xref: /openbmc/linux/fs/ocfs2/journal.c (revision 82ced6fd)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "blockcheck.h"
39 #include "dir.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "heartbeat.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "slot_map.h"
47 #include "super.h"
48 #include "sysfile.h"
49 #include "quota.h"
50 
51 #include "buffer_head_io.h"
52 
53 DEFINE_SPINLOCK(trans_inc_lock);
54 
55 static int ocfs2_force_read_journal(struct inode *inode);
56 static int ocfs2_recover_node(struct ocfs2_super *osb,
57 			      int node_num, int slot_num);
58 static int __ocfs2_recovery_thread(void *arg);
59 static int ocfs2_commit_cache(struct ocfs2_super *osb);
60 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
61 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
62 				      int dirty, int replayed);
63 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
64 				 int slot_num);
65 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
66 				 int slot);
67 static int ocfs2_commit_thread(void *arg);
68 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
69 					    int slot_num,
70 					    struct ocfs2_dinode *la_dinode,
71 					    struct ocfs2_dinode *tl_dinode,
72 					    struct ocfs2_quota_recovery *qrec);
73 
74 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
75 {
76 	return __ocfs2_wait_on_mount(osb, 0);
77 }
78 
79 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
80 {
81 	return __ocfs2_wait_on_mount(osb, 1);
82 }
83 
84 /*
85  * This replay_map is to track online/offline slots, so we could recover
86  * offline slots during recovery and mount
87  */
88 
89 enum ocfs2_replay_state {
90 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
91 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
92 	REPLAY_DONE 		/* Replay was already queued */
93 };
94 
95 struct ocfs2_replay_map {
96 	unsigned int rm_slots;
97 	enum ocfs2_replay_state rm_state;
98 	unsigned char rm_replay_slots[0];
99 };
100 
101 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
102 {
103 	if (!osb->replay_map)
104 		return;
105 
106 	/* If we've already queued the replay, we don't have any more to do */
107 	if (osb->replay_map->rm_state == REPLAY_DONE)
108 		return;
109 
110 	osb->replay_map->rm_state = state;
111 }
112 
113 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
114 {
115 	struct ocfs2_replay_map *replay_map;
116 	int i, node_num;
117 
118 	/* If replay map is already set, we don't do it again */
119 	if (osb->replay_map)
120 		return 0;
121 
122 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
123 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
124 
125 	if (!replay_map) {
126 		mlog_errno(-ENOMEM);
127 		return -ENOMEM;
128 	}
129 
130 	spin_lock(&osb->osb_lock);
131 
132 	replay_map->rm_slots = osb->max_slots;
133 	replay_map->rm_state = REPLAY_UNNEEDED;
134 
135 	/* set rm_replay_slots for offline slot(s) */
136 	for (i = 0; i < replay_map->rm_slots; i++) {
137 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
138 			replay_map->rm_replay_slots[i] = 1;
139 	}
140 
141 	osb->replay_map = replay_map;
142 	spin_unlock(&osb->osb_lock);
143 	return 0;
144 }
145 
146 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
147 {
148 	struct ocfs2_replay_map *replay_map = osb->replay_map;
149 	int i;
150 
151 	if (!replay_map)
152 		return;
153 
154 	if (replay_map->rm_state != REPLAY_NEEDED)
155 		return;
156 
157 	for (i = 0; i < replay_map->rm_slots; i++)
158 		if (replay_map->rm_replay_slots[i])
159 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
160 							NULL, NULL);
161 	replay_map->rm_state = REPLAY_DONE;
162 }
163 
164 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
165 {
166 	struct ocfs2_replay_map *replay_map = osb->replay_map;
167 
168 	if (!osb->replay_map)
169 		return;
170 
171 	kfree(replay_map);
172 	osb->replay_map = NULL;
173 }
174 
175 int ocfs2_recovery_init(struct ocfs2_super *osb)
176 {
177 	struct ocfs2_recovery_map *rm;
178 
179 	mutex_init(&osb->recovery_lock);
180 	osb->disable_recovery = 0;
181 	osb->recovery_thread_task = NULL;
182 	init_waitqueue_head(&osb->recovery_event);
183 
184 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
185 		     osb->max_slots * sizeof(unsigned int),
186 		     GFP_KERNEL);
187 	if (!rm) {
188 		mlog_errno(-ENOMEM);
189 		return -ENOMEM;
190 	}
191 
192 	rm->rm_entries = (unsigned int *)((char *)rm +
193 					  sizeof(struct ocfs2_recovery_map));
194 	osb->recovery_map = rm;
195 
196 	return 0;
197 }
198 
199 /* we can't grab the goofy sem lock from inside wait_event, so we use
200  * memory barriers to make sure that we'll see the null task before
201  * being woken up */
202 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
203 {
204 	mb();
205 	return osb->recovery_thread_task != NULL;
206 }
207 
208 void ocfs2_recovery_exit(struct ocfs2_super *osb)
209 {
210 	struct ocfs2_recovery_map *rm;
211 
212 	/* disable any new recovery threads and wait for any currently
213 	 * running ones to exit. Do this before setting the vol_state. */
214 	mutex_lock(&osb->recovery_lock);
215 	osb->disable_recovery = 1;
216 	mutex_unlock(&osb->recovery_lock);
217 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
218 
219 	/* At this point, we know that no more recovery threads can be
220 	 * launched, so wait for any recovery completion work to
221 	 * complete. */
222 	flush_workqueue(ocfs2_wq);
223 
224 	/*
225 	 * Now that recovery is shut down, and the osb is about to be
226 	 * freed,  the osb_lock is not taken here.
227 	 */
228 	rm = osb->recovery_map;
229 	/* XXX: Should we bug if there are dirty entries? */
230 
231 	kfree(rm);
232 }
233 
234 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
235 				     unsigned int node_num)
236 {
237 	int i;
238 	struct ocfs2_recovery_map *rm = osb->recovery_map;
239 
240 	assert_spin_locked(&osb->osb_lock);
241 
242 	for (i = 0; i < rm->rm_used; i++) {
243 		if (rm->rm_entries[i] == node_num)
244 			return 1;
245 	}
246 
247 	return 0;
248 }
249 
250 /* Behaves like test-and-set.  Returns the previous value */
251 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
252 				  unsigned int node_num)
253 {
254 	struct ocfs2_recovery_map *rm = osb->recovery_map;
255 
256 	spin_lock(&osb->osb_lock);
257 	if (__ocfs2_recovery_map_test(osb, node_num)) {
258 		spin_unlock(&osb->osb_lock);
259 		return 1;
260 	}
261 
262 	/* XXX: Can this be exploited? Not from o2dlm... */
263 	BUG_ON(rm->rm_used >= osb->max_slots);
264 
265 	rm->rm_entries[rm->rm_used] = node_num;
266 	rm->rm_used++;
267 	spin_unlock(&osb->osb_lock);
268 
269 	return 0;
270 }
271 
272 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
273 				     unsigned int node_num)
274 {
275 	int i;
276 	struct ocfs2_recovery_map *rm = osb->recovery_map;
277 
278 	spin_lock(&osb->osb_lock);
279 
280 	for (i = 0; i < rm->rm_used; i++) {
281 		if (rm->rm_entries[i] == node_num)
282 			break;
283 	}
284 
285 	if (i < rm->rm_used) {
286 		/* XXX: be careful with the pointer math */
287 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
288 			(rm->rm_used - i - 1) * sizeof(unsigned int));
289 		rm->rm_used--;
290 	}
291 
292 	spin_unlock(&osb->osb_lock);
293 }
294 
295 static int ocfs2_commit_cache(struct ocfs2_super *osb)
296 {
297 	int status = 0;
298 	unsigned int flushed;
299 	unsigned long old_id;
300 	struct ocfs2_journal *journal = NULL;
301 
302 	mlog_entry_void();
303 
304 	journal = osb->journal;
305 
306 	/* Flush all pending commits and checkpoint the journal. */
307 	down_write(&journal->j_trans_barrier);
308 
309 	if (atomic_read(&journal->j_num_trans) == 0) {
310 		up_write(&journal->j_trans_barrier);
311 		mlog(0, "No transactions for me to flush!\n");
312 		goto finally;
313 	}
314 
315 	jbd2_journal_lock_updates(journal->j_journal);
316 	status = jbd2_journal_flush(journal->j_journal);
317 	jbd2_journal_unlock_updates(journal->j_journal);
318 	if (status < 0) {
319 		up_write(&journal->j_trans_barrier);
320 		mlog_errno(status);
321 		goto finally;
322 	}
323 
324 	old_id = ocfs2_inc_trans_id(journal);
325 
326 	flushed = atomic_read(&journal->j_num_trans);
327 	atomic_set(&journal->j_num_trans, 0);
328 	up_write(&journal->j_trans_barrier);
329 
330 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
331 	     journal->j_trans_id, flushed);
332 
333 	ocfs2_wake_downconvert_thread(osb);
334 	wake_up(&journal->j_checkpointed);
335 finally:
336 	mlog_exit(status);
337 	return status;
338 }
339 
340 /* pass it NULL and it will allocate a new handle object for you.  If
341  * you pass it a handle however, it may still return error, in which
342  * case it has free'd the passed handle for you. */
343 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
344 {
345 	journal_t *journal = osb->journal->j_journal;
346 	handle_t *handle;
347 
348 	BUG_ON(!osb || !osb->journal->j_journal);
349 
350 	if (ocfs2_is_hard_readonly(osb))
351 		return ERR_PTR(-EROFS);
352 
353 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
354 	BUG_ON(max_buffs <= 0);
355 
356 	/* Nested transaction? Just return the handle... */
357 	if (journal_current_handle())
358 		return jbd2_journal_start(journal, max_buffs);
359 
360 	down_read(&osb->journal->j_trans_barrier);
361 
362 	handle = jbd2_journal_start(journal, max_buffs);
363 	if (IS_ERR(handle)) {
364 		up_read(&osb->journal->j_trans_barrier);
365 
366 		mlog_errno(PTR_ERR(handle));
367 
368 		if (is_journal_aborted(journal)) {
369 			ocfs2_abort(osb->sb, "Detected aborted journal");
370 			handle = ERR_PTR(-EROFS);
371 		}
372 	} else {
373 		if (!ocfs2_mount_local(osb))
374 			atomic_inc(&(osb->journal->j_num_trans));
375 	}
376 
377 	return handle;
378 }
379 
380 int ocfs2_commit_trans(struct ocfs2_super *osb,
381 		       handle_t *handle)
382 {
383 	int ret, nested;
384 	struct ocfs2_journal *journal = osb->journal;
385 
386 	BUG_ON(!handle);
387 
388 	nested = handle->h_ref > 1;
389 	ret = jbd2_journal_stop(handle);
390 	if (ret < 0)
391 		mlog_errno(ret);
392 
393 	if (!nested)
394 		up_read(&journal->j_trans_barrier);
395 
396 	return ret;
397 }
398 
399 /*
400  * 'nblocks' is what you want to add to the current
401  * transaction. extend_trans will either extend the current handle by
402  * nblocks, or commit it and start a new one with nblocks credits.
403  *
404  * This might call jbd2_journal_restart() which will commit dirty buffers
405  * and then restart the transaction. Before calling
406  * ocfs2_extend_trans(), any changed blocks should have been
407  * dirtied. After calling it, all blocks which need to be changed must
408  * go through another set of journal_access/journal_dirty calls.
409  *
410  * WARNING: This will not release any semaphores or disk locks taken
411  * during the transaction, so make sure they were taken *before*
412  * start_trans or we'll have ordering deadlocks.
413  *
414  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
415  * good because transaction ids haven't yet been recorded on the
416  * cluster locks associated with this handle.
417  */
418 int ocfs2_extend_trans(handle_t *handle, int nblocks)
419 {
420 	int status;
421 
422 	BUG_ON(!handle);
423 	BUG_ON(!nblocks);
424 
425 	mlog_entry_void();
426 
427 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
428 
429 #ifdef CONFIG_OCFS2_DEBUG_FS
430 	status = 1;
431 #else
432 	status = jbd2_journal_extend(handle, nblocks);
433 	if (status < 0) {
434 		mlog_errno(status);
435 		goto bail;
436 	}
437 #endif
438 
439 	if (status > 0) {
440 		mlog(0,
441 		     "jbd2_journal_extend failed, trying "
442 		     "jbd2_journal_restart\n");
443 		status = jbd2_journal_restart(handle, nblocks);
444 		if (status < 0) {
445 			mlog_errno(status);
446 			goto bail;
447 		}
448 	}
449 
450 	status = 0;
451 bail:
452 
453 	mlog_exit(status);
454 	return status;
455 }
456 
457 struct ocfs2_triggers {
458 	struct jbd2_buffer_trigger_type	ot_triggers;
459 	int				ot_offset;
460 };
461 
462 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
463 {
464 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
465 }
466 
467 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
468 				 struct buffer_head *bh,
469 				 void *data, size_t size)
470 {
471 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
472 
473 	/*
474 	 * We aren't guaranteed to have the superblock here, so we
475 	 * must unconditionally compute the ecc data.
476 	 * __ocfs2_journal_access() will only set the triggers if
477 	 * metaecc is enabled.
478 	 */
479 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
480 }
481 
482 /*
483  * Quota blocks have their own trigger because the struct ocfs2_block_check
484  * offset depends on the blocksize.
485  */
486 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
487 				 struct buffer_head *bh,
488 				 void *data, size_t size)
489 {
490 	struct ocfs2_disk_dqtrailer *dqt =
491 		ocfs2_block_dqtrailer(size, data);
492 
493 	/*
494 	 * We aren't guaranteed to have the superblock here, so we
495 	 * must unconditionally compute the ecc data.
496 	 * __ocfs2_journal_access() will only set the triggers if
497 	 * metaecc is enabled.
498 	 */
499 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
500 }
501 
502 /*
503  * Directory blocks also have their own trigger because the
504  * struct ocfs2_block_check offset depends on the blocksize.
505  */
506 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
507 				 struct buffer_head *bh,
508 				 void *data, size_t size)
509 {
510 	struct ocfs2_dir_block_trailer *trailer =
511 		ocfs2_dir_trailer_from_size(size, data);
512 
513 	/*
514 	 * We aren't guaranteed to have the superblock here, so we
515 	 * must unconditionally compute the ecc data.
516 	 * __ocfs2_journal_access() will only set the triggers if
517 	 * metaecc is enabled.
518 	 */
519 	ocfs2_block_check_compute(data, size, &trailer->db_check);
520 }
521 
522 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
523 				struct buffer_head *bh)
524 {
525 	mlog(ML_ERROR,
526 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
527 	     "bh->b_blocknr = %llu\n",
528 	     (unsigned long)bh,
529 	     (unsigned long long)bh->b_blocknr);
530 
531 	/* We aren't guaranteed to have the superblock here - but if we
532 	 * don't, it'll just crash. */
533 	ocfs2_error(bh->b_assoc_map->host->i_sb,
534 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
535 }
536 
537 static struct ocfs2_triggers di_triggers = {
538 	.ot_triggers = {
539 		.t_commit = ocfs2_commit_trigger,
540 		.t_abort = ocfs2_abort_trigger,
541 	},
542 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
543 };
544 
545 static struct ocfs2_triggers eb_triggers = {
546 	.ot_triggers = {
547 		.t_commit = ocfs2_commit_trigger,
548 		.t_abort = ocfs2_abort_trigger,
549 	},
550 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
551 };
552 
553 static struct ocfs2_triggers gd_triggers = {
554 	.ot_triggers = {
555 		.t_commit = ocfs2_commit_trigger,
556 		.t_abort = ocfs2_abort_trigger,
557 	},
558 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
559 };
560 
561 static struct ocfs2_triggers db_triggers = {
562 	.ot_triggers = {
563 		.t_commit = ocfs2_db_commit_trigger,
564 		.t_abort = ocfs2_abort_trigger,
565 	},
566 };
567 
568 static struct ocfs2_triggers xb_triggers = {
569 	.ot_triggers = {
570 		.t_commit = ocfs2_commit_trigger,
571 		.t_abort = ocfs2_abort_trigger,
572 	},
573 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
574 };
575 
576 static struct ocfs2_triggers dq_triggers = {
577 	.ot_triggers = {
578 		.t_commit = ocfs2_dq_commit_trigger,
579 		.t_abort = ocfs2_abort_trigger,
580 	},
581 };
582 
583 static struct ocfs2_triggers dr_triggers = {
584 	.ot_triggers = {
585 		.t_commit = ocfs2_commit_trigger,
586 		.t_abort = ocfs2_abort_trigger,
587 	},
588 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
589 };
590 
591 static struct ocfs2_triggers dl_triggers = {
592 	.ot_triggers = {
593 		.t_commit = ocfs2_commit_trigger,
594 		.t_abort = ocfs2_abort_trigger,
595 	},
596 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
597 };
598 
599 static int __ocfs2_journal_access(handle_t *handle,
600 				  struct inode *inode,
601 				  struct buffer_head *bh,
602 				  struct ocfs2_triggers *triggers,
603 				  int type)
604 {
605 	int status;
606 
607 	BUG_ON(!inode);
608 	BUG_ON(!handle);
609 	BUG_ON(!bh);
610 
611 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
612 		   (unsigned long long)bh->b_blocknr, type,
613 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
614 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
615 		   "OCFS2_JOURNAL_ACCESS_WRITE",
616 		   bh->b_size);
617 
618 	/* we can safely remove this assertion after testing. */
619 	if (!buffer_uptodate(bh)) {
620 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
621 		mlog(ML_ERROR, "b_blocknr=%llu\n",
622 		     (unsigned long long)bh->b_blocknr);
623 		BUG();
624 	}
625 
626 	/* Set the current transaction information on the inode so
627 	 * that the locking code knows whether it can drop it's locks
628 	 * on this inode or not. We're protected from the commit
629 	 * thread updating the current transaction id until
630 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
631 	 * j_trans_barrier for us. */
632 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
633 
634 	mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
635 	switch (type) {
636 	case OCFS2_JOURNAL_ACCESS_CREATE:
637 	case OCFS2_JOURNAL_ACCESS_WRITE:
638 		status = jbd2_journal_get_write_access(handle, bh);
639 		break;
640 
641 	case OCFS2_JOURNAL_ACCESS_UNDO:
642 		status = jbd2_journal_get_undo_access(handle, bh);
643 		break;
644 
645 	default:
646 		status = -EINVAL;
647 		mlog(ML_ERROR, "Uknown access type!\n");
648 	}
649 	if (!status && ocfs2_meta_ecc(OCFS2_SB(inode->i_sb)) && triggers)
650 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
651 	mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
652 
653 	if (status < 0)
654 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
655 		     status, type);
656 
657 	mlog_exit(status);
658 	return status;
659 }
660 
661 int ocfs2_journal_access_di(handle_t *handle, struct inode *inode,
662 			       struct buffer_head *bh, int type)
663 {
664 	return __ocfs2_journal_access(handle, inode, bh, &di_triggers,
665 				      type);
666 }
667 
668 int ocfs2_journal_access_eb(handle_t *handle, struct inode *inode,
669 			    struct buffer_head *bh, int type)
670 {
671 	return __ocfs2_journal_access(handle, inode, bh, &eb_triggers,
672 				      type);
673 }
674 
675 int ocfs2_journal_access_gd(handle_t *handle, struct inode *inode,
676 			    struct buffer_head *bh, int type)
677 {
678 	return __ocfs2_journal_access(handle, inode, bh, &gd_triggers,
679 				      type);
680 }
681 
682 int ocfs2_journal_access_db(handle_t *handle, struct inode *inode,
683 			    struct buffer_head *bh, int type)
684 {
685 	return __ocfs2_journal_access(handle, inode, bh, &db_triggers,
686 				      type);
687 }
688 
689 int ocfs2_journal_access_xb(handle_t *handle, struct inode *inode,
690 			    struct buffer_head *bh, int type)
691 {
692 	return __ocfs2_journal_access(handle, inode, bh, &xb_triggers,
693 				      type);
694 }
695 
696 int ocfs2_journal_access_dq(handle_t *handle, struct inode *inode,
697 			    struct buffer_head *bh, int type)
698 {
699 	return __ocfs2_journal_access(handle, inode, bh, &dq_triggers,
700 				      type);
701 }
702 
703 int ocfs2_journal_access_dr(handle_t *handle, struct inode *inode,
704 			    struct buffer_head *bh, int type)
705 {
706 	return __ocfs2_journal_access(handle, inode, bh, &dr_triggers,
707 				      type);
708 }
709 
710 int ocfs2_journal_access_dl(handle_t *handle, struct inode *inode,
711 			    struct buffer_head *bh, int type)
712 {
713 	return __ocfs2_journal_access(handle, inode, bh, &dl_triggers,
714 				      type);
715 }
716 
717 int ocfs2_journal_access(handle_t *handle, struct inode *inode,
718 			 struct buffer_head *bh, int type)
719 {
720 	return __ocfs2_journal_access(handle, inode, bh, NULL, type);
721 }
722 
723 int ocfs2_journal_dirty(handle_t *handle,
724 			struct buffer_head *bh)
725 {
726 	int status;
727 
728 	mlog_entry("(bh->b_blocknr=%llu)\n",
729 		   (unsigned long long)bh->b_blocknr);
730 
731 	status = jbd2_journal_dirty_metadata(handle, bh);
732 	if (status < 0)
733 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
734 		     "(bh->b_blocknr=%llu)\n",
735 		     (unsigned long long)bh->b_blocknr);
736 
737 	mlog_exit(status);
738 	return status;
739 }
740 
741 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
742 
743 void ocfs2_set_journal_params(struct ocfs2_super *osb)
744 {
745 	journal_t *journal = osb->journal->j_journal;
746 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
747 
748 	if (osb->osb_commit_interval)
749 		commit_interval = osb->osb_commit_interval;
750 
751 	spin_lock(&journal->j_state_lock);
752 	journal->j_commit_interval = commit_interval;
753 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
754 		journal->j_flags |= JBD2_BARRIER;
755 	else
756 		journal->j_flags &= ~JBD2_BARRIER;
757 	spin_unlock(&journal->j_state_lock);
758 }
759 
760 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
761 {
762 	int status = -1;
763 	struct inode *inode = NULL; /* the journal inode */
764 	journal_t *j_journal = NULL;
765 	struct ocfs2_dinode *di = NULL;
766 	struct buffer_head *bh = NULL;
767 	struct ocfs2_super *osb;
768 	int inode_lock = 0;
769 
770 	mlog_entry_void();
771 
772 	BUG_ON(!journal);
773 
774 	osb = journal->j_osb;
775 
776 	/* already have the inode for our journal */
777 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
778 					    osb->slot_num);
779 	if (inode == NULL) {
780 		status = -EACCES;
781 		mlog_errno(status);
782 		goto done;
783 	}
784 	if (is_bad_inode(inode)) {
785 		mlog(ML_ERROR, "access error (bad inode)\n");
786 		iput(inode);
787 		inode = NULL;
788 		status = -EACCES;
789 		goto done;
790 	}
791 
792 	SET_INODE_JOURNAL(inode);
793 	OCFS2_I(inode)->ip_open_count++;
794 
795 	/* Skip recovery waits here - journal inode metadata never
796 	 * changes in a live cluster so it can be considered an
797 	 * exception to the rule. */
798 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
799 	if (status < 0) {
800 		if (status != -ERESTARTSYS)
801 			mlog(ML_ERROR, "Could not get lock on journal!\n");
802 		goto done;
803 	}
804 
805 	inode_lock = 1;
806 	di = (struct ocfs2_dinode *)bh->b_data;
807 
808 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
809 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
810 		     inode->i_size);
811 		status = -EINVAL;
812 		goto done;
813 	}
814 
815 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
816 	mlog(0, "inode->i_blocks = %llu\n",
817 			(unsigned long long)inode->i_blocks);
818 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
819 
820 	/* call the kernels journal init function now */
821 	j_journal = jbd2_journal_init_inode(inode);
822 	if (j_journal == NULL) {
823 		mlog(ML_ERROR, "Linux journal layer error\n");
824 		status = -EINVAL;
825 		goto done;
826 	}
827 
828 	mlog(0, "Returned from jbd2_journal_init_inode\n");
829 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
830 
831 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
832 		  OCFS2_JOURNAL_DIRTY_FL);
833 
834 	journal->j_journal = j_journal;
835 	journal->j_inode = inode;
836 	journal->j_bh = bh;
837 
838 	ocfs2_set_journal_params(osb);
839 
840 	journal->j_state = OCFS2_JOURNAL_LOADED;
841 
842 	status = 0;
843 done:
844 	if (status < 0) {
845 		if (inode_lock)
846 			ocfs2_inode_unlock(inode, 1);
847 		brelse(bh);
848 		if (inode) {
849 			OCFS2_I(inode)->ip_open_count--;
850 			iput(inode);
851 		}
852 	}
853 
854 	mlog_exit(status);
855 	return status;
856 }
857 
858 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
859 {
860 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
861 }
862 
863 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
864 {
865 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
866 }
867 
868 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
869 				      int dirty, int replayed)
870 {
871 	int status;
872 	unsigned int flags;
873 	struct ocfs2_journal *journal = osb->journal;
874 	struct buffer_head *bh = journal->j_bh;
875 	struct ocfs2_dinode *fe;
876 
877 	mlog_entry_void();
878 
879 	fe = (struct ocfs2_dinode *)bh->b_data;
880 
881 	/* The journal bh on the osb always comes from ocfs2_journal_init()
882 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
883 	 * code bug if we mess it up. */
884 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
885 
886 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
887 	if (dirty)
888 		flags |= OCFS2_JOURNAL_DIRTY_FL;
889 	else
890 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
891 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
892 
893 	if (replayed)
894 		ocfs2_bump_recovery_generation(fe);
895 
896 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
897 	status = ocfs2_write_block(osb, bh, journal->j_inode);
898 	if (status < 0)
899 		mlog_errno(status);
900 
901 	mlog_exit(status);
902 	return status;
903 }
904 
905 /*
906  * If the journal has been kmalloc'd it needs to be freed after this
907  * call.
908  */
909 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
910 {
911 	struct ocfs2_journal *journal = NULL;
912 	int status = 0;
913 	struct inode *inode = NULL;
914 	int num_running_trans = 0;
915 
916 	mlog_entry_void();
917 
918 	BUG_ON(!osb);
919 
920 	journal = osb->journal;
921 	if (!journal)
922 		goto done;
923 
924 	inode = journal->j_inode;
925 
926 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
927 		goto done;
928 
929 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
930 	if (!igrab(inode))
931 		BUG();
932 
933 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
934 	if (num_running_trans > 0)
935 		mlog(0, "Shutting down journal: must wait on %d "
936 		     "running transactions!\n",
937 		     num_running_trans);
938 
939 	/* Do a commit_cache here. It will flush our journal, *and*
940 	 * release any locks that are still held.
941 	 * set the SHUTDOWN flag and release the trans lock.
942 	 * the commit thread will take the trans lock for us below. */
943 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
944 
945 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
946 	 * drop the trans_lock (which we want to hold until we
947 	 * completely destroy the journal. */
948 	if (osb->commit_task) {
949 		/* Wait for the commit thread */
950 		mlog(0, "Waiting for ocfs2commit to exit....\n");
951 		kthread_stop(osb->commit_task);
952 		osb->commit_task = NULL;
953 	}
954 
955 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
956 
957 	if (ocfs2_mount_local(osb)) {
958 		jbd2_journal_lock_updates(journal->j_journal);
959 		status = jbd2_journal_flush(journal->j_journal);
960 		jbd2_journal_unlock_updates(journal->j_journal);
961 		if (status < 0)
962 			mlog_errno(status);
963 	}
964 
965 	if (status == 0) {
966 		/*
967 		 * Do not toggle if flush was unsuccessful otherwise
968 		 * will leave dirty metadata in a "clean" journal
969 		 */
970 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
971 		if (status < 0)
972 			mlog_errno(status);
973 	}
974 
975 	/* Shutdown the kernel journal system */
976 	jbd2_journal_destroy(journal->j_journal);
977 	journal->j_journal = NULL;
978 
979 	OCFS2_I(inode)->ip_open_count--;
980 
981 	/* unlock our journal */
982 	ocfs2_inode_unlock(inode, 1);
983 
984 	brelse(journal->j_bh);
985 	journal->j_bh = NULL;
986 
987 	journal->j_state = OCFS2_JOURNAL_FREE;
988 
989 //	up_write(&journal->j_trans_barrier);
990 done:
991 	if (inode)
992 		iput(inode);
993 	mlog_exit_void();
994 }
995 
996 static void ocfs2_clear_journal_error(struct super_block *sb,
997 				      journal_t *journal,
998 				      int slot)
999 {
1000 	int olderr;
1001 
1002 	olderr = jbd2_journal_errno(journal);
1003 	if (olderr) {
1004 		mlog(ML_ERROR, "File system error %d recorded in "
1005 		     "journal %u.\n", olderr, slot);
1006 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1007 		     sb->s_id);
1008 
1009 		jbd2_journal_ack_err(journal);
1010 		jbd2_journal_clear_err(journal);
1011 	}
1012 }
1013 
1014 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1015 {
1016 	int status = 0;
1017 	struct ocfs2_super *osb;
1018 
1019 	mlog_entry_void();
1020 
1021 	BUG_ON(!journal);
1022 
1023 	osb = journal->j_osb;
1024 
1025 	status = jbd2_journal_load(journal->j_journal);
1026 	if (status < 0) {
1027 		mlog(ML_ERROR, "Failed to load journal!\n");
1028 		goto done;
1029 	}
1030 
1031 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1032 
1033 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1034 	if (status < 0) {
1035 		mlog_errno(status);
1036 		goto done;
1037 	}
1038 
1039 	/* Launch the commit thread */
1040 	if (!local) {
1041 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1042 					       "ocfs2cmt");
1043 		if (IS_ERR(osb->commit_task)) {
1044 			status = PTR_ERR(osb->commit_task);
1045 			osb->commit_task = NULL;
1046 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1047 			     "error=%d", status);
1048 			goto done;
1049 		}
1050 	} else
1051 		osb->commit_task = NULL;
1052 
1053 done:
1054 	mlog_exit(status);
1055 	return status;
1056 }
1057 
1058 
1059 /* 'full' flag tells us whether we clear out all blocks or if we just
1060  * mark the journal clean */
1061 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1062 {
1063 	int status;
1064 
1065 	mlog_entry_void();
1066 
1067 	BUG_ON(!journal);
1068 
1069 	status = jbd2_journal_wipe(journal->j_journal, full);
1070 	if (status < 0) {
1071 		mlog_errno(status);
1072 		goto bail;
1073 	}
1074 
1075 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1076 	if (status < 0)
1077 		mlog_errno(status);
1078 
1079 bail:
1080 	mlog_exit(status);
1081 	return status;
1082 }
1083 
1084 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1085 {
1086 	int empty;
1087 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1088 
1089 	spin_lock(&osb->osb_lock);
1090 	empty = (rm->rm_used == 0);
1091 	spin_unlock(&osb->osb_lock);
1092 
1093 	return empty;
1094 }
1095 
1096 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1097 {
1098 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1099 }
1100 
1101 /*
1102  * JBD Might read a cached version of another nodes journal file. We
1103  * don't want this as this file changes often and we get no
1104  * notification on those changes. The only way to be sure that we've
1105  * got the most up to date version of those blocks then is to force
1106  * read them off disk. Just searching through the buffer cache won't
1107  * work as there may be pages backing this file which are still marked
1108  * up to date. We know things can't change on this file underneath us
1109  * as we have the lock by now :)
1110  */
1111 static int ocfs2_force_read_journal(struct inode *inode)
1112 {
1113 	int status = 0;
1114 	int i;
1115 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1116 #define CONCURRENT_JOURNAL_FILL 32ULL
1117 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1118 
1119 	mlog_entry_void();
1120 
1121 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1122 
1123 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1124 	v_blkno = 0;
1125 	while (v_blkno < num_blocks) {
1126 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1127 						     &p_blkno, &p_blocks, NULL);
1128 		if (status < 0) {
1129 			mlog_errno(status);
1130 			goto bail;
1131 		}
1132 
1133 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1134 			p_blocks = CONCURRENT_JOURNAL_FILL;
1135 
1136 		/* We are reading journal data which should not
1137 		 * be put in the uptodate cache */
1138 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1139 						p_blkno, p_blocks, bhs);
1140 		if (status < 0) {
1141 			mlog_errno(status);
1142 			goto bail;
1143 		}
1144 
1145 		for(i = 0; i < p_blocks; i++) {
1146 			brelse(bhs[i]);
1147 			bhs[i] = NULL;
1148 		}
1149 
1150 		v_blkno += p_blocks;
1151 	}
1152 
1153 bail:
1154 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1155 		brelse(bhs[i]);
1156 	mlog_exit(status);
1157 	return status;
1158 }
1159 
1160 struct ocfs2_la_recovery_item {
1161 	struct list_head	lri_list;
1162 	int			lri_slot;
1163 	struct ocfs2_dinode	*lri_la_dinode;
1164 	struct ocfs2_dinode	*lri_tl_dinode;
1165 	struct ocfs2_quota_recovery *lri_qrec;
1166 };
1167 
1168 /* Does the second half of the recovery process. By this point, the
1169  * node is marked clean and can actually be considered recovered,
1170  * hence it's no longer in the recovery map, but there's still some
1171  * cleanup we can do which shouldn't happen within the recovery thread
1172  * as locking in that context becomes very difficult if we are to take
1173  * recovering nodes into account.
1174  *
1175  * NOTE: This function can and will sleep on recovery of other nodes
1176  * during cluster locking, just like any other ocfs2 process.
1177  */
1178 void ocfs2_complete_recovery(struct work_struct *work)
1179 {
1180 	int ret;
1181 	struct ocfs2_journal *journal =
1182 		container_of(work, struct ocfs2_journal, j_recovery_work);
1183 	struct ocfs2_super *osb = journal->j_osb;
1184 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1185 	struct ocfs2_la_recovery_item *item, *n;
1186 	struct ocfs2_quota_recovery *qrec;
1187 	LIST_HEAD(tmp_la_list);
1188 
1189 	mlog_entry_void();
1190 
1191 	mlog(0, "completing recovery from keventd\n");
1192 
1193 	spin_lock(&journal->j_lock);
1194 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1195 	spin_unlock(&journal->j_lock);
1196 
1197 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1198 		list_del_init(&item->lri_list);
1199 
1200 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1201 
1202 		ocfs2_wait_on_quotas(osb);
1203 
1204 		la_dinode = item->lri_la_dinode;
1205 		if (la_dinode) {
1206 			mlog(0, "Clean up local alloc %llu\n",
1207 			     (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1208 
1209 			ret = ocfs2_complete_local_alloc_recovery(osb,
1210 								  la_dinode);
1211 			if (ret < 0)
1212 				mlog_errno(ret);
1213 
1214 			kfree(la_dinode);
1215 		}
1216 
1217 		tl_dinode = item->lri_tl_dinode;
1218 		if (tl_dinode) {
1219 			mlog(0, "Clean up truncate log %llu\n",
1220 			     (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1221 
1222 			ret = ocfs2_complete_truncate_log_recovery(osb,
1223 								   tl_dinode);
1224 			if (ret < 0)
1225 				mlog_errno(ret);
1226 
1227 			kfree(tl_dinode);
1228 		}
1229 
1230 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
1231 		if (ret < 0)
1232 			mlog_errno(ret);
1233 
1234 		qrec = item->lri_qrec;
1235 		if (qrec) {
1236 			mlog(0, "Recovering quota files");
1237 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1238 							  item->lri_slot);
1239 			if (ret < 0)
1240 				mlog_errno(ret);
1241 			/* Recovery info is already freed now */
1242 		}
1243 
1244 		kfree(item);
1245 	}
1246 
1247 	mlog(0, "Recovery completion\n");
1248 	mlog_exit_void();
1249 }
1250 
1251 /* NOTE: This function always eats your references to la_dinode and
1252  * tl_dinode, either manually on error, or by passing them to
1253  * ocfs2_complete_recovery */
1254 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1255 					    int slot_num,
1256 					    struct ocfs2_dinode *la_dinode,
1257 					    struct ocfs2_dinode *tl_dinode,
1258 					    struct ocfs2_quota_recovery *qrec)
1259 {
1260 	struct ocfs2_la_recovery_item *item;
1261 
1262 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1263 	if (!item) {
1264 		/* Though we wish to avoid it, we are in fact safe in
1265 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1266 		 * than capable of reclaiming unused space. */
1267 		if (la_dinode)
1268 			kfree(la_dinode);
1269 
1270 		if (tl_dinode)
1271 			kfree(tl_dinode);
1272 
1273 		if (qrec)
1274 			ocfs2_free_quota_recovery(qrec);
1275 
1276 		mlog_errno(-ENOMEM);
1277 		return;
1278 	}
1279 
1280 	INIT_LIST_HEAD(&item->lri_list);
1281 	item->lri_la_dinode = la_dinode;
1282 	item->lri_slot = slot_num;
1283 	item->lri_tl_dinode = tl_dinode;
1284 	item->lri_qrec = qrec;
1285 
1286 	spin_lock(&journal->j_lock);
1287 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1288 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1289 	spin_unlock(&journal->j_lock);
1290 }
1291 
1292 /* Called by the mount code to queue recovery the last part of
1293  * recovery for it's own and offline slot(s). */
1294 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1295 {
1296 	struct ocfs2_journal *journal = osb->journal;
1297 
1298 	/* No need to queue up our truncate_log as regular cleanup will catch
1299 	 * that */
1300 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1301 					osb->local_alloc_copy, NULL, NULL);
1302 	ocfs2_schedule_truncate_log_flush(osb, 0);
1303 
1304 	osb->local_alloc_copy = NULL;
1305 	osb->dirty = 0;
1306 
1307 	/* queue to recover orphan slots for all offline slots */
1308 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1309 	ocfs2_queue_replay_slots(osb);
1310 	ocfs2_free_replay_slots(osb);
1311 }
1312 
1313 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1314 {
1315 	if (osb->quota_rec) {
1316 		ocfs2_queue_recovery_completion(osb->journal,
1317 						osb->slot_num,
1318 						NULL,
1319 						NULL,
1320 						osb->quota_rec);
1321 		osb->quota_rec = NULL;
1322 	}
1323 }
1324 
1325 static int __ocfs2_recovery_thread(void *arg)
1326 {
1327 	int status, node_num, slot_num;
1328 	struct ocfs2_super *osb = arg;
1329 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1330 	int *rm_quota = NULL;
1331 	int rm_quota_used = 0, i;
1332 	struct ocfs2_quota_recovery *qrec;
1333 
1334 	mlog_entry_void();
1335 
1336 	status = ocfs2_wait_on_mount(osb);
1337 	if (status < 0) {
1338 		goto bail;
1339 	}
1340 
1341 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1342 	if (!rm_quota) {
1343 		status = -ENOMEM;
1344 		goto bail;
1345 	}
1346 restart:
1347 	status = ocfs2_super_lock(osb, 1);
1348 	if (status < 0) {
1349 		mlog_errno(status);
1350 		goto bail;
1351 	}
1352 
1353 	status = ocfs2_compute_replay_slots(osb);
1354 	if (status < 0)
1355 		mlog_errno(status);
1356 
1357 	/* queue recovery for our own slot */
1358 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1359 					NULL, NULL);
1360 
1361 	spin_lock(&osb->osb_lock);
1362 	while (rm->rm_used) {
1363 		/* It's always safe to remove entry zero, as we won't
1364 		 * clear it until ocfs2_recover_node() has succeeded. */
1365 		node_num = rm->rm_entries[0];
1366 		spin_unlock(&osb->osb_lock);
1367 		mlog(0, "checking node %d\n", node_num);
1368 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1369 		if (slot_num == -ENOENT) {
1370 			status = 0;
1371 			mlog(0, "no slot for this node, so no recovery"
1372 			     "required.\n");
1373 			goto skip_recovery;
1374 		}
1375 		mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1376 
1377 		/* It is a bit subtle with quota recovery. We cannot do it
1378 		 * immediately because we have to obtain cluster locks from
1379 		 * quota files and we also don't want to just skip it because
1380 		 * then quota usage would be out of sync until some node takes
1381 		 * the slot. So we remember which nodes need quota recovery
1382 		 * and when everything else is done, we recover quotas. */
1383 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1384 		if (i == rm_quota_used)
1385 			rm_quota[rm_quota_used++] = slot_num;
1386 
1387 		status = ocfs2_recover_node(osb, node_num, slot_num);
1388 skip_recovery:
1389 		if (!status) {
1390 			ocfs2_recovery_map_clear(osb, node_num);
1391 		} else {
1392 			mlog(ML_ERROR,
1393 			     "Error %d recovering node %d on device (%u,%u)!\n",
1394 			     status, node_num,
1395 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1396 			mlog(ML_ERROR, "Volume requires unmount.\n");
1397 		}
1398 
1399 		spin_lock(&osb->osb_lock);
1400 	}
1401 	spin_unlock(&osb->osb_lock);
1402 	mlog(0, "All nodes recovered\n");
1403 
1404 	/* Refresh all journal recovery generations from disk */
1405 	status = ocfs2_check_journals_nolocks(osb);
1406 	status = (status == -EROFS) ? 0 : status;
1407 	if (status < 0)
1408 		mlog_errno(status);
1409 
1410 	/* Now it is right time to recover quotas... We have to do this under
1411 	 * superblock lock so that noone can start using the slot (and crash)
1412 	 * before we recover it */
1413 	for (i = 0; i < rm_quota_used; i++) {
1414 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1415 		if (IS_ERR(qrec)) {
1416 			status = PTR_ERR(qrec);
1417 			mlog_errno(status);
1418 			continue;
1419 		}
1420 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1421 						NULL, NULL, qrec);
1422 	}
1423 
1424 	ocfs2_super_unlock(osb, 1);
1425 
1426 	/* queue recovery for offline slots */
1427 	ocfs2_queue_replay_slots(osb);
1428 
1429 bail:
1430 	mutex_lock(&osb->recovery_lock);
1431 	if (!status && !ocfs2_recovery_completed(osb)) {
1432 		mutex_unlock(&osb->recovery_lock);
1433 		goto restart;
1434 	}
1435 
1436 	ocfs2_free_replay_slots(osb);
1437 	osb->recovery_thread_task = NULL;
1438 	mb(); /* sync with ocfs2_recovery_thread_running */
1439 	wake_up(&osb->recovery_event);
1440 
1441 	mutex_unlock(&osb->recovery_lock);
1442 
1443 	if (rm_quota)
1444 		kfree(rm_quota);
1445 
1446 	mlog_exit(status);
1447 	/* no one is callint kthread_stop() for us so the kthread() api
1448 	 * requires that we call do_exit().  And it isn't exported, but
1449 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1450 	complete_and_exit(NULL, status);
1451 	return status;
1452 }
1453 
1454 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1455 {
1456 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1457 		   node_num, osb->node_num);
1458 
1459 	mutex_lock(&osb->recovery_lock);
1460 	if (osb->disable_recovery)
1461 		goto out;
1462 
1463 	/* People waiting on recovery will wait on
1464 	 * the recovery map to empty. */
1465 	if (ocfs2_recovery_map_set(osb, node_num))
1466 		mlog(0, "node %d already in recovery map.\n", node_num);
1467 
1468 	mlog(0, "starting recovery thread...\n");
1469 
1470 	if (osb->recovery_thread_task)
1471 		goto out;
1472 
1473 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1474 						 "ocfs2rec");
1475 	if (IS_ERR(osb->recovery_thread_task)) {
1476 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1477 		osb->recovery_thread_task = NULL;
1478 	}
1479 
1480 out:
1481 	mutex_unlock(&osb->recovery_lock);
1482 	wake_up(&osb->recovery_event);
1483 
1484 	mlog_exit_void();
1485 }
1486 
1487 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1488 				    int slot_num,
1489 				    struct buffer_head **bh,
1490 				    struct inode **ret_inode)
1491 {
1492 	int status = -EACCES;
1493 	struct inode *inode = NULL;
1494 
1495 	BUG_ON(slot_num >= osb->max_slots);
1496 
1497 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1498 					    slot_num);
1499 	if (!inode || is_bad_inode(inode)) {
1500 		mlog_errno(status);
1501 		goto bail;
1502 	}
1503 	SET_INODE_JOURNAL(inode);
1504 
1505 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1506 	if (status < 0) {
1507 		mlog_errno(status);
1508 		goto bail;
1509 	}
1510 
1511 	status = 0;
1512 
1513 bail:
1514 	if (inode) {
1515 		if (status || !ret_inode)
1516 			iput(inode);
1517 		else
1518 			*ret_inode = inode;
1519 	}
1520 	return status;
1521 }
1522 
1523 /* Does the actual journal replay and marks the journal inode as
1524  * clean. Will only replay if the journal inode is marked dirty. */
1525 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1526 				int node_num,
1527 				int slot_num)
1528 {
1529 	int status;
1530 	int got_lock = 0;
1531 	unsigned int flags;
1532 	struct inode *inode = NULL;
1533 	struct ocfs2_dinode *fe;
1534 	journal_t *journal = NULL;
1535 	struct buffer_head *bh = NULL;
1536 	u32 slot_reco_gen;
1537 
1538 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1539 	if (status) {
1540 		mlog_errno(status);
1541 		goto done;
1542 	}
1543 
1544 	fe = (struct ocfs2_dinode *)bh->b_data;
1545 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1546 	brelse(bh);
1547 	bh = NULL;
1548 
1549 	/*
1550 	 * As the fs recovery is asynchronous, there is a small chance that
1551 	 * another node mounted (and recovered) the slot before the recovery
1552 	 * thread could get the lock. To handle that, we dirty read the journal
1553 	 * inode for that slot to get the recovery generation. If it is
1554 	 * different than what we expected, the slot has been recovered.
1555 	 * If not, it needs recovery.
1556 	 */
1557 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1558 		mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1559 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1560 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1561 		status = -EBUSY;
1562 		goto done;
1563 	}
1564 
1565 	/* Continue with recovery as the journal has not yet been recovered */
1566 
1567 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1568 	if (status < 0) {
1569 		mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1570 		if (status != -ERESTARTSYS)
1571 			mlog(ML_ERROR, "Could not lock journal!\n");
1572 		goto done;
1573 	}
1574 	got_lock = 1;
1575 
1576 	fe = (struct ocfs2_dinode *) bh->b_data;
1577 
1578 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1579 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1580 
1581 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1582 		mlog(0, "No recovery required for node %d\n", node_num);
1583 		/* Refresh recovery generation for the slot */
1584 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1585 		goto done;
1586 	}
1587 
1588 	/* we need to run complete recovery for offline orphan slots */
1589 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1590 
1591 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1592 	     node_num, slot_num,
1593 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1594 
1595 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1596 
1597 	status = ocfs2_force_read_journal(inode);
1598 	if (status < 0) {
1599 		mlog_errno(status);
1600 		goto done;
1601 	}
1602 
1603 	mlog(0, "calling journal_init_inode\n");
1604 	journal = jbd2_journal_init_inode(inode);
1605 	if (journal == NULL) {
1606 		mlog(ML_ERROR, "Linux journal layer error\n");
1607 		status = -EIO;
1608 		goto done;
1609 	}
1610 
1611 	status = jbd2_journal_load(journal);
1612 	if (status < 0) {
1613 		mlog_errno(status);
1614 		if (!igrab(inode))
1615 			BUG();
1616 		jbd2_journal_destroy(journal);
1617 		goto done;
1618 	}
1619 
1620 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1621 
1622 	/* wipe the journal */
1623 	mlog(0, "flushing the journal.\n");
1624 	jbd2_journal_lock_updates(journal);
1625 	status = jbd2_journal_flush(journal);
1626 	jbd2_journal_unlock_updates(journal);
1627 	if (status < 0)
1628 		mlog_errno(status);
1629 
1630 	/* This will mark the node clean */
1631 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1632 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1633 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1634 
1635 	/* Increment recovery generation to indicate successful recovery */
1636 	ocfs2_bump_recovery_generation(fe);
1637 	osb->slot_recovery_generations[slot_num] =
1638 					ocfs2_get_recovery_generation(fe);
1639 
1640 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1641 	status = ocfs2_write_block(osb, bh, inode);
1642 	if (status < 0)
1643 		mlog_errno(status);
1644 
1645 	if (!igrab(inode))
1646 		BUG();
1647 
1648 	jbd2_journal_destroy(journal);
1649 
1650 done:
1651 	/* drop the lock on this nodes journal */
1652 	if (got_lock)
1653 		ocfs2_inode_unlock(inode, 1);
1654 
1655 	if (inode)
1656 		iput(inode);
1657 
1658 	brelse(bh);
1659 
1660 	mlog_exit(status);
1661 	return status;
1662 }
1663 
1664 /*
1665  * Do the most important parts of node recovery:
1666  *  - Replay it's journal
1667  *  - Stamp a clean local allocator file
1668  *  - Stamp a clean truncate log
1669  *  - Mark the node clean
1670  *
1671  * If this function completes without error, a node in OCFS2 can be
1672  * said to have been safely recovered. As a result, failure during the
1673  * second part of a nodes recovery process (local alloc recovery) is
1674  * far less concerning.
1675  */
1676 static int ocfs2_recover_node(struct ocfs2_super *osb,
1677 			      int node_num, int slot_num)
1678 {
1679 	int status = 0;
1680 	struct ocfs2_dinode *la_copy = NULL;
1681 	struct ocfs2_dinode *tl_copy = NULL;
1682 
1683 	mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1684 		   node_num, slot_num, osb->node_num);
1685 
1686 	/* Should not ever be called to recover ourselves -- in that
1687 	 * case we should've called ocfs2_journal_load instead. */
1688 	BUG_ON(osb->node_num == node_num);
1689 
1690 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1691 	if (status < 0) {
1692 		if (status == -EBUSY) {
1693 			mlog(0, "Skipping recovery for slot %u (node %u) "
1694 			     "as another node has recovered it\n", slot_num,
1695 			     node_num);
1696 			status = 0;
1697 			goto done;
1698 		}
1699 		mlog_errno(status);
1700 		goto done;
1701 	}
1702 
1703 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1704 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1705 	if (status < 0) {
1706 		mlog_errno(status);
1707 		goto done;
1708 	}
1709 
1710 	/* An error from begin_truncate_log_recovery is not
1711 	 * serious enough to warrant halting the rest of
1712 	 * recovery. */
1713 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1714 	if (status < 0)
1715 		mlog_errno(status);
1716 
1717 	/* Likewise, this would be a strange but ultimately not so
1718 	 * harmful place to get an error... */
1719 	status = ocfs2_clear_slot(osb, slot_num);
1720 	if (status < 0)
1721 		mlog_errno(status);
1722 
1723 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1724 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1725 					tl_copy, NULL);
1726 
1727 	status = 0;
1728 done:
1729 
1730 	mlog_exit(status);
1731 	return status;
1732 }
1733 
1734 /* Test node liveness by trylocking his journal. If we get the lock,
1735  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1736  * still alive (we couldn't get the lock) and < 0 on error. */
1737 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1738 				 int slot_num)
1739 {
1740 	int status, flags;
1741 	struct inode *inode = NULL;
1742 
1743 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1744 					    slot_num);
1745 	if (inode == NULL) {
1746 		mlog(ML_ERROR, "access error\n");
1747 		status = -EACCES;
1748 		goto bail;
1749 	}
1750 	if (is_bad_inode(inode)) {
1751 		mlog(ML_ERROR, "access error (bad inode)\n");
1752 		iput(inode);
1753 		inode = NULL;
1754 		status = -EACCES;
1755 		goto bail;
1756 	}
1757 	SET_INODE_JOURNAL(inode);
1758 
1759 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1760 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1761 	if (status < 0) {
1762 		if (status != -EAGAIN)
1763 			mlog_errno(status);
1764 		goto bail;
1765 	}
1766 
1767 	ocfs2_inode_unlock(inode, 1);
1768 bail:
1769 	if (inode)
1770 		iput(inode);
1771 
1772 	return status;
1773 }
1774 
1775 /* Call this underneath ocfs2_super_lock. It also assumes that the
1776  * slot info struct has been updated from disk. */
1777 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1778 {
1779 	unsigned int node_num;
1780 	int status, i;
1781 	u32 gen;
1782 	struct buffer_head *bh = NULL;
1783 	struct ocfs2_dinode *di;
1784 
1785 	/* This is called with the super block cluster lock, so we
1786 	 * know that the slot map can't change underneath us. */
1787 
1788 	for (i = 0; i < osb->max_slots; i++) {
1789 		/* Read journal inode to get the recovery generation */
1790 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1791 		if (status) {
1792 			mlog_errno(status);
1793 			goto bail;
1794 		}
1795 		di = (struct ocfs2_dinode *)bh->b_data;
1796 		gen = ocfs2_get_recovery_generation(di);
1797 		brelse(bh);
1798 		bh = NULL;
1799 
1800 		spin_lock(&osb->osb_lock);
1801 		osb->slot_recovery_generations[i] = gen;
1802 
1803 		mlog(0, "Slot %u recovery generation is %u\n", i,
1804 		     osb->slot_recovery_generations[i]);
1805 
1806 		if (i == osb->slot_num) {
1807 			spin_unlock(&osb->osb_lock);
1808 			continue;
1809 		}
1810 
1811 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1812 		if (status == -ENOENT) {
1813 			spin_unlock(&osb->osb_lock);
1814 			continue;
1815 		}
1816 
1817 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1818 			spin_unlock(&osb->osb_lock);
1819 			continue;
1820 		}
1821 		spin_unlock(&osb->osb_lock);
1822 
1823 		/* Ok, we have a slot occupied by another node which
1824 		 * is not in the recovery map. We trylock his journal
1825 		 * file here to test if he's alive. */
1826 		status = ocfs2_trylock_journal(osb, i);
1827 		if (!status) {
1828 			/* Since we're called from mount, we know that
1829 			 * the recovery thread can't race us on
1830 			 * setting / checking the recovery bits. */
1831 			ocfs2_recovery_thread(osb, node_num);
1832 		} else if ((status < 0) && (status != -EAGAIN)) {
1833 			mlog_errno(status);
1834 			goto bail;
1835 		}
1836 	}
1837 
1838 	status = 0;
1839 bail:
1840 	mlog_exit(status);
1841 	return status;
1842 }
1843 
1844 struct ocfs2_orphan_filldir_priv {
1845 	struct inode		*head;
1846 	struct ocfs2_super	*osb;
1847 };
1848 
1849 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1850 				loff_t pos, u64 ino, unsigned type)
1851 {
1852 	struct ocfs2_orphan_filldir_priv *p = priv;
1853 	struct inode *iter;
1854 
1855 	if (name_len == 1 && !strncmp(".", name, 1))
1856 		return 0;
1857 	if (name_len == 2 && !strncmp("..", name, 2))
1858 		return 0;
1859 
1860 	/* Skip bad inodes so that recovery can continue */
1861 	iter = ocfs2_iget(p->osb, ino,
1862 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1863 	if (IS_ERR(iter))
1864 		return 0;
1865 
1866 	mlog(0, "queue orphan %llu\n",
1867 	     (unsigned long long)OCFS2_I(iter)->ip_blkno);
1868 	/* No locking is required for the next_orphan queue as there
1869 	 * is only ever a single process doing orphan recovery. */
1870 	OCFS2_I(iter)->ip_next_orphan = p->head;
1871 	p->head = iter;
1872 
1873 	return 0;
1874 }
1875 
1876 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1877 			       int slot,
1878 			       struct inode **head)
1879 {
1880 	int status;
1881 	struct inode *orphan_dir_inode = NULL;
1882 	struct ocfs2_orphan_filldir_priv priv;
1883 	loff_t pos = 0;
1884 
1885 	priv.osb = osb;
1886 	priv.head = *head;
1887 
1888 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1889 						       ORPHAN_DIR_SYSTEM_INODE,
1890 						       slot);
1891 	if  (!orphan_dir_inode) {
1892 		status = -ENOENT;
1893 		mlog_errno(status);
1894 		return status;
1895 	}
1896 
1897 	mutex_lock(&orphan_dir_inode->i_mutex);
1898 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1899 	if (status < 0) {
1900 		mlog_errno(status);
1901 		goto out;
1902 	}
1903 
1904 	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1905 				   ocfs2_orphan_filldir);
1906 	if (status) {
1907 		mlog_errno(status);
1908 		goto out_cluster;
1909 	}
1910 
1911 	*head = priv.head;
1912 
1913 out_cluster:
1914 	ocfs2_inode_unlock(orphan_dir_inode, 0);
1915 out:
1916 	mutex_unlock(&orphan_dir_inode->i_mutex);
1917 	iput(orphan_dir_inode);
1918 	return status;
1919 }
1920 
1921 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1922 					      int slot)
1923 {
1924 	int ret;
1925 
1926 	spin_lock(&osb->osb_lock);
1927 	ret = !osb->osb_orphan_wipes[slot];
1928 	spin_unlock(&osb->osb_lock);
1929 	return ret;
1930 }
1931 
1932 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1933 					     int slot)
1934 {
1935 	spin_lock(&osb->osb_lock);
1936 	/* Mark ourselves such that new processes in delete_inode()
1937 	 * know to quit early. */
1938 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1939 	while (osb->osb_orphan_wipes[slot]) {
1940 		/* If any processes are already in the middle of an
1941 		 * orphan wipe on this dir, then we need to wait for
1942 		 * them. */
1943 		spin_unlock(&osb->osb_lock);
1944 		wait_event_interruptible(osb->osb_wipe_event,
1945 					 ocfs2_orphan_recovery_can_continue(osb, slot));
1946 		spin_lock(&osb->osb_lock);
1947 	}
1948 	spin_unlock(&osb->osb_lock);
1949 }
1950 
1951 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1952 					      int slot)
1953 {
1954 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1955 }
1956 
1957 /*
1958  * Orphan recovery. Each mounted node has it's own orphan dir which we
1959  * must run during recovery. Our strategy here is to build a list of
1960  * the inodes in the orphan dir and iget/iput them. The VFS does
1961  * (most) of the rest of the work.
1962  *
1963  * Orphan recovery can happen at any time, not just mount so we have a
1964  * couple of extra considerations.
1965  *
1966  * - We grab as many inodes as we can under the orphan dir lock -
1967  *   doing iget() outside the orphan dir risks getting a reference on
1968  *   an invalid inode.
1969  * - We must be sure not to deadlock with other processes on the
1970  *   system wanting to run delete_inode(). This can happen when they go
1971  *   to lock the orphan dir and the orphan recovery process attempts to
1972  *   iget() inside the orphan dir lock. This can be avoided by
1973  *   advertising our state to ocfs2_delete_inode().
1974  */
1975 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1976 				 int slot)
1977 {
1978 	int ret = 0;
1979 	struct inode *inode = NULL;
1980 	struct inode *iter;
1981 	struct ocfs2_inode_info *oi;
1982 
1983 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1984 
1985 	ocfs2_mark_recovering_orphan_dir(osb, slot);
1986 	ret = ocfs2_queue_orphans(osb, slot, &inode);
1987 	ocfs2_clear_recovering_orphan_dir(osb, slot);
1988 
1989 	/* Error here should be noted, but we want to continue with as
1990 	 * many queued inodes as we've got. */
1991 	if (ret)
1992 		mlog_errno(ret);
1993 
1994 	while (inode) {
1995 		oi = OCFS2_I(inode);
1996 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1997 
1998 		iter = oi->ip_next_orphan;
1999 
2000 		spin_lock(&oi->ip_lock);
2001 		/* The remote delete code may have set these on the
2002 		 * assumption that the other node would wipe them
2003 		 * successfully.  If they are still in the node's
2004 		 * orphan dir, we need to reset that state. */
2005 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2006 
2007 		/* Set the proper information to get us going into
2008 		 * ocfs2_delete_inode. */
2009 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2010 		spin_unlock(&oi->ip_lock);
2011 
2012 		iput(inode);
2013 
2014 		inode = iter;
2015 	}
2016 
2017 	return ret;
2018 }
2019 
2020 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2021 {
2022 	/* This check is good because ocfs2 will wait on our recovery
2023 	 * thread before changing it to something other than MOUNTED
2024 	 * or DISABLED. */
2025 	wait_event(osb->osb_mount_event,
2026 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2027 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2028 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2029 
2030 	/* If there's an error on mount, then we may never get to the
2031 	 * MOUNTED flag, but this is set right before
2032 	 * dismount_volume() so we can trust it. */
2033 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2034 		mlog(0, "mount error, exiting!\n");
2035 		return -EBUSY;
2036 	}
2037 
2038 	return 0;
2039 }
2040 
2041 static int ocfs2_commit_thread(void *arg)
2042 {
2043 	int status;
2044 	struct ocfs2_super *osb = arg;
2045 	struct ocfs2_journal *journal = osb->journal;
2046 
2047 	/* we can trust j_num_trans here because _should_stop() is only set in
2048 	 * shutdown and nobody other than ourselves should be able to start
2049 	 * transactions.  committing on shutdown might take a few iterations
2050 	 * as final transactions put deleted inodes on the list */
2051 	while (!(kthread_should_stop() &&
2052 		 atomic_read(&journal->j_num_trans) == 0)) {
2053 
2054 		wait_event_interruptible(osb->checkpoint_event,
2055 					 atomic_read(&journal->j_num_trans)
2056 					 || kthread_should_stop());
2057 
2058 		status = ocfs2_commit_cache(osb);
2059 		if (status < 0)
2060 			mlog_errno(status);
2061 
2062 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2063 			mlog(ML_KTHREAD,
2064 			     "commit_thread: %u transactions pending on "
2065 			     "shutdown\n",
2066 			     atomic_read(&journal->j_num_trans));
2067 		}
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 /* Reads all the journal inodes without taking any cluster locks. Used
2074  * for hard readonly access to determine whether any journal requires
2075  * recovery. Also used to refresh the recovery generation numbers after
2076  * a journal has been recovered by another node.
2077  */
2078 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2079 {
2080 	int ret = 0;
2081 	unsigned int slot;
2082 	struct buffer_head *di_bh = NULL;
2083 	struct ocfs2_dinode *di;
2084 	int journal_dirty = 0;
2085 
2086 	for(slot = 0; slot < osb->max_slots; slot++) {
2087 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2088 		if (ret) {
2089 			mlog_errno(ret);
2090 			goto out;
2091 		}
2092 
2093 		di = (struct ocfs2_dinode *) di_bh->b_data;
2094 
2095 		osb->slot_recovery_generations[slot] =
2096 					ocfs2_get_recovery_generation(di);
2097 
2098 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2099 		    OCFS2_JOURNAL_DIRTY_FL)
2100 			journal_dirty = 1;
2101 
2102 		brelse(di_bh);
2103 		di_bh = NULL;
2104 	}
2105 
2106 out:
2107 	if (journal_dirty)
2108 		ret = -EROFS;
2109 	return ret;
2110 }
2111