xref: /openbmc/linux/fs/ocfs2/journal.c (revision 745ae8ba)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "heartbeat.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "namei.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "vote.h"
48 #include "sysfile.h"
49 
50 #include "buffer_head_io.h"
51 
52 spinlock_t trans_inc_lock = SPIN_LOCK_UNLOCKED;
53 
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 			      int node_num);
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
61 				       struct ocfs2_journal_handle *handle);
62 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle);
63 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
64 				      int dirty);
65 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
66 				 int slot_num);
67 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
68 				 int slot);
69 static int ocfs2_commit_thread(void *arg);
70 
71 static int ocfs2_commit_cache(struct ocfs2_super *osb)
72 {
73 	int status = 0;
74 	unsigned int flushed;
75 	unsigned long old_id;
76 	struct ocfs2_journal *journal = NULL;
77 
78 	mlog_entry_void();
79 
80 	journal = osb->journal;
81 
82 	/* Flush all pending commits and checkpoint the journal. */
83 	down_write(&journal->j_trans_barrier);
84 
85 	if (atomic_read(&journal->j_num_trans) == 0) {
86 		up_write(&journal->j_trans_barrier);
87 		mlog(0, "No transactions for me to flush!\n");
88 		goto finally;
89 	}
90 
91 	journal_lock_updates(journal->j_journal);
92 	status = journal_flush(journal->j_journal);
93 	journal_unlock_updates(journal->j_journal);
94 	if (status < 0) {
95 		up_write(&journal->j_trans_barrier);
96 		mlog_errno(status);
97 		goto finally;
98 	}
99 
100 	old_id = ocfs2_inc_trans_id(journal);
101 
102 	flushed = atomic_read(&journal->j_num_trans);
103 	atomic_set(&journal->j_num_trans, 0);
104 	up_write(&journal->j_trans_barrier);
105 
106 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
107 	     journal->j_trans_id, flushed);
108 
109 	ocfs2_kick_vote_thread(osb);
110 	wake_up(&journal->j_checkpointed);
111 finally:
112 	mlog_exit(status);
113 	return status;
114 }
115 
116 struct ocfs2_journal_handle *ocfs2_alloc_handle(struct ocfs2_super *osb)
117 {
118 	struct ocfs2_journal_handle *retval = NULL;
119 
120 	retval = kcalloc(1, sizeof(*retval), GFP_KERNEL);
121 	if (!retval) {
122 		mlog(ML_ERROR, "Failed to allocate memory for journal "
123 		     "handle!\n");
124 		return NULL;
125 	}
126 
127 	retval->max_buffs = 0;
128 	retval->num_locks = 0;
129 	retval->k_handle = NULL;
130 
131 	INIT_LIST_HEAD(&retval->locks);
132 	INIT_LIST_HEAD(&retval->inode_list);
133 	retval->journal = osb->journal;
134 
135 	return retval;
136 }
137 
138 /* pass it NULL and it will allocate a new handle object for you.  If
139  * you pass it a handle however, it may still return error, in which
140  * case it has free'd the passed handle for you. */
141 struct ocfs2_journal_handle *ocfs2_start_trans(struct ocfs2_super *osb,
142 					       struct ocfs2_journal_handle *handle,
143 					       int max_buffs)
144 {
145 	int ret;
146 	journal_t *journal = osb->journal->j_journal;
147 
148 	mlog_entry("(max_buffs = %d)\n", max_buffs);
149 
150 	BUG_ON(!osb || !osb->journal->j_journal);
151 
152 	if (ocfs2_is_hard_readonly(osb)) {
153 		ret = -EROFS;
154 		goto done_free;
155 	}
156 
157 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
158 	BUG_ON(max_buffs <= 0);
159 
160 	/* JBD might support this, but our journalling code doesn't yet. */
161 	if (journal_current_handle()) {
162 		mlog(ML_ERROR, "Recursive transaction attempted!\n");
163 		BUG();
164 	}
165 
166 	if (!handle)
167 		handle = ocfs2_alloc_handle(osb);
168 	if (!handle) {
169 		ret = -ENOMEM;
170 		mlog(ML_ERROR, "Failed to allocate memory for journal "
171 		     "handle!\n");
172 		goto done_free;
173 	}
174 
175 	handle->max_buffs = max_buffs;
176 
177 	down_read(&osb->journal->j_trans_barrier);
178 
179 	/* actually start the transaction now */
180 	handle->k_handle = journal_start(journal, max_buffs);
181 	if (IS_ERR(handle->k_handle)) {
182 		up_read(&osb->journal->j_trans_barrier);
183 
184 		ret = PTR_ERR(handle->k_handle);
185 		handle->k_handle = NULL;
186 		mlog_errno(ret);
187 
188 		if (is_journal_aborted(journal)) {
189 			ocfs2_abort(osb->sb, "Detected aborted journal");
190 			ret = -EROFS;
191 		}
192 		goto done_free;
193 	}
194 
195 	atomic_inc(&(osb->journal->j_num_trans));
196 	handle->flags |= OCFS2_HANDLE_STARTED;
197 
198 	mlog_exit_ptr(handle);
199 	return handle;
200 
201 done_free:
202 	if (handle)
203 		ocfs2_commit_unstarted_handle(handle); /* will kfree handle */
204 
205 	mlog_exit(ret);
206 	return ERR_PTR(ret);
207 }
208 
209 void ocfs2_handle_add_inode(struct ocfs2_journal_handle *handle,
210 			    struct inode *inode)
211 {
212 	BUG_ON(!handle);
213 	BUG_ON(!inode);
214 
215 	atomic_inc(&inode->i_count);
216 
217 	/* we're obviously changing it... */
218 	mutex_lock(&inode->i_mutex);
219 
220 	/* sanity check */
221 	BUG_ON(OCFS2_I(inode)->ip_handle);
222 	BUG_ON(!list_empty(&OCFS2_I(inode)->ip_handle_list));
223 
224 	OCFS2_I(inode)->ip_handle = handle;
225 	list_del(&(OCFS2_I(inode)->ip_handle_list));
226 	list_add_tail(&(OCFS2_I(inode)->ip_handle_list), &(handle->inode_list));
227 }
228 
229 static void ocfs2_handle_unlock_inodes(struct ocfs2_journal_handle *handle)
230 {
231 	struct list_head *p, *n;
232 	struct inode *inode;
233 	struct ocfs2_inode_info *oi;
234 
235 	list_for_each_safe(p, n, &handle->inode_list) {
236 		oi = list_entry(p, struct ocfs2_inode_info,
237 				ip_handle_list);
238 		inode = &oi->vfs_inode;
239 
240 		OCFS2_I(inode)->ip_handle = NULL;
241 		list_del_init(&OCFS2_I(inode)->ip_handle_list);
242 
243 		mutex_unlock(&inode->i_mutex);
244 		iput(inode);
245 	}
246 }
247 
248 /* This is trivial so we do it out of the main commit
249  * paths. Beware, it can be called from start_trans too! */
250 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle)
251 {
252 	mlog_entry_void();
253 
254 	BUG_ON(handle->flags & OCFS2_HANDLE_STARTED);
255 
256 	ocfs2_handle_unlock_inodes(handle);
257 	/* You are allowed to add journal locks before the transaction
258 	 * has started. */
259 	ocfs2_handle_cleanup_locks(handle->journal, handle);
260 
261 	kfree(handle);
262 
263 	mlog_exit_void();
264 }
265 
266 void ocfs2_commit_trans(struct ocfs2_journal_handle *handle)
267 {
268 	handle_t *jbd_handle;
269 	int retval;
270 	struct ocfs2_journal *journal = handle->journal;
271 
272 	mlog_entry_void();
273 
274 	BUG_ON(!handle);
275 
276 	if (!(handle->flags & OCFS2_HANDLE_STARTED)) {
277 		ocfs2_commit_unstarted_handle(handle);
278 		mlog_exit_void();
279 		return;
280 	}
281 
282 	/* release inode semaphores we took during this transaction */
283 	ocfs2_handle_unlock_inodes(handle);
284 
285 	/* ocfs2_extend_trans may have had to call journal_restart
286 	 * which will always commit the transaction, but may return
287 	 * error for any number of reasons. If this is the case, we
288 	 * clear k_handle as it's not valid any more. */
289 	if (handle->k_handle) {
290 		jbd_handle = handle->k_handle;
291 
292 		if (handle->flags & OCFS2_HANDLE_SYNC)
293 			jbd_handle->h_sync = 1;
294 		else
295 			jbd_handle->h_sync = 0;
296 
297 		/* actually stop the transaction. if we've set h_sync,
298 		 * it'll have been committed when we return */
299 		retval = journal_stop(jbd_handle);
300 		if (retval < 0) {
301 			mlog_errno(retval);
302 			mlog(ML_ERROR, "Could not commit transaction\n");
303 			BUG();
304 		}
305 
306 		handle->k_handle = NULL; /* it's been free'd in journal_stop */
307 	}
308 
309 	ocfs2_handle_cleanup_locks(journal, handle);
310 
311 	up_read(&journal->j_trans_barrier);
312 
313 	kfree(handle);
314 	mlog_exit_void();
315 }
316 
317 /*
318  * 'nblocks' is what you want to add to the current
319  * transaction. extend_trans will either extend the current handle by
320  * nblocks, or commit it and start a new one with nblocks credits.
321  *
322  * WARNING: This will not release any semaphores or disk locks taken
323  * during the transaction, so make sure they were taken *before*
324  * start_trans or we'll have ordering deadlocks.
325  *
326  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
327  * good because transaction ids haven't yet been recorded on the
328  * cluster locks associated with this handle.
329  */
330 int ocfs2_extend_trans(struct ocfs2_journal_handle *handle,
331 		       int nblocks)
332 {
333 	int status;
334 
335 	BUG_ON(!handle);
336 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
337 	BUG_ON(!nblocks);
338 
339 	mlog_entry_void();
340 
341 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
342 
343 	status = journal_extend(handle->k_handle, nblocks);
344 	if (status < 0) {
345 		mlog_errno(status);
346 		goto bail;
347 	}
348 
349 	if (status > 0) {
350 		mlog(0, "journal_extend failed, trying journal_restart\n");
351 		status = journal_restart(handle->k_handle, nblocks);
352 		if (status < 0) {
353 			handle->k_handle = NULL;
354 			mlog_errno(status);
355 			goto bail;
356 		}
357 		handle->max_buffs = nblocks;
358 	} else
359 		handle->max_buffs += nblocks;
360 
361 	status = 0;
362 bail:
363 
364 	mlog_exit(status);
365 	return status;
366 }
367 
368 int ocfs2_journal_access(struct ocfs2_journal_handle *handle,
369 			 struct inode *inode,
370 			 struct buffer_head *bh,
371 			 int type)
372 {
373 	int status;
374 
375 	BUG_ON(!inode);
376 	BUG_ON(!handle);
377 	BUG_ON(!bh);
378 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
379 
380 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %hu\n",
381 		   (unsigned long long)bh->b_blocknr, type,
382 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
383 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
384 		   "OCFS2_JOURNAL_ACCESS_WRITE",
385 		   bh->b_size);
386 
387 	/* we can safely remove this assertion after testing. */
388 	if (!buffer_uptodate(bh)) {
389 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
390 		mlog(ML_ERROR, "b_blocknr=%llu\n",
391 		     (unsigned long long)bh->b_blocknr);
392 		BUG();
393 	}
394 
395 	/* Set the current transaction information on the inode so
396 	 * that the locking code knows whether it can drop it's locks
397 	 * on this inode or not. We're protected from the commit
398 	 * thread updating the current transaction id until
399 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
400 	 * j_trans_barrier for us. */
401 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
402 
403 	mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
404 	switch (type) {
405 	case OCFS2_JOURNAL_ACCESS_CREATE:
406 	case OCFS2_JOURNAL_ACCESS_WRITE:
407 		status = journal_get_write_access(handle->k_handle, bh);
408 		break;
409 
410 	case OCFS2_JOURNAL_ACCESS_UNDO:
411 		status = journal_get_undo_access(handle->k_handle, bh);
412 		break;
413 
414 	default:
415 		status = -EINVAL;
416 		mlog(ML_ERROR, "Uknown access type!\n");
417 	}
418 	mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
419 
420 	if (status < 0)
421 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
422 		     status, type);
423 
424 	mlog_exit(status);
425 	return status;
426 }
427 
428 int ocfs2_journal_dirty(struct ocfs2_journal_handle *handle,
429 			struct buffer_head *bh)
430 {
431 	int status;
432 
433 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
434 
435 	mlog_entry("(bh->b_blocknr=%llu)\n",
436 		   (unsigned long long)bh->b_blocknr);
437 
438 	status = journal_dirty_metadata(handle->k_handle, bh);
439 	if (status < 0)
440 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
441 		     "(bh->b_blocknr=%llu)\n",
442 		     (unsigned long long)bh->b_blocknr);
443 
444 	mlog_exit(status);
445 	return status;
446 }
447 
448 int ocfs2_journal_dirty_data(handle_t *handle,
449 			     struct buffer_head *bh)
450 {
451 	int err = journal_dirty_data(handle, bh);
452 	if (err)
453 		mlog_errno(err);
454 	/* TODO: When we can handle it, abort the handle and go RO on
455 	 * error here. */
456 
457 	return err;
458 }
459 
460 /* We always assume you're adding a metadata lock at level 'ex' */
461 int ocfs2_handle_add_lock(struct ocfs2_journal_handle *handle,
462 			  struct inode *inode)
463 {
464 	int status;
465 	struct ocfs2_journal_lock *lock;
466 
467 	BUG_ON(!inode);
468 
469 	lock = kmem_cache_alloc(ocfs2_lock_cache, GFP_NOFS);
470 	if (!lock) {
471 		status = -ENOMEM;
472 		mlog_errno(-ENOMEM);
473 		goto bail;
474 	}
475 
476 	if (!igrab(inode))
477 		BUG();
478 	lock->jl_inode = inode;
479 
480 	list_add_tail(&(lock->jl_lock_list), &(handle->locks));
481 	handle->num_locks++;
482 
483 	status = 0;
484 bail:
485 	mlog_exit(status);
486 	return status;
487 }
488 
489 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
490 				       struct ocfs2_journal_handle *handle)
491 {
492 	struct list_head *p, *n;
493 	struct ocfs2_journal_lock *lock;
494 	struct inode *inode;
495 
496 	list_for_each_safe(p, n, &(handle->locks)) {
497 		lock = list_entry(p, struct ocfs2_journal_lock,
498 				  jl_lock_list);
499 		list_del(&lock->jl_lock_list);
500 		handle->num_locks--;
501 
502 		inode = lock->jl_inode;
503 		ocfs2_meta_unlock(inode, 1);
504 		if (atomic_read(&inode->i_count) == 1)
505 			mlog(ML_ERROR,
506 			     "Inode %"MLFu64", I'm doing a last iput for!",
507 			     OCFS2_I(inode)->ip_blkno);
508 		iput(inode);
509 		kmem_cache_free(ocfs2_lock_cache, lock);
510 	}
511 }
512 
513 #define OCFS2_DEFAULT_COMMIT_INTERVAL 	(HZ * 5)
514 
515 void ocfs2_set_journal_params(struct ocfs2_super *osb)
516 {
517 	journal_t *journal = osb->journal->j_journal;
518 
519 	spin_lock(&journal->j_state_lock);
520 	journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
521 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
522 		journal->j_flags |= JFS_BARRIER;
523 	else
524 		journal->j_flags &= ~JFS_BARRIER;
525 	spin_unlock(&journal->j_state_lock);
526 }
527 
528 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
529 {
530 	int status = -1;
531 	struct inode *inode = NULL; /* the journal inode */
532 	journal_t *j_journal = NULL;
533 	struct ocfs2_dinode *di = NULL;
534 	struct buffer_head *bh = NULL;
535 	struct ocfs2_super *osb;
536 	int meta_lock = 0;
537 
538 	mlog_entry_void();
539 
540 	BUG_ON(!journal);
541 
542 	osb = journal->j_osb;
543 
544 	/* already have the inode for our journal */
545 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
546 					    osb->slot_num);
547 	if (inode == NULL) {
548 		status = -EACCES;
549 		mlog_errno(status);
550 		goto done;
551 	}
552 	if (is_bad_inode(inode)) {
553 		mlog(ML_ERROR, "access error (bad inode)\n");
554 		iput(inode);
555 		inode = NULL;
556 		status = -EACCES;
557 		goto done;
558 	}
559 
560 	SET_INODE_JOURNAL(inode);
561 	OCFS2_I(inode)->ip_open_count++;
562 
563 	/* Skip recovery waits here - journal inode metadata never
564 	 * changes in a live cluster so it can be considered an
565 	 * exception to the rule. */
566 	status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
567 				      OCFS2_META_LOCK_RECOVERY);
568 	if (status < 0) {
569 		if (status != -ERESTARTSYS)
570 			mlog(ML_ERROR, "Could not get lock on journal!\n");
571 		goto done;
572 	}
573 
574 	meta_lock = 1;
575 	di = (struct ocfs2_dinode *)bh->b_data;
576 
577 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
578 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
579 		     inode->i_size);
580 		status = -EINVAL;
581 		goto done;
582 	}
583 
584 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
585 	mlog(0, "inode->i_blocks = %lu\n", inode->i_blocks);
586 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
587 
588 	/* call the kernels journal init function now */
589 	j_journal = journal_init_inode(inode);
590 	if (j_journal == NULL) {
591 		mlog(ML_ERROR, "Linux journal layer error\n");
592 		status = -EINVAL;
593 		goto done;
594 	}
595 
596 	mlog(0, "Returned from journal_init_inode\n");
597 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
598 
599 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
600 		  OCFS2_JOURNAL_DIRTY_FL);
601 
602 	journal->j_journal = j_journal;
603 	journal->j_inode = inode;
604 	journal->j_bh = bh;
605 
606 	ocfs2_set_journal_params(osb);
607 
608 	journal->j_state = OCFS2_JOURNAL_LOADED;
609 
610 	status = 0;
611 done:
612 	if (status < 0) {
613 		if (meta_lock)
614 			ocfs2_meta_unlock(inode, 1);
615 		if (bh != NULL)
616 			brelse(bh);
617 		if (inode) {
618 			OCFS2_I(inode)->ip_open_count--;
619 			iput(inode);
620 		}
621 	}
622 
623 	mlog_exit(status);
624 	return status;
625 }
626 
627 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
628 				      int dirty)
629 {
630 	int status;
631 	unsigned int flags;
632 	struct ocfs2_journal *journal = osb->journal;
633 	struct buffer_head *bh = journal->j_bh;
634 	struct ocfs2_dinode *fe;
635 
636 	mlog_entry_void();
637 
638 	fe = (struct ocfs2_dinode *)bh->b_data;
639 	if (!OCFS2_IS_VALID_DINODE(fe)) {
640 		/* This is called from startup/shutdown which will
641 		 * handle the errors in a specific manner, so no need
642 		 * to call ocfs2_error() here. */
643 		mlog(ML_ERROR, "Journal dinode %"MLFu64"  has invalid "
644 		     "signature: %.*s", fe->i_blkno, 7, fe->i_signature);
645 		status = -EIO;
646 		goto out;
647 	}
648 
649 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
650 	if (dirty)
651 		flags |= OCFS2_JOURNAL_DIRTY_FL;
652 	else
653 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
654 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
655 
656 	status = ocfs2_write_block(osb, bh, journal->j_inode);
657 	if (status < 0)
658 		mlog_errno(status);
659 
660 out:
661 	mlog_exit(status);
662 	return status;
663 }
664 
665 /*
666  * If the journal has been kmalloc'd it needs to be freed after this
667  * call.
668  */
669 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
670 {
671 	struct ocfs2_journal *journal = NULL;
672 	int status = 0;
673 	struct inode *inode = NULL;
674 	int num_running_trans = 0;
675 
676 	mlog_entry_void();
677 
678 	BUG_ON(!osb);
679 
680 	journal = osb->journal;
681 	if (!journal)
682 		goto done;
683 
684 	inode = journal->j_inode;
685 
686 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
687 		goto done;
688 
689 	/* need to inc inode use count as journal_destroy will iput. */
690 	if (!igrab(inode))
691 		BUG();
692 
693 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
694 	if (num_running_trans > 0)
695 		mlog(0, "Shutting down journal: must wait on %d "
696 		     "running transactions!\n",
697 		     num_running_trans);
698 
699 	/* Do a commit_cache here. It will flush our journal, *and*
700 	 * release any locks that are still held.
701 	 * set the SHUTDOWN flag and release the trans lock.
702 	 * the commit thread will take the trans lock for us below. */
703 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
704 
705 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
706 	 * drop the trans_lock (which we want to hold until we
707 	 * completely destroy the journal. */
708 	if (osb->commit_task) {
709 		/* Wait for the commit thread */
710 		mlog(0, "Waiting for ocfs2commit to exit....\n");
711 		kthread_stop(osb->commit_task);
712 		osb->commit_task = NULL;
713 	}
714 
715 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
716 
717 	status = ocfs2_journal_toggle_dirty(osb, 0);
718 	if (status < 0)
719 		mlog_errno(status);
720 
721 	/* Shutdown the kernel journal system */
722 	journal_destroy(journal->j_journal);
723 
724 	OCFS2_I(inode)->ip_open_count--;
725 
726 	/* unlock our journal */
727 	ocfs2_meta_unlock(inode, 1);
728 
729 	brelse(journal->j_bh);
730 	journal->j_bh = NULL;
731 
732 	journal->j_state = OCFS2_JOURNAL_FREE;
733 
734 //	up_write(&journal->j_trans_barrier);
735 done:
736 	if (inode)
737 		iput(inode);
738 	mlog_exit_void();
739 }
740 
741 static void ocfs2_clear_journal_error(struct super_block *sb,
742 				      journal_t *journal,
743 				      int slot)
744 {
745 	int olderr;
746 
747 	olderr = journal_errno(journal);
748 	if (olderr) {
749 		mlog(ML_ERROR, "File system error %d recorded in "
750 		     "journal %u.\n", olderr, slot);
751 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
752 		     sb->s_id);
753 
754 		journal_ack_err(journal);
755 		journal_clear_err(journal);
756 	}
757 }
758 
759 int ocfs2_journal_load(struct ocfs2_journal *journal)
760 {
761 	int status = 0;
762 	struct ocfs2_super *osb;
763 
764 	mlog_entry_void();
765 
766 	if (!journal)
767 		BUG();
768 
769 	osb = journal->j_osb;
770 
771 	status = journal_load(journal->j_journal);
772 	if (status < 0) {
773 		mlog(ML_ERROR, "Failed to load journal!\n");
774 		goto done;
775 	}
776 
777 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
778 
779 	status = ocfs2_journal_toggle_dirty(osb, 1);
780 	if (status < 0) {
781 		mlog_errno(status);
782 		goto done;
783 	}
784 
785 	/* Launch the commit thread */
786 	osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt-%d",
787 				       osb->osb_id);
788 	if (IS_ERR(osb->commit_task)) {
789 		status = PTR_ERR(osb->commit_task);
790 		osb->commit_task = NULL;
791 		mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
792 		     status);
793 		goto done;
794 	}
795 
796 done:
797 	mlog_exit(status);
798 	return status;
799 }
800 
801 
802 /* 'full' flag tells us whether we clear out all blocks or if we just
803  * mark the journal clean */
804 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
805 {
806 	int status;
807 
808 	mlog_entry_void();
809 
810 	BUG_ON(!journal);
811 
812 	status = journal_wipe(journal->j_journal, full);
813 	if (status < 0) {
814 		mlog_errno(status);
815 		goto bail;
816 	}
817 
818 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
819 	if (status < 0)
820 		mlog_errno(status);
821 
822 bail:
823 	mlog_exit(status);
824 	return status;
825 }
826 
827 /*
828  * JBD Might read a cached version of another nodes journal file. We
829  * don't want this as this file changes often and we get no
830  * notification on those changes. The only way to be sure that we've
831  * got the most up to date version of those blocks then is to force
832  * read them off disk. Just searching through the buffer cache won't
833  * work as there may be pages backing this file which are still marked
834  * up to date. We know things can't change on this file underneath us
835  * as we have the lock by now :)
836  */
837 static int ocfs2_force_read_journal(struct inode *inode)
838 {
839 	int status = 0;
840 	int i, p_blocks;
841 	u64 v_blkno, p_blkno;
842 #define CONCURRENT_JOURNAL_FILL 32
843 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
844 
845 	mlog_entry_void();
846 
847 	BUG_ON(inode->i_blocks !=
848 		     ocfs2_align_bytes_to_sectors(i_size_read(inode)));
849 
850 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
851 
852 	mlog(0, "Force reading %lu blocks\n",
853 	     (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9)));
854 
855 	v_blkno = 0;
856 	while (v_blkno <
857 	       (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
858 
859 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
860 						     1, &p_blkno,
861 						     &p_blocks);
862 		if (status < 0) {
863 			mlog_errno(status);
864 			goto bail;
865 		}
866 
867 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
868 			p_blocks = CONCURRENT_JOURNAL_FILL;
869 
870 		status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
871 					   p_blkno, p_blocks, bhs, 0,
872 					   inode);
873 		if (status < 0) {
874 			mlog_errno(status);
875 			goto bail;
876 		}
877 
878 		for(i = 0; i < p_blocks; i++) {
879 			brelse(bhs[i]);
880 			bhs[i] = NULL;
881 		}
882 
883 		v_blkno += p_blocks;
884 	}
885 
886 bail:
887 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
888 		if (bhs[i])
889 			brelse(bhs[i]);
890 	mlog_exit(status);
891 	return status;
892 }
893 
894 struct ocfs2_la_recovery_item {
895 	struct list_head	lri_list;
896 	int			lri_slot;
897 	struct ocfs2_dinode	*lri_la_dinode;
898 	struct ocfs2_dinode	*lri_tl_dinode;
899 };
900 
901 /* Does the second half of the recovery process. By this point, the
902  * node is marked clean and can actually be considered recovered,
903  * hence it's no longer in the recovery map, but there's still some
904  * cleanup we can do which shouldn't happen within the recovery thread
905  * as locking in that context becomes very difficult if we are to take
906  * recovering nodes into account.
907  *
908  * NOTE: This function can and will sleep on recovery of other nodes
909  * during cluster locking, just like any other ocfs2 process.
910  */
911 void ocfs2_complete_recovery(void *data)
912 {
913 	int ret;
914 	struct ocfs2_super *osb = data;
915 	struct ocfs2_journal *journal = osb->journal;
916 	struct ocfs2_dinode *la_dinode, *tl_dinode;
917 	struct ocfs2_la_recovery_item *item;
918 	struct list_head *p, *n;
919 	LIST_HEAD(tmp_la_list);
920 
921 	mlog_entry_void();
922 
923 	mlog(0, "completing recovery from keventd\n");
924 
925 	spin_lock(&journal->j_lock);
926 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
927 	spin_unlock(&journal->j_lock);
928 
929 	list_for_each_safe(p, n, &tmp_la_list) {
930 		item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
931 		list_del_init(&item->lri_list);
932 
933 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
934 
935 		la_dinode = item->lri_la_dinode;
936 		if (la_dinode) {
937 			mlog(0, "Clean up local alloc %"MLFu64"\n",
938 			     la_dinode->i_blkno);
939 
940 			ret = ocfs2_complete_local_alloc_recovery(osb,
941 								  la_dinode);
942 			if (ret < 0)
943 				mlog_errno(ret);
944 
945 			kfree(la_dinode);
946 		}
947 
948 		tl_dinode = item->lri_tl_dinode;
949 		if (tl_dinode) {
950 			mlog(0, "Clean up truncate log %"MLFu64"\n",
951 			     tl_dinode->i_blkno);
952 
953 			ret = ocfs2_complete_truncate_log_recovery(osb,
954 								   tl_dinode);
955 			if (ret < 0)
956 				mlog_errno(ret);
957 
958 			kfree(tl_dinode);
959 		}
960 
961 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
962 		if (ret < 0)
963 			mlog_errno(ret);
964 
965 		kfree(item);
966 	}
967 
968 	mlog(0, "Recovery completion\n");
969 	mlog_exit_void();
970 }
971 
972 /* NOTE: This function always eats your references to la_dinode and
973  * tl_dinode, either manually on error, or by passing them to
974  * ocfs2_complete_recovery */
975 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
976 					    int slot_num,
977 					    struct ocfs2_dinode *la_dinode,
978 					    struct ocfs2_dinode *tl_dinode)
979 {
980 	struct ocfs2_la_recovery_item *item;
981 
982 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_KERNEL);
983 	if (!item) {
984 		/* Though we wish to avoid it, we are in fact safe in
985 		 * skipping local alloc cleanup as fsck.ocfs2 is more
986 		 * than capable of reclaiming unused space. */
987 		if (la_dinode)
988 			kfree(la_dinode);
989 
990 		if (tl_dinode)
991 			kfree(tl_dinode);
992 
993 		mlog_errno(-ENOMEM);
994 		return;
995 	}
996 
997 	INIT_LIST_HEAD(&item->lri_list);
998 	item->lri_la_dinode = la_dinode;
999 	item->lri_slot = slot_num;
1000 	item->lri_tl_dinode = tl_dinode;
1001 
1002 	spin_lock(&journal->j_lock);
1003 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1004 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1005 	spin_unlock(&journal->j_lock);
1006 }
1007 
1008 /* Called by the mount code to queue recovery the last part of
1009  * recovery for it's own slot. */
1010 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1011 {
1012 	struct ocfs2_journal *journal = osb->journal;
1013 
1014 	if (osb->dirty) {
1015 		/* No need to queue up our truncate_log as regular
1016 		 * cleanup will catch that. */
1017 		ocfs2_queue_recovery_completion(journal,
1018 						osb->slot_num,
1019 						osb->local_alloc_copy,
1020 						NULL);
1021 		ocfs2_schedule_truncate_log_flush(osb, 0);
1022 
1023 		osb->local_alloc_copy = NULL;
1024 		osb->dirty = 0;
1025 	}
1026 }
1027 
1028 static int __ocfs2_recovery_thread(void *arg)
1029 {
1030 	int status, node_num;
1031 	struct ocfs2_super *osb = arg;
1032 
1033 	mlog_entry_void();
1034 
1035 	status = ocfs2_wait_on_mount(osb);
1036 	if (status < 0) {
1037 		goto bail;
1038 	}
1039 
1040 restart:
1041 	status = ocfs2_super_lock(osb, 1);
1042 	if (status < 0) {
1043 		mlog_errno(status);
1044 		goto bail;
1045 	}
1046 
1047 	while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1048 		node_num = ocfs2_node_map_first_set_bit(osb,
1049 							&osb->recovery_map);
1050 		if (node_num == O2NM_INVALID_NODE_NUM) {
1051 			mlog(0, "Out of nodes to recover.\n");
1052 			break;
1053 		}
1054 
1055 		status = ocfs2_recover_node(osb, node_num);
1056 		if (status < 0) {
1057 			mlog(ML_ERROR,
1058 			     "Error %d recovering node %d on device (%u,%u)!\n",
1059 			     status, node_num,
1060 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1061 			mlog(ML_ERROR, "Volume requires unmount.\n");
1062 			continue;
1063 		}
1064 
1065 		ocfs2_recovery_map_clear(osb, node_num);
1066 	}
1067 	ocfs2_super_unlock(osb, 1);
1068 
1069 	/* We always run recovery on our own orphan dir - the dead
1070 	 * node(s) may have voted "no" on an inode delete earlier. A
1071 	 * revote is therefore required. */
1072 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1073 					NULL);
1074 
1075 bail:
1076 	mutex_lock(&osb->recovery_lock);
1077 	if (!status &&
1078 	    !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1079 		mutex_unlock(&osb->recovery_lock);
1080 		goto restart;
1081 	}
1082 
1083 	osb->recovery_thread_task = NULL;
1084 	mb(); /* sync with ocfs2_recovery_thread_running */
1085 	wake_up(&osb->recovery_event);
1086 
1087 	mutex_unlock(&osb->recovery_lock);
1088 
1089 	mlog_exit(status);
1090 	/* no one is callint kthread_stop() for us so the kthread() api
1091 	 * requires that we call do_exit().  And it isn't exported, but
1092 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1093 	complete_and_exit(NULL, status);
1094 	return status;
1095 }
1096 
1097 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1098 {
1099 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1100 		   node_num, osb->node_num);
1101 
1102 	mutex_lock(&osb->recovery_lock);
1103 	if (osb->disable_recovery)
1104 		goto out;
1105 
1106 	/* People waiting on recovery will wait on
1107 	 * the recovery map to empty. */
1108 	if (!ocfs2_recovery_map_set(osb, node_num))
1109 		mlog(0, "node %d already be in recovery.\n", node_num);
1110 
1111 	mlog(0, "starting recovery thread...\n");
1112 
1113 	if (osb->recovery_thread_task)
1114 		goto out;
1115 
1116 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1117 						 "ocfs2rec-%d", osb->osb_id);
1118 	if (IS_ERR(osb->recovery_thread_task)) {
1119 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1120 		osb->recovery_thread_task = NULL;
1121 	}
1122 
1123 out:
1124 	mutex_unlock(&osb->recovery_lock);
1125 	wake_up(&osb->recovery_event);
1126 
1127 	mlog_exit_void();
1128 }
1129 
1130 /* Does the actual journal replay and marks the journal inode as
1131  * clean. Will only replay if the journal inode is marked dirty. */
1132 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1133 				int node_num,
1134 				int slot_num)
1135 {
1136 	int status;
1137 	int got_lock = 0;
1138 	unsigned int flags;
1139 	struct inode *inode = NULL;
1140 	struct ocfs2_dinode *fe;
1141 	journal_t *journal = NULL;
1142 	struct buffer_head *bh = NULL;
1143 
1144 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1145 					    slot_num);
1146 	if (inode == NULL) {
1147 		status = -EACCES;
1148 		mlog_errno(status);
1149 		goto done;
1150 	}
1151 	if (is_bad_inode(inode)) {
1152 		status = -EACCES;
1153 		iput(inode);
1154 		inode = NULL;
1155 		mlog_errno(status);
1156 		goto done;
1157 	}
1158 	SET_INODE_JOURNAL(inode);
1159 
1160 	status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
1161 				      OCFS2_META_LOCK_RECOVERY);
1162 	if (status < 0) {
1163 		mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
1164 		if (status != -ERESTARTSYS)
1165 			mlog(ML_ERROR, "Could not lock journal!\n");
1166 		goto done;
1167 	}
1168 	got_lock = 1;
1169 
1170 	fe = (struct ocfs2_dinode *) bh->b_data;
1171 
1172 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1173 
1174 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1175 		mlog(0, "No recovery required for node %d\n", node_num);
1176 		goto done;
1177 	}
1178 
1179 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1180 	     node_num, slot_num,
1181 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1182 
1183 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1184 
1185 	status = ocfs2_force_read_journal(inode);
1186 	if (status < 0) {
1187 		mlog_errno(status);
1188 		goto done;
1189 	}
1190 
1191 	mlog(0, "calling journal_init_inode\n");
1192 	journal = journal_init_inode(inode);
1193 	if (journal == NULL) {
1194 		mlog(ML_ERROR, "Linux journal layer error\n");
1195 		status = -EIO;
1196 		goto done;
1197 	}
1198 
1199 	status = journal_load(journal);
1200 	if (status < 0) {
1201 		mlog_errno(status);
1202 		if (!igrab(inode))
1203 			BUG();
1204 		journal_destroy(journal);
1205 		goto done;
1206 	}
1207 
1208 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1209 
1210 	/* wipe the journal */
1211 	mlog(0, "flushing the journal.\n");
1212 	journal_lock_updates(journal);
1213 	status = journal_flush(journal);
1214 	journal_unlock_updates(journal);
1215 	if (status < 0)
1216 		mlog_errno(status);
1217 
1218 	/* This will mark the node clean */
1219 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1220 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1221 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1222 
1223 	status = ocfs2_write_block(osb, bh, inode);
1224 	if (status < 0)
1225 		mlog_errno(status);
1226 
1227 	if (!igrab(inode))
1228 		BUG();
1229 
1230 	journal_destroy(journal);
1231 
1232 done:
1233 	/* drop the lock on this nodes journal */
1234 	if (got_lock)
1235 		ocfs2_meta_unlock(inode, 1);
1236 
1237 	if (inode)
1238 		iput(inode);
1239 
1240 	if (bh)
1241 		brelse(bh);
1242 
1243 	mlog_exit(status);
1244 	return status;
1245 }
1246 
1247 /*
1248  * Do the most important parts of node recovery:
1249  *  - Replay it's journal
1250  *  - Stamp a clean local allocator file
1251  *  - Stamp a clean truncate log
1252  *  - Mark the node clean
1253  *
1254  * If this function completes without error, a node in OCFS2 can be
1255  * said to have been safely recovered. As a result, failure during the
1256  * second part of a nodes recovery process (local alloc recovery) is
1257  * far less concerning.
1258  */
1259 static int ocfs2_recover_node(struct ocfs2_super *osb,
1260 			      int node_num)
1261 {
1262 	int status = 0;
1263 	int slot_num;
1264 	struct ocfs2_slot_info *si = osb->slot_info;
1265 	struct ocfs2_dinode *la_copy = NULL;
1266 	struct ocfs2_dinode *tl_copy = NULL;
1267 
1268 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1269 		   node_num, osb->node_num);
1270 
1271 	mlog(0, "checking node %d\n", node_num);
1272 
1273 	/* Should not ever be called to recover ourselves -- in that
1274 	 * case we should've called ocfs2_journal_load instead. */
1275 	BUG_ON(osb->node_num == node_num);
1276 
1277 	slot_num = ocfs2_node_num_to_slot(si, node_num);
1278 	if (slot_num == OCFS2_INVALID_SLOT) {
1279 		status = 0;
1280 		mlog(0, "no slot for this node, so no recovery required.\n");
1281 		goto done;
1282 	}
1283 
1284 	mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1285 
1286 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1287 	if (status < 0) {
1288 		mlog_errno(status);
1289 		goto done;
1290 	}
1291 
1292 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1293 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1294 	if (status < 0) {
1295 		mlog_errno(status);
1296 		goto done;
1297 	}
1298 
1299 	/* An error from begin_truncate_log_recovery is not
1300 	 * serious enough to warrant halting the rest of
1301 	 * recovery. */
1302 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1303 	if (status < 0)
1304 		mlog_errno(status);
1305 
1306 	/* Likewise, this would be a strange but ultimately not so
1307 	 * harmful place to get an error... */
1308 	ocfs2_clear_slot(si, slot_num);
1309 	status = ocfs2_update_disk_slots(osb, si);
1310 	if (status < 0)
1311 		mlog_errno(status);
1312 
1313 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1314 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1315 					tl_copy);
1316 
1317 	status = 0;
1318 done:
1319 
1320 	mlog_exit(status);
1321 	return status;
1322 }
1323 
1324 /* Test node liveness by trylocking his journal. If we get the lock,
1325  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1326  * still alive (we couldn't get the lock) and < 0 on error. */
1327 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1328 				 int slot_num)
1329 {
1330 	int status, flags;
1331 	struct inode *inode = NULL;
1332 
1333 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1334 					    slot_num);
1335 	if (inode == NULL) {
1336 		mlog(ML_ERROR, "access error\n");
1337 		status = -EACCES;
1338 		goto bail;
1339 	}
1340 	if (is_bad_inode(inode)) {
1341 		mlog(ML_ERROR, "access error (bad inode)\n");
1342 		iput(inode);
1343 		inode = NULL;
1344 		status = -EACCES;
1345 		goto bail;
1346 	}
1347 	SET_INODE_JOURNAL(inode);
1348 
1349 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1350 	status = ocfs2_meta_lock_full(inode, NULL, NULL, 1, flags);
1351 	if (status < 0) {
1352 		if (status != -EAGAIN)
1353 			mlog_errno(status);
1354 		goto bail;
1355 	}
1356 
1357 	ocfs2_meta_unlock(inode, 1);
1358 bail:
1359 	if (inode)
1360 		iput(inode);
1361 
1362 	return status;
1363 }
1364 
1365 /* Call this underneath ocfs2_super_lock. It also assumes that the
1366  * slot info struct has been updated from disk. */
1367 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1368 {
1369 	int status, i, node_num;
1370 	struct ocfs2_slot_info *si = osb->slot_info;
1371 
1372 	/* This is called with the super block cluster lock, so we
1373 	 * know that the slot map can't change underneath us. */
1374 
1375 	spin_lock(&si->si_lock);
1376 	for(i = 0; i < si->si_num_slots; i++) {
1377 		if (i == osb->slot_num)
1378 			continue;
1379 		if (ocfs2_is_empty_slot(si, i))
1380 			continue;
1381 
1382 		node_num = si->si_global_node_nums[i];
1383 		if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1384 			continue;
1385 		spin_unlock(&si->si_lock);
1386 
1387 		/* Ok, we have a slot occupied by another node which
1388 		 * is not in the recovery map. We trylock his journal
1389 		 * file here to test if he's alive. */
1390 		status = ocfs2_trylock_journal(osb, i);
1391 		if (!status) {
1392 			/* Since we're called from mount, we know that
1393 			 * the recovery thread can't race us on
1394 			 * setting / checking the recovery bits. */
1395 			ocfs2_recovery_thread(osb, node_num);
1396 		} else if ((status < 0) && (status != -EAGAIN)) {
1397 			mlog_errno(status);
1398 			goto bail;
1399 		}
1400 
1401 		spin_lock(&si->si_lock);
1402 	}
1403 	spin_unlock(&si->si_lock);
1404 
1405 	status = 0;
1406 bail:
1407 	mlog_exit(status);
1408 	return status;
1409 }
1410 
1411 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1412 				 int slot)
1413 {
1414 	int status = 0;
1415 	int have_disk_lock = 0;
1416 	struct inode *inode = NULL;
1417 	struct inode *iter;
1418 	struct inode *orphan_dir_inode = NULL;
1419 	unsigned long offset, blk, local;
1420 	struct buffer_head *bh = NULL;
1421 	struct ocfs2_dir_entry *de;
1422 	struct super_block *sb = osb->sb;
1423 	struct ocfs2_inode_info *oi;
1424 
1425 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1426 
1427 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1428 						       ORPHAN_DIR_SYSTEM_INODE,
1429 						       slot);
1430 	if  (!orphan_dir_inode) {
1431 		status = -ENOENT;
1432 		mlog_errno(status);
1433 		goto out;
1434 	}
1435 
1436 	mutex_lock(&orphan_dir_inode->i_mutex);
1437 	status = ocfs2_meta_lock(orphan_dir_inode, NULL, NULL, 0);
1438 	if (status < 0) {
1439 		mutex_unlock(&orphan_dir_inode->i_mutex);
1440 		mlog_errno(status);
1441 		goto out;
1442 	}
1443 	have_disk_lock = 1;
1444 
1445 	offset = 0;
1446 	iter = NULL;
1447 	while(offset < i_size_read(orphan_dir_inode)) {
1448 		blk = offset >> sb->s_blocksize_bits;
1449 
1450 		bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1451 		if (!bh)
1452 			status = -EINVAL;
1453 		if (status < 0) {
1454 			mutex_unlock(&orphan_dir_inode->i_mutex);
1455 			if (bh)
1456 				brelse(bh);
1457 			mlog_errno(status);
1458 			goto out;
1459 		}
1460 
1461 		local = 0;
1462 		while(offset < i_size_read(orphan_dir_inode)
1463 		      && local < sb->s_blocksize) {
1464 			de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1465 
1466 			if (!ocfs2_check_dir_entry(orphan_dir_inode,
1467 						  de, bh, local)) {
1468 				mutex_unlock(&orphan_dir_inode->i_mutex);
1469 				status = -EINVAL;
1470 				mlog_errno(status);
1471 				brelse(bh);
1472 				goto out;
1473 			}
1474 
1475 			local += le16_to_cpu(de->rec_len);
1476 			offset += le16_to_cpu(de->rec_len);
1477 
1478 			/* I guess we silently fail on no inode? */
1479 			if (!le64_to_cpu(de->inode))
1480 				continue;
1481 			if (de->file_type > OCFS2_FT_MAX) {
1482 				mlog(ML_ERROR,
1483 				     "block %llu contains invalid de: "
1484 				     "inode = %"MLFu64", rec_len = %u, "
1485 				     "name_len = %u, file_type = %u, "
1486 				     "name='%.*s'\n",
1487 				     (unsigned long long)bh->b_blocknr,
1488 				     le64_to_cpu(de->inode),
1489 				     le16_to_cpu(de->rec_len),
1490 				     de->name_len,
1491 				     de->file_type,
1492 				     de->name_len,
1493 				     de->name);
1494 				continue;
1495 			}
1496 			if (de->name_len == 1 && !strncmp(".", de->name, 1))
1497 				continue;
1498 			if (de->name_len == 2 && !strncmp("..", de->name, 2))
1499 				continue;
1500 
1501 			iter = ocfs2_iget(osb, le64_to_cpu(de->inode));
1502 			if (IS_ERR(iter))
1503 				continue;
1504 
1505 			mlog(0, "queue orphan %"MLFu64"\n",
1506 			     OCFS2_I(iter)->ip_blkno);
1507 			OCFS2_I(iter)->ip_next_orphan = inode;
1508 			inode = iter;
1509 		}
1510 		brelse(bh);
1511 	}
1512 	mutex_unlock(&orphan_dir_inode->i_mutex);
1513 
1514 	ocfs2_meta_unlock(orphan_dir_inode, 0);
1515 	have_disk_lock = 0;
1516 
1517 	iput(orphan_dir_inode);
1518 	orphan_dir_inode = NULL;
1519 
1520 	while (inode) {
1521 		oi = OCFS2_I(inode);
1522 		mlog(0, "iput orphan %"MLFu64"\n", oi->ip_blkno);
1523 
1524 		iter = oi->ip_next_orphan;
1525 
1526 		spin_lock(&oi->ip_lock);
1527 		/* Delete voting may have set these on the assumption
1528 		 * that the other node would wipe them successfully.
1529 		 * If they are still in the node's orphan dir, we need
1530 		 * to reset that state. */
1531 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1532 
1533 		/* Set the proper information to get us going into
1534 		 * ocfs2_delete_inode. */
1535 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1536 		oi->ip_orphaned_slot = slot;
1537 		spin_unlock(&oi->ip_lock);
1538 
1539 		iput(inode);
1540 
1541 		inode = iter;
1542 	}
1543 
1544 out:
1545 	if (have_disk_lock)
1546 		ocfs2_meta_unlock(orphan_dir_inode, 0);
1547 
1548 	if (orphan_dir_inode)
1549 		iput(orphan_dir_inode);
1550 
1551 	return status;
1552 }
1553 
1554 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1555 {
1556 	/* This check is good because ocfs2 will wait on our recovery
1557 	 * thread before changing it to something other than MOUNTED
1558 	 * or DISABLED. */
1559 	wait_event(osb->osb_mount_event,
1560 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1561 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1562 
1563 	/* If there's an error on mount, then we may never get to the
1564 	 * MOUNTED flag, but this is set right before
1565 	 * dismount_volume() so we can trust it. */
1566 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1567 		mlog(0, "mount error, exiting!\n");
1568 		return -EBUSY;
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 static int ocfs2_commit_thread(void *arg)
1575 {
1576 	int status;
1577 	struct ocfs2_super *osb = arg;
1578 	struct ocfs2_journal *journal = osb->journal;
1579 
1580 	/* we can trust j_num_trans here because _should_stop() is only set in
1581 	 * shutdown and nobody other than ourselves should be able to start
1582 	 * transactions.  committing on shutdown might take a few iterations
1583 	 * as final transactions put deleted inodes on the list */
1584 	while (!(kthread_should_stop() &&
1585 		 atomic_read(&journal->j_num_trans) == 0)) {
1586 
1587 		wait_event_interruptible(osb->checkpoint_event,
1588 					 atomic_read(&journal->j_num_trans)
1589 					 || kthread_should_stop());
1590 
1591 		status = ocfs2_commit_cache(osb);
1592 		if (status < 0)
1593 			mlog_errno(status);
1594 
1595 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1596 			mlog(ML_KTHREAD,
1597 			     "commit_thread: %u transactions pending on "
1598 			     "shutdown\n",
1599 			     atomic_read(&journal->j_num_trans));
1600 		}
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 /* Look for a dirty journal without taking any cluster locks. Used for
1607  * hard readonly access to determine whether the file system journals
1608  * require recovery. */
1609 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1610 {
1611 	int ret = 0;
1612 	unsigned int slot;
1613 	struct buffer_head *di_bh;
1614 	struct ocfs2_dinode *di;
1615 	struct inode *journal = NULL;
1616 
1617 	for(slot = 0; slot < osb->max_slots; slot++) {
1618 		journal = ocfs2_get_system_file_inode(osb,
1619 						      JOURNAL_SYSTEM_INODE,
1620 						      slot);
1621 		if (!journal || is_bad_inode(journal)) {
1622 			ret = -EACCES;
1623 			mlog_errno(ret);
1624 			goto out;
1625 		}
1626 
1627 		di_bh = NULL;
1628 		ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1629 				       0, journal);
1630 		if (ret < 0) {
1631 			mlog_errno(ret);
1632 			goto out;
1633 		}
1634 
1635 		di = (struct ocfs2_dinode *) di_bh->b_data;
1636 
1637 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
1638 		    OCFS2_JOURNAL_DIRTY_FL)
1639 			ret = -EROFS;
1640 
1641 		brelse(di_bh);
1642 		if (ret)
1643 			break;
1644 	}
1645 
1646 out:
1647 	if (journal)
1648 		iput(journal);
1649 
1650 	return ret;
1651 }
1652