oi->ip_blkno); 2134 2135 iter = oi->ip_next_orphan; 2136 2137 spin_lock(&oi->ip_lock); 2138 /* Set the proper information to get us going into 2139 * ocfs2_delete_inode. */ 2140 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2141 spin_unlock(&oi->ip_lock); 2142 2143 iput(inode); 2144 2145 inode = iter; 2146 } 2147 2148 return ret; 2149 } 2150 2151 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2152 { 2153 /* This check is good because ocfs2 will wait on our recovery 2154 * thread before changing it to something other than MOUNTED 2155 * or DISABLED. */ 2156 wait_event(osb->osb_mount_event, 2157 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2158 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2159 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2160 2161 /* If there's an error on mount, then we may never get to the 2162 * MOUNTED flag, but this is set right before 2163 * dismount_volume() so we can trust it. */ 2164 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2165 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2166 mlog(0, "mount error, exiting!\n"); 2167 return -EBUSY; 2168 } 2169 2170 return 0; 2171 } 2172 2173 static int ocfs2_commit_thread(void *arg) 2174 { 2175 int status; 2176 struct ocfs2_super *osb = arg; 2177 struct ocfs2_journal *journal = osb->journal; 2178 2179 /* we can trust j_num_trans here because _should_stop() is only set in 2180 * shutdown and nobody other than ourselves should be able to start 2181 * transactions. committing on shutdown might take a few iterations 2182 * as final transactions put deleted inodes on the list */ 2183 while (!(kthread_should_stop() && 2184 atomic_read(&journal->j_num_trans) == 0)) { 2185 2186 wait_event_interruptible(osb->checkpoint_event, 2187 atomic_read(&journal->j_num_trans) 2188 || kthread_should_stop()); 2189 2190 status = ocfs2_commit_cache(osb); 2191 if (status < 0) { 2192 static unsigned long abort_warn_time; 2193 2194 /* Warn about this once per minute */ 2195 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2196 mlog(ML_ERROR, "status = %d, journal is " 2197 "already aborted.\n", status); 2198 /* 2199 * After ocfs2_commit_cache() fails, j_num_trans has a 2200 * non-zero value. Sleep here to avoid a busy-wait 2201 * loop. 2202 */ 2203 msleep_interruptible(1000); 2204 } 2205 2206 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2207 mlog(ML_KTHREAD, 2208 "commit_thread: %u transactions pending on " 2209 "shutdown\n", 2210 atomic_read(&journal->j_num_trans)); 2211 } 2212 } 2213 2214 return 0; 2215 } 2216 2217 /* Reads all the journal inodes without taking any cluster locks. Used 2218 * for hard readonly access to determine whether any journal requires 2219 * recovery. Also used to refresh the recovery generation numbers after 2220 * a journal has been recovered by another node. 2221 */ 2222 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2223 { 2224 int ret = 0; 2225 unsigned int slot; 2226 struct buffer_head *di_bh = NULL; 2227 struct ocfs2_dinode *di; 2228 int journal_dirty = 0; 2229 2230 for(slot = 0; slot < osb->max_slots; slot++) { 2231 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2232 if (ret) { 2233 mlog_errno(ret); 2234 goto out; 2235 } 2236 2237 di = (struct ocfs2_dinode *) di_bh->b_data; 2238 2239 osb->slot_recovery_generations[slot] = 2240 ocfs2_get_recovery_generation(di); 2241 2242 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2243 OCFS2_JOURNAL_DIRTY_FL) 2244 journal_dirty = 1; 2245 2246 brelse(di_bh); 2247 di_bh = NULL; 2248 } 2249 2250 out: 2251 if (journal_dirty) 2252 ret = -EROFS; 2253 return ret; 2254 } 2255