xref: /openbmc/linux/fs/ocfs2/journal.c (revision 5e8d780d)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "heartbeat.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "namei.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "vote.h"
48 #include "sysfile.h"
49 
50 #include "buffer_head_io.h"
51 
52 DEFINE_SPINLOCK(trans_inc_lock);
53 
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 			      int node_num);
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
61 				       struct ocfs2_journal_handle *handle);
62 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle);
63 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
64 				      int dirty);
65 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
66 				 int slot_num);
67 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
68 				 int slot);
69 static int ocfs2_commit_thread(void *arg);
70 
71 static int ocfs2_commit_cache(struct ocfs2_super *osb)
72 {
73 	int status = 0;
74 	unsigned int flushed;
75 	unsigned long old_id;
76 	struct ocfs2_journal *journal = NULL;
77 
78 	mlog_entry_void();
79 
80 	journal = osb->journal;
81 
82 	/* Flush all pending commits and checkpoint the journal. */
83 	down_write(&journal->j_trans_barrier);
84 
85 	if (atomic_read(&journal->j_num_trans) == 0) {
86 		up_write(&journal->j_trans_barrier);
87 		mlog(0, "No transactions for me to flush!\n");
88 		goto finally;
89 	}
90 
91 	journal_lock_updates(journal->j_journal);
92 	status = journal_flush(journal->j_journal);
93 	journal_unlock_updates(journal->j_journal);
94 	if (status < 0) {
95 		up_write(&journal->j_trans_barrier);
96 		mlog_errno(status);
97 		goto finally;
98 	}
99 
100 	old_id = ocfs2_inc_trans_id(journal);
101 
102 	flushed = atomic_read(&journal->j_num_trans);
103 	atomic_set(&journal->j_num_trans, 0);
104 	up_write(&journal->j_trans_barrier);
105 
106 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
107 	     journal->j_trans_id, flushed);
108 
109 	ocfs2_kick_vote_thread(osb);
110 	wake_up(&journal->j_checkpointed);
111 finally:
112 	mlog_exit(status);
113 	return status;
114 }
115 
116 struct ocfs2_journal_handle *ocfs2_alloc_handle(struct ocfs2_super *osb)
117 {
118 	struct ocfs2_journal_handle *retval = NULL;
119 
120 	retval = kcalloc(1, sizeof(*retval), GFP_NOFS);
121 	if (!retval) {
122 		mlog(ML_ERROR, "Failed to allocate memory for journal "
123 		     "handle!\n");
124 		return NULL;
125 	}
126 
127 	retval->max_buffs = 0;
128 	retval->num_locks = 0;
129 	retval->k_handle = NULL;
130 
131 	INIT_LIST_HEAD(&retval->locks);
132 	INIT_LIST_HEAD(&retval->inode_list);
133 	retval->journal = osb->journal;
134 
135 	return retval;
136 }
137 
138 /* pass it NULL and it will allocate a new handle object for you.  If
139  * you pass it a handle however, it may still return error, in which
140  * case it has free'd the passed handle for you. */
141 struct ocfs2_journal_handle *ocfs2_start_trans(struct ocfs2_super *osb,
142 					       struct ocfs2_journal_handle *handle,
143 					       int max_buffs)
144 {
145 	int ret;
146 	journal_t *journal = osb->journal->j_journal;
147 
148 	mlog_entry("(max_buffs = %d)\n", max_buffs);
149 
150 	BUG_ON(!osb || !osb->journal->j_journal);
151 
152 	if (ocfs2_is_hard_readonly(osb)) {
153 		ret = -EROFS;
154 		goto done_free;
155 	}
156 
157 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
158 	BUG_ON(max_buffs <= 0);
159 
160 	/* JBD might support this, but our journalling code doesn't yet. */
161 	if (journal_current_handle()) {
162 		mlog(ML_ERROR, "Recursive transaction attempted!\n");
163 		BUG();
164 	}
165 
166 	if (!handle)
167 		handle = ocfs2_alloc_handle(osb);
168 	if (!handle) {
169 		ret = -ENOMEM;
170 		mlog(ML_ERROR, "Failed to allocate memory for journal "
171 		     "handle!\n");
172 		goto done_free;
173 	}
174 
175 	handle->max_buffs = max_buffs;
176 
177 	down_read(&osb->journal->j_trans_barrier);
178 
179 	/* actually start the transaction now */
180 	handle->k_handle = journal_start(journal, max_buffs);
181 	if (IS_ERR(handle->k_handle)) {
182 		up_read(&osb->journal->j_trans_barrier);
183 
184 		ret = PTR_ERR(handle->k_handle);
185 		handle->k_handle = NULL;
186 		mlog_errno(ret);
187 
188 		if (is_journal_aborted(journal)) {
189 			ocfs2_abort(osb->sb, "Detected aborted journal");
190 			ret = -EROFS;
191 		}
192 		goto done_free;
193 	}
194 
195 	atomic_inc(&(osb->journal->j_num_trans));
196 	handle->flags |= OCFS2_HANDLE_STARTED;
197 
198 	mlog_exit_ptr(handle);
199 	return handle;
200 
201 done_free:
202 	if (handle)
203 		ocfs2_commit_unstarted_handle(handle); /* will kfree handle */
204 
205 	mlog_exit(ret);
206 	return ERR_PTR(ret);
207 }
208 
209 void ocfs2_handle_add_inode(struct ocfs2_journal_handle *handle,
210 			    struct inode *inode)
211 {
212 	BUG_ON(!handle);
213 	BUG_ON(!inode);
214 
215 	atomic_inc(&inode->i_count);
216 
217 	/* we're obviously changing it... */
218 	mutex_lock(&inode->i_mutex);
219 
220 	/* sanity check */
221 	BUG_ON(OCFS2_I(inode)->ip_handle);
222 	BUG_ON(!list_empty(&OCFS2_I(inode)->ip_handle_list));
223 
224 	OCFS2_I(inode)->ip_handle = handle;
225 	list_move_tail(&(OCFS2_I(inode)->ip_handle_list), &(handle->inode_list));
226 }
227 
228 static void ocfs2_handle_unlock_inodes(struct ocfs2_journal_handle *handle)
229 {
230 	struct list_head *p, *n;
231 	struct inode *inode;
232 	struct ocfs2_inode_info *oi;
233 
234 	list_for_each_safe(p, n, &handle->inode_list) {
235 		oi = list_entry(p, struct ocfs2_inode_info,
236 				ip_handle_list);
237 		inode = &oi->vfs_inode;
238 
239 		OCFS2_I(inode)->ip_handle = NULL;
240 		list_del_init(&OCFS2_I(inode)->ip_handle_list);
241 
242 		mutex_unlock(&inode->i_mutex);
243 		iput(inode);
244 	}
245 }
246 
247 /* This is trivial so we do it out of the main commit
248  * paths. Beware, it can be called from start_trans too! */
249 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle)
250 {
251 	mlog_entry_void();
252 
253 	BUG_ON(handle->flags & OCFS2_HANDLE_STARTED);
254 
255 	ocfs2_handle_unlock_inodes(handle);
256 	/* You are allowed to add journal locks before the transaction
257 	 * has started. */
258 	ocfs2_handle_cleanup_locks(handle->journal, handle);
259 
260 	kfree(handle);
261 
262 	mlog_exit_void();
263 }
264 
265 void ocfs2_commit_trans(struct ocfs2_journal_handle *handle)
266 {
267 	handle_t *jbd_handle;
268 	int retval;
269 	struct ocfs2_journal *journal = handle->journal;
270 
271 	mlog_entry_void();
272 
273 	BUG_ON(!handle);
274 
275 	if (!(handle->flags & OCFS2_HANDLE_STARTED)) {
276 		ocfs2_commit_unstarted_handle(handle);
277 		mlog_exit_void();
278 		return;
279 	}
280 
281 	/* release inode semaphores we took during this transaction */
282 	ocfs2_handle_unlock_inodes(handle);
283 
284 	/* ocfs2_extend_trans may have had to call journal_restart
285 	 * which will always commit the transaction, but may return
286 	 * error for any number of reasons. If this is the case, we
287 	 * clear k_handle as it's not valid any more. */
288 	if (handle->k_handle) {
289 		jbd_handle = handle->k_handle;
290 
291 		if (handle->flags & OCFS2_HANDLE_SYNC)
292 			jbd_handle->h_sync = 1;
293 		else
294 			jbd_handle->h_sync = 0;
295 
296 		/* actually stop the transaction. if we've set h_sync,
297 		 * it'll have been committed when we return */
298 		retval = journal_stop(jbd_handle);
299 		if (retval < 0) {
300 			mlog_errno(retval);
301 			mlog(ML_ERROR, "Could not commit transaction\n");
302 			BUG();
303 		}
304 
305 		handle->k_handle = NULL; /* it's been free'd in journal_stop */
306 	}
307 
308 	ocfs2_handle_cleanup_locks(journal, handle);
309 
310 	up_read(&journal->j_trans_barrier);
311 
312 	kfree(handle);
313 	mlog_exit_void();
314 }
315 
316 /*
317  * 'nblocks' is what you want to add to the current
318  * transaction. extend_trans will either extend the current handle by
319  * nblocks, or commit it and start a new one with nblocks credits.
320  *
321  * WARNING: This will not release any semaphores or disk locks taken
322  * during the transaction, so make sure they were taken *before*
323  * start_trans or we'll have ordering deadlocks.
324  *
325  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
326  * good because transaction ids haven't yet been recorded on the
327  * cluster locks associated with this handle.
328  */
329 int ocfs2_extend_trans(struct ocfs2_journal_handle *handle,
330 		       int nblocks)
331 {
332 	int status;
333 
334 	BUG_ON(!handle);
335 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
336 	BUG_ON(!nblocks);
337 
338 	mlog_entry_void();
339 
340 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
341 
342 	status = journal_extend(handle->k_handle, nblocks);
343 	if (status < 0) {
344 		mlog_errno(status);
345 		goto bail;
346 	}
347 
348 	if (status > 0) {
349 		mlog(0, "journal_extend failed, trying journal_restart\n");
350 		status = journal_restart(handle->k_handle, nblocks);
351 		if (status < 0) {
352 			handle->k_handle = NULL;
353 			mlog_errno(status);
354 			goto bail;
355 		}
356 		handle->max_buffs = nblocks;
357 	} else
358 		handle->max_buffs += nblocks;
359 
360 	status = 0;
361 bail:
362 
363 	mlog_exit(status);
364 	return status;
365 }
366 
367 int ocfs2_journal_access(struct ocfs2_journal_handle *handle,
368 			 struct inode *inode,
369 			 struct buffer_head *bh,
370 			 int type)
371 {
372 	int status;
373 
374 	BUG_ON(!inode);
375 	BUG_ON(!handle);
376 	BUG_ON(!bh);
377 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
378 
379 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
380 		   (unsigned long long)bh->b_blocknr, type,
381 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
382 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
383 		   "OCFS2_JOURNAL_ACCESS_WRITE",
384 		   bh->b_size);
385 
386 	/* we can safely remove this assertion after testing. */
387 	if (!buffer_uptodate(bh)) {
388 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
389 		mlog(ML_ERROR, "b_blocknr=%llu\n",
390 		     (unsigned long long)bh->b_blocknr);
391 		BUG();
392 	}
393 
394 	/* Set the current transaction information on the inode so
395 	 * that the locking code knows whether it can drop it's locks
396 	 * on this inode or not. We're protected from the commit
397 	 * thread updating the current transaction id until
398 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
399 	 * j_trans_barrier for us. */
400 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
401 
402 	mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
403 	switch (type) {
404 	case OCFS2_JOURNAL_ACCESS_CREATE:
405 	case OCFS2_JOURNAL_ACCESS_WRITE:
406 		status = journal_get_write_access(handle->k_handle, bh);
407 		break;
408 
409 	case OCFS2_JOURNAL_ACCESS_UNDO:
410 		status = journal_get_undo_access(handle->k_handle, bh);
411 		break;
412 
413 	default:
414 		status = -EINVAL;
415 		mlog(ML_ERROR, "Uknown access type!\n");
416 	}
417 	mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
418 
419 	if (status < 0)
420 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
421 		     status, type);
422 
423 	mlog_exit(status);
424 	return status;
425 }
426 
427 int ocfs2_journal_dirty(struct ocfs2_journal_handle *handle,
428 			struct buffer_head *bh)
429 {
430 	int status;
431 
432 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
433 
434 	mlog_entry("(bh->b_blocknr=%llu)\n",
435 		   (unsigned long long)bh->b_blocknr);
436 
437 	status = journal_dirty_metadata(handle->k_handle, bh);
438 	if (status < 0)
439 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
440 		     "(bh->b_blocknr=%llu)\n",
441 		     (unsigned long long)bh->b_blocknr);
442 
443 	mlog_exit(status);
444 	return status;
445 }
446 
447 int ocfs2_journal_dirty_data(handle_t *handle,
448 			     struct buffer_head *bh)
449 {
450 	int err = journal_dirty_data(handle, bh);
451 	if (err)
452 		mlog_errno(err);
453 	/* TODO: When we can handle it, abort the handle and go RO on
454 	 * error here. */
455 
456 	return err;
457 }
458 
459 /* We always assume you're adding a metadata lock at level 'ex' */
460 int ocfs2_handle_add_lock(struct ocfs2_journal_handle *handle,
461 			  struct inode *inode)
462 {
463 	int status;
464 	struct ocfs2_journal_lock *lock;
465 
466 	BUG_ON(!inode);
467 
468 	lock = kmem_cache_alloc(ocfs2_lock_cache, GFP_NOFS);
469 	if (!lock) {
470 		status = -ENOMEM;
471 		mlog_errno(-ENOMEM);
472 		goto bail;
473 	}
474 
475 	if (!igrab(inode))
476 		BUG();
477 	lock->jl_inode = inode;
478 
479 	list_add_tail(&(lock->jl_lock_list), &(handle->locks));
480 	handle->num_locks++;
481 
482 	status = 0;
483 bail:
484 	mlog_exit(status);
485 	return status;
486 }
487 
488 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
489 				       struct ocfs2_journal_handle *handle)
490 {
491 	struct list_head *p, *n;
492 	struct ocfs2_journal_lock *lock;
493 	struct inode *inode;
494 
495 	list_for_each_safe(p, n, &(handle->locks)) {
496 		lock = list_entry(p, struct ocfs2_journal_lock,
497 				  jl_lock_list);
498 		list_del(&lock->jl_lock_list);
499 		handle->num_locks--;
500 
501 		inode = lock->jl_inode;
502 		ocfs2_meta_unlock(inode, 1);
503 		if (atomic_read(&inode->i_count) == 1)
504 			mlog(ML_ERROR,
505 			     "Inode %llu, I'm doing a last iput for!",
506 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
507 		iput(inode);
508 		kmem_cache_free(ocfs2_lock_cache, lock);
509 	}
510 }
511 
512 #define OCFS2_DEFAULT_COMMIT_INTERVAL 	(HZ * 5)
513 
514 void ocfs2_set_journal_params(struct ocfs2_super *osb)
515 {
516 	journal_t *journal = osb->journal->j_journal;
517 
518 	spin_lock(&journal->j_state_lock);
519 	journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
520 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
521 		journal->j_flags |= JFS_BARRIER;
522 	else
523 		journal->j_flags &= ~JFS_BARRIER;
524 	spin_unlock(&journal->j_state_lock);
525 }
526 
527 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
528 {
529 	int status = -1;
530 	struct inode *inode = NULL; /* the journal inode */
531 	journal_t *j_journal = NULL;
532 	struct ocfs2_dinode *di = NULL;
533 	struct buffer_head *bh = NULL;
534 	struct ocfs2_super *osb;
535 	int meta_lock = 0;
536 
537 	mlog_entry_void();
538 
539 	BUG_ON(!journal);
540 
541 	osb = journal->j_osb;
542 
543 	/* already have the inode for our journal */
544 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
545 					    osb->slot_num);
546 	if (inode == NULL) {
547 		status = -EACCES;
548 		mlog_errno(status);
549 		goto done;
550 	}
551 	if (is_bad_inode(inode)) {
552 		mlog(ML_ERROR, "access error (bad inode)\n");
553 		iput(inode);
554 		inode = NULL;
555 		status = -EACCES;
556 		goto done;
557 	}
558 
559 	SET_INODE_JOURNAL(inode);
560 	OCFS2_I(inode)->ip_open_count++;
561 
562 	/* Skip recovery waits here - journal inode metadata never
563 	 * changes in a live cluster so it can be considered an
564 	 * exception to the rule. */
565 	status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
566 				      OCFS2_META_LOCK_RECOVERY);
567 	if (status < 0) {
568 		if (status != -ERESTARTSYS)
569 			mlog(ML_ERROR, "Could not get lock on journal!\n");
570 		goto done;
571 	}
572 
573 	meta_lock = 1;
574 	di = (struct ocfs2_dinode *)bh->b_data;
575 
576 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
577 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
578 		     inode->i_size);
579 		status = -EINVAL;
580 		goto done;
581 	}
582 
583 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
584 	mlog(0, "inode->i_blocks = %llu\n",
585 			(unsigned long long)inode->i_blocks);
586 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
587 
588 	/* call the kernels journal init function now */
589 	j_journal = journal_init_inode(inode);
590 	if (j_journal == NULL) {
591 		mlog(ML_ERROR, "Linux journal layer error\n");
592 		status = -EINVAL;
593 		goto done;
594 	}
595 
596 	mlog(0, "Returned from journal_init_inode\n");
597 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
598 
599 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
600 		  OCFS2_JOURNAL_DIRTY_FL);
601 
602 	journal->j_journal = j_journal;
603 	journal->j_inode = inode;
604 	journal->j_bh = bh;
605 
606 	ocfs2_set_journal_params(osb);
607 
608 	journal->j_state = OCFS2_JOURNAL_LOADED;
609 
610 	status = 0;
611 done:
612 	if (status < 0) {
613 		if (meta_lock)
614 			ocfs2_meta_unlock(inode, 1);
615 		if (bh != NULL)
616 			brelse(bh);
617 		if (inode) {
618 			OCFS2_I(inode)->ip_open_count--;
619 			iput(inode);
620 		}
621 	}
622 
623 	mlog_exit(status);
624 	return status;
625 }
626 
627 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
628 				      int dirty)
629 {
630 	int status;
631 	unsigned int flags;
632 	struct ocfs2_journal *journal = osb->journal;
633 	struct buffer_head *bh = journal->j_bh;
634 	struct ocfs2_dinode *fe;
635 
636 	mlog_entry_void();
637 
638 	fe = (struct ocfs2_dinode *)bh->b_data;
639 	if (!OCFS2_IS_VALID_DINODE(fe)) {
640 		/* This is called from startup/shutdown which will
641 		 * handle the errors in a specific manner, so no need
642 		 * to call ocfs2_error() here. */
643 		mlog(ML_ERROR, "Journal dinode %llu  has invalid "
644 		     "signature: %.*s", (unsigned long long)fe->i_blkno, 7,
645 		     fe->i_signature);
646 		status = -EIO;
647 		goto out;
648 	}
649 
650 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
651 	if (dirty)
652 		flags |= OCFS2_JOURNAL_DIRTY_FL;
653 	else
654 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
655 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
656 
657 	status = ocfs2_write_block(osb, bh, journal->j_inode);
658 	if (status < 0)
659 		mlog_errno(status);
660 
661 out:
662 	mlog_exit(status);
663 	return status;
664 }
665 
666 /*
667  * If the journal has been kmalloc'd it needs to be freed after this
668  * call.
669  */
670 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
671 {
672 	struct ocfs2_journal *journal = NULL;
673 	int status = 0;
674 	struct inode *inode = NULL;
675 	int num_running_trans = 0;
676 
677 	mlog_entry_void();
678 
679 	BUG_ON(!osb);
680 
681 	journal = osb->journal;
682 	if (!journal)
683 		goto done;
684 
685 	inode = journal->j_inode;
686 
687 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
688 		goto done;
689 
690 	/* need to inc inode use count as journal_destroy will iput. */
691 	if (!igrab(inode))
692 		BUG();
693 
694 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
695 	if (num_running_trans > 0)
696 		mlog(0, "Shutting down journal: must wait on %d "
697 		     "running transactions!\n",
698 		     num_running_trans);
699 
700 	/* Do a commit_cache here. It will flush our journal, *and*
701 	 * release any locks that are still held.
702 	 * set the SHUTDOWN flag and release the trans lock.
703 	 * the commit thread will take the trans lock for us below. */
704 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
705 
706 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
707 	 * drop the trans_lock (which we want to hold until we
708 	 * completely destroy the journal. */
709 	if (osb->commit_task) {
710 		/* Wait for the commit thread */
711 		mlog(0, "Waiting for ocfs2commit to exit....\n");
712 		kthread_stop(osb->commit_task);
713 		osb->commit_task = NULL;
714 	}
715 
716 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
717 
718 	status = ocfs2_journal_toggle_dirty(osb, 0);
719 	if (status < 0)
720 		mlog_errno(status);
721 
722 	/* Shutdown the kernel journal system */
723 	journal_destroy(journal->j_journal);
724 
725 	OCFS2_I(inode)->ip_open_count--;
726 
727 	/* unlock our journal */
728 	ocfs2_meta_unlock(inode, 1);
729 
730 	brelse(journal->j_bh);
731 	journal->j_bh = NULL;
732 
733 	journal->j_state = OCFS2_JOURNAL_FREE;
734 
735 //	up_write(&journal->j_trans_barrier);
736 done:
737 	if (inode)
738 		iput(inode);
739 	mlog_exit_void();
740 }
741 
742 static void ocfs2_clear_journal_error(struct super_block *sb,
743 				      journal_t *journal,
744 				      int slot)
745 {
746 	int olderr;
747 
748 	olderr = journal_errno(journal);
749 	if (olderr) {
750 		mlog(ML_ERROR, "File system error %d recorded in "
751 		     "journal %u.\n", olderr, slot);
752 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
753 		     sb->s_id);
754 
755 		journal_ack_err(journal);
756 		journal_clear_err(journal);
757 	}
758 }
759 
760 int ocfs2_journal_load(struct ocfs2_journal *journal)
761 {
762 	int status = 0;
763 	struct ocfs2_super *osb;
764 
765 	mlog_entry_void();
766 
767 	if (!journal)
768 		BUG();
769 
770 	osb = journal->j_osb;
771 
772 	status = journal_load(journal->j_journal);
773 	if (status < 0) {
774 		mlog(ML_ERROR, "Failed to load journal!\n");
775 		goto done;
776 	}
777 
778 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
779 
780 	status = ocfs2_journal_toggle_dirty(osb, 1);
781 	if (status < 0) {
782 		mlog_errno(status);
783 		goto done;
784 	}
785 
786 	/* Launch the commit thread */
787 	osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt");
788 	if (IS_ERR(osb->commit_task)) {
789 		status = PTR_ERR(osb->commit_task);
790 		osb->commit_task = NULL;
791 		mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
792 		     status);
793 		goto done;
794 	}
795 
796 done:
797 	mlog_exit(status);
798 	return status;
799 }
800 
801 
802 /* 'full' flag tells us whether we clear out all blocks or if we just
803  * mark the journal clean */
804 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
805 {
806 	int status;
807 
808 	mlog_entry_void();
809 
810 	BUG_ON(!journal);
811 
812 	status = journal_wipe(journal->j_journal, full);
813 	if (status < 0) {
814 		mlog_errno(status);
815 		goto bail;
816 	}
817 
818 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
819 	if (status < 0)
820 		mlog_errno(status);
821 
822 bail:
823 	mlog_exit(status);
824 	return status;
825 }
826 
827 /*
828  * JBD Might read a cached version of another nodes journal file. We
829  * don't want this as this file changes often and we get no
830  * notification on those changes. The only way to be sure that we've
831  * got the most up to date version of those blocks then is to force
832  * read them off disk. Just searching through the buffer cache won't
833  * work as there may be pages backing this file which are still marked
834  * up to date. We know things can't change on this file underneath us
835  * as we have the lock by now :)
836  */
837 static int ocfs2_force_read_journal(struct inode *inode)
838 {
839 	int status = 0;
840 	int i, p_blocks;
841 	u64 v_blkno, p_blkno;
842 #define CONCURRENT_JOURNAL_FILL 32
843 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
844 
845 	mlog_entry_void();
846 
847 	BUG_ON(inode->i_blocks !=
848 		     ocfs2_align_bytes_to_sectors(i_size_read(inode)));
849 
850 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
851 
852 	mlog(0, "Force reading %llu blocks\n",
853 		(unsigned long long)(inode->i_blocks >>
854 			(inode->i_sb->s_blocksize_bits - 9)));
855 
856 	v_blkno = 0;
857 	while (v_blkno <
858 	       (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
859 
860 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
861 						     1, &p_blkno,
862 						     &p_blocks);
863 		if (status < 0) {
864 			mlog_errno(status);
865 			goto bail;
866 		}
867 
868 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
869 			p_blocks = CONCURRENT_JOURNAL_FILL;
870 
871 		/* We are reading journal data which should not
872 		 * be put in the uptodate cache */
873 		status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
874 					   p_blkno, p_blocks, bhs, 0,
875 					   NULL);
876 		if (status < 0) {
877 			mlog_errno(status);
878 			goto bail;
879 		}
880 
881 		for(i = 0; i < p_blocks; i++) {
882 			brelse(bhs[i]);
883 			bhs[i] = NULL;
884 		}
885 
886 		v_blkno += p_blocks;
887 	}
888 
889 bail:
890 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
891 		if (bhs[i])
892 			brelse(bhs[i]);
893 	mlog_exit(status);
894 	return status;
895 }
896 
897 struct ocfs2_la_recovery_item {
898 	struct list_head	lri_list;
899 	int			lri_slot;
900 	struct ocfs2_dinode	*lri_la_dinode;
901 	struct ocfs2_dinode	*lri_tl_dinode;
902 };
903 
904 /* Does the second half of the recovery process. By this point, the
905  * node is marked clean and can actually be considered recovered,
906  * hence it's no longer in the recovery map, but there's still some
907  * cleanup we can do which shouldn't happen within the recovery thread
908  * as locking in that context becomes very difficult if we are to take
909  * recovering nodes into account.
910  *
911  * NOTE: This function can and will sleep on recovery of other nodes
912  * during cluster locking, just like any other ocfs2 process.
913  */
914 void ocfs2_complete_recovery(void *data)
915 {
916 	int ret;
917 	struct ocfs2_super *osb = data;
918 	struct ocfs2_journal *journal = osb->journal;
919 	struct ocfs2_dinode *la_dinode, *tl_dinode;
920 	struct ocfs2_la_recovery_item *item;
921 	struct list_head *p, *n;
922 	LIST_HEAD(tmp_la_list);
923 
924 	mlog_entry_void();
925 
926 	mlog(0, "completing recovery from keventd\n");
927 
928 	spin_lock(&journal->j_lock);
929 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
930 	spin_unlock(&journal->j_lock);
931 
932 	list_for_each_safe(p, n, &tmp_la_list) {
933 		item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
934 		list_del_init(&item->lri_list);
935 
936 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
937 
938 		la_dinode = item->lri_la_dinode;
939 		if (la_dinode) {
940 			mlog(0, "Clean up local alloc %llu\n",
941 			     (unsigned long long)la_dinode->i_blkno);
942 
943 			ret = ocfs2_complete_local_alloc_recovery(osb,
944 								  la_dinode);
945 			if (ret < 0)
946 				mlog_errno(ret);
947 
948 			kfree(la_dinode);
949 		}
950 
951 		tl_dinode = item->lri_tl_dinode;
952 		if (tl_dinode) {
953 			mlog(0, "Clean up truncate log %llu\n",
954 			     (unsigned long long)tl_dinode->i_blkno);
955 
956 			ret = ocfs2_complete_truncate_log_recovery(osb,
957 								   tl_dinode);
958 			if (ret < 0)
959 				mlog_errno(ret);
960 
961 			kfree(tl_dinode);
962 		}
963 
964 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
965 		if (ret < 0)
966 			mlog_errno(ret);
967 
968 		kfree(item);
969 	}
970 
971 	mlog(0, "Recovery completion\n");
972 	mlog_exit_void();
973 }
974 
975 /* NOTE: This function always eats your references to la_dinode and
976  * tl_dinode, either manually on error, or by passing them to
977  * ocfs2_complete_recovery */
978 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
979 					    int slot_num,
980 					    struct ocfs2_dinode *la_dinode,
981 					    struct ocfs2_dinode *tl_dinode)
982 {
983 	struct ocfs2_la_recovery_item *item;
984 
985 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
986 	if (!item) {
987 		/* Though we wish to avoid it, we are in fact safe in
988 		 * skipping local alloc cleanup as fsck.ocfs2 is more
989 		 * than capable of reclaiming unused space. */
990 		if (la_dinode)
991 			kfree(la_dinode);
992 
993 		if (tl_dinode)
994 			kfree(tl_dinode);
995 
996 		mlog_errno(-ENOMEM);
997 		return;
998 	}
999 
1000 	INIT_LIST_HEAD(&item->lri_list);
1001 	item->lri_la_dinode = la_dinode;
1002 	item->lri_slot = slot_num;
1003 	item->lri_tl_dinode = tl_dinode;
1004 
1005 	spin_lock(&journal->j_lock);
1006 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1007 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1008 	spin_unlock(&journal->j_lock);
1009 }
1010 
1011 /* Called by the mount code to queue recovery the last part of
1012  * recovery for it's own slot. */
1013 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1014 {
1015 	struct ocfs2_journal *journal = osb->journal;
1016 
1017 	if (osb->dirty) {
1018 		/* No need to queue up our truncate_log as regular
1019 		 * cleanup will catch that. */
1020 		ocfs2_queue_recovery_completion(journal,
1021 						osb->slot_num,
1022 						osb->local_alloc_copy,
1023 						NULL);
1024 		ocfs2_schedule_truncate_log_flush(osb, 0);
1025 
1026 		osb->local_alloc_copy = NULL;
1027 		osb->dirty = 0;
1028 	}
1029 }
1030 
1031 static int __ocfs2_recovery_thread(void *arg)
1032 {
1033 	int status, node_num;
1034 	struct ocfs2_super *osb = arg;
1035 
1036 	mlog_entry_void();
1037 
1038 	status = ocfs2_wait_on_mount(osb);
1039 	if (status < 0) {
1040 		goto bail;
1041 	}
1042 
1043 restart:
1044 	status = ocfs2_super_lock(osb, 1);
1045 	if (status < 0) {
1046 		mlog_errno(status);
1047 		goto bail;
1048 	}
1049 
1050 	while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1051 		node_num = ocfs2_node_map_first_set_bit(osb,
1052 							&osb->recovery_map);
1053 		if (node_num == O2NM_INVALID_NODE_NUM) {
1054 			mlog(0, "Out of nodes to recover.\n");
1055 			break;
1056 		}
1057 
1058 		status = ocfs2_recover_node(osb, node_num);
1059 		if (status < 0) {
1060 			mlog(ML_ERROR,
1061 			     "Error %d recovering node %d on device (%u,%u)!\n",
1062 			     status, node_num,
1063 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1064 			mlog(ML_ERROR, "Volume requires unmount.\n");
1065 			continue;
1066 		}
1067 
1068 		ocfs2_recovery_map_clear(osb, node_num);
1069 	}
1070 	ocfs2_super_unlock(osb, 1);
1071 
1072 	/* We always run recovery on our own orphan dir - the dead
1073 	 * node(s) may have voted "no" on an inode delete earlier. A
1074 	 * revote is therefore required. */
1075 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1076 					NULL);
1077 
1078 bail:
1079 	mutex_lock(&osb->recovery_lock);
1080 	if (!status &&
1081 	    !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1082 		mutex_unlock(&osb->recovery_lock);
1083 		goto restart;
1084 	}
1085 
1086 	osb->recovery_thread_task = NULL;
1087 	mb(); /* sync with ocfs2_recovery_thread_running */
1088 	wake_up(&osb->recovery_event);
1089 
1090 	mutex_unlock(&osb->recovery_lock);
1091 
1092 	mlog_exit(status);
1093 	/* no one is callint kthread_stop() for us so the kthread() api
1094 	 * requires that we call do_exit().  And it isn't exported, but
1095 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1096 	complete_and_exit(NULL, status);
1097 	return status;
1098 }
1099 
1100 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1101 {
1102 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1103 		   node_num, osb->node_num);
1104 
1105 	mutex_lock(&osb->recovery_lock);
1106 	if (osb->disable_recovery)
1107 		goto out;
1108 
1109 	/* People waiting on recovery will wait on
1110 	 * the recovery map to empty. */
1111 	if (!ocfs2_recovery_map_set(osb, node_num))
1112 		mlog(0, "node %d already be in recovery.\n", node_num);
1113 
1114 	mlog(0, "starting recovery thread...\n");
1115 
1116 	if (osb->recovery_thread_task)
1117 		goto out;
1118 
1119 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1120 						 "ocfs2rec");
1121 	if (IS_ERR(osb->recovery_thread_task)) {
1122 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1123 		osb->recovery_thread_task = NULL;
1124 	}
1125 
1126 out:
1127 	mutex_unlock(&osb->recovery_lock);
1128 	wake_up(&osb->recovery_event);
1129 
1130 	mlog_exit_void();
1131 }
1132 
1133 /* Does the actual journal replay and marks the journal inode as
1134  * clean. Will only replay if the journal inode is marked dirty. */
1135 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1136 				int node_num,
1137 				int slot_num)
1138 {
1139 	int status;
1140 	int got_lock = 0;
1141 	unsigned int flags;
1142 	struct inode *inode = NULL;
1143 	struct ocfs2_dinode *fe;
1144 	journal_t *journal = NULL;
1145 	struct buffer_head *bh = NULL;
1146 
1147 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1148 					    slot_num);
1149 	if (inode == NULL) {
1150 		status = -EACCES;
1151 		mlog_errno(status);
1152 		goto done;
1153 	}
1154 	if (is_bad_inode(inode)) {
1155 		status = -EACCES;
1156 		iput(inode);
1157 		inode = NULL;
1158 		mlog_errno(status);
1159 		goto done;
1160 	}
1161 	SET_INODE_JOURNAL(inode);
1162 
1163 	status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
1164 				      OCFS2_META_LOCK_RECOVERY);
1165 	if (status < 0) {
1166 		mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
1167 		if (status != -ERESTARTSYS)
1168 			mlog(ML_ERROR, "Could not lock journal!\n");
1169 		goto done;
1170 	}
1171 	got_lock = 1;
1172 
1173 	fe = (struct ocfs2_dinode *) bh->b_data;
1174 
1175 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1176 
1177 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1178 		mlog(0, "No recovery required for node %d\n", node_num);
1179 		goto done;
1180 	}
1181 
1182 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1183 	     node_num, slot_num,
1184 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1185 
1186 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1187 
1188 	status = ocfs2_force_read_journal(inode);
1189 	if (status < 0) {
1190 		mlog_errno(status);
1191 		goto done;
1192 	}
1193 
1194 	mlog(0, "calling journal_init_inode\n");
1195 	journal = journal_init_inode(inode);
1196 	if (journal == NULL) {
1197 		mlog(ML_ERROR, "Linux journal layer error\n");
1198 		status = -EIO;
1199 		goto done;
1200 	}
1201 
1202 	status = journal_load(journal);
1203 	if (status < 0) {
1204 		mlog_errno(status);
1205 		if (!igrab(inode))
1206 			BUG();
1207 		journal_destroy(journal);
1208 		goto done;
1209 	}
1210 
1211 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1212 
1213 	/* wipe the journal */
1214 	mlog(0, "flushing the journal.\n");
1215 	journal_lock_updates(journal);
1216 	status = journal_flush(journal);
1217 	journal_unlock_updates(journal);
1218 	if (status < 0)
1219 		mlog_errno(status);
1220 
1221 	/* This will mark the node clean */
1222 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1223 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1224 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1225 
1226 	status = ocfs2_write_block(osb, bh, inode);
1227 	if (status < 0)
1228 		mlog_errno(status);
1229 
1230 	if (!igrab(inode))
1231 		BUG();
1232 
1233 	journal_destroy(journal);
1234 
1235 done:
1236 	/* drop the lock on this nodes journal */
1237 	if (got_lock)
1238 		ocfs2_meta_unlock(inode, 1);
1239 
1240 	if (inode)
1241 		iput(inode);
1242 
1243 	if (bh)
1244 		brelse(bh);
1245 
1246 	mlog_exit(status);
1247 	return status;
1248 }
1249 
1250 /*
1251  * Do the most important parts of node recovery:
1252  *  - Replay it's journal
1253  *  - Stamp a clean local allocator file
1254  *  - Stamp a clean truncate log
1255  *  - Mark the node clean
1256  *
1257  * If this function completes without error, a node in OCFS2 can be
1258  * said to have been safely recovered. As a result, failure during the
1259  * second part of a nodes recovery process (local alloc recovery) is
1260  * far less concerning.
1261  */
1262 static int ocfs2_recover_node(struct ocfs2_super *osb,
1263 			      int node_num)
1264 {
1265 	int status = 0;
1266 	int slot_num;
1267 	struct ocfs2_slot_info *si = osb->slot_info;
1268 	struct ocfs2_dinode *la_copy = NULL;
1269 	struct ocfs2_dinode *tl_copy = NULL;
1270 
1271 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1272 		   node_num, osb->node_num);
1273 
1274 	mlog(0, "checking node %d\n", node_num);
1275 
1276 	/* Should not ever be called to recover ourselves -- in that
1277 	 * case we should've called ocfs2_journal_load instead. */
1278 	BUG_ON(osb->node_num == node_num);
1279 
1280 	slot_num = ocfs2_node_num_to_slot(si, node_num);
1281 	if (slot_num == OCFS2_INVALID_SLOT) {
1282 		status = 0;
1283 		mlog(0, "no slot for this node, so no recovery required.\n");
1284 		goto done;
1285 	}
1286 
1287 	mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1288 
1289 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1290 	if (status < 0) {
1291 		mlog_errno(status);
1292 		goto done;
1293 	}
1294 
1295 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1296 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1297 	if (status < 0) {
1298 		mlog_errno(status);
1299 		goto done;
1300 	}
1301 
1302 	/* An error from begin_truncate_log_recovery is not
1303 	 * serious enough to warrant halting the rest of
1304 	 * recovery. */
1305 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1306 	if (status < 0)
1307 		mlog_errno(status);
1308 
1309 	/* Likewise, this would be a strange but ultimately not so
1310 	 * harmful place to get an error... */
1311 	ocfs2_clear_slot(si, slot_num);
1312 	status = ocfs2_update_disk_slots(osb, si);
1313 	if (status < 0)
1314 		mlog_errno(status);
1315 
1316 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1317 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1318 					tl_copy);
1319 
1320 	status = 0;
1321 done:
1322 
1323 	mlog_exit(status);
1324 	return status;
1325 }
1326 
1327 /* Test node liveness by trylocking his journal. If we get the lock,
1328  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1329  * still alive (we couldn't get the lock) and < 0 on error. */
1330 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1331 				 int slot_num)
1332 {
1333 	int status, flags;
1334 	struct inode *inode = NULL;
1335 
1336 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1337 					    slot_num);
1338 	if (inode == NULL) {
1339 		mlog(ML_ERROR, "access error\n");
1340 		status = -EACCES;
1341 		goto bail;
1342 	}
1343 	if (is_bad_inode(inode)) {
1344 		mlog(ML_ERROR, "access error (bad inode)\n");
1345 		iput(inode);
1346 		inode = NULL;
1347 		status = -EACCES;
1348 		goto bail;
1349 	}
1350 	SET_INODE_JOURNAL(inode);
1351 
1352 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1353 	status = ocfs2_meta_lock_full(inode, NULL, NULL, 1, flags);
1354 	if (status < 0) {
1355 		if (status != -EAGAIN)
1356 			mlog_errno(status);
1357 		goto bail;
1358 	}
1359 
1360 	ocfs2_meta_unlock(inode, 1);
1361 bail:
1362 	if (inode)
1363 		iput(inode);
1364 
1365 	return status;
1366 }
1367 
1368 /* Call this underneath ocfs2_super_lock. It also assumes that the
1369  * slot info struct has been updated from disk. */
1370 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1371 {
1372 	int status, i, node_num;
1373 	struct ocfs2_slot_info *si = osb->slot_info;
1374 
1375 	/* This is called with the super block cluster lock, so we
1376 	 * know that the slot map can't change underneath us. */
1377 
1378 	spin_lock(&si->si_lock);
1379 	for(i = 0; i < si->si_num_slots; i++) {
1380 		if (i == osb->slot_num)
1381 			continue;
1382 		if (ocfs2_is_empty_slot(si, i))
1383 			continue;
1384 
1385 		node_num = si->si_global_node_nums[i];
1386 		if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1387 			continue;
1388 		spin_unlock(&si->si_lock);
1389 
1390 		/* Ok, we have a slot occupied by another node which
1391 		 * is not in the recovery map. We trylock his journal
1392 		 * file here to test if he's alive. */
1393 		status = ocfs2_trylock_journal(osb, i);
1394 		if (!status) {
1395 			/* Since we're called from mount, we know that
1396 			 * the recovery thread can't race us on
1397 			 * setting / checking the recovery bits. */
1398 			ocfs2_recovery_thread(osb, node_num);
1399 		} else if ((status < 0) && (status != -EAGAIN)) {
1400 			mlog_errno(status);
1401 			goto bail;
1402 		}
1403 
1404 		spin_lock(&si->si_lock);
1405 	}
1406 	spin_unlock(&si->si_lock);
1407 
1408 	status = 0;
1409 bail:
1410 	mlog_exit(status);
1411 	return status;
1412 }
1413 
1414 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1415 			       int slot,
1416 			       struct inode **head)
1417 {
1418 	int status;
1419 	struct inode *orphan_dir_inode = NULL;
1420 	struct inode *iter;
1421 	unsigned long offset, blk, local;
1422 	struct buffer_head *bh = NULL;
1423 	struct ocfs2_dir_entry *de;
1424 	struct super_block *sb = osb->sb;
1425 
1426 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1427 						       ORPHAN_DIR_SYSTEM_INODE,
1428 						       slot);
1429 	if  (!orphan_dir_inode) {
1430 		status = -ENOENT;
1431 		mlog_errno(status);
1432 		return status;
1433 	}
1434 
1435 	mutex_lock(&orphan_dir_inode->i_mutex);
1436 	status = ocfs2_meta_lock(orphan_dir_inode, NULL, NULL, 0);
1437 	if (status < 0) {
1438 		mlog_errno(status);
1439 		goto out;
1440 	}
1441 
1442 	offset = 0;
1443 	iter = NULL;
1444 	while(offset < i_size_read(orphan_dir_inode)) {
1445 		blk = offset >> sb->s_blocksize_bits;
1446 
1447 		bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1448 		if (!bh)
1449 			status = -EINVAL;
1450 		if (status < 0) {
1451 			if (bh)
1452 				brelse(bh);
1453 			mlog_errno(status);
1454 			goto out_unlock;
1455 		}
1456 
1457 		local = 0;
1458 		while(offset < i_size_read(orphan_dir_inode)
1459 		      && local < sb->s_blocksize) {
1460 			de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1461 
1462 			if (!ocfs2_check_dir_entry(orphan_dir_inode,
1463 						  de, bh, local)) {
1464 				status = -EINVAL;
1465 				mlog_errno(status);
1466 				brelse(bh);
1467 				goto out_unlock;
1468 			}
1469 
1470 			local += le16_to_cpu(de->rec_len);
1471 			offset += le16_to_cpu(de->rec_len);
1472 
1473 			/* I guess we silently fail on no inode? */
1474 			if (!le64_to_cpu(de->inode))
1475 				continue;
1476 			if (de->file_type > OCFS2_FT_MAX) {
1477 				mlog(ML_ERROR,
1478 				     "block %llu contains invalid de: "
1479 				     "inode = %llu, rec_len = %u, "
1480 				     "name_len = %u, file_type = %u, "
1481 				     "name='%.*s'\n",
1482 				     (unsigned long long)bh->b_blocknr,
1483 				     (unsigned long long)le64_to_cpu(de->inode),
1484 				     le16_to_cpu(de->rec_len),
1485 				     de->name_len,
1486 				     de->file_type,
1487 				     de->name_len,
1488 				     de->name);
1489 				continue;
1490 			}
1491 			if (de->name_len == 1 && !strncmp(".", de->name, 1))
1492 				continue;
1493 			if (de->name_len == 2 && !strncmp("..", de->name, 2))
1494 				continue;
1495 
1496 			iter = ocfs2_iget(osb, le64_to_cpu(de->inode));
1497 			if (IS_ERR(iter))
1498 				continue;
1499 
1500 			mlog(0, "queue orphan %llu\n",
1501 			     (unsigned long long)OCFS2_I(iter)->ip_blkno);
1502 			/* No locking is required for the next_orphan
1503 			 * queue as there is only ever a single
1504 			 * process doing orphan recovery. */
1505 			OCFS2_I(iter)->ip_next_orphan = *head;
1506 			*head = iter;
1507 		}
1508 		brelse(bh);
1509 	}
1510 
1511 out_unlock:
1512 	ocfs2_meta_unlock(orphan_dir_inode, 0);
1513 out:
1514 	mutex_unlock(&orphan_dir_inode->i_mutex);
1515 	iput(orphan_dir_inode);
1516 	return status;
1517 }
1518 
1519 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1520 					      int slot)
1521 {
1522 	int ret;
1523 
1524 	spin_lock(&osb->osb_lock);
1525 	ret = !osb->osb_orphan_wipes[slot];
1526 	spin_unlock(&osb->osb_lock);
1527 	return ret;
1528 }
1529 
1530 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1531 					     int slot)
1532 {
1533 	spin_lock(&osb->osb_lock);
1534 	/* Mark ourselves such that new processes in delete_inode()
1535 	 * know to quit early. */
1536 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1537 	while (osb->osb_orphan_wipes[slot]) {
1538 		/* If any processes are already in the middle of an
1539 		 * orphan wipe on this dir, then we need to wait for
1540 		 * them. */
1541 		spin_unlock(&osb->osb_lock);
1542 		wait_event_interruptible(osb->osb_wipe_event,
1543 					 ocfs2_orphan_recovery_can_continue(osb, slot));
1544 		spin_lock(&osb->osb_lock);
1545 	}
1546 	spin_unlock(&osb->osb_lock);
1547 }
1548 
1549 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1550 					      int slot)
1551 {
1552 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1553 }
1554 
1555 /*
1556  * Orphan recovery. Each mounted node has it's own orphan dir which we
1557  * must run during recovery. Our strategy here is to build a list of
1558  * the inodes in the orphan dir and iget/iput them. The VFS does
1559  * (most) of the rest of the work.
1560  *
1561  * Orphan recovery can happen at any time, not just mount so we have a
1562  * couple of extra considerations.
1563  *
1564  * - We grab as many inodes as we can under the orphan dir lock -
1565  *   doing iget() outside the orphan dir risks getting a reference on
1566  *   an invalid inode.
1567  * - We must be sure not to deadlock with other processes on the
1568  *   system wanting to run delete_inode(). This can happen when they go
1569  *   to lock the orphan dir and the orphan recovery process attempts to
1570  *   iget() inside the orphan dir lock. This can be avoided by
1571  *   advertising our state to ocfs2_delete_inode().
1572  */
1573 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1574 				 int slot)
1575 {
1576 	int ret = 0;
1577 	struct inode *inode = NULL;
1578 	struct inode *iter;
1579 	struct ocfs2_inode_info *oi;
1580 
1581 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1582 
1583 	ocfs2_mark_recovering_orphan_dir(osb, slot);
1584 	ret = ocfs2_queue_orphans(osb, slot, &inode);
1585 	ocfs2_clear_recovering_orphan_dir(osb, slot);
1586 
1587 	/* Error here should be noted, but we want to continue with as
1588 	 * many queued inodes as we've got. */
1589 	if (ret)
1590 		mlog_errno(ret);
1591 
1592 	while (inode) {
1593 		oi = OCFS2_I(inode);
1594 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1595 
1596 		iter = oi->ip_next_orphan;
1597 
1598 		spin_lock(&oi->ip_lock);
1599 		/* Delete voting may have set these on the assumption
1600 		 * that the other node would wipe them successfully.
1601 		 * If they are still in the node's orphan dir, we need
1602 		 * to reset that state. */
1603 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1604 
1605 		/* Set the proper information to get us going into
1606 		 * ocfs2_delete_inode. */
1607 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1608 		oi->ip_orphaned_slot = slot;
1609 		spin_unlock(&oi->ip_lock);
1610 
1611 		iput(inode);
1612 
1613 		inode = iter;
1614 	}
1615 
1616 	return ret;
1617 }
1618 
1619 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1620 {
1621 	/* This check is good because ocfs2 will wait on our recovery
1622 	 * thread before changing it to something other than MOUNTED
1623 	 * or DISABLED. */
1624 	wait_event(osb->osb_mount_event,
1625 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1626 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1627 
1628 	/* If there's an error on mount, then we may never get to the
1629 	 * MOUNTED flag, but this is set right before
1630 	 * dismount_volume() so we can trust it. */
1631 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1632 		mlog(0, "mount error, exiting!\n");
1633 		return -EBUSY;
1634 	}
1635 
1636 	return 0;
1637 }
1638 
1639 static int ocfs2_commit_thread(void *arg)
1640 {
1641 	int status;
1642 	struct ocfs2_super *osb = arg;
1643 	struct ocfs2_journal *journal = osb->journal;
1644 
1645 	/* we can trust j_num_trans here because _should_stop() is only set in
1646 	 * shutdown and nobody other than ourselves should be able to start
1647 	 * transactions.  committing on shutdown might take a few iterations
1648 	 * as final transactions put deleted inodes on the list */
1649 	while (!(kthread_should_stop() &&
1650 		 atomic_read(&journal->j_num_trans) == 0)) {
1651 
1652 		wait_event_interruptible(osb->checkpoint_event,
1653 					 atomic_read(&journal->j_num_trans)
1654 					 || kthread_should_stop());
1655 
1656 		status = ocfs2_commit_cache(osb);
1657 		if (status < 0)
1658 			mlog_errno(status);
1659 
1660 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1661 			mlog(ML_KTHREAD,
1662 			     "commit_thread: %u transactions pending on "
1663 			     "shutdown\n",
1664 			     atomic_read(&journal->j_num_trans));
1665 		}
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 /* Look for a dirty journal without taking any cluster locks. Used for
1672  * hard readonly access to determine whether the file system journals
1673  * require recovery. */
1674 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1675 {
1676 	int ret = 0;
1677 	unsigned int slot;
1678 	struct buffer_head *di_bh;
1679 	struct ocfs2_dinode *di;
1680 	struct inode *journal = NULL;
1681 
1682 	for(slot = 0; slot < osb->max_slots; slot++) {
1683 		journal = ocfs2_get_system_file_inode(osb,
1684 						      JOURNAL_SYSTEM_INODE,
1685 						      slot);
1686 		if (!journal || is_bad_inode(journal)) {
1687 			ret = -EACCES;
1688 			mlog_errno(ret);
1689 			goto out;
1690 		}
1691 
1692 		di_bh = NULL;
1693 		ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1694 				       0, journal);
1695 		if (ret < 0) {
1696 			mlog_errno(ret);
1697 			goto out;
1698 		}
1699 
1700 		di = (struct ocfs2_dinode *) di_bh->b_data;
1701 
1702 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
1703 		    OCFS2_JOURNAL_DIRTY_FL)
1704 			ret = -EROFS;
1705 
1706 		brelse(di_bh);
1707 		if (ret)
1708 			break;
1709 	}
1710 
1711 out:
1712 	if (journal)
1713 		iput(journal);
1714 
1715 	return ret;
1716 }
1717