1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * journal.c 4 * 5 * Defines functions of journalling api 6 * 7 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/highmem.h> 14 #include <linux/kthread.h> 15 #include <linux/time.h> 16 #include <linux/random.h> 17 #include <linux/delay.h> 18 #include <linux/writeback.h> 19 20 #include <cluster/masklog.h> 21 22 #include "ocfs2.h" 23 24 #include "alloc.h" 25 #include "blockcheck.h" 26 #include "dir.h" 27 #include "dlmglue.h" 28 #include "extent_map.h" 29 #include "heartbeat.h" 30 #include "inode.h" 31 #include "journal.h" 32 #include "localalloc.h" 33 #include "slot_map.h" 34 #include "super.h" 35 #include "sysfile.h" 36 #include "uptodate.h" 37 #include "quota.h" 38 #include "file.h" 39 #include "namei.h" 40 41 #include "buffer_head_io.h" 42 #include "ocfs2_trace.h" 43 44 DEFINE_SPINLOCK(trans_inc_lock); 45 46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 47 48 static int ocfs2_force_read_journal(struct inode *inode); 49 static int ocfs2_recover_node(struct ocfs2_super *osb, 50 int node_num, int slot_num); 51 static int __ocfs2_recovery_thread(void *arg); 52 static int ocfs2_commit_cache(struct ocfs2_super *osb); 53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 55 int dirty, int replayed); 56 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 57 int slot_num); 58 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 59 int slot, 60 enum ocfs2_orphan_reco_type orphan_reco_type); 61 static int ocfs2_commit_thread(void *arg); 62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 63 int slot_num, 64 struct ocfs2_dinode *la_dinode, 65 struct ocfs2_dinode *tl_dinode, 66 struct ocfs2_quota_recovery *qrec, 67 enum ocfs2_orphan_reco_type orphan_reco_type); 68 69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 70 { 71 return __ocfs2_wait_on_mount(osb, 0); 72 } 73 74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 75 { 76 return __ocfs2_wait_on_mount(osb, 1); 77 } 78 79 /* 80 * This replay_map is to track online/offline slots, so we could recover 81 * offline slots during recovery and mount 82 */ 83 84 enum ocfs2_replay_state { 85 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 86 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 87 REPLAY_DONE /* Replay was already queued */ 88 }; 89 90 struct ocfs2_replay_map { 91 unsigned int rm_slots; 92 enum ocfs2_replay_state rm_state; 93 unsigned char rm_replay_slots[]; 94 }; 95 96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 97 { 98 if (!osb->replay_map) 99 return; 100 101 /* If we've already queued the replay, we don't have any more to do */ 102 if (osb->replay_map->rm_state == REPLAY_DONE) 103 return; 104 105 osb->replay_map->rm_state = state; 106 } 107 108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 109 { 110 struct ocfs2_replay_map *replay_map; 111 int i, node_num; 112 113 /* If replay map is already set, we don't do it again */ 114 if (osb->replay_map) 115 return 0; 116 117 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 118 (osb->max_slots * sizeof(char)), GFP_KERNEL); 119 120 if (!replay_map) { 121 mlog_errno(-ENOMEM); 122 return -ENOMEM; 123 } 124 125 spin_lock(&osb->osb_lock); 126 127 replay_map->rm_slots = osb->max_slots; 128 replay_map->rm_state = REPLAY_UNNEEDED; 129 130 /* set rm_replay_slots for offline slot(s) */ 131 for (i = 0; i < replay_map->rm_slots; i++) { 132 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 133 replay_map->rm_replay_slots[i] = 1; 134 } 135 136 osb->replay_map = replay_map; 137 spin_unlock(&osb->osb_lock); 138 return 0; 139 } 140 141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 142 enum ocfs2_orphan_reco_type orphan_reco_type) 143 { 144 struct ocfs2_replay_map *replay_map = osb->replay_map; 145 int i; 146 147 if (!replay_map) 148 return; 149 150 if (replay_map->rm_state != REPLAY_NEEDED) 151 return; 152 153 for (i = 0; i < replay_map->rm_slots; i++) 154 if (replay_map->rm_replay_slots[i]) 155 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 156 NULL, NULL, 157 orphan_reco_type); 158 replay_map->rm_state = REPLAY_DONE; 159 } 160 161 void ocfs2_free_replay_slots(struct ocfs2_super *osb) 162 { 163 struct ocfs2_replay_map *replay_map = osb->replay_map; 164 165 if (!osb->replay_map) 166 return; 167 168 kfree(replay_map); 169 osb->replay_map = NULL; 170 } 171 172 int ocfs2_recovery_init(struct ocfs2_super *osb) 173 { 174 struct ocfs2_recovery_map *rm; 175 176 mutex_init(&osb->recovery_lock); 177 osb->disable_recovery = 0; 178 osb->recovery_thread_task = NULL; 179 init_waitqueue_head(&osb->recovery_event); 180 181 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 182 osb->max_slots * sizeof(unsigned int), 183 GFP_KERNEL); 184 if (!rm) { 185 mlog_errno(-ENOMEM); 186 return -ENOMEM; 187 } 188 189 rm->rm_entries = (unsigned int *)((char *)rm + 190 sizeof(struct ocfs2_recovery_map)); 191 osb->recovery_map = rm; 192 193 return 0; 194 } 195 196 /* we can't grab the goofy sem lock from inside wait_event, so we use 197 * memory barriers to make sure that we'll see the null task before 198 * being woken up */ 199 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 200 { 201 mb(); 202 return osb->recovery_thread_task != NULL; 203 } 204 205 void ocfs2_recovery_exit(struct ocfs2_super *osb) 206 { 207 struct ocfs2_recovery_map *rm; 208 209 /* disable any new recovery threads and wait for any currently 210 * running ones to exit. Do this before setting the vol_state. */ 211 mutex_lock(&osb->recovery_lock); 212 osb->disable_recovery = 1; 213 mutex_unlock(&osb->recovery_lock); 214 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 215 216 /* At this point, we know that no more recovery threads can be 217 * launched, so wait for any recovery completion work to 218 * complete. */ 219 if (osb->ocfs2_wq) 220 flush_workqueue(osb->ocfs2_wq); 221 222 /* 223 * Now that recovery is shut down, and the osb is about to be 224 * freed, the osb_lock is not taken here. 225 */ 226 rm = osb->recovery_map; 227 /* XXX: Should we bug if there are dirty entries? */ 228 229 kfree(rm); 230 } 231 232 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 233 unsigned int node_num) 234 { 235 int i; 236 struct ocfs2_recovery_map *rm = osb->recovery_map; 237 238 assert_spin_locked(&osb->osb_lock); 239 240 for (i = 0; i < rm->rm_used; i++) { 241 if (rm->rm_entries[i] == node_num) 242 return 1; 243 } 244 245 return 0; 246 } 247 248 /* Behaves like test-and-set. Returns the previous value */ 249 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 250 unsigned int node_num) 251 { 252 struct ocfs2_recovery_map *rm = osb->recovery_map; 253 254 spin_lock(&osb->osb_lock); 255 if (__ocfs2_recovery_map_test(osb, node_num)) { 256 spin_unlock(&osb->osb_lock); 257 return 1; 258 } 259 260 /* XXX: Can this be exploited? Not from o2dlm... */ 261 BUG_ON(rm->rm_used >= osb->max_slots); 262 263 rm->rm_entries[rm->rm_used] = node_num; 264 rm->rm_used++; 265 spin_unlock(&osb->osb_lock); 266 267 return 0; 268 } 269 270 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 271 unsigned int node_num) 272 { 273 int i; 274 struct ocfs2_recovery_map *rm = osb->recovery_map; 275 276 spin_lock(&osb->osb_lock); 277 278 for (i = 0; i < rm->rm_used; i++) { 279 if (rm->rm_entries[i] == node_num) 280 break; 281 } 282 283 if (i < rm->rm_used) { 284 /* XXX: be careful with the pointer math */ 285 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 286 (rm->rm_used - i - 1) * sizeof(unsigned int)); 287 rm->rm_used--; 288 } 289 290 spin_unlock(&osb->osb_lock); 291 } 292 293 static int ocfs2_commit_cache(struct ocfs2_super *osb) 294 { 295 int status = 0; 296 unsigned int flushed; 297 struct ocfs2_journal *journal = NULL; 298 299 journal = osb->journal; 300 301 /* Flush all pending commits and checkpoint the journal. */ 302 down_write(&journal->j_trans_barrier); 303 304 flushed = atomic_read(&journal->j_num_trans); 305 trace_ocfs2_commit_cache_begin(flushed); 306 if (flushed == 0) { 307 up_write(&journal->j_trans_barrier); 308 goto finally; 309 } 310 311 jbd2_journal_lock_updates(journal->j_journal); 312 status = jbd2_journal_flush(journal->j_journal, 0); 313 jbd2_journal_unlock_updates(journal->j_journal); 314 if (status < 0) { 315 up_write(&journal->j_trans_barrier); 316 mlog_errno(status); 317 goto finally; 318 } 319 320 ocfs2_inc_trans_id(journal); 321 322 flushed = atomic_read(&journal->j_num_trans); 323 atomic_set(&journal->j_num_trans, 0); 324 up_write(&journal->j_trans_barrier); 325 326 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 327 328 ocfs2_wake_downconvert_thread(osb); 329 wake_up(&journal->j_checkpointed); 330 finally: 331 return status; 332 } 333 334 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 335 { 336 journal_t *journal = osb->journal->j_journal; 337 handle_t *handle; 338 339 BUG_ON(!osb || !osb->journal->j_journal); 340 341 if (ocfs2_is_hard_readonly(osb)) 342 return ERR_PTR(-EROFS); 343 344 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 345 BUG_ON(max_buffs <= 0); 346 347 /* Nested transaction? Just return the handle... */ 348 if (journal_current_handle()) 349 return jbd2_journal_start(journal, max_buffs); 350 351 sb_start_intwrite(osb->sb); 352 353 down_read(&osb->journal->j_trans_barrier); 354 355 handle = jbd2_journal_start(journal, max_buffs); 356 if (IS_ERR(handle)) { 357 up_read(&osb->journal->j_trans_barrier); 358 sb_end_intwrite(osb->sb); 359 360 mlog_errno(PTR_ERR(handle)); 361 362 if (is_journal_aborted(journal)) { 363 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 364 handle = ERR_PTR(-EROFS); 365 } 366 } else { 367 if (!ocfs2_mount_local(osb)) 368 atomic_inc(&(osb->journal->j_num_trans)); 369 } 370 371 return handle; 372 } 373 374 int ocfs2_commit_trans(struct ocfs2_super *osb, 375 handle_t *handle) 376 { 377 int ret, nested; 378 struct ocfs2_journal *journal = osb->journal; 379 380 BUG_ON(!handle); 381 382 nested = handle->h_ref > 1; 383 ret = jbd2_journal_stop(handle); 384 if (ret < 0) 385 mlog_errno(ret); 386 387 if (!nested) { 388 up_read(&journal->j_trans_barrier); 389 sb_end_intwrite(osb->sb); 390 } 391 392 return ret; 393 } 394 395 /* 396 * 'nblocks' is what you want to add to the current transaction. 397 * 398 * This might call jbd2_journal_restart() which will commit dirty buffers 399 * and then restart the transaction. Before calling 400 * ocfs2_extend_trans(), any changed blocks should have been 401 * dirtied. After calling it, all blocks which need to be changed must 402 * go through another set of journal_access/journal_dirty calls. 403 * 404 * WARNING: This will not release any semaphores or disk locks taken 405 * during the transaction, so make sure they were taken *before* 406 * start_trans or we'll have ordering deadlocks. 407 * 408 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 409 * good because transaction ids haven't yet been recorded on the 410 * cluster locks associated with this handle. 411 */ 412 int ocfs2_extend_trans(handle_t *handle, int nblocks) 413 { 414 int status, old_nblocks; 415 416 BUG_ON(!handle); 417 BUG_ON(nblocks < 0); 418 419 if (!nblocks) 420 return 0; 421 422 old_nblocks = jbd2_handle_buffer_credits(handle); 423 424 trace_ocfs2_extend_trans(old_nblocks, nblocks); 425 426 #ifdef CONFIG_OCFS2_DEBUG_FS 427 status = 1; 428 #else 429 status = jbd2_journal_extend(handle, nblocks, 0); 430 if (status < 0) { 431 mlog_errno(status); 432 goto bail; 433 } 434 #endif 435 436 if (status > 0) { 437 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 438 status = jbd2_journal_restart(handle, 439 old_nblocks + nblocks); 440 if (status < 0) { 441 mlog_errno(status); 442 goto bail; 443 } 444 } 445 446 status = 0; 447 bail: 448 return status; 449 } 450 451 /* 452 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 453 * If that fails, restart the transaction & regain write access for the 454 * buffer head which is used for metadata modifications. 455 * Taken from Ext4: extend_or_restart_transaction() 456 */ 457 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 458 { 459 int status, old_nblks; 460 461 BUG_ON(!handle); 462 463 old_nblks = jbd2_handle_buffer_credits(handle); 464 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 465 466 if (old_nblks < thresh) 467 return 0; 468 469 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0); 470 if (status < 0) { 471 mlog_errno(status); 472 goto bail; 473 } 474 475 if (status > 0) { 476 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 477 if (status < 0) 478 mlog_errno(status); 479 } 480 481 bail: 482 return status; 483 } 484 485 486 struct ocfs2_triggers { 487 struct jbd2_buffer_trigger_type ot_triggers; 488 int ot_offset; 489 }; 490 491 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 492 { 493 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 494 } 495 496 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 497 struct buffer_head *bh, 498 void *data, size_t size) 499 { 500 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 501 502 /* 503 * We aren't guaranteed to have the superblock here, so we 504 * must unconditionally compute the ecc data. 505 * __ocfs2_journal_access() will only set the triggers if 506 * metaecc is enabled. 507 */ 508 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 509 } 510 511 /* 512 * Quota blocks have their own trigger because the struct ocfs2_block_check 513 * offset depends on the blocksize. 514 */ 515 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 516 struct buffer_head *bh, 517 void *data, size_t size) 518 { 519 struct ocfs2_disk_dqtrailer *dqt = 520 ocfs2_block_dqtrailer(size, data); 521 522 /* 523 * We aren't guaranteed to have the superblock here, so we 524 * must unconditionally compute the ecc data. 525 * __ocfs2_journal_access() will only set the triggers if 526 * metaecc is enabled. 527 */ 528 ocfs2_block_check_compute(data, size, &dqt->dq_check); 529 } 530 531 /* 532 * Directory blocks also have their own trigger because the 533 * struct ocfs2_block_check offset depends on the blocksize. 534 */ 535 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 536 struct buffer_head *bh, 537 void *data, size_t size) 538 { 539 struct ocfs2_dir_block_trailer *trailer = 540 ocfs2_dir_trailer_from_size(size, data); 541 542 /* 543 * We aren't guaranteed to have the superblock here, so we 544 * must unconditionally compute the ecc data. 545 * __ocfs2_journal_access() will only set the triggers if 546 * metaecc is enabled. 547 */ 548 ocfs2_block_check_compute(data, size, &trailer->db_check); 549 } 550 551 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 552 struct buffer_head *bh) 553 { 554 mlog(ML_ERROR, 555 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 556 "bh->b_blocknr = %llu\n", 557 (unsigned long)bh, 558 (unsigned long long)bh->b_blocknr); 559 560 ocfs2_error(bh->b_bdev->bd_super, 561 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 562 } 563 564 static struct ocfs2_triggers di_triggers = { 565 .ot_triggers = { 566 .t_frozen = ocfs2_frozen_trigger, 567 .t_abort = ocfs2_abort_trigger, 568 }, 569 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 570 }; 571 572 static struct ocfs2_triggers eb_triggers = { 573 .ot_triggers = { 574 .t_frozen = ocfs2_frozen_trigger, 575 .t_abort = ocfs2_abort_trigger, 576 }, 577 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 578 }; 579 580 static struct ocfs2_triggers rb_triggers = { 581 .ot_triggers = { 582 .t_frozen = ocfs2_frozen_trigger, 583 .t_abort = ocfs2_abort_trigger, 584 }, 585 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 586 }; 587 588 static struct ocfs2_triggers gd_triggers = { 589 .ot_triggers = { 590 .t_frozen = ocfs2_frozen_trigger, 591 .t_abort = ocfs2_abort_trigger, 592 }, 593 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 594 }; 595 596 static struct ocfs2_triggers db_triggers = { 597 .ot_triggers = { 598 .t_frozen = ocfs2_db_frozen_trigger, 599 .t_abort = ocfs2_abort_trigger, 600 }, 601 }; 602 603 static struct ocfs2_triggers xb_triggers = { 604 .ot_triggers = { 605 .t_frozen = ocfs2_frozen_trigger, 606 .t_abort = ocfs2_abort_trigger, 607 }, 608 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 609 }; 610 611 static struct ocfs2_triggers dq_triggers = { 612 .ot_triggers = { 613 .t_frozen = ocfs2_dq_frozen_trigger, 614 .t_abort = ocfs2_abort_trigger, 615 }, 616 }; 617 618 static struct ocfs2_triggers dr_triggers = { 619 .ot_triggers = { 620 .t_frozen = ocfs2_frozen_trigger, 621 .t_abort = ocfs2_abort_trigger, 622 }, 623 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 624 }; 625 626 static struct ocfs2_triggers dl_triggers = { 627 .ot_triggers = { 628 .t_frozen = ocfs2_frozen_trigger, 629 .t_abort = ocfs2_abort_trigger, 630 }, 631 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 632 }; 633 634 static int __ocfs2_journal_access(handle_t *handle, 635 struct ocfs2_caching_info *ci, 636 struct buffer_head *bh, 637 struct ocfs2_triggers *triggers, 638 int type) 639 { 640 int status; 641 struct ocfs2_super *osb = 642 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 643 644 BUG_ON(!ci || !ci->ci_ops); 645 BUG_ON(!handle); 646 BUG_ON(!bh); 647 648 trace_ocfs2_journal_access( 649 (unsigned long long)ocfs2_metadata_cache_owner(ci), 650 (unsigned long long)bh->b_blocknr, type, bh->b_size); 651 652 /* we can safely remove this assertion after testing. */ 653 if (!buffer_uptodate(bh)) { 654 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 655 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 656 (unsigned long long)bh->b_blocknr, bh->b_state); 657 658 lock_buffer(bh); 659 /* 660 * A previous transaction with a couple of buffer heads fail 661 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 662 * For current transaction, the bh is just among those error 663 * bhs which previous transaction handle. We can't just clear 664 * its BH_Write_EIO and reuse directly, since other bhs are 665 * not written to disk yet and that will cause metadata 666 * inconsistency. So we should set fs read-only to avoid 667 * further damage. 668 */ 669 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 670 unlock_buffer(bh); 671 return ocfs2_error(osb->sb, "A previous attempt to " 672 "write this buffer head failed\n"); 673 } 674 unlock_buffer(bh); 675 } 676 677 /* Set the current transaction information on the ci so 678 * that the locking code knows whether it can drop it's locks 679 * on this ci or not. We're protected from the commit 680 * thread updating the current transaction id until 681 * ocfs2_commit_trans() because ocfs2_start_trans() took 682 * j_trans_barrier for us. */ 683 ocfs2_set_ci_lock_trans(osb->journal, ci); 684 685 ocfs2_metadata_cache_io_lock(ci); 686 switch (type) { 687 case OCFS2_JOURNAL_ACCESS_CREATE: 688 case OCFS2_JOURNAL_ACCESS_WRITE: 689 status = jbd2_journal_get_write_access(handle, bh); 690 break; 691 692 case OCFS2_JOURNAL_ACCESS_UNDO: 693 status = jbd2_journal_get_undo_access(handle, bh); 694 break; 695 696 default: 697 status = -EINVAL; 698 mlog(ML_ERROR, "Unknown access type!\n"); 699 } 700 if (!status && ocfs2_meta_ecc(osb) && triggers) 701 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 702 ocfs2_metadata_cache_io_unlock(ci); 703 704 if (status < 0) 705 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 706 status, type); 707 708 return status; 709 } 710 711 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 712 struct buffer_head *bh, int type) 713 { 714 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 715 } 716 717 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 718 struct buffer_head *bh, int type) 719 { 720 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 721 } 722 723 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 724 struct buffer_head *bh, int type) 725 { 726 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 727 type); 728 } 729 730 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 731 struct buffer_head *bh, int type) 732 { 733 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 734 } 735 736 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 737 struct buffer_head *bh, int type) 738 { 739 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 740 } 741 742 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 743 struct buffer_head *bh, int type) 744 { 745 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 746 } 747 748 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 749 struct buffer_head *bh, int type) 750 { 751 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 752 } 753 754 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 755 struct buffer_head *bh, int type) 756 { 757 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 758 } 759 760 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 761 struct buffer_head *bh, int type) 762 { 763 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 764 } 765 766 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 767 struct buffer_head *bh, int type) 768 { 769 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 770 } 771 772 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 773 { 774 int status; 775 776 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 777 778 status = jbd2_journal_dirty_metadata(handle, bh); 779 if (status) { 780 mlog_errno(status); 781 if (!is_handle_aborted(handle)) { 782 journal_t *journal = handle->h_transaction->t_journal; 783 struct super_block *sb = bh->b_bdev->bd_super; 784 785 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " 786 "Aborting transaction and journal.\n"); 787 handle->h_err = status; 788 jbd2_journal_abort_handle(handle); 789 jbd2_journal_abort(journal, status); 790 ocfs2_abort(sb, "Journal already aborted.\n"); 791 } 792 } 793 } 794 795 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 796 797 void ocfs2_set_journal_params(struct ocfs2_super *osb) 798 { 799 journal_t *journal = osb->journal->j_journal; 800 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 801 802 if (osb->osb_commit_interval) 803 commit_interval = osb->osb_commit_interval; 804 805 write_lock(&journal->j_state_lock); 806 journal->j_commit_interval = commit_interval; 807 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 808 journal->j_flags |= JBD2_BARRIER; 809 else 810 journal->j_flags &= ~JBD2_BARRIER; 811 write_unlock(&journal->j_state_lock); 812 } 813 814 /* 815 * alloc & initialize skeleton for journal structure. 816 * ocfs2_journal_init() will make fs have journal ability. 817 */ 818 int ocfs2_journal_alloc(struct ocfs2_super *osb) 819 { 820 int status = 0; 821 struct ocfs2_journal *journal; 822 823 journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL); 824 if (!journal) { 825 mlog(ML_ERROR, "unable to alloc journal\n"); 826 status = -ENOMEM; 827 goto bail; 828 } 829 osb->journal = journal; 830 journal->j_osb = osb; 831 832 atomic_set(&journal->j_num_trans, 0); 833 init_rwsem(&journal->j_trans_barrier); 834 init_waitqueue_head(&journal->j_checkpointed); 835 spin_lock_init(&journal->j_lock); 836 journal->j_trans_id = 1UL; 837 INIT_LIST_HEAD(&journal->j_la_cleanups); 838 INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery); 839 journal->j_state = OCFS2_JOURNAL_FREE; 840 841 bail: 842 return status; 843 } 844 845 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 846 { 847 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 848 struct writeback_control wbc = { 849 .sync_mode = WB_SYNC_ALL, 850 .nr_to_write = mapping->nrpages * 2, 851 .range_start = jinode->i_dirty_start, 852 .range_end = jinode->i_dirty_end, 853 }; 854 855 return filemap_fdatawrite_wbc(mapping, &wbc); 856 } 857 858 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty) 859 { 860 int status = -1; 861 struct inode *inode = NULL; /* the journal inode */ 862 journal_t *j_journal = NULL; 863 struct ocfs2_journal *journal = osb->journal; 864 struct ocfs2_dinode *di = NULL; 865 struct buffer_head *bh = NULL; 866 int inode_lock = 0; 867 868 BUG_ON(!journal); 869 /* already have the inode for our journal */ 870 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 871 osb->slot_num); 872 if (inode == NULL) { 873 status = -EACCES; 874 mlog_errno(status); 875 goto done; 876 } 877 if (is_bad_inode(inode)) { 878 mlog(ML_ERROR, "access error (bad inode)\n"); 879 iput(inode); 880 inode = NULL; 881 status = -EACCES; 882 goto done; 883 } 884 885 SET_INODE_JOURNAL(inode); 886 OCFS2_I(inode)->ip_open_count++; 887 888 /* Skip recovery waits here - journal inode metadata never 889 * changes in a live cluster so it can be considered an 890 * exception to the rule. */ 891 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 892 if (status < 0) { 893 if (status != -ERESTARTSYS) 894 mlog(ML_ERROR, "Could not get lock on journal!\n"); 895 goto done; 896 } 897 898 inode_lock = 1; 899 di = (struct ocfs2_dinode *)bh->b_data; 900 901 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 902 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 903 i_size_read(inode)); 904 status = -EINVAL; 905 goto done; 906 } 907 908 trace_ocfs2_journal_init(i_size_read(inode), 909 (unsigned long long)inode->i_blocks, 910 OCFS2_I(inode)->ip_clusters); 911 912 /* call the kernels journal init function now */ 913 j_journal = jbd2_journal_init_inode(inode); 914 if (j_journal == NULL) { 915 mlog(ML_ERROR, "Linux journal layer error\n"); 916 status = -EINVAL; 917 goto done; 918 } 919 920 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len); 921 922 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 923 OCFS2_JOURNAL_DIRTY_FL); 924 925 journal->j_journal = j_journal; 926 journal->j_journal->j_submit_inode_data_buffers = 927 ocfs2_journal_submit_inode_data_buffers; 928 journal->j_journal->j_finish_inode_data_buffers = 929 jbd2_journal_finish_inode_data_buffers; 930 journal->j_inode = inode; 931 journal->j_bh = bh; 932 933 ocfs2_set_journal_params(osb); 934 935 journal->j_state = OCFS2_JOURNAL_LOADED; 936 937 status = 0; 938 done: 939 if (status < 0) { 940 if (inode_lock) 941 ocfs2_inode_unlock(inode, 1); 942 brelse(bh); 943 if (inode) { 944 OCFS2_I(inode)->ip_open_count--; 945 iput(inode); 946 } 947 } 948 949 return status; 950 } 951 952 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 953 { 954 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 955 } 956 957 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 958 { 959 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 960 } 961 962 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 963 int dirty, int replayed) 964 { 965 int status; 966 unsigned int flags; 967 struct ocfs2_journal *journal = osb->journal; 968 struct buffer_head *bh = journal->j_bh; 969 struct ocfs2_dinode *fe; 970 971 fe = (struct ocfs2_dinode *)bh->b_data; 972 973 /* The journal bh on the osb always comes from ocfs2_journal_init() 974 * and was validated there inside ocfs2_inode_lock_full(). It's a 975 * code bug if we mess it up. */ 976 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 977 978 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 979 if (dirty) 980 flags |= OCFS2_JOURNAL_DIRTY_FL; 981 else 982 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 983 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 984 985 if (replayed) 986 ocfs2_bump_recovery_generation(fe); 987 988 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 989 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 990 if (status < 0) 991 mlog_errno(status); 992 993 return status; 994 } 995 996 /* 997 * If the journal has been kmalloc'd it needs to be freed after this 998 * call. 999 */ 1000 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 1001 { 1002 struct ocfs2_journal *journal = NULL; 1003 int status = 0; 1004 struct inode *inode = NULL; 1005 int num_running_trans = 0; 1006 1007 BUG_ON(!osb); 1008 1009 journal = osb->journal; 1010 if (!journal) 1011 goto done; 1012 1013 inode = journal->j_inode; 1014 1015 if (journal->j_state != OCFS2_JOURNAL_LOADED) 1016 goto done; 1017 1018 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 1019 if (!igrab(inode)) 1020 BUG(); 1021 1022 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 1023 trace_ocfs2_journal_shutdown(num_running_trans); 1024 1025 /* Do a commit_cache here. It will flush our journal, *and* 1026 * release any locks that are still held. 1027 * set the SHUTDOWN flag and release the trans lock. 1028 * the commit thread will take the trans lock for us below. */ 1029 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 1030 1031 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 1032 * drop the trans_lock (which we want to hold until we 1033 * completely destroy the journal. */ 1034 if (osb->commit_task) { 1035 /* Wait for the commit thread */ 1036 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 1037 kthread_stop(osb->commit_task); 1038 osb->commit_task = NULL; 1039 } 1040 1041 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 1042 1043 if (ocfs2_mount_local(osb)) { 1044 jbd2_journal_lock_updates(journal->j_journal); 1045 status = jbd2_journal_flush(journal->j_journal, 0); 1046 jbd2_journal_unlock_updates(journal->j_journal); 1047 if (status < 0) 1048 mlog_errno(status); 1049 } 1050 1051 /* Shutdown the kernel journal system */ 1052 if (!jbd2_journal_destroy(journal->j_journal) && !status) { 1053 /* 1054 * Do not toggle if flush was unsuccessful otherwise 1055 * will leave dirty metadata in a "clean" journal 1056 */ 1057 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1058 if (status < 0) 1059 mlog_errno(status); 1060 } 1061 journal->j_journal = NULL; 1062 1063 OCFS2_I(inode)->ip_open_count--; 1064 1065 /* unlock our journal */ 1066 ocfs2_inode_unlock(inode, 1); 1067 1068 brelse(journal->j_bh); 1069 journal->j_bh = NULL; 1070 1071 journal->j_state = OCFS2_JOURNAL_FREE; 1072 1073 done: 1074 iput(inode); 1075 kfree(journal); 1076 osb->journal = NULL; 1077 } 1078 1079 static void ocfs2_clear_journal_error(struct super_block *sb, 1080 journal_t *journal, 1081 int slot) 1082 { 1083 int olderr; 1084 1085 olderr = jbd2_journal_errno(journal); 1086 if (olderr) { 1087 mlog(ML_ERROR, "File system error %d recorded in " 1088 "journal %u.\n", olderr, slot); 1089 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1090 sb->s_id); 1091 1092 jbd2_journal_ack_err(journal); 1093 jbd2_journal_clear_err(journal); 1094 } 1095 } 1096 1097 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1098 { 1099 int status = 0; 1100 struct ocfs2_super *osb; 1101 1102 BUG_ON(!journal); 1103 1104 osb = journal->j_osb; 1105 1106 status = jbd2_journal_load(journal->j_journal); 1107 if (status < 0) { 1108 mlog(ML_ERROR, "Failed to load journal!\n"); 1109 goto done; 1110 } 1111 1112 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1113 1114 if (replayed) { 1115 jbd2_journal_lock_updates(journal->j_journal); 1116 status = jbd2_journal_flush(journal->j_journal, 0); 1117 jbd2_journal_unlock_updates(journal->j_journal); 1118 if (status < 0) 1119 mlog_errno(status); 1120 } 1121 1122 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1123 if (status < 0) { 1124 mlog_errno(status); 1125 goto done; 1126 } 1127 1128 /* Launch the commit thread */ 1129 if (!local) { 1130 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1131 "ocfs2cmt-%s", osb->uuid_str); 1132 if (IS_ERR(osb->commit_task)) { 1133 status = PTR_ERR(osb->commit_task); 1134 osb->commit_task = NULL; 1135 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1136 "error=%d", status); 1137 goto done; 1138 } 1139 } else 1140 osb->commit_task = NULL; 1141 1142 done: 1143 return status; 1144 } 1145 1146 1147 /* 'full' flag tells us whether we clear out all blocks or if we just 1148 * mark the journal clean */ 1149 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1150 { 1151 int status; 1152 1153 BUG_ON(!journal); 1154 1155 status = jbd2_journal_wipe(journal->j_journal, full); 1156 if (status < 0) { 1157 mlog_errno(status); 1158 goto bail; 1159 } 1160 1161 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1162 if (status < 0) 1163 mlog_errno(status); 1164 1165 bail: 1166 return status; 1167 } 1168 1169 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1170 { 1171 int empty; 1172 struct ocfs2_recovery_map *rm = osb->recovery_map; 1173 1174 spin_lock(&osb->osb_lock); 1175 empty = (rm->rm_used == 0); 1176 spin_unlock(&osb->osb_lock); 1177 1178 return empty; 1179 } 1180 1181 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1182 { 1183 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1184 } 1185 1186 /* 1187 * JBD Might read a cached version of another nodes journal file. We 1188 * don't want this as this file changes often and we get no 1189 * notification on those changes. The only way to be sure that we've 1190 * got the most up to date version of those blocks then is to force 1191 * read them off disk. Just searching through the buffer cache won't 1192 * work as there may be pages backing this file which are still marked 1193 * up to date. We know things can't change on this file underneath us 1194 * as we have the lock by now :) 1195 */ 1196 static int ocfs2_force_read_journal(struct inode *inode) 1197 { 1198 int status = 0; 1199 int i; 1200 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1201 struct buffer_head *bh = NULL; 1202 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1203 1204 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1205 v_blkno = 0; 1206 while (v_blkno < num_blocks) { 1207 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1208 &p_blkno, &p_blocks, NULL); 1209 if (status < 0) { 1210 mlog_errno(status); 1211 goto bail; 1212 } 1213 1214 for (i = 0; i < p_blocks; i++, p_blkno++) { 1215 bh = __find_get_block(osb->sb->s_bdev, p_blkno, 1216 osb->sb->s_blocksize); 1217 /* block not cached. */ 1218 if (!bh) 1219 continue; 1220 1221 brelse(bh); 1222 bh = NULL; 1223 /* We are reading journal data which should not 1224 * be put in the uptodate cache. 1225 */ 1226 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1227 if (status < 0) { 1228 mlog_errno(status); 1229 goto bail; 1230 } 1231 1232 brelse(bh); 1233 bh = NULL; 1234 } 1235 1236 v_blkno += p_blocks; 1237 } 1238 1239 bail: 1240 return status; 1241 } 1242 1243 struct ocfs2_la_recovery_item { 1244 struct list_head lri_list; 1245 int lri_slot; 1246 struct ocfs2_dinode *lri_la_dinode; 1247 struct ocfs2_dinode *lri_tl_dinode; 1248 struct ocfs2_quota_recovery *lri_qrec; 1249 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1250 }; 1251 1252 /* Does the second half of the recovery process. By this point, the 1253 * node is marked clean and can actually be considered recovered, 1254 * hence it's no longer in the recovery map, but there's still some 1255 * cleanup we can do which shouldn't happen within the recovery thread 1256 * as locking in that context becomes very difficult if we are to take 1257 * recovering nodes into account. 1258 * 1259 * NOTE: This function can and will sleep on recovery of other nodes 1260 * during cluster locking, just like any other ocfs2 process. 1261 */ 1262 void ocfs2_complete_recovery(struct work_struct *work) 1263 { 1264 int ret = 0; 1265 struct ocfs2_journal *journal = 1266 container_of(work, struct ocfs2_journal, j_recovery_work); 1267 struct ocfs2_super *osb = journal->j_osb; 1268 struct ocfs2_dinode *la_dinode, *tl_dinode; 1269 struct ocfs2_la_recovery_item *item, *n; 1270 struct ocfs2_quota_recovery *qrec; 1271 enum ocfs2_orphan_reco_type orphan_reco_type; 1272 LIST_HEAD(tmp_la_list); 1273 1274 trace_ocfs2_complete_recovery( 1275 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1276 1277 spin_lock(&journal->j_lock); 1278 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1279 spin_unlock(&journal->j_lock); 1280 1281 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1282 list_del_init(&item->lri_list); 1283 1284 ocfs2_wait_on_quotas(osb); 1285 1286 la_dinode = item->lri_la_dinode; 1287 tl_dinode = item->lri_tl_dinode; 1288 qrec = item->lri_qrec; 1289 orphan_reco_type = item->lri_orphan_reco_type; 1290 1291 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1292 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1293 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1294 qrec); 1295 1296 if (la_dinode) { 1297 ret = ocfs2_complete_local_alloc_recovery(osb, 1298 la_dinode); 1299 if (ret < 0) 1300 mlog_errno(ret); 1301 1302 kfree(la_dinode); 1303 } 1304 1305 if (tl_dinode) { 1306 ret = ocfs2_complete_truncate_log_recovery(osb, 1307 tl_dinode); 1308 if (ret < 0) 1309 mlog_errno(ret); 1310 1311 kfree(tl_dinode); 1312 } 1313 1314 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1315 orphan_reco_type); 1316 if (ret < 0) 1317 mlog_errno(ret); 1318 1319 if (qrec) { 1320 ret = ocfs2_finish_quota_recovery(osb, qrec, 1321 item->lri_slot); 1322 if (ret < 0) 1323 mlog_errno(ret); 1324 /* Recovery info is already freed now */ 1325 } 1326 1327 kfree(item); 1328 } 1329 1330 trace_ocfs2_complete_recovery_end(ret); 1331 } 1332 1333 /* NOTE: This function always eats your references to la_dinode and 1334 * tl_dinode, either manually on error, or by passing them to 1335 * ocfs2_complete_recovery */ 1336 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1337 int slot_num, 1338 struct ocfs2_dinode *la_dinode, 1339 struct ocfs2_dinode *tl_dinode, 1340 struct ocfs2_quota_recovery *qrec, 1341 enum ocfs2_orphan_reco_type orphan_reco_type) 1342 { 1343 struct ocfs2_la_recovery_item *item; 1344 1345 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1346 if (!item) { 1347 /* Though we wish to avoid it, we are in fact safe in 1348 * skipping local alloc cleanup as fsck.ocfs2 is more 1349 * than capable of reclaiming unused space. */ 1350 kfree(la_dinode); 1351 kfree(tl_dinode); 1352 1353 if (qrec) 1354 ocfs2_free_quota_recovery(qrec); 1355 1356 mlog_errno(-ENOMEM); 1357 return; 1358 } 1359 1360 INIT_LIST_HEAD(&item->lri_list); 1361 item->lri_la_dinode = la_dinode; 1362 item->lri_slot = slot_num; 1363 item->lri_tl_dinode = tl_dinode; 1364 item->lri_qrec = qrec; 1365 item->lri_orphan_reco_type = orphan_reco_type; 1366 1367 spin_lock(&journal->j_lock); 1368 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1369 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1370 spin_unlock(&journal->j_lock); 1371 } 1372 1373 /* Called by the mount code to queue recovery the last part of 1374 * recovery for it's own and offline slot(s). */ 1375 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1376 { 1377 struct ocfs2_journal *journal = osb->journal; 1378 1379 if (ocfs2_is_hard_readonly(osb)) 1380 return; 1381 1382 /* No need to queue up our truncate_log as regular cleanup will catch 1383 * that */ 1384 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1385 osb->local_alloc_copy, NULL, NULL, 1386 ORPHAN_NEED_TRUNCATE); 1387 ocfs2_schedule_truncate_log_flush(osb, 0); 1388 1389 osb->local_alloc_copy = NULL; 1390 1391 /* queue to recover orphan slots for all offline slots */ 1392 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1393 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1394 ocfs2_free_replay_slots(osb); 1395 } 1396 1397 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1398 { 1399 if (osb->quota_rec) { 1400 ocfs2_queue_recovery_completion(osb->journal, 1401 osb->slot_num, 1402 NULL, 1403 NULL, 1404 osb->quota_rec, 1405 ORPHAN_NEED_TRUNCATE); 1406 osb->quota_rec = NULL; 1407 } 1408 } 1409 1410 static int __ocfs2_recovery_thread(void *arg) 1411 { 1412 int status, node_num, slot_num; 1413 struct ocfs2_super *osb = arg; 1414 struct ocfs2_recovery_map *rm = osb->recovery_map; 1415 int *rm_quota = NULL; 1416 int rm_quota_used = 0, i; 1417 struct ocfs2_quota_recovery *qrec; 1418 1419 /* Whether the quota supported. */ 1420 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1421 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1422 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1423 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1424 1425 status = ocfs2_wait_on_mount(osb); 1426 if (status < 0) { 1427 goto bail; 1428 } 1429 1430 if (quota_enabled) { 1431 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1432 if (!rm_quota) { 1433 status = -ENOMEM; 1434 goto bail; 1435 } 1436 } 1437 restart: 1438 status = ocfs2_super_lock(osb, 1); 1439 if (status < 0) { 1440 mlog_errno(status); 1441 goto bail; 1442 } 1443 1444 status = ocfs2_compute_replay_slots(osb); 1445 if (status < 0) 1446 mlog_errno(status); 1447 1448 /* queue recovery for our own slot */ 1449 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1450 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1451 1452 spin_lock(&osb->osb_lock); 1453 while (rm->rm_used) { 1454 /* It's always safe to remove entry zero, as we won't 1455 * clear it until ocfs2_recover_node() has succeeded. */ 1456 node_num = rm->rm_entries[0]; 1457 spin_unlock(&osb->osb_lock); 1458 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1459 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1460 if (slot_num == -ENOENT) { 1461 status = 0; 1462 goto skip_recovery; 1463 } 1464 1465 /* It is a bit subtle with quota recovery. We cannot do it 1466 * immediately because we have to obtain cluster locks from 1467 * quota files and we also don't want to just skip it because 1468 * then quota usage would be out of sync until some node takes 1469 * the slot. So we remember which nodes need quota recovery 1470 * and when everything else is done, we recover quotas. */ 1471 if (quota_enabled) { 1472 for (i = 0; i < rm_quota_used 1473 && rm_quota[i] != slot_num; i++) 1474 ; 1475 1476 if (i == rm_quota_used) 1477 rm_quota[rm_quota_used++] = slot_num; 1478 } 1479 1480 status = ocfs2_recover_node(osb, node_num, slot_num); 1481 skip_recovery: 1482 if (!status) { 1483 ocfs2_recovery_map_clear(osb, node_num); 1484 } else { 1485 mlog(ML_ERROR, 1486 "Error %d recovering node %d on device (%u,%u)!\n", 1487 status, node_num, 1488 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1489 mlog(ML_ERROR, "Volume requires unmount.\n"); 1490 } 1491 1492 spin_lock(&osb->osb_lock); 1493 } 1494 spin_unlock(&osb->osb_lock); 1495 trace_ocfs2_recovery_thread_end(status); 1496 1497 /* Refresh all journal recovery generations from disk */ 1498 status = ocfs2_check_journals_nolocks(osb); 1499 status = (status == -EROFS) ? 0 : status; 1500 if (status < 0) 1501 mlog_errno(status); 1502 1503 /* Now it is right time to recover quotas... We have to do this under 1504 * superblock lock so that no one can start using the slot (and crash) 1505 * before we recover it */ 1506 if (quota_enabled) { 1507 for (i = 0; i < rm_quota_used; i++) { 1508 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1509 if (IS_ERR(qrec)) { 1510 status = PTR_ERR(qrec); 1511 mlog_errno(status); 1512 continue; 1513 } 1514 ocfs2_queue_recovery_completion(osb->journal, 1515 rm_quota[i], 1516 NULL, NULL, qrec, 1517 ORPHAN_NEED_TRUNCATE); 1518 } 1519 } 1520 1521 ocfs2_super_unlock(osb, 1); 1522 1523 /* queue recovery for offline slots */ 1524 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1525 1526 bail: 1527 mutex_lock(&osb->recovery_lock); 1528 if (!status && !ocfs2_recovery_completed(osb)) { 1529 mutex_unlock(&osb->recovery_lock); 1530 goto restart; 1531 } 1532 1533 ocfs2_free_replay_slots(osb); 1534 osb->recovery_thread_task = NULL; 1535 mb(); /* sync with ocfs2_recovery_thread_running */ 1536 wake_up(&osb->recovery_event); 1537 1538 mutex_unlock(&osb->recovery_lock); 1539 1540 if (quota_enabled) 1541 kfree(rm_quota); 1542 1543 return status; 1544 } 1545 1546 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1547 { 1548 mutex_lock(&osb->recovery_lock); 1549 1550 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1551 osb->disable_recovery, osb->recovery_thread_task, 1552 osb->disable_recovery ? 1553 -1 : ocfs2_recovery_map_set(osb, node_num)); 1554 1555 if (osb->disable_recovery) 1556 goto out; 1557 1558 if (osb->recovery_thread_task) 1559 goto out; 1560 1561 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1562 "ocfs2rec-%s", osb->uuid_str); 1563 if (IS_ERR(osb->recovery_thread_task)) { 1564 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1565 osb->recovery_thread_task = NULL; 1566 } 1567 1568 out: 1569 mutex_unlock(&osb->recovery_lock); 1570 wake_up(&osb->recovery_event); 1571 } 1572 1573 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1574 int slot_num, 1575 struct buffer_head **bh, 1576 struct inode **ret_inode) 1577 { 1578 int status = -EACCES; 1579 struct inode *inode = NULL; 1580 1581 BUG_ON(slot_num >= osb->max_slots); 1582 1583 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1584 slot_num); 1585 if (!inode || is_bad_inode(inode)) { 1586 mlog_errno(status); 1587 goto bail; 1588 } 1589 SET_INODE_JOURNAL(inode); 1590 1591 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1592 if (status < 0) { 1593 mlog_errno(status); 1594 goto bail; 1595 } 1596 1597 status = 0; 1598 1599 bail: 1600 if (inode) { 1601 if (status || !ret_inode) 1602 iput(inode); 1603 else 1604 *ret_inode = inode; 1605 } 1606 return status; 1607 } 1608 1609 /* Does the actual journal replay and marks the journal inode as 1610 * clean. Will only replay if the journal inode is marked dirty. */ 1611 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1612 int node_num, 1613 int slot_num) 1614 { 1615 int status; 1616 int got_lock = 0; 1617 unsigned int flags; 1618 struct inode *inode = NULL; 1619 struct ocfs2_dinode *fe; 1620 journal_t *journal = NULL; 1621 struct buffer_head *bh = NULL; 1622 u32 slot_reco_gen; 1623 1624 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1625 if (status) { 1626 mlog_errno(status); 1627 goto done; 1628 } 1629 1630 fe = (struct ocfs2_dinode *)bh->b_data; 1631 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1632 brelse(bh); 1633 bh = NULL; 1634 1635 /* 1636 * As the fs recovery is asynchronous, there is a small chance that 1637 * another node mounted (and recovered) the slot before the recovery 1638 * thread could get the lock. To handle that, we dirty read the journal 1639 * inode for that slot to get the recovery generation. If it is 1640 * different than what we expected, the slot has been recovered. 1641 * If not, it needs recovery. 1642 */ 1643 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1644 trace_ocfs2_replay_journal_recovered(slot_num, 1645 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1646 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1647 status = -EBUSY; 1648 goto done; 1649 } 1650 1651 /* Continue with recovery as the journal has not yet been recovered */ 1652 1653 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1654 if (status < 0) { 1655 trace_ocfs2_replay_journal_lock_err(status); 1656 if (status != -ERESTARTSYS) 1657 mlog(ML_ERROR, "Could not lock journal!\n"); 1658 goto done; 1659 } 1660 got_lock = 1; 1661 1662 fe = (struct ocfs2_dinode *) bh->b_data; 1663 1664 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1665 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1666 1667 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1668 trace_ocfs2_replay_journal_skip(node_num); 1669 /* Refresh recovery generation for the slot */ 1670 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1671 goto done; 1672 } 1673 1674 /* we need to run complete recovery for offline orphan slots */ 1675 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1676 1677 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1678 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1679 MINOR(osb->sb->s_dev)); 1680 1681 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1682 1683 status = ocfs2_force_read_journal(inode); 1684 if (status < 0) { 1685 mlog_errno(status); 1686 goto done; 1687 } 1688 1689 journal = jbd2_journal_init_inode(inode); 1690 if (journal == NULL) { 1691 mlog(ML_ERROR, "Linux journal layer error\n"); 1692 status = -EIO; 1693 goto done; 1694 } 1695 1696 status = jbd2_journal_load(journal); 1697 if (status < 0) { 1698 mlog_errno(status); 1699 BUG_ON(!igrab(inode)); 1700 jbd2_journal_destroy(journal); 1701 goto done; 1702 } 1703 1704 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1705 1706 /* wipe the journal */ 1707 jbd2_journal_lock_updates(journal); 1708 status = jbd2_journal_flush(journal, 0); 1709 jbd2_journal_unlock_updates(journal); 1710 if (status < 0) 1711 mlog_errno(status); 1712 1713 /* This will mark the node clean */ 1714 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1715 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1716 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1717 1718 /* Increment recovery generation to indicate successful recovery */ 1719 ocfs2_bump_recovery_generation(fe); 1720 osb->slot_recovery_generations[slot_num] = 1721 ocfs2_get_recovery_generation(fe); 1722 1723 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1724 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1725 if (status < 0) 1726 mlog_errno(status); 1727 1728 BUG_ON(!igrab(inode)); 1729 1730 jbd2_journal_destroy(journal); 1731 1732 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1733 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1734 MINOR(osb->sb->s_dev)); 1735 done: 1736 /* drop the lock on this nodes journal */ 1737 if (got_lock) 1738 ocfs2_inode_unlock(inode, 1); 1739 1740 iput(inode); 1741 brelse(bh); 1742 1743 return status; 1744 } 1745 1746 /* 1747 * Do the most important parts of node recovery: 1748 * - Replay it's journal 1749 * - Stamp a clean local allocator file 1750 * - Stamp a clean truncate log 1751 * - Mark the node clean 1752 * 1753 * If this function completes without error, a node in OCFS2 can be 1754 * said to have been safely recovered. As a result, failure during the 1755 * second part of a nodes recovery process (local alloc recovery) is 1756 * far less concerning. 1757 */ 1758 static int ocfs2_recover_node(struct ocfs2_super *osb, 1759 int node_num, int slot_num) 1760 { 1761 int status = 0; 1762 struct ocfs2_dinode *la_copy = NULL; 1763 struct ocfs2_dinode *tl_copy = NULL; 1764 1765 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1766 1767 /* Should not ever be called to recover ourselves -- in that 1768 * case we should've called ocfs2_journal_load instead. */ 1769 BUG_ON(osb->node_num == node_num); 1770 1771 status = ocfs2_replay_journal(osb, node_num, slot_num); 1772 if (status < 0) { 1773 if (status == -EBUSY) { 1774 trace_ocfs2_recover_node_skip(slot_num, node_num); 1775 status = 0; 1776 goto done; 1777 } 1778 mlog_errno(status); 1779 goto done; 1780 } 1781 1782 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1783 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1784 if (status < 0) { 1785 mlog_errno(status); 1786 goto done; 1787 } 1788 1789 /* An error from begin_truncate_log_recovery is not 1790 * serious enough to warrant halting the rest of 1791 * recovery. */ 1792 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1793 if (status < 0) 1794 mlog_errno(status); 1795 1796 /* Likewise, this would be a strange but ultimately not so 1797 * harmful place to get an error... */ 1798 status = ocfs2_clear_slot(osb, slot_num); 1799 if (status < 0) 1800 mlog_errno(status); 1801 1802 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1803 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1804 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1805 1806 status = 0; 1807 done: 1808 1809 return status; 1810 } 1811 1812 /* Test node liveness by trylocking his journal. If we get the lock, 1813 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1814 * still alive (we couldn't get the lock) and < 0 on error. */ 1815 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1816 int slot_num) 1817 { 1818 int status, flags; 1819 struct inode *inode = NULL; 1820 1821 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1822 slot_num); 1823 if (inode == NULL) { 1824 mlog(ML_ERROR, "access error\n"); 1825 status = -EACCES; 1826 goto bail; 1827 } 1828 if (is_bad_inode(inode)) { 1829 mlog(ML_ERROR, "access error (bad inode)\n"); 1830 iput(inode); 1831 inode = NULL; 1832 status = -EACCES; 1833 goto bail; 1834 } 1835 SET_INODE_JOURNAL(inode); 1836 1837 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1838 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1839 if (status < 0) { 1840 if (status != -EAGAIN) 1841 mlog_errno(status); 1842 goto bail; 1843 } 1844 1845 ocfs2_inode_unlock(inode, 1); 1846 bail: 1847 iput(inode); 1848 1849 return status; 1850 } 1851 1852 /* Call this underneath ocfs2_super_lock. It also assumes that the 1853 * slot info struct has been updated from disk. */ 1854 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1855 { 1856 unsigned int node_num; 1857 int status, i; 1858 u32 gen; 1859 struct buffer_head *bh = NULL; 1860 struct ocfs2_dinode *di; 1861 1862 /* This is called with the super block cluster lock, so we 1863 * know that the slot map can't change underneath us. */ 1864 1865 for (i = 0; i < osb->max_slots; i++) { 1866 /* Read journal inode to get the recovery generation */ 1867 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1868 if (status) { 1869 mlog_errno(status); 1870 goto bail; 1871 } 1872 di = (struct ocfs2_dinode *)bh->b_data; 1873 gen = ocfs2_get_recovery_generation(di); 1874 brelse(bh); 1875 bh = NULL; 1876 1877 spin_lock(&osb->osb_lock); 1878 osb->slot_recovery_generations[i] = gen; 1879 1880 trace_ocfs2_mark_dead_nodes(i, 1881 osb->slot_recovery_generations[i]); 1882 1883 if (i == osb->slot_num) { 1884 spin_unlock(&osb->osb_lock); 1885 continue; 1886 } 1887 1888 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1889 if (status == -ENOENT) { 1890 spin_unlock(&osb->osb_lock); 1891 continue; 1892 } 1893 1894 if (__ocfs2_recovery_map_test(osb, node_num)) { 1895 spin_unlock(&osb->osb_lock); 1896 continue; 1897 } 1898 spin_unlock(&osb->osb_lock); 1899 1900 /* Ok, we have a slot occupied by another node which 1901 * is not in the recovery map. We trylock his journal 1902 * file here to test if he's alive. */ 1903 status = ocfs2_trylock_journal(osb, i); 1904 if (!status) { 1905 /* Since we're called from mount, we know that 1906 * the recovery thread can't race us on 1907 * setting / checking the recovery bits. */ 1908 ocfs2_recovery_thread(osb, node_num); 1909 } else if ((status < 0) && (status != -EAGAIN)) { 1910 mlog_errno(status); 1911 goto bail; 1912 } 1913 } 1914 1915 status = 0; 1916 bail: 1917 return status; 1918 } 1919 1920 /* 1921 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1922 * randomness to the timeout to minimize multple nodes firing the timer at the 1923 * same time. 1924 */ 1925 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1926 { 1927 unsigned long time; 1928 1929 get_random_bytes(&time, sizeof(time)); 1930 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1931 return msecs_to_jiffies(time); 1932 } 1933 1934 /* 1935 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1936 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1937 * is done to catch any orphans that are left over in orphan directories. 1938 * 1939 * It scans all slots, even ones that are in use. It does so to handle the 1940 * case described below: 1941 * 1942 * Node 1 has an inode it was using. The dentry went away due to memory 1943 * pressure. Node 1 closes the inode, but it's on the free list. The node 1944 * has the open lock. 1945 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1946 * but node 1 has no dentry and doesn't get the message. It trylocks the 1947 * open lock, sees that another node has a PR, and does nothing. 1948 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1949 * open lock, sees the PR still, and does nothing. 1950 * Basically, we have to trigger an orphan iput on node 1. The only way 1951 * for this to happen is if node 1 runs node 2's orphan dir. 1952 * 1953 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1954 * seconds. It gets an EX lock on os_lockres and checks sequence number 1955 * stored in LVB. If the sequence number has changed, it means some other 1956 * node has done the scan. This node skips the scan and tracks the 1957 * sequence number. If the sequence number didn't change, it means a scan 1958 * hasn't happened. The node queues a scan and increments the 1959 * sequence number in the LVB. 1960 */ 1961 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1962 { 1963 struct ocfs2_orphan_scan *os; 1964 int status, i; 1965 u32 seqno = 0; 1966 1967 os = &osb->osb_orphan_scan; 1968 1969 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1970 goto out; 1971 1972 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1973 atomic_read(&os->os_state)); 1974 1975 status = ocfs2_orphan_scan_lock(osb, &seqno); 1976 if (status < 0) { 1977 if (status != -EAGAIN) 1978 mlog_errno(status); 1979 goto out; 1980 } 1981 1982 /* Do no queue the tasks if the volume is being umounted */ 1983 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1984 goto unlock; 1985 1986 if (os->os_seqno != seqno) { 1987 os->os_seqno = seqno; 1988 goto unlock; 1989 } 1990 1991 for (i = 0; i < osb->max_slots; i++) 1992 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1993 NULL, ORPHAN_NO_NEED_TRUNCATE); 1994 /* 1995 * We queued a recovery on orphan slots, increment the sequence 1996 * number and update LVB so other node will skip the scan for a while 1997 */ 1998 seqno++; 1999 os->os_count++; 2000 os->os_scantime = ktime_get_seconds(); 2001 unlock: 2002 ocfs2_orphan_scan_unlock(osb, seqno); 2003 out: 2004 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 2005 atomic_read(&os->os_state)); 2006 return; 2007 } 2008 2009 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 2010 static void ocfs2_orphan_scan_work(struct work_struct *work) 2011 { 2012 struct ocfs2_orphan_scan *os; 2013 struct ocfs2_super *osb; 2014 2015 os = container_of(work, struct ocfs2_orphan_scan, 2016 os_orphan_scan_work.work); 2017 osb = os->os_osb; 2018 2019 mutex_lock(&os->os_lock); 2020 ocfs2_queue_orphan_scan(osb); 2021 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 2022 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2023 ocfs2_orphan_scan_timeout()); 2024 mutex_unlock(&os->os_lock); 2025 } 2026 2027 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 2028 { 2029 struct ocfs2_orphan_scan *os; 2030 2031 os = &osb->osb_orphan_scan; 2032 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 2033 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2034 mutex_lock(&os->os_lock); 2035 cancel_delayed_work(&os->os_orphan_scan_work); 2036 mutex_unlock(&os->os_lock); 2037 } 2038 } 2039 2040 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 2041 { 2042 struct ocfs2_orphan_scan *os; 2043 2044 os = &osb->osb_orphan_scan; 2045 os->os_osb = osb; 2046 os->os_count = 0; 2047 os->os_seqno = 0; 2048 mutex_init(&os->os_lock); 2049 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2050 } 2051 2052 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2053 { 2054 struct ocfs2_orphan_scan *os; 2055 2056 os = &osb->osb_orphan_scan; 2057 os->os_scantime = ktime_get_seconds(); 2058 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2059 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2060 else { 2061 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2062 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2063 ocfs2_orphan_scan_timeout()); 2064 } 2065 } 2066 2067 struct ocfs2_orphan_filldir_priv { 2068 struct dir_context ctx; 2069 struct inode *head; 2070 struct ocfs2_super *osb; 2071 enum ocfs2_orphan_reco_type orphan_reco_type; 2072 }; 2073 2074 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2075 int name_len, loff_t pos, u64 ino, 2076 unsigned type) 2077 { 2078 struct ocfs2_orphan_filldir_priv *p = 2079 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2080 struct inode *iter; 2081 2082 if (name_len == 1 && !strncmp(".", name, 1)) 2083 return true; 2084 if (name_len == 2 && !strncmp("..", name, 2)) 2085 return true; 2086 2087 /* do not include dio entry in case of orphan scan */ 2088 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2089 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2090 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2091 return true; 2092 2093 /* Skip bad inodes so that recovery can continue */ 2094 iter = ocfs2_iget(p->osb, ino, 2095 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2096 if (IS_ERR(iter)) 2097 return true; 2098 2099 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2100 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2101 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2102 2103 /* Skip inodes which are already added to recover list, since dio may 2104 * happen concurrently with unlink/rename */ 2105 if (OCFS2_I(iter)->ip_next_orphan) { 2106 iput(iter); 2107 return true; 2108 } 2109 2110 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2111 /* No locking is required for the next_orphan queue as there 2112 * is only ever a single process doing orphan recovery. */ 2113 OCFS2_I(iter)->ip_next_orphan = p->head; 2114 p->head = iter; 2115 2116 return true; 2117 } 2118 2119 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2120 int slot, 2121 struct inode **head, 2122 enum ocfs2_orphan_reco_type orphan_reco_type) 2123 { 2124 int status; 2125 struct inode *orphan_dir_inode = NULL; 2126 struct ocfs2_orphan_filldir_priv priv = { 2127 .ctx.actor = ocfs2_orphan_filldir, 2128 .osb = osb, 2129 .head = *head, 2130 .orphan_reco_type = orphan_reco_type 2131 }; 2132 2133 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2134 ORPHAN_DIR_SYSTEM_INODE, 2135 slot); 2136 if (!orphan_dir_inode) { 2137 status = -ENOENT; 2138 mlog_errno(status); 2139 return status; 2140 } 2141 2142 inode_lock(orphan_dir_inode); 2143 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2144 if (status < 0) { 2145 mlog_errno(status); 2146 goto out; 2147 } 2148 2149 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2150 if (status) { 2151 mlog_errno(status); 2152 goto out_cluster; 2153 } 2154 2155 *head = priv.head; 2156 2157 out_cluster: 2158 ocfs2_inode_unlock(orphan_dir_inode, 0); 2159 out: 2160 inode_unlock(orphan_dir_inode); 2161 iput(orphan_dir_inode); 2162 return status; 2163 } 2164 2165 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2166 int slot) 2167 { 2168 int ret; 2169 2170 spin_lock(&osb->osb_lock); 2171 ret = !osb->osb_orphan_wipes[slot]; 2172 spin_unlock(&osb->osb_lock); 2173 return ret; 2174 } 2175 2176 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2177 int slot) 2178 { 2179 spin_lock(&osb->osb_lock); 2180 /* Mark ourselves such that new processes in delete_inode() 2181 * know to quit early. */ 2182 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2183 while (osb->osb_orphan_wipes[slot]) { 2184 /* If any processes are already in the middle of an 2185 * orphan wipe on this dir, then we need to wait for 2186 * them. */ 2187 spin_unlock(&osb->osb_lock); 2188 wait_event_interruptible(osb->osb_wipe_event, 2189 ocfs2_orphan_recovery_can_continue(osb, slot)); 2190 spin_lock(&osb->osb_lock); 2191 } 2192 spin_unlock(&osb->osb_lock); 2193 } 2194 2195 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2196 int slot) 2197 { 2198 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2199 } 2200 2201 /* 2202 * Orphan recovery. Each mounted node has it's own orphan dir which we 2203 * must run during recovery. Our strategy here is to build a list of 2204 * the inodes in the orphan dir and iget/iput them. The VFS does 2205 * (most) of the rest of the work. 2206 * 2207 * Orphan recovery can happen at any time, not just mount so we have a 2208 * couple of extra considerations. 2209 * 2210 * - We grab as many inodes as we can under the orphan dir lock - 2211 * doing iget() outside the orphan dir risks getting a reference on 2212 * an invalid inode. 2213 * - We must be sure not to deadlock with other processes on the 2214 * system wanting to run delete_inode(). This can happen when they go 2215 * to lock the orphan dir and the orphan recovery process attempts to 2216 * iget() inside the orphan dir lock. This can be avoided by 2217 * advertising our state to ocfs2_delete_inode(). 2218 */ 2219 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2220 int slot, 2221 enum ocfs2_orphan_reco_type orphan_reco_type) 2222 { 2223 int ret = 0; 2224 struct inode *inode = NULL; 2225 struct inode *iter; 2226 struct ocfs2_inode_info *oi; 2227 struct buffer_head *di_bh = NULL; 2228 struct ocfs2_dinode *di = NULL; 2229 2230 trace_ocfs2_recover_orphans(slot); 2231 2232 ocfs2_mark_recovering_orphan_dir(osb, slot); 2233 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2234 ocfs2_clear_recovering_orphan_dir(osb, slot); 2235 2236 /* Error here should be noted, but we want to continue with as 2237 * many queued inodes as we've got. */ 2238 if (ret) 2239 mlog_errno(ret); 2240 2241 while (inode) { 2242 oi = OCFS2_I(inode); 2243 trace_ocfs2_recover_orphans_iput( 2244 (unsigned long long)oi->ip_blkno); 2245 2246 iter = oi->ip_next_orphan; 2247 oi->ip_next_orphan = NULL; 2248 2249 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2250 inode_lock(inode); 2251 ret = ocfs2_rw_lock(inode, 1); 2252 if (ret < 0) { 2253 mlog_errno(ret); 2254 goto unlock_mutex; 2255 } 2256 /* 2257 * We need to take and drop the inode lock to 2258 * force read inode from disk. 2259 */ 2260 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2261 if (ret) { 2262 mlog_errno(ret); 2263 goto unlock_rw; 2264 } 2265 2266 di = (struct ocfs2_dinode *)di_bh->b_data; 2267 2268 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2269 ret = ocfs2_truncate_file(inode, di_bh, 2270 i_size_read(inode)); 2271 if (ret < 0) { 2272 if (ret != -ENOSPC) 2273 mlog_errno(ret); 2274 goto unlock_inode; 2275 } 2276 2277 ret = ocfs2_del_inode_from_orphan(osb, inode, 2278 di_bh, 0, 0); 2279 if (ret) 2280 mlog_errno(ret); 2281 } 2282 unlock_inode: 2283 ocfs2_inode_unlock(inode, 1); 2284 brelse(di_bh); 2285 di_bh = NULL; 2286 unlock_rw: 2287 ocfs2_rw_unlock(inode, 1); 2288 unlock_mutex: 2289 inode_unlock(inode); 2290 2291 /* clear dio flag in ocfs2_inode_info */ 2292 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2293 } else { 2294 spin_lock(&oi->ip_lock); 2295 /* Set the proper information to get us going into 2296 * ocfs2_delete_inode. */ 2297 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2298 spin_unlock(&oi->ip_lock); 2299 } 2300 2301 iput(inode); 2302 inode = iter; 2303 } 2304 2305 return ret; 2306 } 2307 2308 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2309 { 2310 /* This check is good because ocfs2 will wait on our recovery 2311 * thread before changing it to something other than MOUNTED 2312 * or DISABLED. */ 2313 wait_event(osb->osb_mount_event, 2314 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2315 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2316 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2317 2318 /* If there's an error on mount, then we may never get to the 2319 * MOUNTED flag, but this is set right before 2320 * dismount_volume() so we can trust it. */ 2321 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2322 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2323 mlog(0, "mount error, exiting!\n"); 2324 return -EBUSY; 2325 } 2326 2327 return 0; 2328 } 2329 2330 static int ocfs2_commit_thread(void *arg) 2331 { 2332 int status; 2333 struct ocfs2_super *osb = arg; 2334 struct ocfs2_journal *journal = osb->journal; 2335 2336 /* we can trust j_num_trans here because _should_stop() is only set in 2337 * shutdown and nobody other than ourselves should be able to start 2338 * transactions. committing on shutdown might take a few iterations 2339 * as final transactions put deleted inodes on the list */ 2340 while (!(kthread_should_stop() && 2341 atomic_read(&journal->j_num_trans) == 0)) { 2342 2343 wait_event_interruptible(osb->checkpoint_event, 2344 atomic_read(&journal->j_num_trans) 2345 || kthread_should_stop()); 2346 2347 status = ocfs2_commit_cache(osb); 2348 if (status < 0) { 2349 static unsigned long abort_warn_time; 2350 2351 /* Warn about this once per minute */ 2352 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2353 mlog(ML_ERROR, "status = %d, journal is " 2354 "already aborted.\n", status); 2355 /* 2356 * After ocfs2_commit_cache() fails, j_num_trans has a 2357 * non-zero value. Sleep here to avoid a busy-wait 2358 * loop. 2359 */ 2360 msleep_interruptible(1000); 2361 } 2362 2363 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2364 mlog(ML_KTHREAD, 2365 "commit_thread: %u transactions pending on " 2366 "shutdown\n", 2367 atomic_read(&journal->j_num_trans)); 2368 } 2369 } 2370 2371 return 0; 2372 } 2373 2374 /* Reads all the journal inodes without taking any cluster locks. Used 2375 * for hard readonly access to determine whether any journal requires 2376 * recovery. Also used to refresh the recovery generation numbers after 2377 * a journal has been recovered by another node. 2378 */ 2379 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2380 { 2381 int ret = 0; 2382 unsigned int slot; 2383 struct buffer_head *di_bh = NULL; 2384 struct ocfs2_dinode *di; 2385 int journal_dirty = 0; 2386 2387 for(slot = 0; slot < osb->max_slots; slot++) { 2388 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2389 if (ret) { 2390 mlog_errno(ret); 2391 goto out; 2392 } 2393 2394 di = (struct ocfs2_dinode *) di_bh->b_data; 2395 2396 osb->slot_recovery_generations[slot] = 2397 ocfs2_get_recovery_generation(di); 2398 2399 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2400 OCFS2_JOURNAL_DIRTY_FL) 2401 journal_dirty = 1; 2402 2403 brelse(di_bh); 2404 di_bh = NULL; 2405 } 2406 2407 out: 2408 if (journal_dirty) 2409 ret = -EROFS; 2410 return ret; 2411 } 2412