xref: /openbmc/linux/fs/ocfs2/journal.c (revision 5f03d4f2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * journal.c
4  *
5  * Defines functions of journalling api
6  *
7  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 #include <linux/writeback.h>
19 
20 #include <cluster/masklog.h>
21 
22 #include "ocfs2.h"
23 
24 #include "alloc.h"
25 #include "blockcheck.h"
26 #include "dir.h"
27 #include "dlmglue.h"
28 #include "extent_map.h"
29 #include "heartbeat.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "slot_map.h"
34 #include "super.h"
35 #include "sysfile.h"
36 #include "uptodate.h"
37 #include "quota.h"
38 #include "file.h"
39 #include "namei.h"
40 
41 #include "buffer_head_io.h"
42 #include "ocfs2_trace.h"
43 
44 DEFINE_SPINLOCK(trans_inc_lock);
45 
46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
47 
48 static int ocfs2_force_read_journal(struct inode *inode);
49 static int ocfs2_recover_node(struct ocfs2_super *osb,
50 			      int node_num, int slot_num);
51 static int __ocfs2_recovery_thread(void *arg);
52 static int ocfs2_commit_cache(struct ocfs2_super *osb);
53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55 				      int dirty, int replayed);
56 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57 				 int slot_num);
58 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59 				 int slot,
60 				 enum ocfs2_orphan_reco_type orphan_reco_type);
61 static int ocfs2_commit_thread(void *arg);
62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63 					    int slot_num,
64 					    struct ocfs2_dinode *la_dinode,
65 					    struct ocfs2_dinode *tl_dinode,
66 					    struct ocfs2_quota_recovery *qrec,
67 					    enum ocfs2_orphan_reco_type orphan_reco_type);
68 
69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70 {
71 	return __ocfs2_wait_on_mount(osb, 0);
72 }
73 
74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75 {
76 	return __ocfs2_wait_on_mount(osb, 1);
77 }
78 
79 /*
80  * This replay_map is to track online/offline slots, so we could recover
81  * offline slots during recovery and mount
82  */
83 
84 enum ocfs2_replay_state {
85 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
86 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
87 	REPLAY_DONE 		/* Replay was already queued */
88 };
89 
90 struct ocfs2_replay_map {
91 	unsigned int rm_slots;
92 	enum ocfs2_replay_state rm_state;
93 	unsigned char rm_replay_slots[];
94 };
95 
96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
97 {
98 	if (!osb->replay_map)
99 		return;
100 
101 	/* If we've already queued the replay, we don't have any more to do */
102 	if (osb->replay_map->rm_state == REPLAY_DONE)
103 		return;
104 
105 	osb->replay_map->rm_state = state;
106 }
107 
108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
109 {
110 	struct ocfs2_replay_map *replay_map;
111 	int i, node_num;
112 
113 	/* If replay map is already set, we don't do it again */
114 	if (osb->replay_map)
115 		return 0;
116 
117 	replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
118 					 osb->max_slots),
119 			     GFP_KERNEL);
120 	if (!replay_map) {
121 		mlog_errno(-ENOMEM);
122 		return -ENOMEM;
123 	}
124 
125 	spin_lock(&osb->osb_lock);
126 
127 	replay_map->rm_slots = osb->max_slots;
128 	replay_map->rm_state = REPLAY_UNNEEDED;
129 
130 	/* set rm_replay_slots for offline slot(s) */
131 	for (i = 0; i < replay_map->rm_slots; i++) {
132 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133 			replay_map->rm_replay_slots[i] = 1;
134 	}
135 
136 	osb->replay_map = replay_map;
137 	spin_unlock(&osb->osb_lock);
138 	return 0;
139 }
140 
141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142 		enum ocfs2_orphan_reco_type orphan_reco_type)
143 {
144 	struct ocfs2_replay_map *replay_map = osb->replay_map;
145 	int i;
146 
147 	if (!replay_map)
148 		return;
149 
150 	if (replay_map->rm_state != REPLAY_NEEDED)
151 		return;
152 
153 	for (i = 0; i < replay_map->rm_slots; i++)
154 		if (replay_map->rm_replay_slots[i])
155 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156 							NULL, NULL,
157 							orphan_reco_type);
158 	replay_map->rm_state = REPLAY_DONE;
159 }
160 
161 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
162 {
163 	struct ocfs2_replay_map *replay_map = osb->replay_map;
164 
165 	if (!osb->replay_map)
166 		return;
167 
168 	kfree(replay_map);
169 	osb->replay_map = NULL;
170 }
171 
172 int ocfs2_recovery_init(struct ocfs2_super *osb)
173 {
174 	struct ocfs2_recovery_map *rm;
175 
176 	mutex_init(&osb->recovery_lock);
177 	osb->disable_recovery = 0;
178 	osb->recovery_thread_task = NULL;
179 	init_waitqueue_head(&osb->recovery_event);
180 
181 	rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
182 		     GFP_KERNEL);
183 	if (!rm) {
184 		mlog_errno(-ENOMEM);
185 		return -ENOMEM;
186 	}
187 
188 	osb->recovery_map = rm;
189 
190 	return 0;
191 }
192 
193 /* we can't grab the goofy sem lock from inside wait_event, so we use
194  * memory barriers to make sure that we'll see the null task before
195  * being woken up */
196 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
197 {
198 	mb();
199 	return osb->recovery_thread_task != NULL;
200 }
201 
202 void ocfs2_recovery_exit(struct ocfs2_super *osb)
203 {
204 	struct ocfs2_recovery_map *rm;
205 
206 	/* disable any new recovery threads and wait for any currently
207 	 * running ones to exit. Do this before setting the vol_state. */
208 	mutex_lock(&osb->recovery_lock);
209 	osb->disable_recovery = 1;
210 	mutex_unlock(&osb->recovery_lock);
211 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
212 
213 	/* At this point, we know that no more recovery threads can be
214 	 * launched, so wait for any recovery completion work to
215 	 * complete. */
216 	if (osb->ocfs2_wq)
217 		flush_workqueue(osb->ocfs2_wq);
218 
219 	/*
220 	 * Now that recovery is shut down, and the osb is about to be
221 	 * freed,  the osb_lock is not taken here.
222 	 */
223 	rm = osb->recovery_map;
224 	/* XXX: Should we bug if there are dirty entries? */
225 
226 	kfree(rm);
227 }
228 
229 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
230 				     unsigned int node_num)
231 {
232 	int i;
233 	struct ocfs2_recovery_map *rm = osb->recovery_map;
234 
235 	assert_spin_locked(&osb->osb_lock);
236 
237 	for (i = 0; i < rm->rm_used; i++) {
238 		if (rm->rm_entries[i] == node_num)
239 			return 1;
240 	}
241 
242 	return 0;
243 }
244 
245 /* Behaves like test-and-set.  Returns the previous value */
246 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
247 				  unsigned int node_num)
248 {
249 	struct ocfs2_recovery_map *rm = osb->recovery_map;
250 
251 	spin_lock(&osb->osb_lock);
252 	if (__ocfs2_recovery_map_test(osb, node_num)) {
253 		spin_unlock(&osb->osb_lock);
254 		return 1;
255 	}
256 
257 	/* XXX: Can this be exploited? Not from o2dlm... */
258 	BUG_ON(rm->rm_used >= osb->max_slots);
259 
260 	rm->rm_entries[rm->rm_used] = node_num;
261 	rm->rm_used++;
262 	spin_unlock(&osb->osb_lock);
263 
264 	return 0;
265 }
266 
267 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
268 				     unsigned int node_num)
269 {
270 	int i;
271 	struct ocfs2_recovery_map *rm = osb->recovery_map;
272 
273 	spin_lock(&osb->osb_lock);
274 
275 	for (i = 0; i < rm->rm_used; i++) {
276 		if (rm->rm_entries[i] == node_num)
277 			break;
278 	}
279 
280 	if (i < rm->rm_used) {
281 		/* XXX: be careful with the pointer math */
282 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
283 			(rm->rm_used - i - 1) * sizeof(unsigned int));
284 		rm->rm_used--;
285 	}
286 
287 	spin_unlock(&osb->osb_lock);
288 }
289 
290 static int ocfs2_commit_cache(struct ocfs2_super *osb)
291 {
292 	int status = 0;
293 	unsigned int flushed;
294 	struct ocfs2_journal *journal = NULL;
295 
296 	journal = osb->journal;
297 
298 	/* Flush all pending commits and checkpoint the journal. */
299 	down_write(&journal->j_trans_barrier);
300 
301 	flushed = atomic_read(&journal->j_num_trans);
302 	trace_ocfs2_commit_cache_begin(flushed);
303 	if (flushed == 0) {
304 		up_write(&journal->j_trans_barrier);
305 		goto finally;
306 	}
307 
308 	jbd2_journal_lock_updates(journal->j_journal);
309 	status = jbd2_journal_flush(journal->j_journal, 0);
310 	jbd2_journal_unlock_updates(journal->j_journal);
311 	if (status < 0) {
312 		up_write(&journal->j_trans_barrier);
313 		mlog_errno(status);
314 		goto finally;
315 	}
316 
317 	ocfs2_inc_trans_id(journal);
318 
319 	flushed = atomic_read(&journal->j_num_trans);
320 	atomic_set(&journal->j_num_trans, 0);
321 	up_write(&journal->j_trans_barrier);
322 
323 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
324 
325 	ocfs2_wake_downconvert_thread(osb);
326 	wake_up(&journal->j_checkpointed);
327 finally:
328 	return status;
329 }
330 
331 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
332 {
333 	journal_t *journal = osb->journal->j_journal;
334 	handle_t *handle;
335 
336 	BUG_ON(!osb || !osb->journal->j_journal);
337 
338 	if (ocfs2_is_hard_readonly(osb))
339 		return ERR_PTR(-EROFS);
340 
341 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
342 	BUG_ON(max_buffs <= 0);
343 
344 	/* Nested transaction? Just return the handle... */
345 	if (journal_current_handle())
346 		return jbd2_journal_start(journal, max_buffs);
347 
348 	sb_start_intwrite(osb->sb);
349 
350 	down_read(&osb->journal->j_trans_barrier);
351 
352 	handle = jbd2_journal_start(journal, max_buffs);
353 	if (IS_ERR(handle)) {
354 		up_read(&osb->journal->j_trans_barrier);
355 		sb_end_intwrite(osb->sb);
356 
357 		mlog_errno(PTR_ERR(handle));
358 
359 		if (is_journal_aborted(journal)) {
360 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
361 			handle = ERR_PTR(-EROFS);
362 		}
363 	} else {
364 		if (!ocfs2_mount_local(osb))
365 			atomic_inc(&(osb->journal->j_num_trans));
366 	}
367 
368 	return handle;
369 }
370 
371 int ocfs2_commit_trans(struct ocfs2_super *osb,
372 		       handle_t *handle)
373 {
374 	int ret, nested;
375 	struct ocfs2_journal *journal = osb->journal;
376 
377 	BUG_ON(!handle);
378 
379 	nested = handle->h_ref > 1;
380 	ret = jbd2_journal_stop(handle);
381 	if (ret < 0)
382 		mlog_errno(ret);
383 
384 	if (!nested) {
385 		up_read(&journal->j_trans_barrier);
386 		sb_end_intwrite(osb->sb);
387 	}
388 
389 	return ret;
390 }
391 
392 /*
393  * 'nblocks' is what you want to add to the current transaction.
394  *
395  * This might call jbd2_journal_restart() which will commit dirty buffers
396  * and then restart the transaction. Before calling
397  * ocfs2_extend_trans(), any changed blocks should have been
398  * dirtied. After calling it, all blocks which need to be changed must
399  * go through another set of journal_access/journal_dirty calls.
400  *
401  * WARNING: This will not release any semaphores or disk locks taken
402  * during the transaction, so make sure they were taken *before*
403  * start_trans or we'll have ordering deadlocks.
404  *
405  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
406  * good because transaction ids haven't yet been recorded on the
407  * cluster locks associated with this handle.
408  */
409 int ocfs2_extend_trans(handle_t *handle, int nblocks)
410 {
411 	int status, old_nblocks;
412 
413 	BUG_ON(!handle);
414 	BUG_ON(nblocks < 0);
415 
416 	if (!nblocks)
417 		return 0;
418 
419 	old_nblocks = jbd2_handle_buffer_credits(handle);
420 
421 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
422 
423 #ifdef CONFIG_OCFS2_DEBUG_FS
424 	status = 1;
425 #else
426 	status = jbd2_journal_extend(handle, nblocks, 0);
427 	if (status < 0) {
428 		mlog_errno(status);
429 		goto bail;
430 	}
431 #endif
432 
433 	if (status > 0) {
434 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
435 		status = jbd2_journal_restart(handle,
436 					      old_nblocks + nblocks);
437 		if (status < 0) {
438 			mlog_errno(status);
439 			goto bail;
440 		}
441 	}
442 
443 	status = 0;
444 bail:
445 	return status;
446 }
447 
448 /*
449  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
450  * If that fails, restart the transaction & regain write access for the
451  * buffer head which is used for metadata modifications.
452  * Taken from Ext4: extend_or_restart_transaction()
453  */
454 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
455 {
456 	int status, old_nblks;
457 
458 	BUG_ON(!handle);
459 
460 	old_nblks = jbd2_handle_buffer_credits(handle);
461 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
462 
463 	if (old_nblks < thresh)
464 		return 0;
465 
466 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
467 	if (status < 0) {
468 		mlog_errno(status);
469 		goto bail;
470 	}
471 
472 	if (status > 0) {
473 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
474 		if (status < 0)
475 			mlog_errno(status);
476 	}
477 
478 bail:
479 	return status;
480 }
481 
482 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
483 {
484 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
485 }
486 
487 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
488 				 struct buffer_head *bh,
489 				 void *data, size_t size)
490 {
491 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
492 
493 	/*
494 	 * We aren't guaranteed to have the superblock here, so we
495 	 * must unconditionally compute the ecc data.
496 	 * __ocfs2_journal_access() will only set the triggers if
497 	 * metaecc is enabled.
498 	 */
499 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
500 }
501 
502 /*
503  * Quota blocks have their own trigger because the struct ocfs2_block_check
504  * offset depends on the blocksize.
505  */
506 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
507 				 struct buffer_head *bh,
508 				 void *data, size_t size)
509 {
510 	struct ocfs2_disk_dqtrailer *dqt =
511 		ocfs2_block_dqtrailer(size, data);
512 
513 	/*
514 	 * We aren't guaranteed to have the superblock here, so we
515 	 * must unconditionally compute the ecc data.
516 	 * __ocfs2_journal_access() will only set the triggers if
517 	 * metaecc is enabled.
518 	 */
519 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
520 }
521 
522 /*
523  * Directory blocks also have their own trigger because the
524  * struct ocfs2_block_check offset depends on the blocksize.
525  */
526 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
527 				 struct buffer_head *bh,
528 				 void *data, size_t size)
529 {
530 	struct ocfs2_dir_block_trailer *trailer =
531 		ocfs2_dir_trailer_from_size(size, data);
532 
533 	/*
534 	 * We aren't guaranteed to have the superblock here, so we
535 	 * must unconditionally compute the ecc data.
536 	 * __ocfs2_journal_access() will only set the triggers if
537 	 * metaecc is enabled.
538 	 */
539 	ocfs2_block_check_compute(data, size, &trailer->db_check);
540 }
541 
542 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
543 				struct buffer_head *bh)
544 {
545 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
546 
547 	mlog(ML_ERROR,
548 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
549 	     "bh->b_blocknr = %llu\n",
550 	     (unsigned long)bh,
551 	     (unsigned long long)bh->b_blocknr);
552 
553 	ocfs2_error(ot->sb,
554 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
555 }
556 
557 static void ocfs2_setup_csum_triggers(struct super_block *sb,
558 				      enum ocfs2_journal_trigger_type type,
559 				      struct ocfs2_triggers *ot)
560 {
561 	BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT);
562 
563 	switch (type) {
564 	case OCFS2_JTR_DI:
565 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
566 		ot->ot_offset = offsetof(struct ocfs2_dinode, i_check);
567 		break;
568 	case OCFS2_JTR_EB:
569 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
570 		ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check);
571 		break;
572 	case OCFS2_JTR_RB:
573 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
574 		ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check);
575 		break;
576 	case OCFS2_JTR_GD:
577 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
578 		ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check);
579 		break;
580 	case OCFS2_JTR_DB:
581 		ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger;
582 		break;
583 	case OCFS2_JTR_XB:
584 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
585 		ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check);
586 		break;
587 	case OCFS2_JTR_DQ:
588 		ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger;
589 		break;
590 	case OCFS2_JTR_DR:
591 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
592 		ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check);
593 		break;
594 	case OCFS2_JTR_DL:
595 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
596 		ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check);
597 		break;
598 	case OCFS2_JTR_NONE:
599 		/* To make compiler happy... */
600 		return;
601 	}
602 
603 	ot->ot_triggers.t_abort = ocfs2_abort_trigger;
604 	ot->sb = sb;
605 }
606 
607 void ocfs2_initialize_journal_triggers(struct super_block *sb,
608 				       struct ocfs2_triggers triggers[])
609 {
610 	enum ocfs2_journal_trigger_type type;
611 
612 	for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++)
613 		ocfs2_setup_csum_triggers(sb, type, &triggers[type]);
614 }
615 
616 static int __ocfs2_journal_access(handle_t *handle,
617 				  struct ocfs2_caching_info *ci,
618 				  struct buffer_head *bh,
619 				  struct ocfs2_triggers *triggers,
620 				  int type)
621 {
622 	int status;
623 	struct ocfs2_super *osb =
624 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
625 
626 	BUG_ON(!ci || !ci->ci_ops);
627 	BUG_ON(!handle);
628 	BUG_ON(!bh);
629 
630 	trace_ocfs2_journal_access(
631 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
632 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
633 
634 	/* we can safely remove this assertion after testing. */
635 	if (!buffer_uptodate(bh)) {
636 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
637 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
638 		     (unsigned long long)bh->b_blocknr, bh->b_state);
639 
640 		lock_buffer(bh);
641 		/*
642 		 * A previous transaction with a couple of buffer heads fail
643 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
644 		 * For current transaction, the bh is just among those error
645 		 * bhs which previous transaction handle. We can't just clear
646 		 * its BH_Write_EIO and reuse directly, since other bhs are
647 		 * not written to disk yet and that will cause metadata
648 		 * inconsistency. So we should set fs read-only to avoid
649 		 * further damage.
650 		 */
651 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
652 			unlock_buffer(bh);
653 			return ocfs2_error(osb->sb, "A previous attempt to "
654 					"write this buffer head failed\n");
655 		}
656 		unlock_buffer(bh);
657 	}
658 
659 	/* Set the current transaction information on the ci so
660 	 * that the locking code knows whether it can drop it's locks
661 	 * on this ci or not. We're protected from the commit
662 	 * thread updating the current transaction id until
663 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
664 	 * j_trans_barrier for us. */
665 	ocfs2_set_ci_lock_trans(osb->journal, ci);
666 
667 	ocfs2_metadata_cache_io_lock(ci);
668 	switch (type) {
669 	case OCFS2_JOURNAL_ACCESS_CREATE:
670 	case OCFS2_JOURNAL_ACCESS_WRITE:
671 		status = jbd2_journal_get_write_access(handle, bh);
672 		break;
673 
674 	case OCFS2_JOURNAL_ACCESS_UNDO:
675 		status = jbd2_journal_get_undo_access(handle, bh);
676 		break;
677 
678 	default:
679 		status = -EINVAL;
680 		mlog(ML_ERROR, "Unknown access type!\n");
681 	}
682 	if (!status && ocfs2_meta_ecc(osb) && triggers)
683 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
684 	ocfs2_metadata_cache_io_unlock(ci);
685 
686 	if (status < 0)
687 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
688 		     status, type);
689 
690 	return status;
691 }
692 
693 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
694 			    struct buffer_head *bh, int type)
695 {
696 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
697 
698 	return __ocfs2_journal_access(handle, ci, bh,
699 				      &osb->s_journal_triggers[OCFS2_JTR_DI],
700 				      type);
701 }
702 
703 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
704 			    struct buffer_head *bh, int type)
705 {
706 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
707 
708 	return __ocfs2_journal_access(handle, ci, bh,
709 				      &osb->s_journal_triggers[OCFS2_JTR_EB],
710 				      type);
711 }
712 
713 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
714 			    struct buffer_head *bh, int type)
715 {
716 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
717 
718 	return __ocfs2_journal_access(handle, ci, bh,
719 				      &osb->s_journal_triggers[OCFS2_JTR_RB],
720 				      type);
721 }
722 
723 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
724 			    struct buffer_head *bh, int type)
725 {
726 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
727 
728 	return __ocfs2_journal_access(handle, ci, bh,
729 				     &osb->s_journal_triggers[OCFS2_JTR_GD],
730 				     type);
731 }
732 
733 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
734 			    struct buffer_head *bh, int type)
735 {
736 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
737 
738 	return __ocfs2_journal_access(handle, ci, bh,
739 				     &osb->s_journal_triggers[OCFS2_JTR_DB],
740 				     type);
741 }
742 
743 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
744 			    struct buffer_head *bh, int type)
745 {
746 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
747 
748 	return __ocfs2_journal_access(handle, ci, bh,
749 				     &osb->s_journal_triggers[OCFS2_JTR_XB],
750 				     type);
751 }
752 
753 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
754 			    struct buffer_head *bh, int type)
755 {
756 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
757 
758 	return __ocfs2_journal_access(handle, ci, bh,
759 				     &osb->s_journal_triggers[OCFS2_JTR_DQ],
760 				     type);
761 }
762 
763 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
764 			    struct buffer_head *bh, int type)
765 {
766 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
767 
768 	return __ocfs2_journal_access(handle, ci, bh,
769 				     &osb->s_journal_triggers[OCFS2_JTR_DR],
770 				     type);
771 }
772 
773 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
774 			    struct buffer_head *bh, int type)
775 {
776 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
777 
778 	return __ocfs2_journal_access(handle, ci, bh,
779 				     &osb->s_journal_triggers[OCFS2_JTR_DL],
780 				     type);
781 }
782 
783 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
784 			 struct buffer_head *bh, int type)
785 {
786 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
787 }
788 
789 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
790 {
791 	int status;
792 
793 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
794 
795 	status = jbd2_journal_dirty_metadata(handle, bh);
796 	if (status) {
797 		mlog_errno(status);
798 		if (!is_handle_aborted(handle)) {
799 			journal_t *journal = handle->h_transaction->t_journal;
800 
801 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: "
802 			     "handle type %u started at line %u, credits %u/%u "
803 			     "errcode %d. Aborting transaction and journal.\n",
804 			     handle->h_type, handle->h_line_no,
805 			     handle->h_requested_credits,
806 			     jbd2_handle_buffer_credits(handle), status);
807 			handle->h_err = status;
808 			jbd2_journal_abort_handle(handle);
809 			jbd2_journal_abort(journal, status);
810 		}
811 	}
812 }
813 
814 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
815 
816 void ocfs2_set_journal_params(struct ocfs2_super *osb)
817 {
818 	journal_t *journal = osb->journal->j_journal;
819 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
820 
821 	if (osb->osb_commit_interval)
822 		commit_interval = osb->osb_commit_interval;
823 
824 	write_lock(&journal->j_state_lock);
825 	journal->j_commit_interval = commit_interval;
826 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
827 		journal->j_flags |= JBD2_BARRIER;
828 	else
829 		journal->j_flags &= ~JBD2_BARRIER;
830 	write_unlock(&journal->j_state_lock);
831 }
832 
833 /*
834  * alloc & initialize skeleton for journal structure.
835  * ocfs2_journal_init() will make fs have journal ability.
836  */
837 int ocfs2_journal_alloc(struct ocfs2_super *osb)
838 {
839 	int status = 0;
840 	struct ocfs2_journal *journal;
841 
842 	journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
843 	if (!journal) {
844 		mlog(ML_ERROR, "unable to alloc journal\n");
845 		status = -ENOMEM;
846 		goto bail;
847 	}
848 	osb->journal = journal;
849 	journal->j_osb = osb;
850 
851 	atomic_set(&journal->j_num_trans, 0);
852 	init_rwsem(&journal->j_trans_barrier);
853 	init_waitqueue_head(&journal->j_checkpointed);
854 	spin_lock_init(&journal->j_lock);
855 	journal->j_trans_id = 1UL;
856 	INIT_LIST_HEAD(&journal->j_la_cleanups);
857 	INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
858 	journal->j_state = OCFS2_JOURNAL_FREE;
859 
860 bail:
861 	return status;
862 }
863 
864 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
865 {
866 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
867 	struct writeback_control wbc = {
868 		.sync_mode =  WB_SYNC_ALL,
869 		.nr_to_write = mapping->nrpages * 2,
870 		.range_start = jinode->i_dirty_start,
871 		.range_end = jinode->i_dirty_end,
872 	};
873 
874 	return filemap_fdatawrite_wbc(mapping, &wbc);
875 }
876 
877 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
878 {
879 	int status = -1;
880 	struct inode *inode = NULL; /* the journal inode */
881 	journal_t *j_journal = NULL;
882 	struct ocfs2_journal *journal = osb->journal;
883 	struct ocfs2_dinode *di = NULL;
884 	struct buffer_head *bh = NULL;
885 	int inode_lock = 0;
886 
887 	BUG_ON(!journal);
888 	/* already have the inode for our journal */
889 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
890 					    osb->slot_num);
891 	if (inode == NULL) {
892 		status = -EACCES;
893 		mlog_errno(status);
894 		goto done;
895 	}
896 	if (is_bad_inode(inode)) {
897 		mlog(ML_ERROR, "access error (bad inode)\n");
898 		iput(inode);
899 		inode = NULL;
900 		status = -EACCES;
901 		goto done;
902 	}
903 
904 	SET_INODE_JOURNAL(inode);
905 	OCFS2_I(inode)->ip_open_count++;
906 
907 	/* Skip recovery waits here - journal inode metadata never
908 	 * changes in a live cluster so it can be considered an
909 	 * exception to the rule. */
910 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
911 	if (status < 0) {
912 		if (status != -ERESTARTSYS)
913 			mlog(ML_ERROR, "Could not get lock on journal!\n");
914 		goto done;
915 	}
916 
917 	inode_lock = 1;
918 	di = (struct ocfs2_dinode *)bh->b_data;
919 
920 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
921 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
922 		     i_size_read(inode));
923 		status = -EINVAL;
924 		goto done;
925 	}
926 
927 	trace_ocfs2_journal_init(i_size_read(inode),
928 				 (unsigned long long)inode->i_blocks,
929 				 OCFS2_I(inode)->ip_clusters);
930 
931 	/* call the kernels journal init function now */
932 	j_journal = jbd2_journal_init_inode(inode);
933 	if (IS_ERR(j_journal)) {
934 		mlog(ML_ERROR, "Linux journal layer error\n");
935 		status = PTR_ERR(j_journal);
936 		goto done;
937 	}
938 
939 	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
940 
941 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
942 		  OCFS2_JOURNAL_DIRTY_FL);
943 
944 	journal->j_journal = j_journal;
945 	journal->j_journal->j_submit_inode_data_buffers =
946 		ocfs2_journal_submit_inode_data_buffers;
947 	journal->j_journal->j_finish_inode_data_buffers =
948 		jbd2_journal_finish_inode_data_buffers;
949 	journal->j_inode = inode;
950 	journal->j_bh = bh;
951 
952 	ocfs2_set_journal_params(osb);
953 
954 	journal->j_state = OCFS2_JOURNAL_LOADED;
955 
956 	status = 0;
957 done:
958 	if (status < 0) {
959 		if (inode_lock)
960 			ocfs2_inode_unlock(inode, 1);
961 		brelse(bh);
962 		if (inode) {
963 			OCFS2_I(inode)->ip_open_count--;
964 			iput(inode);
965 		}
966 	}
967 
968 	return status;
969 }
970 
971 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
972 {
973 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
974 }
975 
976 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
977 {
978 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
979 }
980 
981 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
982 				      int dirty, int replayed)
983 {
984 	int status;
985 	unsigned int flags;
986 	struct ocfs2_journal *journal = osb->journal;
987 	struct buffer_head *bh = journal->j_bh;
988 	struct ocfs2_dinode *fe;
989 
990 	fe = (struct ocfs2_dinode *)bh->b_data;
991 
992 	/* The journal bh on the osb always comes from ocfs2_journal_init()
993 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
994 	 * code bug if we mess it up. */
995 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
996 
997 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
998 	if (dirty)
999 		flags |= OCFS2_JOURNAL_DIRTY_FL;
1000 	else
1001 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1002 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1003 
1004 	if (replayed)
1005 		ocfs2_bump_recovery_generation(fe);
1006 
1007 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1008 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
1009 	if (status < 0)
1010 		mlog_errno(status);
1011 
1012 	return status;
1013 }
1014 
1015 /*
1016  * If the journal has been kmalloc'd it needs to be freed after this
1017  * call.
1018  */
1019 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
1020 {
1021 	struct ocfs2_journal *journal = NULL;
1022 	int status = 0;
1023 	struct inode *inode = NULL;
1024 	int num_running_trans = 0;
1025 
1026 	BUG_ON(!osb);
1027 
1028 	journal = osb->journal;
1029 	if (!journal)
1030 		goto done;
1031 
1032 	inode = journal->j_inode;
1033 
1034 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
1035 		goto done;
1036 
1037 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
1038 	if (!igrab(inode))
1039 		BUG();
1040 
1041 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
1042 	trace_ocfs2_journal_shutdown(num_running_trans);
1043 
1044 	/* Do a commit_cache here. It will flush our journal, *and*
1045 	 * release any locks that are still held.
1046 	 * set the SHUTDOWN flag and release the trans lock.
1047 	 * the commit thread will take the trans lock for us below. */
1048 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1049 
1050 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1051 	 * drop the trans_lock (which we want to hold until we
1052 	 * completely destroy the journal. */
1053 	if (osb->commit_task) {
1054 		/* Wait for the commit thread */
1055 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1056 		kthread_stop(osb->commit_task);
1057 		osb->commit_task = NULL;
1058 	}
1059 
1060 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1061 
1062 	if (ocfs2_mount_local(osb)) {
1063 		jbd2_journal_lock_updates(journal->j_journal);
1064 		status = jbd2_journal_flush(journal->j_journal, 0);
1065 		jbd2_journal_unlock_updates(journal->j_journal);
1066 		if (status < 0)
1067 			mlog_errno(status);
1068 	}
1069 
1070 	/* Shutdown the kernel journal system */
1071 	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1072 		/*
1073 		 * Do not toggle if flush was unsuccessful otherwise
1074 		 * will leave dirty metadata in a "clean" journal
1075 		 */
1076 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1077 		if (status < 0)
1078 			mlog_errno(status);
1079 	}
1080 	journal->j_journal = NULL;
1081 
1082 	OCFS2_I(inode)->ip_open_count--;
1083 
1084 	/* unlock our journal */
1085 	ocfs2_inode_unlock(inode, 1);
1086 
1087 	brelse(journal->j_bh);
1088 	journal->j_bh = NULL;
1089 
1090 	journal->j_state = OCFS2_JOURNAL_FREE;
1091 
1092 done:
1093 	iput(inode);
1094 	kfree(journal);
1095 	osb->journal = NULL;
1096 }
1097 
1098 static void ocfs2_clear_journal_error(struct super_block *sb,
1099 				      journal_t *journal,
1100 				      int slot)
1101 {
1102 	int olderr;
1103 
1104 	olderr = jbd2_journal_errno(journal);
1105 	if (olderr) {
1106 		mlog(ML_ERROR, "File system error %d recorded in "
1107 		     "journal %u.\n", olderr, slot);
1108 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1109 		     sb->s_id);
1110 
1111 		jbd2_journal_ack_err(journal);
1112 		jbd2_journal_clear_err(journal);
1113 	}
1114 }
1115 
1116 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1117 {
1118 	int status = 0;
1119 	struct ocfs2_super *osb;
1120 
1121 	BUG_ON(!journal);
1122 
1123 	osb = journal->j_osb;
1124 
1125 	status = jbd2_journal_load(journal->j_journal);
1126 	if (status < 0) {
1127 		mlog(ML_ERROR, "Failed to load journal!\n");
1128 		goto done;
1129 	}
1130 
1131 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1132 
1133 	if (replayed) {
1134 		jbd2_journal_lock_updates(journal->j_journal);
1135 		status = jbd2_journal_flush(journal->j_journal, 0);
1136 		jbd2_journal_unlock_updates(journal->j_journal);
1137 		if (status < 0)
1138 			mlog_errno(status);
1139 	}
1140 
1141 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1142 	if (status < 0) {
1143 		mlog_errno(status);
1144 		goto done;
1145 	}
1146 
1147 	/* Launch the commit thread */
1148 	if (!local) {
1149 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1150 				"ocfs2cmt-%s", osb->uuid_str);
1151 		if (IS_ERR(osb->commit_task)) {
1152 			status = PTR_ERR(osb->commit_task);
1153 			osb->commit_task = NULL;
1154 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1155 			     "error=%d", status);
1156 			goto done;
1157 		}
1158 	} else
1159 		osb->commit_task = NULL;
1160 
1161 done:
1162 	return status;
1163 }
1164 
1165 
1166 /* 'full' flag tells us whether we clear out all blocks or if we just
1167  * mark the journal clean */
1168 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1169 {
1170 	int status;
1171 
1172 	BUG_ON(!journal);
1173 
1174 	status = jbd2_journal_wipe(journal->j_journal, full);
1175 	if (status < 0) {
1176 		mlog_errno(status);
1177 		goto bail;
1178 	}
1179 
1180 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1181 	if (status < 0)
1182 		mlog_errno(status);
1183 
1184 bail:
1185 	return status;
1186 }
1187 
1188 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1189 {
1190 	int empty;
1191 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1192 
1193 	spin_lock(&osb->osb_lock);
1194 	empty = (rm->rm_used == 0);
1195 	spin_unlock(&osb->osb_lock);
1196 
1197 	return empty;
1198 }
1199 
1200 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1201 {
1202 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1203 }
1204 
1205 /*
1206  * JBD Might read a cached version of another nodes journal file. We
1207  * don't want this as this file changes often and we get no
1208  * notification on those changes. The only way to be sure that we've
1209  * got the most up to date version of those blocks then is to force
1210  * read them off disk. Just searching through the buffer cache won't
1211  * work as there may be pages backing this file which are still marked
1212  * up to date. We know things can't change on this file underneath us
1213  * as we have the lock by now :)
1214  */
1215 static int ocfs2_force_read_journal(struct inode *inode)
1216 {
1217 	int status = 0;
1218 	int i;
1219 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1220 	struct buffer_head *bh = NULL;
1221 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1222 
1223 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1224 	v_blkno = 0;
1225 	while (v_blkno < num_blocks) {
1226 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1227 						     &p_blkno, &p_blocks, NULL);
1228 		if (status < 0) {
1229 			mlog_errno(status);
1230 			goto bail;
1231 		}
1232 
1233 		for (i = 0; i < p_blocks; i++, p_blkno++) {
1234 			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1235 					osb->sb->s_blocksize);
1236 			/* block not cached. */
1237 			if (!bh)
1238 				continue;
1239 
1240 			brelse(bh);
1241 			bh = NULL;
1242 			/* We are reading journal data which should not
1243 			 * be put in the uptodate cache.
1244 			 */
1245 			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1246 			if (status < 0) {
1247 				mlog_errno(status);
1248 				goto bail;
1249 			}
1250 
1251 			brelse(bh);
1252 			bh = NULL;
1253 		}
1254 
1255 		v_blkno += p_blocks;
1256 	}
1257 
1258 bail:
1259 	return status;
1260 }
1261 
1262 struct ocfs2_la_recovery_item {
1263 	struct list_head	lri_list;
1264 	int			lri_slot;
1265 	struct ocfs2_dinode	*lri_la_dinode;
1266 	struct ocfs2_dinode	*lri_tl_dinode;
1267 	struct ocfs2_quota_recovery *lri_qrec;
1268 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1269 };
1270 
1271 /* Does the second half of the recovery process. By this point, the
1272  * node is marked clean and can actually be considered recovered,
1273  * hence it's no longer in the recovery map, but there's still some
1274  * cleanup we can do which shouldn't happen within the recovery thread
1275  * as locking in that context becomes very difficult if we are to take
1276  * recovering nodes into account.
1277  *
1278  * NOTE: This function can and will sleep on recovery of other nodes
1279  * during cluster locking, just like any other ocfs2 process.
1280  */
1281 void ocfs2_complete_recovery(struct work_struct *work)
1282 {
1283 	int ret = 0;
1284 	struct ocfs2_journal *journal =
1285 		container_of(work, struct ocfs2_journal, j_recovery_work);
1286 	struct ocfs2_super *osb = journal->j_osb;
1287 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1288 	struct ocfs2_la_recovery_item *item, *n;
1289 	struct ocfs2_quota_recovery *qrec;
1290 	enum ocfs2_orphan_reco_type orphan_reco_type;
1291 	LIST_HEAD(tmp_la_list);
1292 
1293 	trace_ocfs2_complete_recovery(
1294 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1295 
1296 	spin_lock(&journal->j_lock);
1297 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1298 	spin_unlock(&journal->j_lock);
1299 
1300 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1301 		list_del_init(&item->lri_list);
1302 
1303 		ocfs2_wait_on_quotas(osb);
1304 
1305 		la_dinode = item->lri_la_dinode;
1306 		tl_dinode = item->lri_tl_dinode;
1307 		qrec = item->lri_qrec;
1308 		orphan_reco_type = item->lri_orphan_reco_type;
1309 
1310 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1311 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1312 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1313 			qrec);
1314 
1315 		if (la_dinode) {
1316 			ret = ocfs2_complete_local_alloc_recovery(osb,
1317 								  la_dinode);
1318 			if (ret < 0)
1319 				mlog_errno(ret);
1320 
1321 			kfree(la_dinode);
1322 		}
1323 
1324 		if (tl_dinode) {
1325 			ret = ocfs2_complete_truncate_log_recovery(osb,
1326 								   tl_dinode);
1327 			if (ret < 0)
1328 				mlog_errno(ret);
1329 
1330 			kfree(tl_dinode);
1331 		}
1332 
1333 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1334 				orphan_reco_type);
1335 		if (ret < 0)
1336 			mlog_errno(ret);
1337 
1338 		if (qrec) {
1339 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1340 							  item->lri_slot);
1341 			if (ret < 0)
1342 				mlog_errno(ret);
1343 			/* Recovery info is already freed now */
1344 		}
1345 
1346 		kfree(item);
1347 	}
1348 
1349 	trace_ocfs2_complete_recovery_end(ret);
1350 }
1351 
1352 /* NOTE: This function always eats your references to la_dinode and
1353  * tl_dinode, either manually on error, or by passing them to
1354  * ocfs2_complete_recovery */
1355 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1356 					    int slot_num,
1357 					    struct ocfs2_dinode *la_dinode,
1358 					    struct ocfs2_dinode *tl_dinode,
1359 					    struct ocfs2_quota_recovery *qrec,
1360 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1361 {
1362 	struct ocfs2_la_recovery_item *item;
1363 
1364 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1365 	if (!item) {
1366 		/* Though we wish to avoid it, we are in fact safe in
1367 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1368 		 * than capable of reclaiming unused space. */
1369 		kfree(la_dinode);
1370 		kfree(tl_dinode);
1371 
1372 		if (qrec)
1373 			ocfs2_free_quota_recovery(qrec);
1374 
1375 		mlog_errno(-ENOMEM);
1376 		return;
1377 	}
1378 
1379 	INIT_LIST_HEAD(&item->lri_list);
1380 	item->lri_la_dinode = la_dinode;
1381 	item->lri_slot = slot_num;
1382 	item->lri_tl_dinode = tl_dinode;
1383 	item->lri_qrec = qrec;
1384 	item->lri_orphan_reco_type = orphan_reco_type;
1385 
1386 	spin_lock(&journal->j_lock);
1387 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1388 	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1389 	spin_unlock(&journal->j_lock);
1390 }
1391 
1392 /* Called by the mount code to queue recovery the last part of
1393  * recovery for it's own and offline slot(s). */
1394 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1395 {
1396 	struct ocfs2_journal *journal = osb->journal;
1397 
1398 	if (ocfs2_is_hard_readonly(osb))
1399 		return;
1400 
1401 	/* No need to queue up our truncate_log as regular cleanup will catch
1402 	 * that */
1403 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1404 					osb->local_alloc_copy, NULL, NULL,
1405 					ORPHAN_NEED_TRUNCATE);
1406 	ocfs2_schedule_truncate_log_flush(osb, 0);
1407 
1408 	osb->local_alloc_copy = NULL;
1409 
1410 	/* queue to recover orphan slots for all offline slots */
1411 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1412 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1413 	ocfs2_free_replay_slots(osb);
1414 }
1415 
1416 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1417 {
1418 	if (osb->quota_rec) {
1419 		ocfs2_queue_recovery_completion(osb->journal,
1420 						osb->slot_num,
1421 						NULL,
1422 						NULL,
1423 						osb->quota_rec,
1424 						ORPHAN_NEED_TRUNCATE);
1425 		osb->quota_rec = NULL;
1426 	}
1427 }
1428 
1429 static int __ocfs2_recovery_thread(void *arg)
1430 {
1431 	int status, node_num, slot_num;
1432 	struct ocfs2_super *osb = arg;
1433 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1434 	int *rm_quota = NULL;
1435 	int rm_quota_used = 0, i;
1436 	struct ocfs2_quota_recovery *qrec;
1437 
1438 	/* Whether the quota supported. */
1439 	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1440 			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1441 		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1442 			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1443 
1444 	status = ocfs2_wait_on_mount(osb);
1445 	if (status < 0) {
1446 		goto bail;
1447 	}
1448 
1449 	if (quota_enabled) {
1450 		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1451 		if (!rm_quota) {
1452 			status = -ENOMEM;
1453 			goto bail;
1454 		}
1455 	}
1456 restart:
1457 	status = ocfs2_super_lock(osb, 1);
1458 	if (status < 0) {
1459 		mlog_errno(status);
1460 		goto bail;
1461 	}
1462 
1463 	status = ocfs2_compute_replay_slots(osb);
1464 	if (status < 0)
1465 		mlog_errno(status);
1466 
1467 	/* queue recovery for our own slot */
1468 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1469 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1470 
1471 	spin_lock(&osb->osb_lock);
1472 	while (rm->rm_used) {
1473 		/* It's always safe to remove entry zero, as we won't
1474 		 * clear it until ocfs2_recover_node() has succeeded. */
1475 		node_num = rm->rm_entries[0];
1476 		spin_unlock(&osb->osb_lock);
1477 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1478 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1479 		if (slot_num == -ENOENT) {
1480 			status = 0;
1481 			goto skip_recovery;
1482 		}
1483 
1484 		/* It is a bit subtle with quota recovery. We cannot do it
1485 		 * immediately because we have to obtain cluster locks from
1486 		 * quota files and we also don't want to just skip it because
1487 		 * then quota usage would be out of sync until some node takes
1488 		 * the slot. So we remember which nodes need quota recovery
1489 		 * and when everything else is done, we recover quotas. */
1490 		if (quota_enabled) {
1491 			for (i = 0; i < rm_quota_used
1492 					&& rm_quota[i] != slot_num; i++)
1493 				;
1494 
1495 			if (i == rm_quota_used)
1496 				rm_quota[rm_quota_used++] = slot_num;
1497 		}
1498 
1499 		status = ocfs2_recover_node(osb, node_num, slot_num);
1500 skip_recovery:
1501 		if (!status) {
1502 			ocfs2_recovery_map_clear(osb, node_num);
1503 		} else {
1504 			mlog(ML_ERROR,
1505 			     "Error %d recovering node %d on device (%u,%u)!\n",
1506 			     status, node_num,
1507 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1508 			mlog(ML_ERROR, "Volume requires unmount.\n");
1509 		}
1510 
1511 		spin_lock(&osb->osb_lock);
1512 	}
1513 	spin_unlock(&osb->osb_lock);
1514 	trace_ocfs2_recovery_thread_end(status);
1515 
1516 	/* Refresh all journal recovery generations from disk */
1517 	status = ocfs2_check_journals_nolocks(osb);
1518 	status = (status == -EROFS) ? 0 : status;
1519 	if (status < 0)
1520 		mlog_errno(status);
1521 
1522 	/* Now it is right time to recover quotas... We have to do this under
1523 	 * superblock lock so that no one can start using the slot (and crash)
1524 	 * before we recover it */
1525 	if (quota_enabled) {
1526 		for (i = 0; i < rm_quota_used; i++) {
1527 			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1528 			if (IS_ERR(qrec)) {
1529 				status = PTR_ERR(qrec);
1530 				mlog_errno(status);
1531 				continue;
1532 			}
1533 			ocfs2_queue_recovery_completion(osb->journal,
1534 					rm_quota[i],
1535 					NULL, NULL, qrec,
1536 					ORPHAN_NEED_TRUNCATE);
1537 		}
1538 	}
1539 
1540 	ocfs2_super_unlock(osb, 1);
1541 
1542 	/* queue recovery for offline slots */
1543 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1544 
1545 bail:
1546 	mutex_lock(&osb->recovery_lock);
1547 	if (!status && !ocfs2_recovery_completed(osb)) {
1548 		mutex_unlock(&osb->recovery_lock);
1549 		goto restart;
1550 	}
1551 
1552 	ocfs2_free_replay_slots(osb);
1553 	osb->recovery_thread_task = NULL;
1554 	mb(); /* sync with ocfs2_recovery_thread_running */
1555 	wake_up(&osb->recovery_event);
1556 
1557 	mutex_unlock(&osb->recovery_lock);
1558 
1559 	if (quota_enabled)
1560 		kfree(rm_quota);
1561 
1562 	return status;
1563 }
1564 
1565 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1566 {
1567 	mutex_lock(&osb->recovery_lock);
1568 
1569 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1570 		osb->disable_recovery, osb->recovery_thread_task,
1571 		osb->disable_recovery ?
1572 		-1 : ocfs2_recovery_map_set(osb, node_num));
1573 
1574 	if (osb->disable_recovery)
1575 		goto out;
1576 
1577 	if (osb->recovery_thread_task)
1578 		goto out;
1579 
1580 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1581 			"ocfs2rec-%s", osb->uuid_str);
1582 	if (IS_ERR(osb->recovery_thread_task)) {
1583 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1584 		osb->recovery_thread_task = NULL;
1585 	}
1586 
1587 out:
1588 	mutex_unlock(&osb->recovery_lock);
1589 	wake_up(&osb->recovery_event);
1590 }
1591 
1592 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1593 				    int slot_num,
1594 				    struct buffer_head **bh,
1595 				    struct inode **ret_inode)
1596 {
1597 	int status = -EACCES;
1598 	struct inode *inode = NULL;
1599 
1600 	BUG_ON(slot_num >= osb->max_slots);
1601 
1602 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1603 					    slot_num);
1604 	if (!inode || is_bad_inode(inode)) {
1605 		mlog_errno(status);
1606 		goto bail;
1607 	}
1608 	SET_INODE_JOURNAL(inode);
1609 
1610 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1611 	if (status < 0) {
1612 		mlog_errno(status);
1613 		goto bail;
1614 	}
1615 
1616 	status = 0;
1617 
1618 bail:
1619 	if (inode) {
1620 		if (status || !ret_inode)
1621 			iput(inode);
1622 		else
1623 			*ret_inode = inode;
1624 	}
1625 	return status;
1626 }
1627 
1628 /* Does the actual journal replay and marks the journal inode as
1629  * clean. Will only replay if the journal inode is marked dirty. */
1630 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1631 				int node_num,
1632 				int slot_num)
1633 {
1634 	int status;
1635 	int got_lock = 0;
1636 	unsigned int flags;
1637 	struct inode *inode = NULL;
1638 	struct ocfs2_dinode *fe;
1639 	journal_t *journal = NULL;
1640 	struct buffer_head *bh = NULL;
1641 	u32 slot_reco_gen;
1642 
1643 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1644 	if (status) {
1645 		mlog_errno(status);
1646 		goto done;
1647 	}
1648 
1649 	fe = (struct ocfs2_dinode *)bh->b_data;
1650 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1651 	brelse(bh);
1652 	bh = NULL;
1653 
1654 	/*
1655 	 * As the fs recovery is asynchronous, there is a small chance that
1656 	 * another node mounted (and recovered) the slot before the recovery
1657 	 * thread could get the lock. To handle that, we dirty read the journal
1658 	 * inode for that slot to get the recovery generation. If it is
1659 	 * different than what we expected, the slot has been recovered.
1660 	 * If not, it needs recovery.
1661 	 */
1662 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1663 		trace_ocfs2_replay_journal_recovered(slot_num,
1664 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1665 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1666 		status = -EBUSY;
1667 		goto done;
1668 	}
1669 
1670 	/* Continue with recovery as the journal has not yet been recovered */
1671 
1672 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1673 	if (status < 0) {
1674 		trace_ocfs2_replay_journal_lock_err(status);
1675 		if (status != -ERESTARTSYS)
1676 			mlog(ML_ERROR, "Could not lock journal!\n");
1677 		goto done;
1678 	}
1679 	got_lock = 1;
1680 
1681 	fe = (struct ocfs2_dinode *) bh->b_data;
1682 
1683 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1684 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1685 
1686 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1687 		trace_ocfs2_replay_journal_skip(node_num);
1688 		/* Refresh recovery generation for the slot */
1689 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1690 		goto done;
1691 	}
1692 
1693 	/* we need to run complete recovery for offline orphan slots */
1694 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1695 
1696 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1697 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1698 	       MINOR(osb->sb->s_dev));
1699 
1700 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1701 
1702 	status = ocfs2_force_read_journal(inode);
1703 	if (status < 0) {
1704 		mlog_errno(status);
1705 		goto done;
1706 	}
1707 
1708 	journal = jbd2_journal_init_inode(inode);
1709 	if (IS_ERR(journal)) {
1710 		mlog(ML_ERROR, "Linux journal layer error\n");
1711 		status = PTR_ERR(journal);
1712 		goto done;
1713 	}
1714 
1715 	status = jbd2_journal_load(journal);
1716 	if (status < 0) {
1717 		mlog_errno(status);
1718 		BUG_ON(!igrab(inode));
1719 		jbd2_journal_destroy(journal);
1720 		goto done;
1721 	}
1722 
1723 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1724 
1725 	/* wipe the journal */
1726 	jbd2_journal_lock_updates(journal);
1727 	status = jbd2_journal_flush(journal, 0);
1728 	jbd2_journal_unlock_updates(journal);
1729 	if (status < 0)
1730 		mlog_errno(status);
1731 
1732 	/* This will mark the node clean */
1733 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1734 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1735 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1736 
1737 	/* Increment recovery generation to indicate successful recovery */
1738 	ocfs2_bump_recovery_generation(fe);
1739 	osb->slot_recovery_generations[slot_num] =
1740 					ocfs2_get_recovery_generation(fe);
1741 
1742 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1743 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1744 	if (status < 0)
1745 		mlog_errno(status);
1746 
1747 	BUG_ON(!igrab(inode));
1748 
1749 	jbd2_journal_destroy(journal);
1750 
1751 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1752 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1753 	       MINOR(osb->sb->s_dev));
1754 done:
1755 	/* drop the lock on this nodes journal */
1756 	if (got_lock)
1757 		ocfs2_inode_unlock(inode, 1);
1758 
1759 	iput(inode);
1760 	brelse(bh);
1761 
1762 	return status;
1763 }
1764 
1765 /*
1766  * Do the most important parts of node recovery:
1767  *  - Replay it's journal
1768  *  - Stamp a clean local allocator file
1769  *  - Stamp a clean truncate log
1770  *  - Mark the node clean
1771  *
1772  * If this function completes without error, a node in OCFS2 can be
1773  * said to have been safely recovered. As a result, failure during the
1774  * second part of a nodes recovery process (local alloc recovery) is
1775  * far less concerning.
1776  */
1777 static int ocfs2_recover_node(struct ocfs2_super *osb,
1778 			      int node_num, int slot_num)
1779 {
1780 	int status = 0;
1781 	struct ocfs2_dinode *la_copy = NULL;
1782 	struct ocfs2_dinode *tl_copy = NULL;
1783 
1784 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1785 
1786 	/* Should not ever be called to recover ourselves -- in that
1787 	 * case we should've called ocfs2_journal_load instead. */
1788 	BUG_ON(osb->node_num == node_num);
1789 
1790 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1791 	if (status < 0) {
1792 		if (status == -EBUSY) {
1793 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1794 			status = 0;
1795 			goto done;
1796 		}
1797 		mlog_errno(status);
1798 		goto done;
1799 	}
1800 
1801 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1802 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1803 	if (status < 0) {
1804 		mlog_errno(status);
1805 		goto done;
1806 	}
1807 
1808 	/* An error from begin_truncate_log_recovery is not
1809 	 * serious enough to warrant halting the rest of
1810 	 * recovery. */
1811 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1812 	if (status < 0)
1813 		mlog_errno(status);
1814 
1815 	/* Likewise, this would be a strange but ultimately not so
1816 	 * harmful place to get an error... */
1817 	status = ocfs2_clear_slot(osb, slot_num);
1818 	if (status < 0)
1819 		mlog_errno(status);
1820 
1821 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1822 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1823 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1824 
1825 	status = 0;
1826 done:
1827 
1828 	return status;
1829 }
1830 
1831 /* Test node liveness by trylocking his journal. If we get the lock,
1832  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1833  * still alive (we couldn't get the lock) and < 0 on error. */
1834 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1835 				 int slot_num)
1836 {
1837 	int status, flags;
1838 	struct inode *inode = NULL;
1839 
1840 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1841 					    slot_num);
1842 	if (inode == NULL) {
1843 		mlog(ML_ERROR, "access error\n");
1844 		status = -EACCES;
1845 		goto bail;
1846 	}
1847 	if (is_bad_inode(inode)) {
1848 		mlog(ML_ERROR, "access error (bad inode)\n");
1849 		iput(inode);
1850 		inode = NULL;
1851 		status = -EACCES;
1852 		goto bail;
1853 	}
1854 	SET_INODE_JOURNAL(inode);
1855 
1856 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1857 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1858 	if (status < 0) {
1859 		if (status != -EAGAIN)
1860 			mlog_errno(status);
1861 		goto bail;
1862 	}
1863 
1864 	ocfs2_inode_unlock(inode, 1);
1865 bail:
1866 	iput(inode);
1867 
1868 	return status;
1869 }
1870 
1871 /* Call this underneath ocfs2_super_lock. It also assumes that the
1872  * slot info struct has been updated from disk. */
1873 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1874 {
1875 	unsigned int node_num;
1876 	int status, i;
1877 	u32 gen;
1878 	struct buffer_head *bh = NULL;
1879 	struct ocfs2_dinode *di;
1880 
1881 	/* This is called with the super block cluster lock, so we
1882 	 * know that the slot map can't change underneath us. */
1883 
1884 	for (i = 0; i < osb->max_slots; i++) {
1885 		/* Read journal inode to get the recovery generation */
1886 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1887 		if (status) {
1888 			mlog_errno(status);
1889 			goto bail;
1890 		}
1891 		di = (struct ocfs2_dinode *)bh->b_data;
1892 		gen = ocfs2_get_recovery_generation(di);
1893 		brelse(bh);
1894 		bh = NULL;
1895 
1896 		spin_lock(&osb->osb_lock);
1897 		osb->slot_recovery_generations[i] = gen;
1898 
1899 		trace_ocfs2_mark_dead_nodes(i,
1900 					    osb->slot_recovery_generations[i]);
1901 
1902 		if (i == osb->slot_num) {
1903 			spin_unlock(&osb->osb_lock);
1904 			continue;
1905 		}
1906 
1907 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1908 		if (status == -ENOENT) {
1909 			spin_unlock(&osb->osb_lock);
1910 			continue;
1911 		}
1912 
1913 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1914 			spin_unlock(&osb->osb_lock);
1915 			continue;
1916 		}
1917 		spin_unlock(&osb->osb_lock);
1918 
1919 		/* Ok, we have a slot occupied by another node which
1920 		 * is not in the recovery map. We trylock his journal
1921 		 * file here to test if he's alive. */
1922 		status = ocfs2_trylock_journal(osb, i);
1923 		if (!status) {
1924 			/* Since we're called from mount, we know that
1925 			 * the recovery thread can't race us on
1926 			 * setting / checking the recovery bits. */
1927 			ocfs2_recovery_thread(osb, node_num);
1928 		} else if ((status < 0) && (status != -EAGAIN)) {
1929 			mlog_errno(status);
1930 			goto bail;
1931 		}
1932 	}
1933 
1934 	status = 0;
1935 bail:
1936 	return status;
1937 }
1938 
1939 /*
1940  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1941  * randomness to the timeout to minimize multple nodes firing the timer at the
1942  * same time.
1943  */
1944 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1945 {
1946 	unsigned long time;
1947 
1948 	get_random_bytes(&time, sizeof(time));
1949 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1950 	return msecs_to_jiffies(time);
1951 }
1952 
1953 /*
1954  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1955  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1956  * is done to catch any orphans that are left over in orphan directories.
1957  *
1958  * It scans all slots, even ones that are in use. It does so to handle the
1959  * case described below:
1960  *
1961  *   Node 1 has an inode it was using. The dentry went away due to memory
1962  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1963  *   has the open lock.
1964  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1965  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1966  *   open lock, sees that another node has a PR, and does nothing.
1967  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1968  *   open lock, sees the PR still, and does nothing.
1969  *   Basically, we have to trigger an orphan iput on node 1. The only way
1970  *   for this to happen is if node 1 runs node 2's orphan dir.
1971  *
1972  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1973  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1974  * stored in LVB. If the sequence number has changed, it means some other
1975  * node has done the scan.  This node skips the scan and tracks the
1976  * sequence number.  If the sequence number didn't change, it means a scan
1977  * hasn't happened.  The node queues a scan and increments the
1978  * sequence number in the LVB.
1979  */
1980 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1981 {
1982 	struct ocfs2_orphan_scan *os;
1983 	int status, i;
1984 	u32 seqno = 0;
1985 
1986 	os = &osb->osb_orphan_scan;
1987 
1988 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1989 		goto out;
1990 
1991 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1992 					    atomic_read(&os->os_state));
1993 
1994 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1995 	if (status < 0) {
1996 		if (status != -EAGAIN)
1997 			mlog_errno(status);
1998 		goto out;
1999 	}
2000 
2001 	/* Do no queue the tasks if the volume is being umounted */
2002 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2003 		goto unlock;
2004 
2005 	if (os->os_seqno != seqno) {
2006 		os->os_seqno = seqno;
2007 		goto unlock;
2008 	}
2009 
2010 	for (i = 0; i < osb->max_slots; i++)
2011 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
2012 						NULL, ORPHAN_NO_NEED_TRUNCATE);
2013 	/*
2014 	 * We queued a recovery on orphan slots, increment the sequence
2015 	 * number and update LVB so other node will skip the scan for a while
2016 	 */
2017 	seqno++;
2018 	os->os_count++;
2019 	os->os_scantime = ktime_get_seconds();
2020 unlock:
2021 	ocfs2_orphan_scan_unlock(osb, seqno);
2022 out:
2023 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2024 					  atomic_read(&os->os_state));
2025 	return;
2026 }
2027 
2028 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
2029 static void ocfs2_orphan_scan_work(struct work_struct *work)
2030 {
2031 	struct ocfs2_orphan_scan *os;
2032 	struct ocfs2_super *osb;
2033 
2034 	os = container_of(work, struct ocfs2_orphan_scan,
2035 			  os_orphan_scan_work.work);
2036 	osb = os->os_osb;
2037 
2038 	mutex_lock(&os->os_lock);
2039 	ocfs2_queue_orphan_scan(osb);
2040 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2041 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2042 				      ocfs2_orphan_scan_timeout());
2043 	mutex_unlock(&os->os_lock);
2044 }
2045 
2046 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2047 {
2048 	struct ocfs2_orphan_scan *os;
2049 
2050 	os = &osb->osb_orphan_scan;
2051 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2052 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2053 		mutex_lock(&os->os_lock);
2054 		cancel_delayed_work(&os->os_orphan_scan_work);
2055 		mutex_unlock(&os->os_lock);
2056 	}
2057 }
2058 
2059 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2060 {
2061 	struct ocfs2_orphan_scan *os;
2062 
2063 	os = &osb->osb_orphan_scan;
2064 	os->os_osb = osb;
2065 	os->os_count = 0;
2066 	os->os_seqno = 0;
2067 	mutex_init(&os->os_lock);
2068 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2069 }
2070 
2071 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2072 {
2073 	struct ocfs2_orphan_scan *os;
2074 
2075 	os = &osb->osb_orphan_scan;
2076 	os->os_scantime = ktime_get_seconds();
2077 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2078 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2079 	else {
2080 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2081 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2082 				   ocfs2_orphan_scan_timeout());
2083 	}
2084 }
2085 
2086 struct ocfs2_orphan_filldir_priv {
2087 	struct dir_context	ctx;
2088 	struct inode		*head;
2089 	struct ocfs2_super	*osb;
2090 	enum ocfs2_orphan_reco_type orphan_reco_type;
2091 };
2092 
2093 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2094 				int name_len, loff_t pos, u64 ino,
2095 				unsigned type)
2096 {
2097 	struct ocfs2_orphan_filldir_priv *p =
2098 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2099 	struct inode *iter;
2100 
2101 	if (name_len == 1 && !strncmp(".", name, 1))
2102 		return true;
2103 	if (name_len == 2 && !strncmp("..", name, 2))
2104 		return true;
2105 
2106 	/* do not include dio entry in case of orphan scan */
2107 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2108 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2109 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2110 		return true;
2111 
2112 	/* Skip bad inodes so that recovery can continue */
2113 	iter = ocfs2_iget(p->osb, ino,
2114 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2115 	if (IS_ERR(iter))
2116 		return true;
2117 
2118 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2119 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2120 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2121 
2122 	/* Skip inodes which are already added to recover list, since dio may
2123 	 * happen concurrently with unlink/rename */
2124 	if (OCFS2_I(iter)->ip_next_orphan) {
2125 		iput(iter);
2126 		return true;
2127 	}
2128 
2129 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2130 	/* No locking is required for the next_orphan queue as there
2131 	 * is only ever a single process doing orphan recovery. */
2132 	OCFS2_I(iter)->ip_next_orphan = p->head;
2133 	p->head = iter;
2134 
2135 	return true;
2136 }
2137 
2138 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2139 			       int slot,
2140 			       struct inode **head,
2141 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2142 {
2143 	int status;
2144 	struct inode *orphan_dir_inode = NULL;
2145 	struct ocfs2_orphan_filldir_priv priv = {
2146 		.ctx.actor = ocfs2_orphan_filldir,
2147 		.osb = osb,
2148 		.head = *head,
2149 		.orphan_reco_type = orphan_reco_type
2150 	};
2151 
2152 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2153 						       ORPHAN_DIR_SYSTEM_INODE,
2154 						       slot);
2155 	if  (!orphan_dir_inode) {
2156 		status = -ENOENT;
2157 		mlog_errno(status);
2158 		return status;
2159 	}
2160 
2161 	inode_lock(orphan_dir_inode);
2162 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2163 	if (status < 0) {
2164 		mlog_errno(status);
2165 		goto out;
2166 	}
2167 
2168 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2169 	if (status) {
2170 		mlog_errno(status);
2171 		goto out_cluster;
2172 	}
2173 
2174 	*head = priv.head;
2175 
2176 out_cluster:
2177 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2178 out:
2179 	inode_unlock(orphan_dir_inode);
2180 	iput(orphan_dir_inode);
2181 	return status;
2182 }
2183 
2184 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2185 					      int slot)
2186 {
2187 	int ret;
2188 
2189 	spin_lock(&osb->osb_lock);
2190 	ret = !osb->osb_orphan_wipes[slot];
2191 	spin_unlock(&osb->osb_lock);
2192 	return ret;
2193 }
2194 
2195 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2196 					     int slot)
2197 {
2198 	spin_lock(&osb->osb_lock);
2199 	/* Mark ourselves such that new processes in delete_inode()
2200 	 * know to quit early. */
2201 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2202 	while (osb->osb_orphan_wipes[slot]) {
2203 		/* If any processes are already in the middle of an
2204 		 * orphan wipe on this dir, then we need to wait for
2205 		 * them. */
2206 		spin_unlock(&osb->osb_lock);
2207 		wait_event_interruptible(osb->osb_wipe_event,
2208 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2209 		spin_lock(&osb->osb_lock);
2210 	}
2211 	spin_unlock(&osb->osb_lock);
2212 }
2213 
2214 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2215 					      int slot)
2216 {
2217 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2218 }
2219 
2220 /*
2221  * Orphan recovery. Each mounted node has it's own orphan dir which we
2222  * must run during recovery. Our strategy here is to build a list of
2223  * the inodes in the orphan dir and iget/iput them. The VFS does
2224  * (most) of the rest of the work.
2225  *
2226  * Orphan recovery can happen at any time, not just mount so we have a
2227  * couple of extra considerations.
2228  *
2229  * - We grab as many inodes as we can under the orphan dir lock -
2230  *   doing iget() outside the orphan dir risks getting a reference on
2231  *   an invalid inode.
2232  * - We must be sure not to deadlock with other processes on the
2233  *   system wanting to run delete_inode(). This can happen when they go
2234  *   to lock the orphan dir and the orphan recovery process attempts to
2235  *   iget() inside the orphan dir lock. This can be avoided by
2236  *   advertising our state to ocfs2_delete_inode().
2237  */
2238 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2239 				 int slot,
2240 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2241 {
2242 	int ret = 0;
2243 	struct inode *inode = NULL;
2244 	struct inode *iter;
2245 	struct ocfs2_inode_info *oi;
2246 	struct buffer_head *di_bh = NULL;
2247 	struct ocfs2_dinode *di = NULL;
2248 
2249 	trace_ocfs2_recover_orphans(slot);
2250 
2251 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2252 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2253 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2254 
2255 	/* Error here should be noted, but we want to continue with as
2256 	 * many queued inodes as we've got. */
2257 	if (ret)
2258 		mlog_errno(ret);
2259 
2260 	while (inode) {
2261 		oi = OCFS2_I(inode);
2262 		trace_ocfs2_recover_orphans_iput(
2263 					(unsigned long long)oi->ip_blkno);
2264 
2265 		iter = oi->ip_next_orphan;
2266 		oi->ip_next_orphan = NULL;
2267 
2268 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2269 			inode_lock(inode);
2270 			ret = ocfs2_rw_lock(inode, 1);
2271 			if (ret < 0) {
2272 				mlog_errno(ret);
2273 				goto unlock_mutex;
2274 			}
2275 			/*
2276 			 * We need to take and drop the inode lock to
2277 			 * force read inode from disk.
2278 			 */
2279 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2280 			if (ret) {
2281 				mlog_errno(ret);
2282 				goto unlock_rw;
2283 			}
2284 
2285 			di = (struct ocfs2_dinode *)di_bh->b_data;
2286 
2287 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2288 				ret = ocfs2_truncate_file(inode, di_bh,
2289 						i_size_read(inode));
2290 				if (ret < 0) {
2291 					if (ret != -ENOSPC)
2292 						mlog_errno(ret);
2293 					goto unlock_inode;
2294 				}
2295 
2296 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2297 						di_bh, 0, 0);
2298 				if (ret)
2299 					mlog_errno(ret);
2300 			}
2301 unlock_inode:
2302 			ocfs2_inode_unlock(inode, 1);
2303 			brelse(di_bh);
2304 			di_bh = NULL;
2305 unlock_rw:
2306 			ocfs2_rw_unlock(inode, 1);
2307 unlock_mutex:
2308 			inode_unlock(inode);
2309 
2310 			/* clear dio flag in ocfs2_inode_info */
2311 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2312 		} else {
2313 			spin_lock(&oi->ip_lock);
2314 			/* Set the proper information to get us going into
2315 			 * ocfs2_delete_inode. */
2316 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2317 			spin_unlock(&oi->ip_lock);
2318 		}
2319 
2320 		iput(inode);
2321 		inode = iter;
2322 	}
2323 
2324 	return ret;
2325 }
2326 
2327 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2328 {
2329 	/* This check is good because ocfs2 will wait on our recovery
2330 	 * thread before changing it to something other than MOUNTED
2331 	 * or DISABLED. */
2332 	wait_event(osb->osb_mount_event,
2333 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2334 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2335 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2336 
2337 	/* If there's an error on mount, then we may never get to the
2338 	 * MOUNTED flag, but this is set right before
2339 	 * dismount_volume() so we can trust it. */
2340 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2341 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2342 		mlog(0, "mount error, exiting!\n");
2343 		return -EBUSY;
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 static int ocfs2_commit_thread(void *arg)
2350 {
2351 	int status;
2352 	struct ocfs2_super *osb = arg;
2353 	struct ocfs2_journal *journal = osb->journal;
2354 
2355 	/* we can trust j_num_trans here because _should_stop() is only set in
2356 	 * shutdown and nobody other than ourselves should be able to start
2357 	 * transactions.  committing on shutdown might take a few iterations
2358 	 * as final transactions put deleted inodes on the list */
2359 	while (!(kthread_should_stop() &&
2360 		 atomic_read(&journal->j_num_trans) == 0)) {
2361 
2362 		wait_event_interruptible(osb->checkpoint_event,
2363 					 atomic_read(&journal->j_num_trans)
2364 					 || kthread_should_stop());
2365 
2366 		status = ocfs2_commit_cache(osb);
2367 		if (status < 0) {
2368 			static unsigned long abort_warn_time;
2369 
2370 			/* Warn about this once per minute */
2371 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2372 				mlog(ML_ERROR, "status = %d, journal is "
2373 						"already aborted.\n", status);
2374 			/*
2375 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2376 			 * non-zero value.  Sleep here to avoid a busy-wait
2377 			 * loop.
2378 			 */
2379 			msleep_interruptible(1000);
2380 		}
2381 
2382 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2383 			mlog(ML_KTHREAD,
2384 			     "commit_thread: %u transactions pending on "
2385 			     "shutdown\n",
2386 			     atomic_read(&journal->j_num_trans));
2387 		}
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 /* Reads all the journal inodes without taking any cluster locks. Used
2394  * for hard readonly access to determine whether any journal requires
2395  * recovery. Also used to refresh the recovery generation numbers after
2396  * a journal has been recovered by another node.
2397  */
2398 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2399 {
2400 	int ret = 0;
2401 	unsigned int slot;
2402 	struct buffer_head *di_bh = NULL;
2403 	struct ocfs2_dinode *di;
2404 	int journal_dirty = 0;
2405 
2406 	for(slot = 0; slot < osb->max_slots; slot++) {
2407 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2408 		if (ret) {
2409 			mlog_errno(ret);
2410 			goto out;
2411 		}
2412 
2413 		di = (struct ocfs2_dinode *) di_bh->b_data;
2414 
2415 		osb->slot_recovery_generations[slot] =
2416 					ocfs2_get_recovery_generation(di);
2417 
2418 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2419 		    OCFS2_JOURNAL_DIRTY_FL)
2420 			journal_dirty = 1;
2421 
2422 		brelse(di_bh);
2423 		di_bh = NULL;
2424 	}
2425 
2426 out:
2427 	if (journal_dirty)
2428 		ret = -EROFS;
2429 	return ret;
2430 }
2431