1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 32 #define MLOG_MASK_PREFIX ML_JOURNAL 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "blockcheck.h" 39 #include "dir.h" 40 #include "dlmglue.h" 41 #include "extent_map.h" 42 #include "heartbeat.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "slot_map.h" 47 #include "super.h" 48 #include "sysfile.h" 49 #include "quota.h" 50 51 #include "buffer_head_io.h" 52 53 DEFINE_SPINLOCK(trans_inc_lock); 54 55 static int ocfs2_force_read_journal(struct inode *inode); 56 static int ocfs2_recover_node(struct ocfs2_super *osb, 57 int node_num, int slot_num); 58 static int __ocfs2_recovery_thread(void *arg); 59 static int ocfs2_commit_cache(struct ocfs2_super *osb); 60 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 61 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 62 int dirty, int replayed); 63 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 64 int slot_num); 65 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 66 int slot); 67 static int ocfs2_commit_thread(void *arg); 68 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 69 int slot_num, 70 struct ocfs2_dinode *la_dinode, 71 struct ocfs2_dinode *tl_dinode, 72 struct ocfs2_quota_recovery *qrec); 73 74 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 75 { 76 return __ocfs2_wait_on_mount(osb, 0); 77 } 78 79 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 80 { 81 return __ocfs2_wait_on_mount(osb, 1); 82 } 83 84 /* 85 * This replay_map is to track online/offline slots, so we could recover 86 * offline slots during recovery and mount 87 */ 88 89 enum ocfs2_replay_state { 90 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 91 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 92 REPLAY_DONE /* Replay was already queued */ 93 }; 94 95 struct ocfs2_replay_map { 96 unsigned int rm_slots; 97 enum ocfs2_replay_state rm_state; 98 unsigned char rm_replay_slots[0]; 99 }; 100 101 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 102 { 103 if (!osb->replay_map) 104 return; 105 106 /* If we've already queued the replay, we don't have any more to do */ 107 if (osb->replay_map->rm_state == REPLAY_DONE) 108 return; 109 110 osb->replay_map->rm_state = state; 111 } 112 113 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 114 { 115 struct ocfs2_replay_map *replay_map; 116 int i, node_num; 117 118 /* If replay map is already set, we don't do it again */ 119 if (osb->replay_map) 120 return 0; 121 122 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 123 (osb->max_slots * sizeof(char)), GFP_KERNEL); 124 125 if (!replay_map) { 126 mlog_errno(-ENOMEM); 127 return -ENOMEM; 128 } 129 130 spin_lock(&osb->osb_lock); 131 132 replay_map->rm_slots = osb->max_slots; 133 replay_map->rm_state = REPLAY_UNNEEDED; 134 135 /* set rm_replay_slots for offline slot(s) */ 136 for (i = 0; i < replay_map->rm_slots; i++) { 137 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 138 replay_map->rm_replay_slots[i] = 1; 139 } 140 141 osb->replay_map = replay_map; 142 spin_unlock(&osb->osb_lock); 143 return 0; 144 } 145 146 void ocfs2_queue_replay_slots(struct ocfs2_super *osb) 147 { 148 struct ocfs2_replay_map *replay_map = osb->replay_map; 149 int i; 150 151 if (!replay_map) 152 return; 153 154 if (replay_map->rm_state != REPLAY_NEEDED) 155 return; 156 157 for (i = 0; i < replay_map->rm_slots; i++) 158 if (replay_map->rm_replay_slots[i]) 159 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 160 NULL, NULL); 161 replay_map->rm_state = REPLAY_DONE; 162 } 163 164 void ocfs2_free_replay_slots(struct ocfs2_super *osb) 165 { 166 struct ocfs2_replay_map *replay_map = osb->replay_map; 167 168 if (!osb->replay_map) 169 return; 170 171 kfree(replay_map); 172 osb->replay_map = NULL; 173 } 174 175 int ocfs2_recovery_init(struct ocfs2_super *osb) 176 { 177 struct ocfs2_recovery_map *rm; 178 179 mutex_init(&osb->recovery_lock); 180 osb->disable_recovery = 0; 181 osb->recovery_thread_task = NULL; 182 init_waitqueue_head(&osb->recovery_event); 183 184 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 185 osb->max_slots * sizeof(unsigned int), 186 GFP_KERNEL); 187 if (!rm) { 188 mlog_errno(-ENOMEM); 189 return -ENOMEM; 190 } 191 192 rm->rm_entries = (unsigned int *)((char *)rm + 193 sizeof(struct ocfs2_recovery_map)); 194 osb->recovery_map = rm; 195 196 return 0; 197 } 198 199 /* we can't grab the goofy sem lock from inside wait_event, so we use 200 * memory barriers to make sure that we'll see the null task before 201 * being woken up */ 202 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 203 { 204 mb(); 205 return osb->recovery_thread_task != NULL; 206 } 207 208 void ocfs2_recovery_exit(struct ocfs2_super *osb) 209 { 210 struct ocfs2_recovery_map *rm; 211 212 /* disable any new recovery threads and wait for any currently 213 * running ones to exit. Do this before setting the vol_state. */ 214 mutex_lock(&osb->recovery_lock); 215 osb->disable_recovery = 1; 216 mutex_unlock(&osb->recovery_lock); 217 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 218 219 /* At this point, we know that no more recovery threads can be 220 * launched, so wait for any recovery completion work to 221 * complete. */ 222 flush_workqueue(ocfs2_wq); 223 224 /* 225 * Now that recovery is shut down, and the osb is about to be 226 * freed, the osb_lock is not taken here. 227 */ 228 rm = osb->recovery_map; 229 /* XXX: Should we bug if there are dirty entries? */ 230 231 kfree(rm); 232 } 233 234 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 235 unsigned int node_num) 236 { 237 int i; 238 struct ocfs2_recovery_map *rm = osb->recovery_map; 239 240 assert_spin_locked(&osb->osb_lock); 241 242 for (i = 0; i < rm->rm_used; i++) { 243 if (rm->rm_entries[i] == node_num) 244 return 1; 245 } 246 247 return 0; 248 } 249 250 /* Behaves like test-and-set. Returns the previous value */ 251 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 252 unsigned int node_num) 253 { 254 struct ocfs2_recovery_map *rm = osb->recovery_map; 255 256 spin_lock(&osb->osb_lock); 257 if (__ocfs2_recovery_map_test(osb, node_num)) { 258 spin_unlock(&osb->osb_lock); 259 return 1; 260 } 261 262 /* XXX: Can this be exploited? Not from o2dlm... */ 263 BUG_ON(rm->rm_used >= osb->max_slots); 264 265 rm->rm_entries[rm->rm_used] = node_num; 266 rm->rm_used++; 267 spin_unlock(&osb->osb_lock); 268 269 return 0; 270 } 271 272 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 273 unsigned int node_num) 274 { 275 int i; 276 struct ocfs2_recovery_map *rm = osb->recovery_map; 277 278 spin_lock(&osb->osb_lock); 279 280 for (i = 0; i < rm->rm_used; i++) { 281 if (rm->rm_entries[i] == node_num) 282 break; 283 } 284 285 if (i < rm->rm_used) { 286 /* XXX: be careful with the pointer math */ 287 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 288 (rm->rm_used - i - 1) * sizeof(unsigned int)); 289 rm->rm_used--; 290 } 291 292 spin_unlock(&osb->osb_lock); 293 } 294 295 static int ocfs2_commit_cache(struct ocfs2_super *osb) 296 { 297 int status = 0; 298 unsigned int flushed; 299 unsigned long old_id; 300 struct ocfs2_journal *journal = NULL; 301 302 mlog_entry_void(); 303 304 journal = osb->journal; 305 306 /* Flush all pending commits and checkpoint the journal. */ 307 down_write(&journal->j_trans_barrier); 308 309 if (atomic_read(&journal->j_num_trans) == 0) { 310 up_write(&journal->j_trans_barrier); 311 mlog(0, "No transactions for me to flush!\n"); 312 goto finally; 313 } 314 315 jbd2_journal_lock_updates(journal->j_journal); 316 status = jbd2_journal_flush(journal->j_journal); 317 jbd2_journal_unlock_updates(journal->j_journal); 318 if (status < 0) { 319 up_write(&journal->j_trans_barrier); 320 mlog_errno(status); 321 goto finally; 322 } 323 324 old_id = ocfs2_inc_trans_id(journal); 325 326 flushed = atomic_read(&journal->j_num_trans); 327 atomic_set(&journal->j_num_trans, 0); 328 up_write(&journal->j_trans_barrier); 329 330 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n", 331 journal->j_trans_id, flushed); 332 333 ocfs2_wake_downconvert_thread(osb); 334 wake_up(&journal->j_checkpointed); 335 finally: 336 mlog_exit(status); 337 return status; 338 } 339 340 /* pass it NULL and it will allocate a new handle object for you. If 341 * you pass it a handle however, it may still return error, in which 342 * case it has free'd the passed handle for you. */ 343 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 344 { 345 journal_t *journal = osb->journal->j_journal; 346 handle_t *handle; 347 348 BUG_ON(!osb || !osb->journal->j_journal); 349 350 if (ocfs2_is_hard_readonly(osb)) 351 return ERR_PTR(-EROFS); 352 353 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 354 BUG_ON(max_buffs <= 0); 355 356 /* Nested transaction? Just return the handle... */ 357 if (journal_current_handle()) 358 return jbd2_journal_start(journal, max_buffs); 359 360 down_read(&osb->journal->j_trans_barrier); 361 362 handle = jbd2_journal_start(journal, max_buffs); 363 if (IS_ERR(handle)) { 364 up_read(&osb->journal->j_trans_barrier); 365 366 mlog_errno(PTR_ERR(handle)); 367 368 if (is_journal_aborted(journal)) { 369 ocfs2_abort(osb->sb, "Detected aborted journal"); 370 handle = ERR_PTR(-EROFS); 371 } 372 } else { 373 if (!ocfs2_mount_local(osb)) 374 atomic_inc(&(osb->journal->j_num_trans)); 375 } 376 377 return handle; 378 } 379 380 int ocfs2_commit_trans(struct ocfs2_super *osb, 381 handle_t *handle) 382 { 383 int ret, nested; 384 struct ocfs2_journal *journal = osb->journal; 385 386 BUG_ON(!handle); 387 388 nested = handle->h_ref > 1; 389 ret = jbd2_journal_stop(handle); 390 if (ret < 0) 391 mlog_errno(ret); 392 393 if (!nested) 394 up_read(&journal->j_trans_barrier); 395 396 return ret; 397 } 398 399 /* 400 * 'nblocks' is what you want to add to the current 401 * transaction. extend_trans will either extend the current handle by 402 * nblocks, or commit it and start a new one with nblocks credits. 403 * 404 * This might call jbd2_journal_restart() which will commit dirty buffers 405 * and then restart the transaction. Before calling 406 * ocfs2_extend_trans(), any changed blocks should have been 407 * dirtied. After calling it, all blocks which need to be changed must 408 * go through another set of journal_access/journal_dirty calls. 409 * 410 * WARNING: This will not release any semaphores or disk locks taken 411 * during the transaction, so make sure they were taken *before* 412 * start_trans or we'll have ordering deadlocks. 413 * 414 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 415 * good because transaction ids haven't yet been recorded on the 416 * cluster locks associated with this handle. 417 */ 418 int ocfs2_extend_trans(handle_t *handle, int nblocks) 419 { 420 int status; 421 422 BUG_ON(!handle); 423 BUG_ON(!nblocks); 424 425 mlog_entry_void(); 426 427 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks); 428 429 #ifdef CONFIG_OCFS2_DEBUG_FS 430 status = 1; 431 #else 432 status = jbd2_journal_extend(handle, nblocks); 433 if (status < 0) { 434 mlog_errno(status); 435 goto bail; 436 } 437 #endif 438 439 if (status > 0) { 440 mlog(0, 441 "jbd2_journal_extend failed, trying " 442 "jbd2_journal_restart\n"); 443 status = jbd2_journal_restart(handle, nblocks); 444 if (status < 0) { 445 mlog_errno(status); 446 goto bail; 447 } 448 } 449 450 status = 0; 451 bail: 452 453 mlog_exit(status); 454 return status; 455 } 456 457 struct ocfs2_triggers { 458 struct jbd2_buffer_trigger_type ot_triggers; 459 int ot_offset; 460 }; 461 462 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 463 { 464 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 465 } 466 467 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 468 struct buffer_head *bh, 469 void *data, size_t size) 470 { 471 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 472 473 /* 474 * We aren't guaranteed to have the superblock here, so we 475 * must unconditionally compute the ecc data. 476 * __ocfs2_journal_access() will only set the triggers if 477 * metaecc is enabled. 478 */ 479 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 480 } 481 482 /* 483 * Quota blocks have their own trigger because the struct ocfs2_block_check 484 * offset depends on the blocksize. 485 */ 486 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 487 struct buffer_head *bh, 488 void *data, size_t size) 489 { 490 struct ocfs2_disk_dqtrailer *dqt = 491 ocfs2_block_dqtrailer(size, data); 492 493 /* 494 * We aren't guaranteed to have the superblock here, so we 495 * must unconditionally compute the ecc data. 496 * __ocfs2_journal_access() will only set the triggers if 497 * metaecc is enabled. 498 */ 499 ocfs2_block_check_compute(data, size, &dqt->dq_check); 500 } 501 502 /* 503 * Directory blocks also have their own trigger because the 504 * struct ocfs2_block_check offset depends on the blocksize. 505 */ 506 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 507 struct buffer_head *bh, 508 void *data, size_t size) 509 { 510 struct ocfs2_dir_block_trailer *trailer = 511 ocfs2_dir_trailer_from_size(size, data); 512 513 /* 514 * We aren't guaranteed to have the superblock here, so we 515 * must unconditionally compute the ecc data. 516 * __ocfs2_journal_access() will only set the triggers if 517 * metaecc is enabled. 518 */ 519 ocfs2_block_check_compute(data, size, &trailer->db_check); 520 } 521 522 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 523 struct buffer_head *bh) 524 { 525 mlog(ML_ERROR, 526 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 527 "bh->b_blocknr = %llu\n", 528 (unsigned long)bh, 529 (unsigned long long)bh->b_blocknr); 530 531 /* We aren't guaranteed to have the superblock here - but if we 532 * don't, it'll just crash. */ 533 ocfs2_error(bh->b_assoc_map->host->i_sb, 534 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 535 } 536 537 static struct ocfs2_triggers di_triggers = { 538 .ot_triggers = { 539 .t_commit = ocfs2_commit_trigger, 540 .t_abort = ocfs2_abort_trigger, 541 }, 542 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 543 }; 544 545 static struct ocfs2_triggers eb_triggers = { 546 .ot_triggers = { 547 .t_commit = ocfs2_commit_trigger, 548 .t_abort = ocfs2_abort_trigger, 549 }, 550 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 551 }; 552 553 static struct ocfs2_triggers gd_triggers = { 554 .ot_triggers = { 555 .t_commit = ocfs2_commit_trigger, 556 .t_abort = ocfs2_abort_trigger, 557 }, 558 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 559 }; 560 561 static struct ocfs2_triggers db_triggers = { 562 .ot_triggers = { 563 .t_commit = ocfs2_db_commit_trigger, 564 .t_abort = ocfs2_abort_trigger, 565 }, 566 }; 567 568 static struct ocfs2_triggers xb_triggers = { 569 .ot_triggers = { 570 .t_commit = ocfs2_commit_trigger, 571 .t_abort = ocfs2_abort_trigger, 572 }, 573 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 574 }; 575 576 static struct ocfs2_triggers dq_triggers = { 577 .ot_triggers = { 578 .t_commit = ocfs2_dq_commit_trigger, 579 .t_abort = ocfs2_abort_trigger, 580 }, 581 }; 582 583 static struct ocfs2_triggers dr_triggers = { 584 .ot_triggers = { 585 .t_commit = ocfs2_commit_trigger, 586 .t_abort = ocfs2_abort_trigger, 587 }, 588 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 589 }; 590 591 static struct ocfs2_triggers dl_triggers = { 592 .ot_triggers = { 593 .t_commit = ocfs2_commit_trigger, 594 .t_abort = ocfs2_abort_trigger, 595 }, 596 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 597 }; 598 599 static int __ocfs2_journal_access(handle_t *handle, 600 struct inode *inode, 601 struct buffer_head *bh, 602 struct ocfs2_triggers *triggers, 603 int type) 604 { 605 int status; 606 607 BUG_ON(!inode); 608 BUG_ON(!handle); 609 BUG_ON(!bh); 610 611 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n", 612 (unsigned long long)bh->b_blocknr, type, 613 (type == OCFS2_JOURNAL_ACCESS_CREATE) ? 614 "OCFS2_JOURNAL_ACCESS_CREATE" : 615 "OCFS2_JOURNAL_ACCESS_WRITE", 616 bh->b_size); 617 618 /* we can safely remove this assertion after testing. */ 619 if (!buffer_uptodate(bh)) { 620 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 621 mlog(ML_ERROR, "b_blocknr=%llu\n", 622 (unsigned long long)bh->b_blocknr); 623 BUG(); 624 } 625 626 /* Set the current transaction information on the inode so 627 * that the locking code knows whether it can drop it's locks 628 * on this inode or not. We're protected from the commit 629 * thread updating the current transaction id until 630 * ocfs2_commit_trans() because ocfs2_start_trans() took 631 * j_trans_barrier for us. */ 632 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode); 633 634 mutex_lock(&OCFS2_I(inode)->ip_io_mutex); 635 switch (type) { 636 case OCFS2_JOURNAL_ACCESS_CREATE: 637 case OCFS2_JOURNAL_ACCESS_WRITE: 638 status = jbd2_journal_get_write_access(handle, bh); 639 break; 640 641 case OCFS2_JOURNAL_ACCESS_UNDO: 642 status = jbd2_journal_get_undo_access(handle, bh); 643 break; 644 645 default: 646 status = -EINVAL; 647 mlog(ML_ERROR, "Uknown access type!\n"); 648 } 649 if (!status && ocfs2_meta_ecc(OCFS2_SB(inode->i_sb)) && triggers) 650 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 651 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex); 652 653 if (status < 0) 654 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 655 status, type); 656 657 mlog_exit(status); 658 return status; 659 } 660 661 int ocfs2_journal_access_di(handle_t *handle, struct inode *inode, 662 struct buffer_head *bh, int type) 663 { 664 return __ocfs2_journal_access(handle, inode, bh, &di_triggers, 665 type); 666 } 667 668 int ocfs2_journal_access_eb(handle_t *handle, struct inode *inode, 669 struct buffer_head *bh, int type) 670 { 671 return __ocfs2_journal_access(handle, inode, bh, &eb_triggers, 672 type); 673 } 674 675 int ocfs2_journal_access_gd(handle_t *handle, struct inode *inode, 676 struct buffer_head *bh, int type) 677 { 678 return __ocfs2_journal_access(handle, inode, bh, &gd_triggers, 679 type); 680 } 681 682 int ocfs2_journal_access_db(handle_t *handle, struct inode *inode, 683 struct buffer_head *bh, int type) 684 { 685 return __ocfs2_journal_access(handle, inode, bh, &db_triggers, 686 type); 687 } 688 689 int ocfs2_journal_access_xb(handle_t *handle, struct inode *inode, 690 struct buffer_head *bh, int type) 691 { 692 return __ocfs2_journal_access(handle, inode, bh, &xb_triggers, 693 type); 694 } 695 696 int ocfs2_journal_access_dq(handle_t *handle, struct inode *inode, 697 struct buffer_head *bh, int type) 698 { 699 return __ocfs2_journal_access(handle, inode, bh, &dq_triggers, 700 type); 701 } 702 703 int ocfs2_journal_access_dr(handle_t *handle, struct inode *inode, 704 struct buffer_head *bh, int type) 705 { 706 return __ocfs2_journal_access(handle, inode, bh, &dr_triggers, 707 type); 708 } 709 710 int ocfs2_journal_access_dl(handle_t *handle, struct inode *inode, 711 struct buffer_head *bh, int type) 712 { 713 return __ocfs2_journal_access(handle, inode, bh, &dl_triggers, 714 type); 715 } 716 717 int ocfs2_journal_access(handle_t *handle, struct inode *inode, 718 struct buffer_head *bh, int type) 719 { 720 return __ocfs2_journal_access(handle, inode, bh, NULL, type); 721 } 722 723 int ocfs2_journal_dirty(handle_t *handle, 724 struct buffer_head *bh) 725 { 726 int status; 727 728 mlog_entry("(bh->b_blocknr=%llu)\n", 729 (unsigned long long)bh->b_blocknr); 730 731 status = jbd2_journal_dirty_metadata(handle, bh); 732 if (status < 0) 733 mlog(ML_ERROR, "Could not dirty metadata buffer. " 734 "(bh->b_blocknr=%llu)\n", 735 (unsigned long long)bh->b_blocknr); 736 737 mlog_exit(status); 738 return status; 739 } 740 741 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 742 743 void ocfs2_set_journal_params(struct ocfs2_super *osb) 744 { 745 journal_t *journal = osb->journal->j_journal; 746 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 747 748 if (osb->osb_commit_interval) 749 commit_interval = osb->osb_commit_interval; 750 751 spin_lock(&journal->j_state_lock); 752 journal->j_commit_interval = commit_interval; 753 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 754 journal->j_flags |= JBD2_BARRIER; 755 else 756 journal->j_flags &= ~JBD2_BARRIER; 757 spin_unlock(&journal->j_state_lock); 758 } 759 760 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 761 { 762 int status = -1; 763 struct inode *inode = NULL; /* the journal inode */ 764 journal_t *j_journal = NULL; 765 struct ocfs2_dinode *di = NULL; 766 struct buffer_head *bh = NULL; 767 struct ocfs2_super *osb; 768 int inode_lock = 0; 769 770 mlog_entry_void(); 771 772 BUG_ON(!journal); 773 774 osb = journal->j_osb; 775 776 /* already have the inode for our journal */ 777 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 778 osb->slot_num); 779 if (inode == NULL) { 780 status = -EACCES; 781 mlog_errno(status); 782 goto done; 783 } 784 if (is_bad_inode(inode)) { 785 mlog(ML_ERROR, "access error (bad inode)\n"); 786 iput(inode); 787 inode = NULL; 788 status = -EACCES; 789 goto done; 790 } 791 792 SET_INODE_JOURNAL(inode); 793 OCFS2_I(inode)->ip_open_count++; 794 795 /* Skip recovery waits here - journal inode metadata never 796 * changes in a live cluster so it can be considered an 797 * exception to the rule. */ 798 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 799 if (status < 0) { 800 if (status != -ERESTARTSYS) 801 mlog(ML_ERROR, "Could not get lock on journal!\n"); 802 goto done; 803 } 804 805 inode_lock = 1; 806 di = (struct ocfs2_dinode *)bh->b_data; 807 808 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) { 809 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 810 inode->i_size); 811 status = -EINVAL; 812 goto done; 813 } 814 815 mlog(0, "inode->i_size = %lld\n", inode->i_size); 816 mlog(0, "inode->i_blocks = %llu\n", 817 (unsigned long long)inode->i_blocks); 818 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters); 819 820 /* call the kernels journal init function now */ 821 j_journal = jbd2_journal_init_inode(inode); 822 if (j_journal == NULL) { 823 mlog(ML_ERROR, "Linux journal layer error\n"); 824 status = -EINVAL; 825 goto done; 826 } 827 828 mlog(0, "Returned from jbd2_journal_init_inode\n"); 829 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen); 830 831 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 832 OCFS2_JOURNAL_DIRTY_FL); 833 834 journal->j_journal = j_journal; 835 journal->j_inode = inode; 836 journal->j_bh = bh; 837 838 ocfs2_set_journal_params(osb); 839 840 journal->j_state = OCFS2_JOURNAL_LOADED; 841 842 status = 0; 843 done: 844 if (status < 0) { 845 if (inode_lock) 846 ocfs2_inode_unlock(inode, 1); 847 brelse(bh); 848 if (inode) { 849 OCFS2_I(inode)->ip_open_count--; 850 iput(inode); 851 } 852 } 853 854 mlog_exit(status); 855 return status; 856 } 857 858 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 859 { 860 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 861 } 862 863 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 864 { 865 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 866 } 867 868 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 869 int dirty, int replayed) 870 { 871 int status; 872 unsigned int flags; 873 struct ocfs2_journal *journal = osb->journal; 874 struct buffer_head *bh = journal->j_bh; 875 struct ocfs2_dinode *fe; 876 877 mlog_entry_void(); 878 879 fe = (struct ocfs2_dinode *)bh->b_data; 880 881 /* The journal bh on the osb always comes from ocfs2_journal_init() 882 * and was validated there inside ocfs2_inode_lock_full(). It's a 883 * code bug if we mess it up. */ 884 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 885 886 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 887 if (dirty) 888 flags |= OCFS2_JOURNAL_DIRTY_FL; 889 else 890 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 891 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 892 893 if (replayed) 894 ocfs2_bump_recovery_generation(fe); 895 896 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 897 status = ocfs2_write_block(osb, bh, journal->j_inode); 898 if (status < 0) 899 mlog_errno(status); 900 901 mlog_exit(status); 902 return status; 903 } 904 905 /* 906 * If the journal has been kmalloc'd it needs to be freed after this 907 * call. 908 */ 909 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 910 { 911 struct ocfs2_journal *journal = NULL; 912 int status = 0; 913 struct inode *inode = NULL; 914 int num_running_trans = 0; 915 916 mlog_entry_void(); 917 918 BUG_ON(!osb); 919 920 journal = osb->journal; 921 if (!journal) 922 goto done; 923 924 inode = journal->j_inode; 925 926 if (journal->j_state != OCFS2_JOURNAL_LOADED) 927 goto done; 928 929 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 930 if (!igrab(inode)) 931 BUG(); 932 933 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 934 if (num_running_trans > 0) 935 mlog(0, "Shutting down journal: must wait on %d " 936 "running transactions!\n", 937 num_running_trans); 938 939 /* Do a commit_cache here. It will flush our journal, *and* 940 * release any locks that are still held. 941 * set the SHUTDOWN flag and release the trans lock. 942 * the commit thread will take the trans lock for us below. */ 943 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 944 945 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 946 * drop the trans_lock (which we want to hold until we 947 * completely destroy the journal. */ 948 if (osb->commit_task) { 949 /* Wait for the commit thread */ 950 mlog(0, "Waiting for ocfs2commit to exit....\n"); 951 kthread_stop(osb->commit_task); 952 osb->commit_task = NULL; 953 } 954 955 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 956 957 if (ocfs2_mount_local(osb)) { 958 jbd2_journal_lock_updates(journal->j_journal); 959 status = jbd2_journal_flush(journal->j_journal); 960 jbd2_journal_unlock_updates(journal->j_journal); 961 if (status < 0) 962 mlog_errno(status); 963 } 964 965 if (status == 0) { 966 /* 967 * Do not toggle if flush was unsuccessful otherwise 968 * will leave dirty metadata in a "clean" journal 969 */ 970 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 971 if (status < 0) 972 mlog_errno(status); 973 } 974 975 /* Shutdown the kernel journal system */ 976 jbd2_journal_destroy(journal->j_journal); 977 journal->j_journal = NULL; 978 979 OCFS2_I(inode)->ip_open_count--; 980 981 /* unlock our journal */ 982 ocfs2_inode_unlock(inode, 1); 983 984 brelse(journal->j_bh); 985 journal->j_bh = NULL; 986 987 journal->j_state = OCFS2_JOURNAL_FREE; 988 989 // up_write(&journal->j_trans_barrier); 990 done: 991 if (inode) 992 iput(inode); 993 mlog_exit_void(); 994 } 995 996 static void ocfs2_clear_journal_error(struct super_block *sb, 997 journal_t *journal, 998 int slot) 999 { 1000 int olderr; 1001 1002 olderr = jbd2_journal_errno(journal); 1003 if (olderr) { 1004 mlog(ML_ERROR, "File system error %d recorded in " 1005 "journal %u.\n", olderr, slot); 1006 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1007 sb->s_id); 1008 1009 jbd2_journal_ack_err(journal); 1010 jbd2_journal_clear_err(journal); 1011 } 1012 } 1013 1014 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1015 { 1016 int status = 0; 1017 struct ocfs2_super *osb; 1018 1019 mlog_entry_void(); 1020 1021 BUG_ON(!journal); 1022 1023 osb = journal->j_osb; 1024 1025 status = jbd2_journal_load(journal->j_journal); 1026 if (status < 0) { 1027 mlog(ML_ERROR, "Failed to load journal!\n"); 1028 goto done; 1029 } 1030 1031 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1032 1033 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1034 if (status < 0) { 1035 mlog_errno(status); 1036 goto done; 1037 } 1038 1039 /* Launch the commit thread */ 1040 if (!local) { 1041 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1042 "ocfs2cmt"); 1043 if (IS_ERR(osb->commit_task)) { 1044 status = PTR_ERR(osb->commit_task); 1045 osb->commit_task = NULL; 1046 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1047 "error=%d", status); 1048 goto done; 1049 } 1050 } else 1051 osb->commit_task = NULL; 1052 1053 done: 1054 mlog_exit(status); 1055 return status; 1056 } 1057 1058 1059 /* 'full' flag tells us whether we clear out all blocks or if we just 1060 * mark the journal clean */ 1061 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1062 { 1063 int status; 1064 1065 mlog_entry_void(); 1066 1067 BUG_ON(!journal); 1068 1069 status = jbd2_journal_wipe(journal->j_journal, full); 1070 if (status < 0) { 1071 mlog_errno(status); 1072 goto bail; 1073 } 1074 1075 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1076 if (status < 0) 1077 mlog_errno(status); 1078 1079 bail: 1080 mlog_exit(status); 1081 return status; 1082 } 1083 1084 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1085 { 1086 int empty; 1087 struct ocfs2_recovery_map *rm = osb->recovery_map; 1088 1089 spin_lock(&osb->osb_lock); 1090 empty = (rm->rm_used == 0); 1091 spin_unlock(&osb->osb_lock); 1092 1093 return empty; 1094 } 1095 1096 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1097 { 1098 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1099 } 1100 1101 /* 1102 * JBD Might read a cached version of another nodes journal file. We 1103 * don't want this as this file changes often and we get no 1104 * notification on those changes. The only way to be sure that we've 1105 * got the most up to date version of those blocks then is to force 1106 * read them off disk. Just searching through the buffer cache won't 1107 * work as there may be pages backing this file which are still marked 1108 * up to date. We know things can't change on this file underneath us 1109 * as we have the lock by now :) 1110 */ 1111 static int ocfs2_force_read_journal(struct inode *inode) 1112 { 1113 int status = 0; 1114 int i; 1115 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1116 #define CONCURRENT_JOURNAL_FILL 32ULL 1117 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 1118 1119 mlog_entry_void(); 1120 1121 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 1122 1123 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size); 1124 v_blkno = 0; 1125 while (v_blkno < num_blocks) { 1126 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1127 &p_blkno, &p_blocks, NULL); 1128 if (status < 0) { 1129 mlog_errno(status); 1130 goto bail; 1131 } 1132 1133 if (p_blocks > CONCURRENT_JOURNAL_FILL) 1134 p_blocks = CONCURRENT_JOURNAL_FILL; 1135 1136 /* We are reading journal data which should not 1137 * be put in the uptodate cache */ 1138 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb), 1139 p_blkno, p_blocks, bhs); 1140 if (status < 0) { 1141 mlog_errno(status); 1142 goto bail; 1143 } 1144 1145 for(i = 0; i < p_blocks; i++) { 1146 brelse(bhs[i]); 1147 bhs[i] = NULL; 1148 } 1149 1150 v_blkno += p_blocks; 1151 } 1152 1153 bail: 1154 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 1155 brelse(bhs[i]); 1156 mlog_exit(status); 1157 return status; 1158 } 1159 1160 struct ocfs2_la_recovery_item { 1161 struct list_head lri_list; 1162 int lri_slot; 1163 struct ocfs2_dinode *lri_la_dinode; 1164 struct ocfs2_dinode *lri_tl_dinode; 1165 struct ocfs2_quota_recovery *lri_qrec; 1166 }; 1167 1168 /* Does the second half of the recovery process. By this point, the 1169 * node is marked clean and can actually be considered recovered, 1170 * hence it's no longer in the recovery map, but there's still some 1171 * cleanup we can do which shouldn't happen within the recovery thread 1172 * as locking in that context becomes very difficult if we are to take 1173 * recovering nodes into account. 1174 * 1175 * NOTE: This function can and will sleep on recovery of other nodes 1176 * during cluster locking, just like any other ocfs2 process. 1177 */ 1178 void ocfs2_complete_recovery(struct work_struct *work) 1179 { 1180 int ret; 1181 struct ocfs2_journal *journal = 1182 container_of(work, struct ocfs2_journal, j_recovery_work); 1183 struct ocfs2_super *osb = journal->j_osb; 1184 struct ocfs2_dinode *la_dinode, *tl_dinode; 1185 struct ocfs2_la_recovery_item *item, *n; 1186 struct ocfs2_quota_recovery *qrec; 1187 LIST_HEAD(tmp_la_list); 1188 1189 mlog_entry_void(); 1190 1191 mlog(0, "completing recovery from keventd\n"); 1192 1193 spin_lock(&journal->j_lock); 1194 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1195 spin_unlock(&journal->j_lock); 1196 1197 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1198 list_del_init(&item->lri_list); 1199 1200 mlog(0, "Complete recovery for slot %d\n", item->lri_slot); 1201 1202 ocfs2_wait_on_quotas(osb); 1203 1204 la_dinode = item->lri_la_dinode; 1205 if (la_dinode) { 1206 mlog(0, "Clean up local alloc %llu\n", 1207 (unsigned long long)le64_to_cpu(la_dinode->i_blkno)); 1208 1209 ret = ocfs2_complete_local_alloc_recovery(osb, 1210 la_dinode); 1211 if (ret < 0) 1212 mlog_errno(ret); 1213 1214 kfree(la_dinode); 1215 } 1216 1217 tl_dinode = item->lri_tl_dinode; 1218 if (tl_dinode) { 1219 mlog(0, "Clean up truncate log %llu\n", 1220 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno)); 1221 1222 ret = ocfs2_complete_truncate_log_recovery(osb, 1223 tl_dinode); 1224 if (ret < 0) 1225 mlog_errno(ret); 1226 1227 kfree(tl_dinode); 1228 } 1229 1230 ret = ocfs2_recover_orphans(osb, item->lri_slot); 1231 if (ret < 0) 1232 mlog_errno(ret); 1233 1234 qrec = item->lri_qrec; 1235 if (qrec) { 1236 mlog(0, "Recovering quota files"); 1237 ret = ocfs2_finish_quota_recovery(osb, qrec, 1238 item->lri_slot); 1239 if (ret < 0) 1240 mlog_errno(ret); 1241 /* Recovery info is already freed now */ 1242 } 1243 1244 kfree(item); 1245 } 1246 1247 mlog(0, "Recovery completion\n"); 1248 mlog_exit_void(); 1249 } 1250 1251 /* NOTE: This function always eats your references to la_dinode and 1252 * tl_dinode, either manually on error, or by passing them to 1253 * ocfs2_complete_recovery */ 1254 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1255 int slot_num, 1256 struct ocfs2_dinode *la_dinode, 1257 struct ocfs2_dinode *tl_dinode, 1258 struct ocfs2_quota_recovery *qrec) 1259 { 1260 struct ocfs2_la_recovery_item *item; 1261 1262 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1263 if (!item) { 1264 /* Though we wish to avoid it, we are in fact safe in 1265 * skipping local alloc cleanup as fsck.ocfs2 is more 1266 * than capable of reclaiming unused space. */ 1267 if (la_dinode) 1268 kfree(la_dinode); 1269 1270 if (tl_dinode) 1271 kfree(tl_dinode); 1272 1273 if (qrec) 1274 ocfs2_free_quota_recovery(qrec); 1275 1276 mlog_errno(-ENOMEM); 1277 return; 1278 } 1279 1280 INIT_LIST_HEAD(&item->lri_list); 1281 item->lri_la_dinode = la_dinode; 1282 item->lri_slot = slot_num; 1283 item->lri_tl_dinode = tl_dinode; 1284 item->lri_qrec = qrec; 1285 1286 spin_lock(&journal->j_lock); 1287 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1288 queue_work(ocfs2_wq, &journal->j_recovery_work); 1289 spin_unlock(&journal->j_lock); 1290 } 1291 1292 /* Called by the mount code to queue recovery the last part of 1293 * recovery for it's own and offline slot(s). */ 1294 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1295 { 1296 struct ocfs2_journal *journal = osb->journal; 1297 1298 /* No need to queue up our truncate_log as regular cleanup will catch 1299 * that */ 1300 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1301 osb->local_alloc_copy, NULL, NULL); 1302 ocfs2_schedule_truncate_log_flush(osb, 0); 1303 1304 osb->local_alloc_copy = NULL; 1305 osb->dirty = 0; 1306 1307 /* queue to recover orphan slots for all offline slots */ 1308 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1309 ocfs2_queue_replay_slots(osb); 1310 ocfs2_free_replay_slots(osb); 1311 } 1312 1313 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1314 { 1315 if (osb->quota_rec) { 1316 ocfs2_queue_recovery_completion(osb->journal, 1317 osb->slot_num, 1318 NULL, 1319 NULL, 1320 osb->quota_rec); 1321 osb->quota_rec = NULL; 1322 } 1323 } 1324 1325 static int __ocfs2_recovery_thread(void *arg) 1326 { 1327 int status, node_num, slot_num; 1328 struct ocfs2_super *osb = arg; 1329 struct ocfs2_recovery_map *rm = osb->recovery_map; 1330 int *rm_quota = NULL; 1331 int rm_quota_used = 0, i; 1332 struct ocfs2_quota_recovery *qrec; 1333 1334 mlog_entry_void(); 1335 1336 status = ocfs2_wait_on_mount(osb); 1337 if (status < 0) { 1338 goto bail; 1339 } 1340 1341 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS); 1342 if (!rm_quota) { 1343 status = -ENOMEM; 1344 goto bail; 1345 } 1346 restart: 1347 status = ocfs2_super_lock(osb, 1); 1348 if (status < 0) { 1349 mlog_errno(status); 1350 goto bail; 1351 } 1352 1353 status = ocfs2_compute_replay_slots(osb); 1354 if (status < 0) 1355 mlog_errno(status); 1356 1357 /* queue recovery for our own slot */ 1358 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1359 NULL, NULL); 1360 1361 spin_lock(&osb->osb_lock); 1362 while (rm->rm_used) { 1363 /* It's always safe to remove entry zero, as we won't 1364 * clear it until ocfs2_recover_node() has succeeded. */ 1365 node_num = rm->rm_entries[0]; 1366 spin_unlock(&osb->osb_lock); 1367 mlog(0, "checking node %d\n", node_num); 1368 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1369 if (slot_num == -ENOENT) { 1370 status = 0; 1371 mlog(0, "no slot for this node, so no recovery" 1372 "required.\n"); 1373 goto skip_recovery; 1374 } 1375 mlog(0, "node %d was using slot %d\n", node_num, slot_num); 1376 1377 /* It is a bit subtle with quota recovery. We cannot do it 1378 * immediately because we have to obtain cluster locks from 1379 * quota files and we also don't want to just skip it because 1380 * then quota usage would be out of sync until some node takes 1381 * the slot. So we remember which nodes need quota recovery 1382 * and when everything else is done, we recover quotas. */ 1383 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++); 1384 if (i == rm_quota_used) 1385 rm_quota[rm_quota_used++] = slot_num; 1386 1387 status = ocfs2_recover_node(osb, node_num, slot_num); 1388 skip_recovery: 1389 if (!status) { 1390 ocfs2_recovery_map_clear(osb, node_num); 1391 } else { 1392 mlog(ML_ERROR, 1393 "Error %d recovering node %d on device (%u,%u)!\n", 1394 status, node_num, 1395 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1396 mlog(ML_ERROR, "Volume requires unmount.\n"); 1397 } 1398 1399 spin_lock(&osb->osb_lock); 1400 } 1401 spin_unlock(&osb->osb_lock); 1402 mlog(0, "All nodes recovered\n"); 1403 1404 /* Refresh all journal recovery generations from disk */ 1405 status = ocfs2_check_journals_nolocks(osb); 1406 status = (status == -EROFS) ? 0 : status; 1407 if (status < 0) 1408 mlog_errno(status); 1409 1410 /* Now it is right time to recover quotas... We have to do this under 1411 * superblock lock so that noone can start using the slot (and crash) 1412 * before we recover it */ 1413 for (i = 0; i < rm_quota_used; i++) { 1414 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1415 if (IS_ERR(qrec)) { 1416 status = PTR_ERR(qrec); 1417 mlog_errno(status); 1418 continue; 1419 } 1420 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i], 1421 NULL, NULL, qrec); 1422 } 1423 1424 ocfs2_super_unlock(osb, 1); 1425 1426 /* queue recovery for offline slots */ 1427 ocfs2_queue_replay_slots(osb); 1428 1429 bail: 1430 mutex_lock(&osb->recovery_lock); 1431 if (!status && !ocfs2_recovery_completed(osb)) { 1432 mutex_unlock(&osb->recovery_lock); 1433 goto restart; 1434 } 1435 1436 ocfs2_free_replay_slots(osb); 1437 osb->recovery_thread_task = NULL; 1438 mb(); /* sync with ocfs2_recovery_thread_running */ 1439 wake_up(&osb->recovery_event); 1440 1441 mutex_unlock(&osb->recovery_lock); 1442 1443 if (rm_quota) 1444 kfree(rm_quota); 1445 1446 mlog_exit(status); 1447 /* no one is callint kthread_stop() for us so the kthread() api 1448 * requires that we call do_exit(). And it isn't exported, but 1449 * complete_and_exit() seems to be a minimal wrapper around it. */ 1450 complete_and_exit(NULL, status); 1451 return status; 1452 } 1453 1454 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1455 { 1456 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 1457 node_num, osb->node_num); 1458 1459 mutex_lock(&osb->recovery_lock); 1460 if (osb->disable_recovery) 1461 goto out; 1462 1463 /* People waiting on recovery will wait on 1464 * the recovery map to empty. */ 1465 if (ocfs2_recovery_map_set(osb, node_num)) 1466 mlog(0, "node %d already in recovery map.\n", node_num); 1467 1468 mlog(0, "starting recovery thread...\n"); 1469 1470 if (osb->recovery_thread_task) 1471 goto out; 1472 1473 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1474 "ocfs2rec"); 1475 if (IS_ERR(osb->recovery_thread_task)) { 1476 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1477 osb->recovery_thread_task = NULL; 1478 } 1479 1480 out: 1481 mutex_unlock(&osb->recovery_lock); 1482 wake_up(&osb->recovery_event); 1483 1484 mlog_exit_void(); 1485 } 1486 1487 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1488 int slot_num, 1489 struct buffer_head **bh, 1490 struct inode **ret_inode) 1491 { 1492 int status = -EACCES; 1493 struct inode *inode = NULL; 1494 1495 BUG_ON(slot_num >= osb->max_slots); 1496 1497 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1498 slot_num); 1499 if (!inode || is_bad_inode(inode)) { 1500 mlog_errno(status); 1501 goto bail; 1502 } 1503 SET_INODE_JOURNAL(inode); 1504 1505 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1506 if (status < 0) { 1507 mlog_errno(status); 1508 goto bail; 1509 } 1510 1511 status = 0; 1512 1513 bail: 1514 if (inode) { 1515 if (status || !ret_inode) 1516 iput(inode); 1517 else 1518 *ret_inode = inode; 1519 } 1520 return status; 1521 } 1522 1523 /* Does the actual journal replay and marks the journal inode as 1524 * clean. Will only replay if the journal inode is marked dirty. */ 1525 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1526 int node_num, 1527 int slot_num) 1528 { 1529 int status; 1530 int got_lock = 0; 1531 unsigned int flags; 1532 struct inode *inode = NULL; 1533 struct ocfs2_dinode *fe; 1534 journal_t *journal = NULL; 1535 struct buffer_head *bh = NULL; 1536 u32 slot_reco_gen; 1537 1538 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1539 if (status) { 1540 mlog_errno(status); 1541 goto done; 1542 } 1543 1544 fe = (struct ocfs2_dinode *)bh->b_data; 1545 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1546 brelse(bh); 1547 bh = NULL; 1548 1549 /* 1550 * As the fs recovery is asynchronous, there is a small chance that 1551 * another node mounted (and recovered) the slot before the recovery 1552 * thread could get the lock. To handle that, we dirty read the journal 1553 * inode for that slot to get the recovery generation. If it is 1554 * different than what we expected, the slot has been recovered. 1555 * If not, it needs recovery. 1556 */ 1557 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1558 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num, 1559 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1560 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1561 status = -EBUSY; 1562 goto done; 1563 } 1564 1565 /* Continue with recovery as the journal has not yet been recovered */ 1566 1567 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1568 if (status < 0) { 1569 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status); 1570 if (status != -ERESTARTSYS) 1571 mlog(ML_ERROR, "Could not lock journal!\n"); 1572 goto done; 1573 } 1574 got_lock = 1; 1575 1576 fe = (struct ocfs2_dinode *) bh->b_data; 1577 1578 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1579 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1580 1581 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1582 mlog(0, "No recovery required for node %d\n", node_num); 1583 /* Refresh recovery generation for the slot */ 1584 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1585 goto done; 1586 } 1587 1588 /* we need to run complete recovery for offline orphan slots */ 1589 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1590 1591 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n", 1592 node_num, slot_num, 1593 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1594 1595 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1596 1597 status = ocfs2_force_read_journal(inode); 1598 if (status < 0) { 1599 mlog_errno(status); 1600 goto done; 1601 } 1602 1603 mlog(0, "calling journal_init_inode\n"); 1604 journal = jbd2_journal_init_inode(inode); 1605 if (journal == NULL) { 1606 mlog(ML_ERROR, "Linux journal layer error\n"); 1607 status = -EIO; 1608 goto done; 1609 } 1610 1611 status = jbd2_journal_load(journal); 1612 if (status < 0) { 1613 mlog_errno(status); 1614 if (!igrab(inode)) 1615 BUG(); 1616 jbd2_journal_destroy(journal); 1617 goto done; 1618 } 1619 1620 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1621 1622 /* wipe the journal */ 1623 mlog(0, "flushing the journal.\n"); 1624 jbd2_journal_lock_updates(journal); 1625 status = jbd2_journal_flush(journal); 1626 jbd2_journal_unlock_updates(journal); 1627 if (status < 0) 1628 mlog_errno(status); 1629 1630 /* This will mark the node clean */ 1631 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1632 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1633 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1634 1635 /* Increment recovery generation to indicate successful recovery */ 1636 ocfs2_bump_recovery_generation(fe); 1637 osb->slot_recovery_generations[slot_num] = 1638 ocfs2_get_recovery_generation(fe); 1639 1640 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1641 status = ocfs2_write_block(osb, bh, inode); 1642 if (status < 0) 1643 mlog_errno(status); 1644 1645 if (!igrab(inode)) 1646 BUG(); 1647 1648 jbd2_journal_destroy(journal); 1649 1650 done: 1651 /* drop the lock on this nodes journal */ 1652 if (got_lock) 1653 ocfs2_inode_unlock(inode, 1); 1654 1655 if (inode) 1656 iput(inode); 1657 1658 brelse(bh); 1659 1660 mlog_exit(status); 1661 return status; 1662 } 1663 1664 /* 1665 * Do the most important parts of node recovery: 1666 * - Replay it's journal 1667 * - Stamp a clean local allocator file 1668 * - Stamp a clean truncate log 1669 * - Mark the node clean 1670 * 1671 * If this function completes without error, a node in OCFS2 can be 1672 * said to have been safely recovered. As a result, failure during the 1673 * second part of a nodes recovery process (local alloc recovery) is 1674 * far less concerning. 1675 */ 1676 static int ocfs2_recover_node(struct ocfs2_super *osb, 1677 int node_num, int slot_num) 1678 { 1679 int status = 0; 1680 struct ocfs2_dinode *la_copy = NULL; 1681 struct ocfs2_dinode *tl_copy = NULL; 1682 1683 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n", 1684 node_num, slot_num, osb->node_num); 1685 1686 /* Should not ever be called to recover ourselves -- in that 1687 * case we should've called ocfs2_journal_load instead. */ 1688 BUG_ON(osb->node_num == node_num); 1689 1690 status = ocfs2_replay_journal(osb, node_num, slot_num); 1691 if (status < 0) { 1692 if (status == -EBUSY) { 1693 mlog(0, "Skipping recovery for slot %u (node %u) " 1694 "as another node has recovered it\n", slot_num, 1695 node_num); 1696 status = 0; 1697 goto done; 1698 } 1699 mlog_errno(status); 1700 goto done; 1701 } 1702 1703 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1704 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1705 if (status < 0) { 1706 mlog_errno(status); 1707 goto done; 1708 } 1709 1710 /* An error from begin_truncate_log_recovery is not 1711 * serious enough to warrant halting the rest of 1712 * recovery. */ 1713 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1714 if (status < 0) 1715 mlog_errno(status); 1716 1717 /* Likewise, this would be a strange but ultimately not so 1718 * harmful place to get an error... */ 1719 status = ocfs2_clear_slot(osb, slot_num); 1720 if (status < 0) 1721 mlog_errno(status); 1722 1723 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1724 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1725 tl_copy, NULL); 1726 1727 status = 0; 1728 done: 1729 1730 mlog_exit(status); 1731 return status; 1732 } 1733 1734 /* Test node liveness by trylocking his journal. If we get the lock, 1735 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1736 * still alive (we couldn't get the lock) and < 0 on error. */ 1737 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1738 int slot_num) 1739 { 1740 int status, flags; 1741 struct inode *inode = NULL; 1742 1743 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1744 slot_num); 1745 if (inode == NULL) { 1746 mlog(ML_ERROR, "access error\n"); 1747 status = -EACCES; 1748 goto bail; 1749 } 1750 if (is_bad_inode(inode)) { 1751 mlog(ML_ERROR, "access error (bad inode)\n"); 1752 iput(inode); 1753 inode = NULL; 1754 status = -EACCES; 1755 goto bail; 1756 } 1757 SET_INODE_JOURNAL(inode); 1758 1759 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1760 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1761 if (status < 0) { 1762 if (status != -EAGAIN) 1763 mlog_errno(status); 1764 goto bail; 1765 } 1766 1767 ocfs2_inode_unlock(inode, 1); 1768 bail: 1769 if (inode) 1770 iput(inode); 1771 1772 return status; 1773 } 1774 1775 /* Call this underneath ocfs2_super_lock. It also assumes that the 1776 * slot info struct has been updated from disk. */ 1777 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1778 { 1779 unsigned int node_num; 1780 int status, i; 1781 u32 gen; 1782 struct buffer_head *bh = NULL; 1783 struct ocfs2_dinode *di; 1784 1785 /* This is called with the super block cluster lock, so we 1786 * know that the slot map can't change underneath us. */ 1787 1788 for (i = 0; i < osb->max_slots; i++) { 1789 /* Read journal inode to get the recovery generation */ 1790 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1791 if (status) { 1792 mlog_errno(status); 1793 goto bail; 1794 } 1795 di = (struct ocfs2_dinode *)bh->b_data; 1796 gen = ocfs2_get_recovery_generation(di); 1797 brelse(bh); 1798 bh = NULL; 1799 1800 spin_lock(&osb->osb_lock); 1801 osb->slot_recovery_generations[i] = gen; 1802 1803 mlog(0, "Slot %u recovery generation is %u\n", i, 1804 osb->slot_recovery_generations[i]); 1805 1806 if (i == osb->slot_num) { 1807 spin_unlock(&osb->osb_lock); 1808 continue; 1809 } 1810 1811 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1812 if (status == -ENOENT) { 1813 spin_unlock(&osb->osb_lock); 1814 continue; 1815 } 1816 1817 if (__ocfs2_recovery_map_test(osb, node_num)) { 1818 spin_unlock(&osb->osb_lock); 1819 continue; 1820 } 1821 spin_unlock(&osb->osb_lock); 1822 1823 /* Ok, we have a slot occupied by another node which 1824 * is not in the recovery map. We trylock his journal 1825 * file here to test if he's alive. */ 1826 status = ocfs2_trylock_journal(osb, i); 1827 if (!status) { 1828 /* Since we're called from mount, we know that 1829 * the recovery thread can't race us on 1830 * setting / checking the recovery bits. */ 1831 ocfs2_recovery_thread(osb, node_num); 1832 } else if ((status < 0) && (status != -EAGAIN)) { 1833 mlog_errno(status); 1834 goto bail; 1835 } 1836 } 1837 1838 status = 0; 1839 bail: 1840 mlog_exit(status); 1841 return status; 1842 } 1843 1844 struct ocfs2_orphan_filldir_priv { 1845 struct inode *head; 1846 struct ocfs2_super *osb; 1847 }; 1848 1849 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len, 1850 loff_t pos, u64 ino, unsigned type) 1851 { 1852 struct ocfs2_orphan_filldir_priv *p = priv; 1853 struct inode *iter; 1854 1855 if (name_len == 1 && !strncmp(".", name, 1)) 1856 return 0; 1857 if (name_len == 2 && !strncmp("..", name, 2)) 1858 return 0; 1859 1860 /* Skip bad inodes so that recovery can continue */ 1861 iter = ocfs2_iget(p->osb, ino, 1862 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 1863 if (IS_ERR(iter)) 1864 return 0; 1865 1866 mlog(0, "queue orphan %llu\n", 1867 (unsigned long long)OCFS2_I(iter)->ip_blkno); 1868 /* No locking is required for the next_orphan queue as there 1869 * is only ever a single process doing orphan recovery. */ 1870 OCFS2_I(iter)->ip_next_orphan = p->head; 1871 p->head = iter; 1872 1873 return 0; 1874 } 1875 1876 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 1877 int slot, 1878 struct inode **head) 1879 { 1880 int status; 1881 struct inode *orphan_dir_inode = NULL; 1882 struct ocfs2_orphan_filldir_priv priv; 1883 loff_t pos = 0; 1884 1885 priv.osb = osb; 1886 priv.head = *head; 1887 1888 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 1889 ORPHAN_DIR_SYSTEM_INODE, 1890 slot); 1891 if (!orphan_dir_inode) { 1892 status = -ENOENT; 1893 mlog_errno(status); 1894 return status; 1895 } 1896 1897 mutex_lock(&orphan_dir_inode->i_mutex); 1898 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 1899 if (status < 0) { 1900 mlog_errno(status); 1901 goto out; 1902 } 1903 1904 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv, 1905 ocfs2_orphan_filldir); 1906 if (status) { 1907 mlog_errno(status); 1908 goto out_cluster; 1909 } 1910 1911 *head = priv.head; 1912 1913 out_cluster: 1914 ocfs2_inode_unlock(orphan_dir_inode, 0); 1915 out: 1916 mutex_unlock(&orphan_dir_inode->i_mutex); 1917 iput(orphan_dir_inode); 1918 return status; 1919 } 1920 1921 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 1922 int slot) 1923 { 1924 int ret; 1925 1926 spin_lock(&osb->osb_lock); 1927 ret = !osb->osb_orphan_wipes[slot]; 1928 spin_unlock(&osb->osb_lock); 1929 return ret; 1930 } 1931 1932 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 1933 int slot) 1934 { 1935 spin_lock(&osb->osb_lock); 1936 /* Mark ourselves such that new processes in delete_inode() 1937 * know to quit early. */ 1938 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1939 while (osb->osb_orphan_wipes[slot]) { 1940 /* If any processes are already in the middle of an 1941 * orphan wipe on this dir, then we need to wait for 1942 * them. */ 1943 spin_unlock(&osb->osb_lock); 1944 wait_event_interruptible(osb->osb_wipe_event, 1945 ocfs2_orphan_recovery_can_continue(osb, slot)); 1946 spin_lock(&osb->osb_lock); 1947 } 1948 spin_unlock(&osb->osb_lock); 1949 } 1950 1951 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 1952 int slot) 1953 { 1954 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1955 } 1956 1957 /* 1958 * Orphan recovery. Each mounted node has it's own orphan dir which we 1959 * must run during recovery. Our strategy here is to build a list of 1960 * the inodes in the orphan dir and iget/iput them. The VFS does 1961 * (most) of the rest of the work. 1962 * 1963 * Orphan recovery can happen at any time, not just mount so we have a 1964 * couple of extra considerations. 1965 * 1966 * - We grab as many inodes as we can under the orphan dir lock - 1967 * doing iget() outside the orphan dir risks getting a reference on 1968 * an invalid inode. 1969 * - We must be sure not to deadlock with other processes on the 1970 * system wanting to run delete_inode(). This can happen when they go 1971 * to lock the orphan dir and the orphan recovery process attempts to 1972 * iget() inside the orphan dir lock. This can be avoided by 1973 * advertising our state to ocfs2_delete_inode(). 1974 */ 1975 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 1976 int slot) 1977 { 1978 int ret = 0; 1979 struct inode *inode = NULL; 1980 struct inode *iter; 1981 struct ocfs2_inode_info *oi; 1982 1983 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot); 1984 1985 ocfs2_mark_recovering_orphan_dir(osb, slot); 1986 ret = ocfs2_queue_orphans(osb, slot, &inode); 1987 ocfs2_clear_recovering_orphan_dir(osb, slot); 1988 1989 /* Error here should be noted, but we want to continue with as 1990 * many queued inodes as we've got. */ 1991 if (ret) 1992 mlog_errno(ret); 1993 1994 while (inode) { 1995 oi = OCFS2_I(inode); 1996 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno); 1997 1998 iter = oi->ip_next_orphan; 1999 2000 spin_lock(&oi->ip_lock); 2001 /* The remote delete code may have set these on the 2002 * assumption that the other node would wipe them 2003 * successfully. If they are still in the node's 2004 * orphan dir, we need to reset that state. */ 2005 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); 2006 2007 /* Set the proper information to get us going into 2008 * ocfs2_delete_inode. */ 2009 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2010 spin_unlock(&oi->ip_lock); 2011 2012 iput(inode); 2013 2014 inode = iter; 2015 } 2016 2017 return ret; 2018 } 2019 2020 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2021 { 2022 /* This check is good because ocfs2 will wait on our recovery 2023 * thread before changing it to something other than MOUNTED 2024 * or DISABLED. */ 2025 wait_event(osb->osb_mount_event, 2026 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2027 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2028 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2029 2030 /* If there's an error on mount, then we may never get to the 2031 * MOUNTED flag, but this is set right before 2032 * dismount_volume() so we can trust it. */ 2033 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2034 mlog(0, "mount error, exiting!\n"); 2035 return -EBUSY; 2036 } 2037 2038 return 0; 2039 } 2040 2041 static int ocfs2_commit_thread(void *arg) 2042 { 2043 int status; 2044 struct ocfs2_super *osb = arg; 2045 struct ocfs2_journal *journal = osb->journal; 2046 2047 /* we can trust j_num_trans here because _should_stop() is only set in 2048 * shutdown and nobody other than ourselves should be able to start 2049 * transactions. committing on shutdown might take a few iterations 2050 * as final transactions put deleted inodes on the list */ 2051 while (!(kthread_should_stop() && 2052 atomic_read(&journal->j_num_trans) == 0)) { 2053 2054 wait_event_interruptible(osb->checkpoint_event, 2055 atomic_read(&journal->j_num_trans) 2056 || kthread_should_stop()); 2057 2058 status = ocfs2_commit_cache(osb); 2059 if (status < 0) 2060 mlog_errno(status); 2061 2062 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2063 mlog(ML_KTHREAD, 2064 "commit_thread: %u transactions pending on " 2065 "shutdown\n", 2066 atomic_read(&journal->j_num_trans)); 2067 } 2068 } 2069 2070 return 0; 2071 } 2072 2073 /* Reads all the journal inodes without taking any cluster locks. Used 2074 * for hard readonly access to determine whether any journal requires 2075 * recovery. Also used to refresh the recovery generation numbers after 2076 * a journal has been recovered by another node. 2077 */ 2078 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2079 { 2080 int ret = 0; 2081 unsigned int slot; 2082 struct buffer_head *di_bh = NULL; 2083 struct ocfs2_dinode *di; 2084 int journal_dirty = 0; 2085 2086 for(slot = 0; slot < osb->max_slots; slot++) { 2087 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2088 if (ret) { 2089 mlog_errno(ret); 2090 goto out; 2091 } 2092 2093 di = (struct ocfs2_dinode *) di_bh->b_data; 2094 2095 osb->slot_recovery_generations[slot] = 2096 ocfs2_get_recovery_generation(di); 2097 2098 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2099 OCFS2_JOURNAL_DIRTY_FL) 2100 journal_dirty = 1; 2101 2102 brelse(di_bh); 2103 di_bh = NULL; 2104 } 2105 2106 out: 2107 if (journal_dirty) 2108 ret = -EROFS; 2109 return ret; 2110 } 2111