1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * journal.c 4 * 5 * Defines functions of journalling api 6 * 7 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/highmem.h> 14 #include <linux/kthread.h> 15 #include <linux/time.h> 16 #include <linux/random.h> 17 #include <linux/delay.h> 18 19 #include <cluster/masklog.h> 20 21 #include "ocfs2.h" 22 23 #include "alloc.h" 24 #include "blockcheck.h" 25 #include "dir.h" 26 #include "dlmglue.h" 27 #include "extent_map.h" 28 #include "heartbeat.h" 29 #include "inode.h" 30 #include "journal.h" 31 #include "localalloc.h" 32 #include "slot_map.h" 33 #include "super.h" 34 #include "sysfile.h" 35 #include "uptodate.h" 36 #include "quota.h" 37 #include "file.h" 38 #include "namei.h" 39 40 #include "buffer_head_io.h" 41 #include "ocfs2_trace.h" 42 43 DEFINE_SPINLOCK(trans_inc_lock); 44 45 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 46 47 static int ocfs2_force_read_journal(struct inode *inode); 48 static int ocfs2_recover_node(struct ocfs2_super *osb, 49 int node_num, int slot_num); 50 static int __ocfs2_recovery_thread(void *arg); 51 static int ocfs2_commit_cache(struct ocfs2_super *osb); 52 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 53 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 54 int dirty, int replayed); 55 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 56 int slot_num); 57 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 58 int slot, 59 enum ocfs2_orphan_reco_type orphan_reco_type); 60 static int ocfs2_commit_thread(void *arg); 61 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 62 int slot_num, 63 struct ocfs2_dinode *la_dinode, 64 struct ocfs2_dinode *tl_dinode, 65 struct ocfs2_quota_recovery *qrec, 66 enum ocfs2_orphan_reco_type orphan_reco_type); 67 68 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 69 { 70 return __ocfs2_wait_on_mount(osb, 0); 71 } 72 73 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 74 { 75 return __ocfs2_wait_on_mount(osb, 1); 76 } 77 78 /* 79 * This replay_map is to track online/offline slots, so we could recover 80 * offline slots during recovery and mount 81 */ 82 83 enum ocfs2_replay_state { 84 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 85 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 86 REPLAY_DONE /* Replay was already queued */ 87 }; 88 89 struct ocfs2_replay_map { 90 unsigned int rm_slots; 91 enum ocfs2_replay_state rm_state; 92 unsigned char rm_replay_slots[]; 93 }; 94 95 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 96 { 97 if (!osb->replay_map) 98 return; 99 100 /* If we've already queued the replay, we don't have any more to do */ 101 if (osb->replay_map->rm_state == REPLAY_DONE) 102 return; 103 104 osb->replay_map->rm_state = state; 105 } 106 107 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 108 { 109 struct ocfs2_replay_map *replay_map; 110 int i, node_num; 111 112 /* If replay map is already set, we don't do it again */ 113 if (osb->replay_map) 114 return 0; 115 116 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 117 (osb->max_slots * sizeof(char)), GFP_KERNEL); 118 119 if (!replay_map) { 120 mlog_errno(-ENOMEM); 121 return -ENOMEM; 122 } 123 124 spin_lock(&osb->osb_lock); 125 126 replay_map->rm_slots = osb->max_slots; 127 replay_map->rm_state = REPLAY_UNNEEDED; 128 129 /* set rm_replay_slots for offline slot(s) */ 130 for (i = 0; i < replay_map->rm_slots; i++) { 131 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 132 replay_map->rm_replay_slots[i] = 1; 133 } 134 135 osb->replay_map = replay_map; 136 spin_unlock(&osb->osb_lock); 137 return 0; 138 } 139 140 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 141 enum ocfs2_orphan_reco_type orphan_reco_type) 142 { 143 struct ocfs2_replay_map *replay_map = osb->replay_map; 144 int i; 145 146 if (!replay_map) 147 return; 148 149 if (replay_map->rm_state != REPLAY_NEEDED) 150 return; 151 152 for (i = 0; i < replay_map->rm_slots; i++) 153 if (replay_map->rm_replay_slots[i]) 154 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 155 NULL, NULL, 156 orphan_reco_type); 157 replay_map->rm_state = REPLAY_DONE; 158 } 159 160 static void ocfs2_free_replay_slots(struct ocfs2_super *osb) 161 { 162 struct ocfs2_replay_map *replay_map = osb->replay_map; 163 164 if (!osb->replay_map) 165 return; 166 167 kfree(replay_map); 168 osb->replay_map = NULL; 169 } 170 171 int ocfs2_recovery_init(struct ocfs2_super *osb) 172 { 173 struct ocfs2_recovery_map *rm; 174 175 mutex_init(&osb->recovery_lock); 176 osb->disable_recovery = 0; 177 osb->recovery_thread_task = NULL; 178 init_waitqueue_head(&osb->recovery_event); 179 180 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 181 osb->max_slots * sizeof(unsigned int), 182 GFP_KERNEL); 183 if (!rm) { 184 mlog_errno(-ENOMEM); 185 return -ENOMEM; 186 } 187 188 rm->rm_entries = (unsigned int *)((char *)rm + 189 sizeof(struct ocfs2_recovery_map)); 190 osb->recovery_map = rm; 191 192 return 0; 193 } 194 195 /* we can't grab the goofy sem lock from inside wait_event, so we use 196 * memory barriers to make sure that we'll see the null task before 197 * being woken up */ 198 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 199 { 200 mb(); 201 return osb->recovery_thread_task != NULL; 202 } 203 204 void ocfs2_recovery_exit(struct ocfs2_super *osb) 205 { 206 struct ocfs2_recovery_map *rm; 207 208 /* disable any new recovery threads and wait for any currently 209 * running ones to exit. Do this before setting the vol_state. */ 210 mutex_lock(&osb->recovery_lock); 211 osb->disable_recovery = 1; 212 mutex_unlock(&osb->recovery_lock); 213 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 214 215 /* At this point, we know that no more recovery threads can be 216 * launched, so wait for any recovery completion work to 217 * complete. */ 218 if (osb->ocfs2_wq) 219 flush_workqueue(osb->ocfs2_wq); 220 221 /* 222 * Now that recovery is shut down, and the osb is about to be 223 * freed, the osb_lock is not taken here. 224 */ 225 rm = osb->recovery_map; 226 /* XXX: Should we bug if there are dirty entries? */ 227 228 kfree(rm); 229 } 230 231 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 232 unsigned int node_num) 233 { 234 int i; 235 struct ocfs2_recovery_map *rm = osb->recovery_map; 236 237 assert_spin_locked(&osb->osb_lock); 238 239 for (i = 0; i < rm->rm_used; i++) { 240 if (rm->rm_entries[i] == node_num) 241 return 1; 242 } 243 244 return 0; 245 } 246 247 /* Behaves like test-and-set. Returns the previous value */ 248 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 249 unsigned int node_num) 250 { 251 struct ocfs2_recovery_map *rm = osb->recovery_map; 252 253 spin_lock(&osb->osb_lock); 254 if (__ocfs2_recovery_map_test(osb, node_num)) { 255 spin_unlock(&osb->osb_lock); 256 return 1; 257 } 258 259 /* XXX: Can this be exploited? Not from o2dlm... */ 260 BUG_ON(rm->rm_used >= osb->max_slots); 261 262 rm->rm_entries[rm->rm_used] = node_num; 263 rm->rm_used++; 264 spin_unlock(&osb->osb_lock); 265 266 return 0; 267 } 268 269 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 270 unsigned int node_num) 271 { 272 int i; 273 struct ocfs2_recovery_map *rm = osb->recovery_map; 274 275 spin_lock(&osb->osb_lock); 276 277 for (i = 0; i < rm->rm_used; i++) { 278 if (rm->rm_entries[i] == node_num) 279 break; 280 } 281 282 if (i < rm->rm_used) { 283 /* XXX: be careful with the pointer math */ 284 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 285 (rm->rm_used - i - 1) * sizeof(unsigned int)); 286 rm->rm_used--; 287 } 288 289 spin_unlock(&osb->osb_lock); 290 } 291 292 static int ocfs2_commit_cache(struct ocfs2_super *osb) 293 { 294 int status = 0; 295 unsigned int flushed; 296 struct ocfs2_journal *journal = NULL; 297 298 journal = osb->journal; 299 300 /* Flush all pending commits and checkpoint the journal. */ 301 down_write(&journal->j_trans_barrier); 302 303 flushed = atomic_read(&journal->j_num_trans); 304 trace_ocfs2_commit_cache_begin(flushed); 305 if (flushed == 0) { 306 up_write(&journal->j_trans_barrier); 307 goto finally; 308 } 309 310 jbd2_journal_lock_updates(journal->j_journal); 311 status = jbd2_journal_flush(journal->j_journal, 0); 312 jbd2_journal_unlock_updates(journal->j_journal); 313 if (status < 0) { 314 up_write(&journal->j_trans_barrier); 315 mlog_errno(status); 316 goto finally; 317 } 318 319 ocfs2_inc_trans_id(journal); 320 321 flushed = atomic_read(&journal->j_num_trans); 322 atomic_set(&journal->j_num_trans, 0); 323 up_write(&journal->j_trans_barrier); 324 325 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 326 327 ocfs2_wake_downconvert_thread(osb); 328 wake_up(&journal->j_checkpointed); 329 finally: 330 return status; 331 } 332 333 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 334 { 335 journal_t *journal = osb->journal->j_journal; 336 handle_t *handle; 337 338 BUG_ON(!osb || !osb->journal->j_journal); 339 340 if (ocfs2_is_hard_readonly(osb)) 341 return ERR_PTR(-EROFS); 342 343 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 344 BUG_ON(max_buffs <= 0); 345 346 /* Nested transaction? Just return the handle... */ 347 if (journal_current_handle()) 348 return jbd2_journal_start(journal, max_buffs); 349 350 sb_start_intwrite(osb->sb); 351 352 down_read(&osb->journal->j_trans_barrier); 353 354 handle = jbd2_journal_start(journal, max_buffs); 355 if (IS_ERR(handle)) { 356 up_read(&osb->journal->j_trans_barrier); 357 sb_end_intwrite(osb->sb); 358 359 mlog_errno(PTR_ERR(handle)); 360 361 if (is_journal_aborted(journal)) { 362 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 363 handle = ERR_PTR(-EROFS); 364 } 365 } else { 366 if (!ocfs2_mount_local(osb)) 367 atomic_inc(&(osb->journal->j_num_trans)); 368 } 369 370 return handle; 371 } 372 373 int ocfs2_commit_trans(struct ocfs2_super *osb, 374 handle_t *handle) 375 { 376 int ret, nested; 377 struct ocfs2_journal *journal = osb->journal; 378 379 BUG_ON(!handle); 380 381 nested = handle->h_ref > 1; 382 ret = jbd2_journal_stop(handle); 383 if (ret < 0) 384 mlog_errno(ret); 385 386 if (!nested) { 387 up_read(&journal->j_trans_barrier); 388 sb_end_intwrite(osb->sb); 389 } 390 391 return ret; 392 } 393 394 /* 395 * 'nblocks' is what you want to add to the current transaction. 396 * 397 * This might call jbd2_journal_restart() which will commit dirty buffers 398 * and then restart the transaction. Before calling 399 * ocfs2_extend_trans(), any changed blocks should have been 400 * dirtied. After calling it, all blocks which need to be changed must 401 * go through another set of journal_access/journal_dirty calls. 402 * 403 * WARNING: This will not release any semaphores or disk locks taken 404 * during the transaction, so make sure they were taken *before* 405 * start_trans or we'll have ordering deadlocks. 406 * 407 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 408 * good because transaction ids haven't yet been recorded on the 409 * cluster locks associated with this handle. 410 */ 411 int ocfs2_extend_trans(handle_t *handle, int nblocks) 412 { 413 int status, old_nblocks; 414 415 BUG_ON(!handle); 416 BUG_ON(nblocks < 0); 417 418 if (!nblocks) 419 return 0; 420 421 old_nblocks = jbd2_handle_buffer_credits(handle); 422 423 trace_ocfs2_extend_trans(old_nblocks, nblocks); 424 425 #ifdef CONFIG_OCFS2_DEBUG_FS 426 status = 1; 427 #else 428 status = jbd2_journal_extend(handle, nblocks, 0); 429 if (status < 0) { 430 mlog_errno(status); 431 goto bail; 432 } 433 #endif 434 435 if (status > 0) { 436 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 437 status = jbd2_journal_restart(handle, 438 old_nblocks + nblocks); 439 if (status < 0) { 440 mlog_errno(status); 441 goto bail; 442 } 443 } 444 445 status = 0; 446 bail: 447 return status; 448 } 449 450 /* 451 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 452 * If that fails, restart the transaction & regain write access for the 453 * buffer head which is used for metadata modifications. 454 * Taken from Ext4: extend_or_restart_transaction() 455 */ 456 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 457 { 458 int status, old_nblks; 459 460 BUG_ON(!handle); 461 462 old_nblks = jbd2_handle_buffer_credits(handle); 463 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 464 465 if (old_nblks < thresh) 466 return 0; 467 468 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0); 469 if (status < 0) { 470 mlog_errno(status); 471 goto bail; 472 } 473 474 if (status > 0) { 475 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 476 if (status < 0) 477 mlog_errno(status); 478 } 479 480 bail: 481 return status; 482 } 483 484 485 struct ocfs2_triggers { 486 struct jbd2_buffer_trigger_type ot_triggers; 487 int ot_offset; 488 }; 489 490 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 491 { 492 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 493 } 494 495 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 496 struct buffer_head *bh, 497 void *data, size_t size) 498 { 499 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 500 501 /* 502 * We aren't guaranteed to have the superblock here, so we 503 * must unconditionally compute the ecc data. 504 * __ocfs2_journal_access() will only set the triggers if 505 * metaecc is enabled. 506 */ 507 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 508 } 509 510 /* 511 * Quota blocks have their own trigger because the struct ocfs2_block_check 512 * offset depends on the blocksize. 513 */ 514 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 515 struct buffer_head *bh, 516 void *data, size_t size) 517 { 518 struct ocfs2_disk_dqtrailer *dqt = 519 ocfs2_block_dqtrailer(size, data); 520 521 /* 522 * We aren't guaranteed to have the superblock here, so we 523 * must unconditionally compute the ecc data. 524 * __ocfs2_journal_access() will only set the triggers if 525 * metaecc is enabled. 526 */ 527 ocfs2_block_check_compute(data, size, &dqt->dq_check); 528 } 529 530 /* 531 * Directory blocks also have their own trigger because the 532 * struct ocfs2_block_check offset depends on the blocksize. 533 */ 534 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 535 struct buffer_head *bh, 536 void *data, size_t size) 537 { 538 struct ocfs2_dir_block_trailer *trailer = 539 ocfs2_dir_trailer_from_size(size, data); 540 541 /* 542 * We aren't guaranteed to have the superblock here, so we 543 * must unconditionally compute the ecc data. 544 * __ocfs2_journal_access() will only set the triggers if 545 * metaecc is enabled. 546 */ 547 ocfs2_block_check_compute(data, size, &trailer->db_check); 548 } 549 550 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 551 struct buffer_head *bh) 552 { 553 mlog(ML_ERROR, 554 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 555 "bh->b_blocknr = %llu\n", 556 (unsigned long)bh, 557 (unsigned long long)bh->b_blocknr); 558 559 ocfs2_error(bh->b_bdev->bd_super, 560 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 561 } 562 563 static struct ocfs2_triggers di_triggers = { 564 .ot_triggers = { 565 .t_frozen = ocfs2_frozen_trigger, 566 .t_abort = ocfs2_abort_trigger, 567 }, 568 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 569 }; 570 571 static struct ocfs2_triggers eb_triggers = { 572 .ot_triggers = { 573 .t_frozen = ocfs2_frozen_trigger, 574 .t_abort = ocfs2_abort_trigger, 575 }, 576 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 577 }; 578 579 static struct ocfs2_triggers rb_triggers = { 580 .ot_triggers = { 581 .t_frozen = ocfs2_frozen_trigger, 582 .t_abort = ocfs2_abort_trigger, 583 }, 584 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 585 }; 586 587 static struct ocfs2_triggers gd_triggers = { 588 .ot_triggers = { 589 .t_frozen = ocfs2_frozen_trigger, 590 .t_abort = ocfs2_abort_trigger, 591 }, 592 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 593 }; 594 595 static struct ocfs2_triggers db_triggers = { 596 .ot_triggers = { 597 .t_frozen = ocfs2_db_frozen_trigger, 598 .t_abort = ocfs2_abort_trigger, 599 }, 600 }; 601 602 static struct ocfs2_triggers xb_triggers = { 603 .ot_triggers = { 604 .t_frozen = ocfs2_frozen_trigger, 605 .t_abort = ocfs2_abort_trigger, 606 }, 607 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 608 }; 609 610 static struct ocfs2_triggers dq_triggers = { 611 .ot_triggers = { 612 .t_frozen = ocfs2_dq_frozen_trigger, 613 .t_abort = ocfs2_abort_trigger, 614 }, 615 }; 616 617 static struct ocfs2_triggers dr_triggers = { 618 .ot_triggers = { 619 .t_frozen = ocfs2_frozen_trigger, 620 .t_abort = ocfs2_abort_trigger, 621 }, 622 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 623 }; 624 625 static struct ocfs2_triggers dl_triggers = { 626 .ot_triggers = { 627 .t_frozen = ocfs2_frozen_trigger, 628 .t_abort = ocfs2_abort_trigger, 629 }, 630 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 631 }; 632 633 static int __ocfs2_journal_access(handle_t *handle, 634 struct ocfs2_caching_info *ci, 635 struct buffer_head *bh, 636 struct ocfs2_triggers *triggers, 637 int type) 638 { 639 int status; 640 struct ocfs2_super *osb = 641 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 642 643 BUG_ON(!ci || !ci->ci_ops); 644 BUG_ON(!handle); 645 BUG_ON(!bh); 646 647 trace_ocfs2_journal_access( 648 (unsigned long long)ocfs2_metadata_cache_owner(ci), 649 (unsigned long long)bh->b_blocknr, type, bh->b_size); 650 651 /* we can safely remove this assertion after testing. */ 652 if (!buffer_uptodate(bh)) { 653 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 654 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 655 (unsigned long long)bh->b_blocknr, bh->b_state); 656 657 lock_buffer(bh); 658 /* 659 * A previous transaction with a couple of buffer heads fail 660 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 661 * For current transaction, the bh is just among those error 662 * bhs which previous transaction handle. We can't just clear 663 * its BH_Write_EIO and reuse directly, since other bhs are 664 * not written to disk yet and that will cause metadata 665 * inconsistency. So we should set fs read-only to avoid 666 * further damage. 667 */ 668 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 669 unlock_buffer(bh); 670 return ocfs2_error(osb->sb, "A previous attempt to " 671 "write this buffer head failed\n"); 672 } 673 unlock_buffer(bh); 674 } 675 676 /* Set the current transaction information on the ci so 677 * that the locking code knows whether it can drop it's locks 678 * on this ci or not. We're protected from the commit 679 * thread updating the current transaction id until 680 * ocfs2_commit_trans() because ocfs2_start_trans() took 681 * j_trans_barrier for us. */ 682 ocfs2_set_ci_lock_trans(osb->journal, ci); 683 684 ocfs2_metadata_cache_io_lock(ci); 685 switch (type) { 686 case OCFS2_JOURNAL_ACCESS_CREATE: 687 case OCFS2_JOURNAL_ACCESS_WRITE: 688 status = jbd2_journal_get_write_access(handle, bh); 689 break; 690 691 case OCFS2_JOURNAL_ACCESS_UNDO: 692 status = jbd2_journal_get_undo_access(handle, bh); 693 break; 694 695 default: 696 status = -EINVAL; 697 mlog(ML_ERROR, "Unknown access type!\n"); 698 } 699 if (!status && ocfs2_meta_ecc(osb) && triggers) 700 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 701 ocfs2_metadata_cache_io_unlock(ci); 702 703 if (status < 0) 704 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 705 status, type); 706 707 return status; 708 } 709 710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 711 struct buffer_head *bh, int type) 712 { 713 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 714 } 715 716 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 717 struct buffer_head *bh, int type) 718 { 719 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 720 } 721 722 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 723 struct buffer_head *bh, int type) 724 { 725 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 726 type); 727 } 728 729 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 730 struct buffer_head *bh, int type) 731 { 732 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 733 } 734 735 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 736 struct buffer_head *bh, int type) 737 { 738 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 739 } 740 741 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 742 struct buffer_head *bh, int type) 743 { 744 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 745 } 746 747 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 748 struct buffer_head *bh, int type) 749 { 750 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 751 } 752 753 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 754 struct buffer_head *bh, int type) 755 { 756 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 757 } 758 759 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 760 struct buffer_head *bh, int type) 761 { 762 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 763 } 764 765 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 766 struct buffer_head *bh, int type) 767 { 768 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 769 } 770 771 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 772 { 773 int status; 774 775 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 776 777 status = jbd2_journal_dirty_metadata(handle, bh); 778 if (status) { 779 mlog_errno(status); 780 if (!is_handle_aborted(handle)) { 781 journal_t *journal = handle->h_transaction->t_journal; 782 struct super_block *sb = bh->b_bdev->bd_super; 783 784 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " 785 "Aborting transaction and journal.\n"); 786 handle->h_err = status; 787 jbd2_journal_abort_handle(handle); 788 jbd2_journal_abort(journal, status); 789 ocfs2_abort(sb, "Journal already aborted.\n"); 790 } 791 } 792 } 793 794 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 795 796 void ocfs2_set_journal_params(struct ocfs2_super *osb) 797 { 798 journal_t *journal = osb->journal->j_journal; 799 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 800 801 if (osb->osb_commit_interval) 802 commit_interval = osb->osb_commit_interval; 803 804 write_lock(&journal->j_state_lock); 805 journal->j_commit_interval = commit_interval; 806 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 807 journal->j_flags |= JBD2_BARRIER; 808 else 809 journal->j_flags &= ~JBD2_BARRIER; 810 write_unlock(&journal->j_state_lock); 811 } 812 813 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 814 { 815 int status = -1; 816 struct inode *inode = NULL; /* the journal inode */ 817 journal_t *j_journal = NULL; 818 struct ocfs2_dinode *di = NULL; 819 struct buffer_head *bh = NULL; 820 struct ocfs2_super *osb; 821 int inode_lock = 0; 822 823 BUG_ON(!journal); 824 825 osb = journal->j_osb; 826 827 /* already have the inode for our journal */ 828 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 829 osb->slot_num); 830 if (inode == NULL) { 831 status = -EACCES; 832 mlog_errno(status); 833 goto done; 834 } 835 if (is_bad_inode(inode)) { 836 mlog(ML_ERROR, "access error (bad inode)\n"); 837 iput(inode); 838 inode = NULL; 839 status = -EACCES; 840 goto done; 841 } 842 843 SET_INODE_JOURNAL(inode); 844 OCFS2_I(inode)->ip_open_count++; 845 846 /* Skip recovery waits here - journal inode metadata never 847 * changes in a live cluster so it can be considered an 848 * exception to the rule. */ 849 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 850 if (status < 0) { 851 if (status != -ERESTARTSYS) 852 mlog(ML_ERROR, "Could not get lock on journal!\n"); 853 goto done; 854 } 855 856 inode_lock = 1; 857 di = (struct ocfs2_dinode *)bh->b_data; 858 859 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 860 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 861 i_size_read(inode)); 862 status = -EINVAL; 863 goto done; 864 } 865 866 trace_ocfs2_journal_init(i_size_read(inode), 867 (unsigned long long)inode->i_blocks, 868 OCFS2_I(inode)->ip_clusters); 869 870 /* call the kernels journal init function now */ 871 j_journal = jbd2_journal_init_inode(inode); 872 if (j_journal == NULL) { 873 mlog(ML_ERROR, "Linux journal layer error\n"); 874 status = -EINVAL; 875 goto done; 876 } 877 878 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len); 879 880 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 881 OCFS2_JOURNAL_DIRTY_FL); 882 883 journal->j_journal = j_journal; 884 journal->j_journal->j_submit_inode_data_buffers = 885 jbd2_journal_submit_inode_data_buffers; 886 journal->j_journal->j_finish_inode_data_buffers = 887 jbd2_journal_finish_inode_data_buffers; 888 journal->j_inode = inode; 889 journal->j_bh = bh; 890 891 ocfs2_set_journal_params(osb); 892 893 journal->j_state = OCFS2_JOURNAL_LOADED; 894 895 status = 0; 896 done: 897 if (status < 0) { 898 if (inode_lock) 899 ocfs2_inode_unlock(inode, 1); 900 brelse(bh); 901 if (inode) { 902 OCFS2_I(inode)->ip_open_count--; 903 iput(inode); 904 } 905 } 906 907 return status; 908 } 909 910 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 911 { 912 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 913 } 914 915 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 916 { 917 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 918 } 919 920 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 921 int dirty, int replayed) 922 { 923 int status; 924 unsigned int flags; 925 struct ocfs2_journal *journal = osb->journal; 926 struct buffer_head *bh = journal->j_bh; 927 struct ocfs2_dinode *fe; 928 929 fe = (struct ocfs2_dinode *)bh->b_data; 930 931 /* The journal bh on the osb always comes from ocfs2_journal_init() 932 * and was validated there inside ocfs2_inode_lock_full(). It's a 933 * code bug if we mess it up. */ 934 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 935 936 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 937 if (dirty) 938 flags |= OCFS2_JOURNAL_DIRTY_FL; 939 else 940 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 941 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 942 943 if (replayed) 944 ocfs2_bump_recovery_generation(fe); 945 946 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 947 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 948 if (status < 0) 949 mlog_errno(status); 950 951 return status; 952 } 953 954 /* 955 * If the journal has been kmalloc'd it needs to be freed after this 956 * call. 957 */ 958 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 959 { 960 struct ocfs2_journal *journal = NULL; 961 int status = 0; 962 struct inode *inode = NULL; 963 int num_running_trans = 0; 964 965 BUG_ON(!osb); 966 967 journal = osb->journal; 968 if (!journal) 969 goto done; 970 971 inode = journal->j_inode; 972 973 if (journal->j_state != OCFS2_JOURNAL_LOADED) 974 goto done; 975 976 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 977 if (!igrab(inode)) 978 BUG(); 979 980 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 981 trace_ocfs2_journal_shutdown(num_running_trans); 982 983 /* Do a commit_cache here. It will flush our journal, *and* 984 * release any locks that are still held. 985 * set the SHUTDOWN flag and release the trans lock. 986 * the commit thread will take the trans lock for us below. */ 987 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 988 989 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 990 * drop the trans_lock (which we want to hold until we 991 * completely destroy the journal. */ 992 if (osb->commit_task) { 993 /* Wait for the commit thread */ 994 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 995 kthread_stop(osb->commit_task); 996 osb->commit_task = NULL; 997 } 998 999 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 1000 1001 if (ocfs2_mount_local(osb)) { 1002 jbd2_journal_lock_updates(journal->j_journal); 1003 status = jbd2_journal_flush(journal->j_journal, 0); 1004 jbd2_journal_unlock_updates(journal->j_journal); 1005 if (status < 0) 1006 mlog_errno(status); 1007 } 1008 1009 /* Shutdown the kernel journal system */ 1010 if (!jbd2_journal_destroy(journal->j_journal) && !status) { 1011 /* 1012 * Do not toggle if flush was unsuccessful otherwise 1013 * will leave dirty metadata in a "clean" journal 1014 */ 1015 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1016 if (status < 0) 1017 mlog_errno(status); 1018 } 1019 journal->j_journal = NULL; 1020 1021 OCFS2_I(inode)->ip_open_count--; 1022 1023 /* unlock our journal */ 1024 ocfs2_inode_unlock(inode, 1); 1025 1026 brelse(journal->j_bh); 1027 journal->j_bh = NULL; 1028 1029 journal->j_state = OCFS2_JOURNAL_FREE; 1030 1031 // up_write(&journal->j_trans_barrier); 1032 done: 1033 iput(inode); 1034 } 1035 1036 static void ocfs2_clear_journal_error(struct super_block *sb, 1037 journal_t *journal, 1038 int slot) 1039 { 1040 int olderr; 1041 1042 olderr = jbd2_journal_errno(journal); 1043 if (olderr) { 1044 mlog(ML_ERROR, "File system error %d recorded in " 1045 "journal %u.\n", olderr, slot); 1046 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1047 sb->s_id); 1048 1049 jbd2_journal_ack_err(journal); 1050 jbd2_journal_clear_err(journal); 1051 } 1052 } 1053 1054 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1055 { 1056 int status = 0; 1057 struct ocfs2_super *osb; 1058 1059 BUG_ON(!journal); 1060 1061 osb = journal->j_osb; 1062 1063 status = jbd2_journal_load(journal->j_journal); 1064 if (status < 0) { 1065 mlog(ML_ERROR, "Failed to load journal!\n"); 1066 goto done; 1067 } 1068 1069 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1070 1071 if (replayed) { 1072 jbd2_journal_lock_updates(journal->j_journal); 1073 status = jbd2_journal_flush(journal->j_journal, 0); 1074 jbd2_journal_unlock_updates(journal->j_journal); 1075 if (status < 0) 1076 mlog_errno(status); 1077 } 1078 1079 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1080 if (status < 0) { 1081 mlog_errno(status); 1082 goto done; 1083 } 1084 1085 /* Launch the commit thread */ 1086 if (!local) { 1087 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1088 "ocfs2cmt-%s", osb->uuid_str); 1089 if (IS_ERR(osb->commit_task)) { 1090 status = PTR_ERR(osb->commit_task); 1091 osb->commit_task = NULL; 1092 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1093 "error=%d", status); 1094 goto done; 1095 } 1096 } else 1097 osb->commit_task = NULL; 1098 1099 done: 1100 return status; 1101 } 1102 1103 1104 /* 'full' flag tells us whether we clear out all blocks or if we just 1105 * mark the journal clean */ 1106 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1107 { 1108 int status; 1109 1110 BUG_ON(!journal); 1111 1112 status = jbd2_journal_wipe(journal->j_journal, full); 1113 if (status < 0) { 1114 mlog_errno(status); 1115 goto bail; 1116 } 1117 1118 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1119 if (status < 0) 1120 mlog_errno(status); 1121 1122 bail: 1123 return status; 1124 } 1125 1126 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1127 { 1128 int empty; 1129 struct ocfs2_recovery_map *rm = osb->recovery_map; 1130 1131 spin_lock(&osb->osb_lock); 1132 empty = (rm->rm_used == 0); 1133 spin_unlock(&osb->osb_lock); 1134 1135 return empty; 1136 } 1137 1138 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1139 { 1140 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1141 } 1142 1143 /* 1144 * JBD Might read a cached version of another nodes journal file. We 1145 * don't want this as this file changes often and we get no 1146 * notification on those changes. The only way to be sure that we've 1147 * got the most up to date version of those blocks then is to force 1148 * read them off disk. Just searching through the buffer cache won't 1149 * work as there may be pages backing this file which are still marked 1150 * up to date. We know things can't change on this file underneath us 1151 * as we have the lock by now :) 1152 */ 1153 static int ocfs2_force_read_journal(struct inode *inode) 1154 { 1155 int status = 0; 1156 int i; 1157 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1158 struct buffer_head *bh = NULL; 1159 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1160 1161 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1162 v_blkno = 0; 1163 while (v_blkno < num_blocks) { 1164 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1165 &p_blkno, &p_blocks, NULL); 1166 if (status < 0) { 1167 mlog_errno(status); 1168 goto bail; 1169 } 1170 1171 for (i = 0; i < p_blocks; i++, p_blkno++) { 1172 bh = __find_get_block(osb->sb->s_bdev, p_blkno, 1173 osb->sb->s_blocksize); 1174 /* block not cached. */ 1175 if (!bh) 1176 continue; 1177 1178 brelse(bh); 1179 bh = NULL; 1180 /* We are reading journal data which should not 1181 * be put in the uptodate cache. 1182 */ 1183 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1184 if (status < 0) { 1185 mlog_errno(status); 1186 goto bail; 1187 } 1188 1189 brelse(bh); 1190 bh = NULL; 1191 } 1192 1193 v_blkno += p_blocks; 1194 } 1195 1196 bail: 1197 return status; 1198 } 1199 1200 struct ocfs2_la_recovery_item { 1201 struct list_head lri_list; 1202 int lri_slot; 1203 struct ocfs2_dinode *lri_la_dinode; 1204 struct ocfs2_dinode *lri_tl_dinode; 1205 struct ocfs2_quota_recovery *lri_qrec; 1206 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1207 }; 1208 1209 /* Does the second half of the recovery process. By this point, the 1210 * node is marked clean and can actually be considered recovered, 1211 * hence it's no longer in the recovery map, but there's still some 1212 * cleanup we can do which shouldn't happen within the recovery thread 1213 * as locking in that context becomes very difficult if we are to take 1214 * recovering nodes into account. 1215 * 1216 * NOTE: This function can and will sleep on recovery of other nodes 1217 * during cluster locking, just like any other ocfs2 process. 1218 */ 1219 void ocfs2_complete_recovery(struct work_struct *work) 1220 { 1221 int ret = 0; 1222 struct ocfs2_journal *journal = 1223 container_of(work, struct ocfs2_journal, j_recovery_work); 1224 struct ocfs2_super *osb = journal->j_osb; 1225 struct ocfs2_dinode *la_dinode, *tl_dinode; 1226 struct ocfs2_la_recovery_item *item, *n; 1227 struct ocfs2_quota_recovery *qrec; 1228 enum ocfs2_orphan_reco_type orphan_reco_type; 1229 LIST_HEAD(tmp_la_list); 1230 1231 trace_ocfs2_complete_recovery( 1232 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1233 1234 spin_lock(&journal->j_lock); 1235 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1236 spin_unlock(&journal->j_lock); 1237 1238 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1239 list_del_init(&item->lri_list); 1240 1241 ocfs2_wait_on_quotas(osb); 1242 1243 la_dinode = item->lri_la_dinode; 1244 tl_dinode = item->lri_tl_dinode; 1245 qrec = item->lri_qrec; 1246 orphan_reco_type = item->lri_orphan_reco_type; 1247 1248 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1249 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1250 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1251 qrec); 1252 1253 if (la_dinode) { 1254 ret = ocfs2_complete_local_alloc_recovery(osb, 1255 la_dinode); 1256 if (ret < 0) 1257 mlog_errno(ret); 1258 1259 kfree(la_dinode); 1260 } 1261 1262 if (tl_dinode) { 1263 ret = ocfs2_complete_truncate_log_recovery(osb, 1264 tl_dinode); 1265 if (ret < 0) 1266 mlog_errno(ret); 1267 1268 kfree(tl_dinode); 1269 } 1270 1271 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1272 orphan_reco_type); 1273 if (ret < 0) 1274 mlog_errno(ret); 1275 1276 if (qrec) { 1277 ret = ocfs2_finish_quota_recovery(osb, qrec, 1278 item->lri_slot); 1279 if (ret < 0) 1280 mlog_errno(ret); 1281 /* Recovery info is already freed now */ 1282 } 1283 1284 kfree(item); 1285 } 1286 1287 trace_ocfs2_complete_recovery_end(ret); 1288 } 1289 1290 /* NOTE: This function always eats your references to la_dinode and 1291 * tl_dinode, either manually on error, or by passing them to 1292 * ocfs2_complete_recovery */ 1293 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1294 int slot_num, 1295 struct ocfs2_dinode *la_dinode, 1296 struct ocfs2_dinode *tl_dinode, 1297 struct ocfs2_quota_recovery *qrec, 1298 enum ocfs2_orphan_reco_type orphan_reco_type) 1299 { 1300 struct ocfs2_la_recovery_item *item; 1301 1302 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1303 if (!item) { 1304 /* Though we wish to avoid it, we are in fact safe in 1305 * skipping local alloc cleanup as fsck.ocfs2 is more 1306 * than capable of reclaiming unused space. */ 1307 kfree(la_dinode); 1308 kfree(tl_dinode); 1309 1310 if (qrec) 1311 ocfs2_free_quota_recovery(qrec); 1312 1313 mlog_errno(-ENOMEM); 1314 return; 1315 } 1316 1317 INIT_LIST_HEAD(&item->lri_list); 1318 item->lri_la_dinode = la_dinode; 1319 item->lri_slot = slot_num; 1320 item->lri_tl_dinode = tl_dinode; 1321 item->lri_qrec = qrec; 1322 item->lri_orphan_reco_type = orphan_reco_type; 1323 1324 spin_lock(&journal->j_lock); 1325 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1326 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1327 spin_unlock(&journal->j_lock); 1328 } 1329 1330 /* Called by the mount code to queue recovery the last part of 1331 * recovery for it's own and offline slot(s). */ 1332 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1333 { 1334 struct ocfs2_journal *journal = osb->journal; 1335 1336 if (ocfs2_is_hard_readonly(osb)) 1337 return; 1338 1339 /* No need to queue up our truncate_log as regular cleanup will catch 1340 * that */ 1341 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1342 osb->local_alloc_copy, NULL, NULL, 1343 ORPHAN_NEED_TRUNCATE); 1344 ocfs2_schedule_truncate_log_flush(osb, 0); 1345 1346 osb->local_alloc_copy = NULL; 1347 1348 /* queue to recover orphan slots for all offline slots */ 1349 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1350 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1351 ocfs2_free_replay_slots(osb); 1352 } 1353 1354 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1355 { 1356 if (osb->quota_rec) { 1357 ocfs2_queue_recovery_completion(osb->journal, 1358 osb->slot_num, 1359 NULL, 1360 NULL, 1361 osb->quota_rec, 1362 ORPHAN_NEED_TRUNCATE); 1363 osb->quota_rec = NULL; 1364 } 1365 } 1366 1367 static int __ocfs2_recovery_thread(void *arg) 1368 { 1369 int status, node_num, slot_num; 1370 struct ocfs2_super *osb = arg; 1371 struct ocfs2_recovery_map *rm = osb->recovery_map; 1372 int *rm_quota = NULL; 1373 int rm_quota_used = 0, i; 1374 struct ocfs2_quota_recovery *qrec; 1375 1376 /* Whether the quota supported. */ 1377 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1378 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1379 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1380 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1381 1382 status = ocfs2_wait_on_mount(osb); 1383 if (status < 0) { 1384 goto bail; 1385 } 1386 1387 if (quota_enabled) { 1388 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1389 if (!rm_quota) { 1390 status = -ENOMEM; 1391 goto bail; 1392 } 1393 } 1394 restart: 1395 status = ocfs2_super_lock(osb, 1); 1396 if (status < 0) { 1397 mlog_errno(status); 1398 goto bail; 1399 } 1400 1401 status = ocfs2_compute_replay_slots(osb); 1402 if (status < 0) 1403 mlog_errno(status); 1404 1405 /* queue recovery for our own slot */ 1406 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1407 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1408 1409 spin_lock(&osb->osb_lock); 1410 while (rm->rm_used) { 1411 /* It's always safe to remove entry zero, as we won't 1412 * clear it until ocfs2_recover_node() has succeeded. */ 1413 node_num = rm->rm_entries[0]; 1414 spin_unlock(&osb->osb_lock); 1415 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1416 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1417 if (slot_num == -ENOENT) { 1418 status = 0; 1419 goto skip_recovery; 1420 } 1421 1422 /* It is a bit subtle with quota recovery. We cannot do it 1423 * immediately because we have to obtain cluster locks from 1424 * quota files and we also don't want to just skip it because 1425 * then quota usage would be out of sync until some node takes 1426 * the slot. So we remember which nodes need quota recovery 1427 * and when everything else is done, we recover quotas. */ 1428 if (quota_enabled) { 1429 for (i = 0; i < rm_quota_used 1430 && rm_quota[i] != slot_num; i++) 1431 ; 1432 1433 if (i == rm_quota_used) 1434 rm_quota[rm_quota_used++] = slot_num; 1435 } 1436 1437 status = ocfs2_recover_node(osb, node_num, slot_num); 1438 skip_recovery: 1439 if (!status) { 1440 ocfs2_recovery_map_clear(osb, node_num); 1441 } else { 1442 mlog(ML_ERROR, 1443 "Error %d recovering node %d on device (%u,%u)!\n", 1444 status, node_num, 1445 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1446 mlog(ML_ERROR, "Volume requires unmount.\n"); 1447 } 1448 1449 spin_lock(&osb->osb_lock); 1450 } 1451 spin_unlock(&osb->osb_lock); 1452 trace_ocfs2_recovery_thread_end(status); 1453 1454 /* Refresh all journal recovery generations from disk */ 1455 status = ocfs2_check_journals_nolocks(osb); 1456 status = (status == -EROFS) ? 0 : status; 1457 if (status < 0) 1458 mlog_errno(status); 1459 1460 /* Now it is right time to recover quotas... We have to do this under 1461 * superblock lock so that no one can start using the slot (and crash) 1462 * before we recover it */ 1463 if (quota_enabled) { 1464 for (i = 0; i < rm_quota_used; i++) { 1465 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1466 if (IS_ERR(qrec)) { 1467 status = PTR_ERR(qrec); 1468 mlog_errno(status); 1469 continue; 1470 } 1471 ocfs2_queue_recovery_completion(osb->journal, 1472 rm_quota[i], 1473 NULL, NULL, qrec, 1474 ORPHAN_NEED_TRUNCATE); 1475 } 1476 } 1477 1478 ocfs2_super_unlock(osb, 1); 1479 1480 /* queue recovery for offline slots */ 1481 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1482 1483 bail: 1484 mutex_lock(&osb->recovery_lock); 1485 if (!status && !ocfs2_recovery_completed(osb)) { 1486 mutex_unlock(&osb->recovery_lock); 1487 goto restart; 1488 } 1489 1490 ocfs2_free_replay_slots(osb); 1491 osb->recovery_thread_task = NULL; 1492 mb(); /* sync with ocfs2_recovery_thread_running */ 1493 wake_up(&osb->recovery_event); 1494 1495 mutex_unlock(&osb->recovery_lock); 1496 1497 if (quota_enabled) 1498 kfree(rm_quota); 1499 1500 /* no one is callint kthread_stop() for us so the kthread() api 1501 * requires that we call do_exit(). And it isn't exported, but 1502 * complete_and_exit() seems to be a minimal wrapper around it. */ 1503 complete_and_exit(NULL, status); 1504 } 1505 1506 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1507 { 1508 mutex_lock(&osb->recovery_lock); 1509 1510 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1511 osb->disable_recovery, osb->recovery_thread_task, 1512 osb->disable_recovery ? 1513 -1 : ocfs2_recovery_map_set(osb, node_num)); 1514 1515 if (osb->disable_recovery) 1516 goto out; 1517 1518 if (osb->recovery_thread_task) 1519 goto out; 1520 1521 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1522 "ocfs2rec-%s", osb->uuid_str); 1523 if (IS_ERR(osb->recovery_thread_task)) { 1524 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1525 osb->recovery_thread_task = NULL; 1526 } 1527 1528 out: 1529 mutex_unlock(&osb->recovery_lock); 1530 wake_up(&osb->recovery_event); 1531 } 1532 1533 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1534 int slot_num, 1535 struct buffer_head **bh, 1536 struct inode **ret_inode) 1537 { 1538 int status = -EACCES; 1539 struct inode *inode = NULL; 1540 1541 BUG_ON(slot_num >= osb->max_slots); 1542 1543 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1544 slot_num); 1545 if (!inode || is_bad_inode(inode)) { 1546 mlog_errno(status); 1547 goto bail; 1548 } 1549 SET_INODE_JOURNAL(inode); 1550 1551 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1552 if (status < 0) { 1553 mlog_errno(status); 1554 goto bail; 1555 } 1556 1557 status = 0; 1558 1559 bail: 1560 if (inode) { 1561 if (status || !ret_inode) 1562 iput(inode); 1563 else 1564 *ret_inode = inode; 1565 } 1566 return status; 1567 } 1568 1569 /* Does the actual journal replay and marks the journal inode as 1570 * clean. Will only replay if the journal inode is marked dirty. */ 1571 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1572 int node_num, 1573 int slot_num) 1574 { 1575 int status; 1576 int got_lock = 0; 1577 unsigned int flags; 1578 struct inode *inode = NULL; 1579 struct ocfs2_dinode *fe; 1580 journal_t *journal = NULL; 1581 struct buffer_head *bh = NULL; 1582 u32 slot_reco_gen; 1583 1584 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1585 if (status) { 1586 mlog_errno(status); 1587 goto done; 1588 } 1589 1590 fe = (struct ocfs2_dinode *)bh->b_data; 1591 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1592 brelse(bh); 1593 bh = NULL; 1594 1595 /* 1596 * As the fs recovery is asynchronous, there is a small chance that 1597 * another node mounted (and recovered) the slot before the recovery 1598 * thread could get the lock. To handle that, we dirty read the journal 1599 * inode for that slot to get the recovery generation. If it is 1600 * different than what we expected, the slot has been recovered. 1601 * If not, it needs recovery. 1602 */ 1603 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1604 trace_ocfs2_replay_journal_recovered(slot_num, 1605 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1606 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1607 status = -EBUSY; 1608 goto done; 1609 } 1610 1611 /* Continue with recovery as the journal has not yet been recovered */ 1612 1613 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1614 if (status < 0) { 1615 trace_ocfs2_replay_journal_lock_err(status); 1616 if (status != -ERESTARTSYS) 1617 mlog(ML_ERROR, "Could not lock journal!\n"); 1618 goto done; 1619 } 1620 got_lock = 1; 1621 1622 fe = (struct ocfs2_dinode *) bh->b_data; 1623 1624 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1625 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1626 1627 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1628 trace_ocfs2_replay_journal_skip(node_num); 1629 /* Refresh recovery generation for the slot */ 1630 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1631 goto done; 1632 } 1633 1634 /* we need to run complete recovery for offline orphan slots */ 1635 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1636 1637 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1638 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1639 MINOR(osb->sb->s_dev)); 1640 1641 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1642 1643 status = ocfs2_force_read_journal(inode); 1644 if (status < 0) { 1645 mlog_errno(status); 1646 goto done; 1647 } 1648 1649 journal = jbd2_journal_init_inode(inode); 1650 if (journal == NULL) { 1651 mlog(ML_ERROR, "Linux journal layer error\n"); 1652 status = -EIO; 1653 goto done; 1654 } 1655 1656 status = jbd2_journal_load(journal); 1657 if (status < 0) { 1658 mlog_errno(status); 1659 if (!igrab(inode)) 1660 BUG(); 1661 jbd2_journal_destroy(journal); 1662 goto done; 1663 } 1664 1665 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1666 1667 /* wipe the journal */ 1668 jbd2_journal_lock_updates(journal); 1669 status = jbd2_journal_flush(journal, 0); 1670 jbd2_journal_unlock_updates(journal); 1671 if (status < 0) 1672 mlog_errno(status); 1673 1674 /* This will mark the node clean */ 1675 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1676 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1677 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1678 1679 /* Increment recovery generation to indicate successful recovery */ 1680 ocfs2_bump_recovery_generation(fe); 1681 osb->slot_recovery_generations[slot_num] = 1682 ocfs2_get_recovery_generation(fe); 1683 1684 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1685 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1686 if (status < 0) 1687 mlog_errno(status); 1688 1689 if (!igrab(inode)) 1690 BUG(); 1691 1692 jbd2_journal_destroy(journal); 1693 1694 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1695 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1696 MINOR(osb->sb->s_dev)); 1697 done: 1698 /* drop the lock on this nodes journal */ 1699 if (got_lock) 1700 ocfs2_inode_unlock(inode, 1); 1701 1702 iput(inode); 1703 brelse(bh); 1704 1705 return status; 1706 } 1707 1708 /* 1709 * Do the most important parts of node recovery: 1710 * - Replay it's journal 1711 * - Stamp a clean local allocator file 1712 * - Stamp a clean truncate log 1713 * - Mark the node clean 1714 * 1715 * If this function completes without error, a node in OCFS2 can be 1716 * said to have been safely recovered. As a result, failure during the 1717 * second part of a nodes recovery process (local alloc recovery) is 1718 * far less concerning. 1719 */ 1720 static int ocfs2_recover_node(struct ocfs2_super *osb, 1721 int node_num, int slot_num) 1722 { 1723 int status = 0; 1724 struct ocfs2_dinode *la_copy = NULL; 1725 struct ocfs2_dinode *tl_copy = NULL; 1726 1727 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1728 1729 /* Should not ever be called to recover ourselves -- in that 1730 * case we should've called ocfs2_journal_load instead. */ 1731 BUG_ON(osb->node_num == node_num); 1732 1733 status = ocfs2_replay_journal(osb, node_num, slot_num); 1734 if (status < 0) { 1735 if (status == -EBUSY) { 1736 trace_ocfs2_recover_node_skip(slot_num, node_num); 1737 status = 0; 1738 goto done; 1739 } 1740 mlog_errno(status); 1741 goto done; 1742 } 1743 1744 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1745 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1746 if (status < 0) { 1747 mlog_errno(status); 1748 goto done; 1749 } 1750 1751 /* An error from begin_truncate_log_recovery is not 1752 * serious enough to warrant halting the rest of 1753 * recovery. */ 1754 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1755 if (status < 0) 1756 mlog_errno(status); 1757 1758 /* Likewise, this would be a strange but ultimately not so 1759 * harmful place to get an error... */ 1760 status = ocfs2_clear_slot(osb, slot_num); 1761 if (status < 0) 1762 mlog_errno(status); 1763 1764 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1765 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1766 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1767 1768 status = 0; 1769 done: 1770 1771 return status; 1772 } 1773 1774 /* Test node liveness by trylocking his journal. If we get the lock, 1775 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1776 * still alive (we couldn't get the lock) and < 0 on error. */ 1777 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1778 int slot_num) 1779 { 1780 int status, flags; 1781 struct inode *inode = NULL; 1782 1783 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1784 slot_num); 1785 if (inode == NULL) { 1786 mlog(ML_ERROR, "access error\n"); 1787 status = -EACCES; 1788 goto bail; 1789 } 1790 if (is_bad_inode(inode)) { 1791 mlog(ML_ERROR, "access error (bad inode)\n"); 1792 iput(inode); 1793 inode = NULL; 1794 status = -EACCES; 1795 goto bail; 1796 } 1797 SET_INODE_JOURNAL(inode); 1798 1799 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1800 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1801 if (status < 0) { 1802 if (status != -EAGAIN) 1803 mlog_errno(status); 1804 goto bail; 1805 } 1806 1807 ocfs2_inode_unlock(inode, 1); 1808 bail: 1809 iput(inode); 1810 1811 return status; 1812 } 1813 1814 /* Call this underneath ocfs2_super_lock. It also assumes that the 1815 * slot info struct has been updated from disk. */ 1816 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1817 { 1818 unsigned int node_num; 1819 int status, i; 1820 u32 gen; 1821 struct buffer_head *bh = NULL; 1822 struct ocfs2_dinode *di; 1823 1824 /* This is called with the super block cluster lock, so we 1825 * know that the slot map can't change underneath us. */ 1826 1827 for (i = 0; i < osb->max_slots; i++) { 1828 /* Read journal inode to get the recovery generation */ 1829 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1830 if (status) { 1831 mlog_errno(status); 1832 goto bail; 1833 } 1834 di = (struct ocfs2_dinode *)bh->b_data; 1835 gen = ocfs2_get_recovery_generation(di); 1836 brelse(bh); 1837 bh = NULL; 1838 1839 spin_lock(&osb->osb_lock); 1840 osb->slot_recovery_generations[i] = gen; 1841 1842 trace_ocfs2_mark_dead_nodes(i, 1843 osb->slot_recovery_generations[i]); 1844 1845 if (i == osb->slot_num) { 1846 spin_unlock(&osb->osb_lock); 1847 continue; 1848 } 1849 1850 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1851 if (status == -ENOENT) { 1852 spin_unlock(&osb->osb_lock); 1853 continue; 1854 } 1855 1856 if (__ocfs2_recovery_map_test(osb, node_num)) { 1857 spin_unlock(&osb->osb_lock); 1858 continue; 1859 } 1860 spin_unlock(&osb->osb_lock); 1861 1862 /* Ok, we have a slot occupied by another node which 1863 * is not in the recovery map. We trylock his journal 1864 * file here to test if he's alive. */ 1865 status = ocfs2_trylock_journal(osb, i); 1866 if (!status) { 1867 /* Since we're called from mount, we know that 1868 * the recovery thread can't race us on 1869 * setting / checking the recovery bits. */ 1870 ocfs2_recovery_thread(osb, node_num); 1871 } else if ((status < 0) && (status != -EAGAIN)) { 1872 mlog_errno(status); 1873 goto bail; 1874 } 1875 } 1876 1877 status = 0; 1878 bail: 1879 return status; 1880 } 1881 1882 /* 1883 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1884 * randomness to the timeout to minimize multple nodes firing the timer at the 1885 * same time. 1886 */ 1887 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1888 { 1889 unsigned long time; 1890 1891 get_random_bytes(&time, sizeof(time)); 1892 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1893 return msecs_to_jiffies(time); 1894 } 1895 1896 /* 1897 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1898 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1899 * is done to catch any orphans that are left over in orphan directories. 1900 * 1901 * It scans all slots, even ones that are in use. It does so to handle the 1902 * case described below: 1903 * 1904 * Node 1 has an inode it was using. The dentry went away due to memory 1905 * pressure. Node 1 closes the inode, but it's on the free list. The node 1906 * has the open lock. 1907 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1908 * but node 1 has no dentry and doesn't get the message. It trylocks the 1909 * open lock, sees that another node has a PR, and does nothing. 1910 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1911 * open lock, sees the PR still, and does nothing. 1912 * Basically, we have to trigger an orphan iput on node 1. The only way 1913 * for this to happen is if node 1 runs node 2's orphan dir. 1914 * 1915 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1916 * seconds. It gets an EX lock on os_lockres and checks sequence number 1917 * stored in LVB. If the sequence number has changed, it means some other 1918 * node has done the scan. This node skips the scan and tracks the 1919 * sequence number. If the sequence number didn't change, it means a scan 1920 * hasn't happened. The node queues a scan and increments the 1921 * sequence number in the LVB. 1922 */ 1923 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1924 { 1925 struct ocfs2_orphan_scan *os; 1926 int status, i; 1927 u32 seqno = 0; 1928 1929 os = &osb->osb_orphan_scan; 1930 1931 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1932 goto out; 1933 1934 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1935 atomic_read(&os->os_state)); 1936 1937 status = ocfs2_orphan_scan_lock(osb, &seqno); 1938 if (status < 0) { 1939 if (status != -EAGAIN) 1940 mlog_errno(status); 1941 goto out; 1942 } 1943 1944 /* Do no queue the tasks if the volume is being umounted */ 1945 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1946 goto unlock; 1947 1948 if (os->os_seqno != seqno) { 1949 os->os_seqno = seqno; 1950 goto unlock; 1951 } 1952 1953 for (i = 0; i < osb->max_slots; i++) 1954 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1955 NULL, ORPHAN_NO_NEED_TRUNCATE); 1956 /* 1957 * We queued a recovery on orphan slots, increment the sequence 1958 * number and update LVB so other node will skip the scan for a while 1959 */ 1960 seqno++; 1961 os->os_count++; 1962 os->os_scantime = ktime_get_seconds(); 1963 unlock: 1964 ocfs2_orphan_scan_unlock(osb, seqno); 1965 out: 1966 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 1967 atomic_read(&os->os_state)); 1968 return; 1969 } 1970 1971 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1972 static void ocfs2_orphan_scan_work(struct work_struct *work) 1973 { 1974 struct ocfs2_orphan_scan *os; 1975 struct ocfs2_super *osb; 1976 1977 os = container_of(work, struct ocfs2_orphan_scan, 1978 os_orphan_scan_work.work); 1979 osb = os->os_osb; 1980 1981 mutex_lock(&os->os_lock); 1982 ocfs2_queue_orphan_scan(osb); 1983 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 1984 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 1985 ocfs2_orphan_scan_timeout()); 1986 mutex_unlock(&os->os_lock); 1987 } 1988 1989 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 1990 { 1991 struct ocfs2_orphan_scan *os; 1992 1993 os = &osb->osb_orphan_scan; 1994 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 1995 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1996 mutex_lock(&os->os_lock); 1997 cancel_delayed_work(&os->os_orphan_scan_work); 1998 mutex_unlock(&os->os_lock); 1999 } 2000 } 2001 2002 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 2003 { 2004 struct ocfs2_orphan_scan *os; 2005 2006 os = &osb->osb_orphan_scan; 2007 os->os_osb = osb; 2008 os->os_count = 0; 2009 os->os_seqno = 0; 2010 mutex_init(&os->os_lock); 2011 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2012 } 2013 2014 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2015 { 2016 struct ocfs2_orphan_scan *os; 2017 2018 os = &osb->osb_orphan_scan; 2019 os->os_scantime = ktime_get_seconds(); 2020 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2021 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2022 else { 2023 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2024 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2025 ocfs2_orphan_scan_timeout()); 2026 } 2027 } 2028 2029 struct ocfs2_orphan_filldir_priv { 2030 struct dir_context ctx; 2031 struct inode *head; 2032 struct ocfs2_super *osb; 2033 enum ocfs2_orphan_reco_type orphan_reco_type; 2034 }; 2035 2036 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2037 int name_len, loff_t pos, u64 ino, 2038 unsigned type) 2039 { 2040 struct ocfs2_orphan_filldir_priv *p = 2041 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2042 struct inode *iter; 2043 2044 if (name_len == 1 && !strncmp(".", name, 1)) 2045 return 0; 2046 if (name_len == 2 && !strncmp("..", name, 2)) 2047 return 0; 2048 2049 /* do not include dio entry in case of orphan scan */ 2050 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2051 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2052 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2053 return 0; 2054 2055 /* Skip bad inodes so that recovery can continue */ 2056 iter = ocfs2_iget(p->osb, ino, 2057 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2058 if (IS_ERR(iter)) 2059 return 0; 2060 2061 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2062 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2063 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2064 2065 /* Skip inodes which are already added to recover list, since dio may 2066 * happen concurrently with unlink/rename */ 2067 if (OCFS2_I(iter)->ip_next_orphan) { 2068 iput(iter); 2069 return 0; 2070 } 2071 2072 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2073 /* No locking is required for the next_orphan queue as there 2074 * is only ever a single process doing orphan recovery. */ 2075 OCFS2_I(iter)->ip_next_orphan = p->head; 2076 p->head = iter; 2077 2078 return 0; 2079 } 2080 2081 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2082 int slot, 2083 struct inode **head, 2084 enum ocfs2_orphan_reco_type orphan_reco_type) 2085 { 2086 int status; 2087 struct inode *orphan_dir_inode = NULL; 2088 struct ocfs2_orphan_filldir_priv priv = { 2089 .ctx.actor = ocfs2_orphan_filldir, 2090 .osb = osb, 2091 .head = *head, 2092 .orphan_reco_type = orphan_reco_type 2093 }; 2094 2095 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2096 ORPHAN_DIR_SYSTEM_INODE, 2097 slot); 2098 if (!orphan_dir_inode) { 2099 status = -ENOENT; 2100 mlog_errno(status); 2101 return status; 2102 } 2103 2104 inode_lock(orphan_dir_inode); 2105 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2106 if (status < 0) { 2107 mlog_errno(status); 2108 goto out; 2109 } 2110 2111 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2112 if (status) { 2113 mlog_errno(status); 2114 goto out_cluster; 2115 } 2116 2117 *head = priv.head; 2118 2119 out_cluster: 2120 ocfs2_inode_unlock(orphan_dir_inode, 0); 2121 out: 2122 inode_unlock(orphan_dir_inode); 2123 iput(orphan_dir_inode); 2124 return status; 2125 } 2126 2127 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2128 int slot) 2129 { 2130 int ret; 2131 2132 spin_lock(&osb->osb_lock); 2133 ret = !osb->osb_orphan_wipes[slot]; 2134 spin_unlock(&osb->osb_lock); 2135 return ret; 2136 } 2137 2138 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2139 int slot) 2140 { 2141 spin_lock(&osb->osb_lock); 2142 /* Mark ourselves such that new processes in delete_inode() 2143 * know to quit early. */ 2144 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2145 while (osb->osb_orphan_wipes[slot]) { 2146 /* If any processes are already in the middle of an 2147 * orphan wipe on this dir, then we need to wait for 2148 * them. */ 2149 spin_unlock(&osb->osb_lock); 2150 wait_event_interruptible(osb->osb_wipe_event, 2151 ocfs2_orphan_recovery_can_continue(osb, slot)); 2152 spin_lock(&osb->osb_lock); 2153 } 2154 spin_unlock(&osb->osb_lock); 2155 } 2156 2157 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2158 int slot) 2159 { 2160 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2161 } 2162 2163 /* 2164 * Orphan recovery. Each mounted node has it's own orphan dir which we 2165 * must run during recovery. Our strategy here is to build a list of 2166 * the inodes in the orphan dir and iget/iput them. The VFS does 2167 * (most) of the rest of the work. 2168 * 2169 * Orphan recovery can happen at any time, not just mount so we have a 2170 * couple of extra considerations. 2171 * 2172 * - We grab as many inodes as we can under the orphan dir lock - 2173 * doing iget() outside the orphan dir risks getting a reference on 2174 * an invalid inode. 2175 * - We must be sure not to deadlock with other processes on the 2176 * system wanting to run delete_inode(). This can happen when they go 2177 * to lock the orphan dir and the orphan recovery process attempts to 2178 * iget() inside the orphan dir lock. This can be avoided by 2179 * advertising our state to ocfs2_delete_inode(). 2180 */ 2181 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2182 int slot, 2183 enum ocfs2_orphan_reco_type orphan_reco_type) 2184 { 2185 int ret = 0; 2186 struct inode *inode = NULL; 2187 struct inode *iter; 2188 struct ocfs2_inode_info *oi; 2189 struct buffer_head *di_bh = NULL; 2190 struct ocfs2_dinode *di = NULL; 2191 2192 trace_ocfs2_recover_orphans(slot); 2193 2194 ocfs2_mark_recovering_orphan_dir(osb, slot); 2195 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2196 ocfs2_clear_recovering_orphan_dir(osb, slot); 2197 2198 /* Error here should be noted, but we want to continue with as 2199 * many queued inodes as we've got. */ 2200 if (ret) 2201 mlog_errno(ret); 2202 2203 while (inode) { 2204 oi = OCFS2_I(inode); 2205 trace_ocfs2_recover_orphans_iput( 2206 (unsigned long long)oi->ip_blkno); 2207 2208 iter = oi->ip_next_orphan; 2209 oi->ip_next_orphan = NULL; 2210 2211 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2212 inode_lock(inode); 2213 ret = ocfs2_rw_lock(inode, 1); 2214 if (ret < 0) { 2215 mlog_errno(ret); 2216 goto unlock_mutex; 2217 } 2218 /* 2219 * We need to take and drop the inode lock to 2220 * force read inode from disk. 2221 */ 2222 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2223 if (ret) { 2224 mlog_errno(ret); 2225 goto unlock_rw; 2226 } 2227 2228 di = (struct ocfs2_dinode *)di_bh->b_data; 2229 2230 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2231 ret = ocfs2_truncate_file(inode, di_bh, 2232 i_size_read(inode)); 2233 if (ret < 0) { 2234 if (ret != -ENOSPC) 2235 mlog_errno(ret); 2236 goto unlock_inode; 2237 } 2238 2239 ret = ocfs2_del_inode_from_orphan(osb, inode, 2240 di_bh, 0, 0); 2241 if (ret) 2242 mlog_errno(ret); 2243 } 2244 unlock_inode: 2245 ocfs2_inode_unlock(inode, 1); 2246 brelse(di_bh); 2247 di_bh = NULL; 2248 unlock_rw: 2249 ocfs2_rw_unlock(inode, 1); 2250 unlock_mutex: 2251 inode_unlock(inode); 2252 2253 /* clear dio flag in ocfs2_inode_info */ 2254 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2255 } else { 2256 spin_lock(&oi->ip_lock); 2257 /* Set the proper information to get us going into 2258 * ocfs2_delete_inode. */ 2259 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2260 spin_unlock(&oi->ip_lock); 2261 } 2262 2263 iput(inode); 2264 inode = iter; 2265 } 2266 2267 return ret; 2268 } 2269 2270 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2271 { 2272 /* This check is good because ocfs2 will wait on our recovery 2273 * thread before changing it to something other than MOUNTED 2274 * or DISABLED. */ 2275 wait_event(osb->osb_mount_event, 2276 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2277 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2278 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2279 2280 /* If there's an error on mount, then we may never get to the 2281 * MOUNTED flag, but this is set right before 2282 * dismount_volume() so we can trust it. */ 2283 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2284 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2285 mlog(0, "mount error, exiting!\n"); 2286 return -EBUSY; 2287 } 2288 2289 return 0; 2290 } 2291 2292 static int ocfs2_commit_thread(void *arg) 2293 { 2294 int status; 2295 struct ocfs2_super *osb = arg; 2296 struct ocfs2_journal *journal = osb->journal; 2297 2298 /* we can trust j_num_trans here because _should_stop() is only set in 2299 * shutdown and nobody other than ourselves should be able to start 2300 * transactions. committing on shutdown might take a few iterations 2301 * as final transactions put deleted inodes on the list */ 2302 while (!(kthread_should_stop() && 2303 atomic_read(&journal->j_num_trans) == 0)) { 2304 2305 wait_event_interruptible(osb->checkpoint_event, 2306 atomic_read(&journal->j_num_trans) 2307 || kthread_should_stop()); 2308 2309 status = ocfs2_commit_cache(osb); 2310 if (status < 0) { 2311 static unsigned long abort_warn_time; 2312 2313 /* Warn about this once per minute */ 2314 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2315 mlog(ML_ERROR, "status = %d, journal is " 2316 "already aborted.\n", status); 2317 /* 2318 * After ocfs2_commit_cache() fails, j_num_trans has a 2319 * non-zero value. Sleep here to avoid a busy-wait 2320 * loop. 2321 */ 2322 msleep_interruptible(1000); 2323 } 2324 2325 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2326 mlog(ML_KTHREAD, 2327 "commit_thread: %u transactions pending on " 2328 "shutdown\n", 2329 atomic_read(&journal->j_num_trans)); 2330 } 2331 } 2332 2333 return 0; 2334 } 2335 2336 /* Reads all the journal inodes without taking any cluster locks. Used 2337 * for hard readonly access to determine whether any journal requires 2338 * recovery. Also used to refresh the recovery generation numbers after 2339 * a journal has been recovered by another node. 2340 */ 2341 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2342 { 2343 int ret = 0; 2344 unsigned int slot; 2345 struct buffer_head *di_bh = NULL; 2346 struct ocfs2_dinode *di; 2347 int journal_dirty = 0; 2348 2349 for(slot = 0; slot < osb->max_slots; slot++) { 2350 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2351 if (ret) { 2352 mlog_errno(ret); 2353 goto out; 2354 } 2355 2356 di = (struct ocfs2_dinode *) di_bh->b_data; 2357 2358 osb->slot_recovery_generations[slot] = 2359 ocfs2_get_recovery_generation(di); 2360 2361 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2362 OCFS2_JOURNAL_DIRTY_FL) 2363 journal_dirty = 1; 2364 2365 brelse(di_bh); 2366 di_bh = NULL; 2367 } 2368 2369 out: 2370 if (journal_dirty) 2371 ret = -EROFS; 2372 return ret; 2373 } 2374