1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * journal.c 4 * 5 * Defines functions of journalling api 6 * 7 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/highmem.h> 14 #include <linux/kthread.h> 15 #include <linux/time.h> 16 #include <linux/random.h> 17 #include <linux/delay.h> 18 19 #include <cluster/masklog.h> 20 21 #include "ocfs2.h" 22 23 #include "alloc.h" 24 #include "blockcheck.h" 25 #include "dir.h" 26 #include "dlmglue.h" 27 #include "extent_map.h" 28 #include "heartbeat.h" 29 #include "inode.h" 30 #include "journal.h" 31 #include "localalloc.h" 32 #include "slot_map.h" 33 #include "super.h" 34 #include "sysfile.h" 35 #include "uptodate.h" 36 #include "quota.h" 37 #include "file.h" 38 #include "namei.h" 39 40 #include "buffer_head_io.h" 41 #include "ocfs2_trace.h" 42 43 DEFINE_SPINLOCK(trans_inc_lock); 44 45 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 46 47 static int ocfs2_force_read_journal(struct inode *inode); 48 static int ocfs2_recover_node(struct ocfs2_super *osb, 49 int node_num, int slot_num); 50 static int __ocfs2_recovery_thread(void *arg); 51 static int ocfs2_commit_cache(struct ocfs2_super *osb); 52 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 53 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 54 int dirty, int replayed); 55 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 56 int slot_num); 57 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 58 int slot, 59 enum ocfs2_orphan_reco_type orphan_reco_type); 60 static int ocfs2_commit_thread(void *arg); 61 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 62 int slot_num, 63 struct ocfs2_dinode *la_dinode, 64 struct ocfs2_dinode *tl_dinode, 65 struct ocfs2_quota_recovery *qrec, 66 enum ocfs2_orphan_reco_type orphan_reco_type); 67 68 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 69 { 70 return __ocfs2_wait_on_mount(osb, 0); 71 } 72 73 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 74 { 75 return __ocfs2_wait_on_mount(osb, 1); 76 } 77 78 /* 79 * This replay_map is to track online/offline slots, so we could recover 80 * offline slots during recovery and mount 81 */ 82 83 enum ocfs2_replay_state { 84 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 85 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 86 REPLAY_DONE /* Replay was already queued */ 87 }; 88 89 struct ocfs2_replay_map { 90 unsigned int rm_slots; 91 enum ocfs2_replay_state rm_state; 92 unsigned char rm_replay_slots[]; 93 }; 94 95 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 96 { 97 if (!osb->replay_map) 98 return; 99 100 /* If we've already queued the replay, we don't have any more to do */ 101 if (osb->replay_map->rm_state == REPLAY_DONE) 102 return; 103 104 osb->replay_map->rm_state = state; 105 } 106 107 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 108 { 109 struct ocfs2_replay_map *replay_map; 110 int i, node_num; 111 112 /* If replay map is already set, we don't do it again */ 113 if (osb->replay_map) 114 return 0; 115 116 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 117 (osb->max_slots * sizeof(char)), GFP_KERNEL); 118 119 if (!replay_map) { 120 mlog_errno(-ENOMEM); 121 return -ENOMEM; 122 } 123 124 spin_lock(&osb->osb_lock); 125 126 replay_map->rm_slots = osb->max_slots; 127 replay_map->rm_state = REPLAY_UNNEEDED; 128 129 /* set rm_replay_slots for offline slot(s) */ 130 for (i = 0; i < replay_map->rm_slots; i++) { 131 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 132 replay_map->rm_replay_slots[i] = 1; 133 } 134 135 osb->replay_map = replay_map; 136 spin_unlock(&osb->osb_lock); 137 return 0; 138 } 139 140 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 141 enum ocfs2_orphan_reco_type orphan_reco_type) 142 { 143 struct ocfs2_replay_map *replay_map = osb->replay_map; 144 int i; 145 146 if (!replay_map) 147 return; 148 149 if (replay_map->rm_state != REPLAY_NEEDED) 150 return; 151 152 for (i = 0; i < replay_map->rm_slots; i++) 153 if (replay_map->rm_replay_slots[i]) 154 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 155 NULL, NULL, 156 orphan_reco_type); 157 replay_map->rm_state = REPLAY_DONE; 158 } 159 160 void ocfs2_free_replay_slots(struct ocfs2_super *osb) 161 { 162 struct ocfs2_replay_map *replay_map = osb->replay_map; 163 164 if (!osb->replay_map) 165 return; 166 167 kfree(replay_map); 168 osb->replay_map = NULL; 169 } 170 171 int ocfs2_recovery_init(struct ocfs2_super *osb) 172 { 173 struct ocfs2_recovery_map *rm; 174 175 mutex_init(&osb->recovery_lock); 176 osb->disable_recovery = 0; 177 osb->recovery_thread_task = NULL; 178 init_waitqueue_head(&osb->recovery_event); 179 180 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 181 osb->max_slots * sizeof(unsigned int), 182 GFP_KERNEL); 183 if (!rm) { 184 mlog_errno(-ENOMEM); 185 return -ENOMEM; 186 } 187 188 rm->rm_entries = (unsigned int *)((char *)rm + 189 sizeof(struct ocfs2_recovery_map)); 190 osb->recovery_map = rm; 191 192 return 0; 193 } 194 195 /* we can't grab the goofy sem lock from inside wait_event, so we use 196 * memory barriers to make sure that we'll see the null task before 197 * being woken up */ 198 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 199 { 200 mb(); 201 return osb->recovery_thread_task != NULL; 202 } 203 204 void ocfs2_recovery_exit(struct ocfs2_super *osb) 205 { 206 struct ocfs2_recovery_map *rm; 207 208 /* disable any new recovery threads and wait for any currently 209 * running ones to exit. Do this before setting the vol_state. */ 210 mutex_lock(&osb->recovery_lock); 211 osb->disable_recovery = 1; 212 mutex_unlock(&osb->recovery_lock); 213 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 214 215 /* At this point, we know that no more recovery threads can be 216 * launched, so wait for any recovery completion work to 217 * complete. */ 218 if (osb->ocfs2_wq) 219 flush_workqueue(osb->ocfs2_wq); 220 221 /* 222 * Now that recovery is shut down, and the osb is about to be 223 * freed, the osb_lock is not taken here. 224 */ 225 rm = osb->recovery_map; 226 /* XXX: Should we bug if there are dirty entries? */ 227 228 kfree(rm); 229 } 230 231 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 232 unsigned int node_num) 233 { 234 int i; 235 struct ocfs2_recovery_map *rm = osb->recovery_map; 236 237 assert_spin_locked(&osb->osb_lock); 238 239 for (i = 0; i < rm->rm_used; i++) { 240 if (rm->rm_entries[i] == node_num) 241 return 1; 242 } 243 244 return 0; 245 } 246 247 /* Behaves like test-and-set. Returns the previous value */ 248 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 249 unsigned int node_num) 250 { 251 struct ocfs2_recovery_map *rm = osb->recovery_map; 252 253 spin_lock(&osb->osb_lock); 254 if (__ocfs2_recovery_map_test(osb, node_num)) { 255 spin_unlock(&osb->osb_lock); 256 return 1; 257 } 258 259 /* XXX: Can this be exploited? Not from o2dlm... */ 260 BUG_ON(rm->rm_used >= osb->max_slots); 261 262 rm->rm_entries[rm->rm_used] = node_num; 263 rm->rm_used++; 264 spin_unlock(&osb->osb_lock); 265 266 return 0; 267 } 268 269 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 270 unsigned int node_num) 271 { 272 int i; 273 struct ocfs2_recovery_map *rm = osb->recovery_map; 274 275 spin_lock(&osb->osb_lock); 276 277 for (i = 0; i < rm->rm_used; i++) { 278 if (rm->rm_entries[i] == node_num) 279 break; 280 } 281 282 if (i < rm->rm_used) { 283 /* XXX: be careful with the pointer math */ 284 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 285 (rm->rm_used - i - 1) * sizeof(unsigned int)); 286 rm->rm_used--; 287 } 288 289 spin_unlock(&osb->osb_lock); 290 } 291 292 static int ocfs2_commit_cache(struct ocfs2_super *osb) 293 { 294 int status = 0; 295 unsigned int flushed; 296 struct ocfs2_journal *journal = NULL; 297 298 journal = osb->journal; 299 300 /* Flush all pending commits and checkpoint the journal. */ 301 down_write(&journal->j_trans_barrier); 302 303 flushed = atomic_read(&journal->j_num_trans); 304 trace_ocfs2_commit_cache_begin(flushed); 305 if (flushed == 0) { 306 up_write(&journal->j_trans_barrier); 307 goto finally; 308 } 309 310 jbd2_journal_lock_updates(journal->j_journal); 311 status = jbd2_journal_flush(journal->j_journal, 0); 312 jbd2_journal_unlock_updates(journal->j_journal); 313 if (status < 0) { 314 up_write(&journal->j_trans_barrier); 315 mlog_errno(status); 316 goto finally; 317 } 318 319 ocfs2_inc_trans_id(journal); 320 321 flushed = atomic_read(&journal->j_num_trans); 322 atomic_set(&journal->j_num_trans, 0); 323 up_write(&journal->j_trans_barrier); 324 325 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 326 327 ocfs2_wake_downconvert_thread(osb); 328 wake_up(&journal->j_checkpointed); 329 finally: 330 return status; 331 } 332 333 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 334 { 335 journal_t *journal = osb->journal->j_journal; 336 handle_t *handle; 337 338 BUG_ON(!osb || !osb->journal->j_journal); 339 340 if (ocfs2_is_hard_readonly(osb)) 341 return ERR_PTR(-EROFS); 342 343 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 344 BUG_ON(max_buffs <= 0); 345 346 /* Nested transaction? Just return the handle... */ 347 if (journal_current_handle()) 348 return jbd2_journal_start(journal, max_buffs); 349 350 sb_start_intwrite(osb->sb); 351 352 down_read(&osb->journal->j_trans_barrier); 353 354 handle = jbd2_journal_start(journal, max_buffs); 355 if (IS_ERR(handle)) { 356 up_read(&osb->journal->j_trans_barrier); 357 sb_end_intwrite(osb->sb); 358 359 mlog_errno(PTR_ERR(handle)); 360 361 if (is_journal_aborted(journal)) { 362 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 363 handle = ERR_PTR(-EROFS); 364 } 365 } else { 366 if (!ocfs2_mount_local(osb)) 367 atomic_inc(&(osb->journal->j_num_trans)); 368 } 369 370 return handle; 371 } 372 373 int ocfs2_commit_trans(struct ocfs2_super *osb, 374 handle_t *handle) 375 { 376 int ret, nested; 377 struct ocfs2_journal *journal = osb->journal; 378 379 BUG_ON(!handle); 380 381 nested = handle->h_ref > 1; 382 ret = jbd2_journal_stop(handle); 383 if (ret < 0) 384 mlog_errno(ret); 385 386 if (!nested) { 387 up_read(&journal->j_trans_barrier); 388 sb_end_intwrite(osb->sb); 389 } 390 391 return ret; 392 } 393 394 /* 395 * 'nblocks' is what you want to add to the current transaction. 396 * 397 * This might call jbd2_journal_restart() which will commit dirty buffers 398 * and then restart the transaction. Before calling 399 * ocfs2_extend_trans(), any changed blocks should have been 400 * dirtied. After calling it, all blocks which need to be changed must 401 * go through another set of journal_access/journal_dirty calls. 402 * 403 * WARNING: This will not release any semaphores or disk locks taken 404 * during the transaction, so make sure they were taken *before* 405 * start_trans or we'll have ordering deadlocks. 406 * 407 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 408 * good because transaction ids haven't yet been recorded on the 409 * cluster locks associated with this handle. 410 */ 411 int ocfs2_extend_trans(handle_t *handle, int nblocks) 412 { 413 int status, old_nblocks; 414 415 BUG_ON(!handle); 416 BUG_ON(nblocks < 0); 417 418 if (!nblocks) 419 return 0; 420 421 old_nblocks = jbd2_handle_buffer_credits(handle); 422 423 trace_ocfs2_extend_trans(old_nblocks, nblocks); 424 425 #ifdef CONFIG_OCFS2_DEBUG_FS 426 status = 1; 427 #else 428 status = jbd2_journal_extend(handle, nblocks, 0); 429 if (status < 0) { 430 mlog_errno(status); 431 goto bail; 432 } 433 #endif 434 435 if (status > 0) { 436 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 437 status = jbd2_journal_restart(handle, 438 old_nblocks + nblocks); 439 if (status < 0) { 440 mlog_errno(status); 441 goto bail; 442 } 443 } 444 445 status = 0; 446 bail: 447 return status; 448 } 449 450 /* 451 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 452 * If that fails, restart the transaction & regain write access for the 453 * buffer head which is used for metadata modifications. 454 * Taken from Ext4: extend_or_restart_transaction() 455 */ 456 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 457 { 458 int status, old_nblks; 459 460 BUG_ON(!handle); 461 462 old_nblks = jbd2_handle_buffer_credits(handle); 463 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 464 465 if (old_nblks < thresh) 466 return 0; 467 468 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0); 469 if (status < 0) { 470 mlog_errno(status); 471 goto bail; 472 } 473 474 if (status > 0) { 475 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 476 if (status < 0) 477 mlog_errno(status); 478 } 479 480 bail: 481 return status; 482 } 483 484 485 struct ocfs2_triggers { 486 struct jbd2_buffer_trigger_type ot_triggers; 487 int ot_offset; 488 }; 489 490 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 491 { 492 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 493 } 494 495 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 496 struct buffer_head *bh, 497 void *data, size_t size) 498 { 499 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 500 501 /* 502 * We aren't guaranteed to have the superblock here, so we 503 * must unconditionally compute the ecc data. 504 * __ocfs2_journal_access() will only set the triggers if 505 * metaecc is enabled. 506 */ 507 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 508 } 509 510 /* 511 * Quota blocks have their own trigger because the struct ocfs2_block_check 512 * offset depends on the blocksize. 513 */ 514 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 515 struct buffer_head *bh, 516 void *data, size_t size) 517 { 518 struct ocfs2_disk_dqtrailer *dqt = 519 ocfs2_block_dqtrailer(size, data); 520 521 /* 522 * We aren't guaranteed to have the superblock here, so we 523 * must unconditionally compute the ecc data. 524 * __ocfs2_journal_access() will only set the triggers if 525 * metaecc is enabled. 526 */ 527 ocfs2_block_check_compute(data, size, &dqt->dq_check); 528 } 529 530 /* 531 * Directory blocks also have their own trigger because the 532 * struct ocfs2_block_check offset depends on the blocksize. 533 */ 534 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 535 struct buffer_head *bh, 536 void *data, size_t size) 537 { 538 struct ocfs2_dir_block_trailer *trailer = 539 ocfs2_dir_trailer_from_size(size, data); 540 541 /* 542 * We aren't guaranteed to have the superblock here, so we 543 * must unconditionally compute the ecc data. 544 * __ocfs2_journal_access() will only set the triggers if 545 * metaecc is enabled. 546 */ 547 ocfs2_block_check_compute(data, size, &trailer->db_check); 548 } 549 550 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 551 struct buffer_head *bh) 552 { 553 mlog(ML_ERROR, 554 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 555 "bh->b_blocknr = %llu\n", 556 (unsigned long)bh, 557 (unsigned long long)bh->b_blocknr); 558 559 ocfs2_error(bh->b_bdev->bd_super, 560 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 561 } 562 563 static struct ocfs2_triggers di_triggers = { 564 .ot_triggers = { 565 .t_frozen = ocfs2_frozen_trigger, 566 .t_abort = ocfs2_abort_trigger, 567 }, 568 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 569 }; 570 571 static struct ocfs2_triggers eb_triggers = { 572 .ot_triggers = { 573 .t_frozen = ocfs2_frozen_trigger, 574 .t_abort = ocfs2_abort_trigger, 575 }, 576 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 577 }; 578 579 static struct ocfs2_triggers rb_triggers = { 580 .ot_triggers = { 581 .t_frozen = ocfs2_frozen_trigger, 582 .t_abort = ocfs2_abort_trigger, 583 }, 584 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 585 }; 586 587 static struct ocfs2_triggers gd_triggers = { 588 .ot_triggers = { 589 .t_frozen = ocfs2_frozen_trigger, 590 .t_abort = ocfs2_abort_trigger, 591 }, 592 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 593 }; 594 595 static struct ocfs2_triggers db_triggers = { 596 .ot_triggers = { 597 .t_frozen = ocfs2_db_frozen_trigger, 598 .t_abort = ocfs2_abort_trigger, 599 }, 600 }; 601 602 static struct ocfs2_triggers xb_triggers = { 603 .ot_triggers = { 604 .t_frozen = ocfs2_frozen_trigger, 605 .t_abort = ocfs2_abort_trigger, 606 }, 607 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 608 }; 609 610 static struct ocfs2_triggers dq_triggers = { 611 .ot_triggers = { 612 .t_frozen = ocfs2_dq_frozen_trigger, 613 .t_abort = ocfs2_abort_trigger, 614 }, 615 }; 616 617 static struct ocfs2_triggers dr_triggers = { 618 .ot_triggers = { 619 .t_frozen = ocfs2_frozen_trigger, 620 .t_abort = ocfs2_abort_trigger, 621 }, 622 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 623 }; 624 625 static struct ocfs2_triggers dl_triggers = { 626 .ot_triggers = { 627 .t_frozen = ocfs2_frozen_trigger, 628 .t_abort = ocfs2_abort_trigger, 629 }, 630 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 631 }; 632 633 static int __ocfs2_journal_access(handle_t *handle, 634 struct ocfs2_caching_info *ci, 635 struct buffer_head *bh, 636 struct ocfs2_triggers *triggers, 637 int type) 638 { 639 int status; 640 struct ocfs2_super *osb = 641 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 642 643 BUG_ON(!ci || !ci->ci_ops); 644 BUG_ON(!handle); 645 BUG_ON(!bh); 646 647 trace_ocfs2_journal_access( 648 (unsigned long long)ocfs2_metadata_cache_owner(ci), 649 (unsigned long long)bh->b_blocknr, type, bh->b_size); 650 651 /* we can safely remove this assertion after testing. */ 652 if (!buffer_uptodate(bh)) { 653 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 654 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 655 (unsigned long long)bh->b_blocknr, bh->b_state); 656 657 lock_buffer(bh); 658 /* 659 * A previous transaction with a couple of buffer heads fail 660 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 661 * For current transaction, the bh is just among those error 662 * bhs which previous transaction handle. We can't just clear 663 * its BH_Write_EIO and reuse directly, since other bhs are 664 * not written to disk yet and that will cause metadata 665 * inconsistency. So we should set fs read-only to avoid 666 * further damage. 667 */ 668 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 669 unlock_buffer(bh); 670 return ocfs2_error(osb->sb, "A previous attempt to " 671 "write this buffer head failed\n"); 672 } 673 unlock_buffer(bh); 674 } 675 676 /* Set the current transaction information on the ci so 677 * that the locking code knows whether it can drop it's locks 678 * on this ci or not. We're protected from the commit 679 * thread updating the current transaction id until 680 * ocfs2_commit_trans() because ocfs2_start_trans() took 681 * j_trans_barrier for us. */ 682 ocfs2_set_ci_lock_trans(osb->journal, ci); 683 684 ocfs2_metadata_cache_io_lock(ci); 685 switch (type) { 686 case OCFS2_JOURNAL_ACCESS_CREATE: 687 case OCFS2_JOURNAL_ACCESS_WRITE: 688 status = jbd2_journal_get_write_access(handle, bh); 689 break; 690 691 case OCFS2_JOURNAL_ACCESS_UNDO: 692 status = jbd2_journal_get_undo_access(handle, bh); 693 break; 694 695 default: 696 status = -EINVAL; 697 mlog(ML_ERROR, "Unknown access type!\n"); 698 } 699 if (!status && ocfs2_meta_ecc(osb) && triggers) 700 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 701 ocfs2_metadata_cache_io_unlock(ci); 702 703 if (status < 0) 704 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 705 status, type); 706 707 return status; 708 } 709 710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 711 struct buffer_head *bh, int type) 712 { 713 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 714 } 715 716 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 717 struct buffer_head *bh, int type) 718 { 719 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 720 } 721 722 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 723 struct buffer_head *bh, int type) 724 { 725 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 726 type); 727 } 728 729 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 730 struct buffer_head *bh, int type) 731 { 732 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 733 } 734 735 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 736 struct buffer_head *bh, int type) 737 { 738 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 739 } 740 741 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 742 struct buffer_head *bh, int type) 743 { 744 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 745 } 746 747 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 748 struct buffer_head *bh, int type) 749 { 750 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 751 } 752 753 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 754 struct buffer_head *bh, int type) 755 { 756 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 757 } 758 759 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 760 struct buffer_head *bh, int type) 761 { 762 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 763 } 764 765 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 766 struct buffer_head *bh, int type) 767 { 768 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 769 } 770 771 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 772 { 773 int status; 774 775 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 776 777 status = jbd2_journal_dirty_metadata(handle, bh); 778 if (status) { 779 mlog_errno(status); 780 if (!is_handle_aborted(handle)) { 781 journal_t *journal = handle->h_transaction->t_journal; 782 struct super_block *sb = bh->b_bdev->bd_super; 783 784 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " 785 "Aborting transaction and journal.\n"); 786 handle->h_err = status; 787 jbd2_journal_abort_handle(handle); 788 jbd2_journal_abort(journal, status); 789 ocfs2_abort(sb, "Journal already aborted.\n"); 790 } 791 } 792 } 793 794 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 795 796 void ocfs2_set_journal_params(struct ocfs2_super *osb) 797 { 798 journal_t *journal = osb->journal->j_journal; 799 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 800 801 if (osb->osb_commit_interval) 802 commit_interval = osb->osb_commit_interval; 803 804 write_lock(&journal->j_state_lock); 805 journal->j_commit_interval = commit_interval; 806 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 807 journal->j_flags |= JBD2_BARRIER; 808 else 809 journal->j_flags &= ~JBD2_BARRIER; 810 write_unlock(&journal->j_state_lock); 811 } 812 813 /* 814 * alloc & initialize skeleton for journal structure. 815 * ocfs2_journal_init() will make fs have journal ability. 816 */ 817 int ocfs2_journal_alloc(struct ocfs2_super *osb) 818 { 819 int status = 0; 820 struct ocfs2_journal *journal; 821 822 journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL); 823 if (!journal) { 824 mlog(ML_ERROR, "unable to alloc journal\n"); 825 status = -ENOMEM; 826 goto bail; 827 } 828 osb->journal = journal; 829 journal->j_osb = osb; 830 831 atomic_set(&journal->j_num_trans, 0); 832 init_rwsem(&journal->j_trans_barrier); 833 init_waitqueue_head(&journal->j_checkpointed); 834 spin_lock_init(&journal->j_lock); 835 journal->j_trans_id = 1UL; 836 INIT_LIST_HEAD(&journal->j_la_cleanups); 837 INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery); 838 journal->j_state = OCFS2_JOURNAL_FREE; 839 840 bail: 841 return status; 842 } 843 844 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty) 845 { 846 int status = -1; 847 struct inode *inode = NULL; /* the journal inode */ 848 journal_t *j_journal = NULL; 849 struct ocfs2_journal *journal = osb->journal; 850 struct ocfs2_dinode *di = NULL; 851 struct buffer_head *bh = NULL; 852 int inode_lock = 0; 853 854 BUG_ON(!journal); 855 /* already have the inode for our journal */ 856 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 857 osb->slot_num); 858 if (inode == NULL) { 859 status = -EACCES; 860 mlog_errno(status); 861 goto done; 862 } 863 if (is_bad_inode(inode)) { 864 mlog(ML_ERROR, "access error (bad inode)\n"); 865 iput(inode); 866 inode = NULL; 867 status = -EACCES; 868 goto done; 869 } 870 871 SET_INODE_JOURNAL(inode); 872 OCFS2_I(inode)->ip_open_count++; 873 874 /* Skip recovery waits here - journal inode metadata never 875 * changes in a live cluster so it can be considered an 876 * exception to the rule. */ 877 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 878 if (status < 0) { 879 if (status != -ERESTARTSYS) 880 mlog(ML_ERROR, "Could not get lock on journal!\n"); 881 goto done; 882 } 883 884 inode_lock = 1; 885 di = (struct ocfs2_dinode *)bh->b_data; 886 887 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 888 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 889 i_size_read(inode)); 890 status = -EINVAL; 891 goto done; 892 } 893 894 trace_ocfs2_journal_init(i_size_read(inode), 895 (unsigned long long)inode->i_blocks, 896 OCFS2_I(inode)->ip_clusters); 897 898 /* call the kernels journal init function now */ 899 j_journal = jbd2_journal_init_inode(inode); 900 if (j_journal == NULL) { 901 mlog(ML_ERROR, "Linux journal layer error\n"); 902 status = -EINVAL; 903 goto done; 904 } 905 906 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len); 907 908 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 909 OCFS2_JOURNAL_DIRTY_FL); 910 911 journal->j_journal = j_journal; 912 journal->j_journal->j_submit_inode_data_buffers = 913 jbd2_journal_submit_inode_data_buffers; 914 journal->j_journal->j_finish_inode_data_buffers = 915 jbd2_journal_finish_inode_data_buffers; 916 journal->j_inode = inode; 917 journal->j_bh = bh; 918 919 ocfs2_set_journal_params(osb); 920 921 journal->j_state = OCFS2_JOURNAL_LOADED; 922 923 status = 0; 924 done: 925 if (status < 0) { 926 if (inode_lock) 927 ocfs2_inode_unlock(inode, 1); 928 brelse(bh); 929 if (inode) { 930 OCFS2_I(inode)->ip_open_count--; 931 iput(inode); 932 } 933 } 934 935 return status; 936 } 937 938 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 939 { 940 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 941 } 942 943 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 944 { 945 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 946 } 947 948 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 949 int dirty, int replayed) 950 { 951 int status; 952 unsigned int flags; 953 struct ocfs2_journal *journal = osb->journal; 954 struct buffer_head *bh = journal->j_bh; 955 struct ocfs2_dinode *fe; 956 957 fe = (struct ocfs2_dinode *)bh->b_data; 958 959 /* The journal bh on the osb always comes from ocfs2_journal_init() 960 * and was validated there inside ocfs2_inode_lock_full(). It's a 961 * code bug if we mess it up. */ 962 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 963 964 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 965 if (dirty) 966 flags |= OCFS2_JOURNAL_DIRTY_FL; 967 else 968 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 969 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 970 971 if (replayed) 972 ocfs2_bump_recovery_generation(fe); 973 974 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 975 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 976 if (status < 0) 977 mlog_errno(status); 978 979 return status; 980 } 981 982 /* 983 * If the journal has been kmalloc'd it needs to be freed after this 984 * call. 985 */ 986 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 987 { 988 struct ocfs2_journal *journal = NULL; 989 int status = 0; 990 struct inode *inode = NULL; 991 int num_running_trans = 0; 992 993 BUG_ON(!osb); 994 995 journal = osb->journal; 996 if (!journal) 997 goto done; 998 999 inode = journal->j_inode; 1000 1001 if (journal->j_state != OCFS2_JOURNAL_LOADED) 1002 goto done; 1003 1004 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 1005 if (!igrab(inode)) 1006 BUG(); 1007 1008 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 1009 trace_ocfs2_journal_shutdown(num_running_trans); 1010 1011 /* Do a commit_cache here. It will flush our journal, *and* 1012 * release any locks that are still held. 1013 * set the SHUTDOWN flag and release the trans lock. 1014 * the commit thread will take the trans lock for us below. */ 1015 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 1016 1017 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 1018 * drop the trans_lock (which we want to hold until we 1019 * completely destroy the journal. */ 1020 if (osb->commit_task) { 1021 /* Wait for the commit thread */ 1022 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 1023 kthread_stop(osb->commit_task); 1024 osb->commit_task = NULL; 1025 } 1026 1027 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 1028 1029 if (ocfs2_mount_local(osb)) { 1030 jbd2_journal_lock_updates(journal->j_journal); 1031 status = jbd2_journal_flush(journal->j_journal, 0); 1032 jbd2_journal_unlock_updates(journal->j_journal); 1033 if (status < 0) 1034 mlog_errno(status); 1035 } 1036 1037 /* Shutdown the kernel journal system */ 1038 if (!jbd2_journal_destroy(journal->j_journal) && !status) { 1039 /* 1040 * Do not toggle if flush was unsuccessful otherwise 1041 * will leave dirty metadata in a "clean" journal 1042 */ 1043 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1044 if (status < 0) 1045 mlog_errno(status); 1046 } 1047 journal->j_journal = NULL; 1048 1049 OCFS2_I(inode)->ip_open_count--; 1050 1051 /* unlock our journal */ 1052 ocfs2_inode_unlock(inode, 1); 1053 1054 brelse(journal->j_bh); 1055 journal->j_bh = NULL; 1056 1057 journal->j_state = OCFS2_JOURNAL_FREE; 1058 1059 done: 1060 iput(inode); 1061 kfree(journal); 1062 osb->journal = NULL; 1063 } 1064 1065 static void ocfs2_clear_journal_error(struct super_block *sb, 1066 journal_t *journal, 1067 int slot) 1068 { 1069 int olderr; 1070 1071 olderr = jbd2_journal_errno(journal); 1072 if (olderr) { 1073 mlog(ML_ERROR, "File system error %d recorded in " 1074 "journal %u.\n", olderr, slot); 1075 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1076 sb->s_id); 1077 1078 jbd2_journal_ack_err(journal); 1079 jbd2_journal_clear_err(journal); 1080 } 1081 } 1082 1083 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1084 { 1085 int status = 0; 1086 struct ocfs2_super *osb; 1087 1088 BUG_ON(!journal); 1089 1090 osb = journal->j_osb; 1091 1092 status = jbd2_journal_load(journal->j_journal); 1093 if (status < 0) { 1094 mlog(ML_ERROR, "Failed to load journal!\n"); 1095 goto done; 1096 } 1097 1098 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1099 1100 if (replayed) { 1101 jbd2_journal_lock_updates(journal->j_journal); 1102 status = jbd2_journal_flush(journal->j_journal, 0); 1103 jbd2_journal_unlock_updates(journal->j_journal); 1104 if (status < 0) 1105 mlog_errno(status); 1106 } 1107 1108 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1109 if (status < 0) { 1110 mlog_errno(status); 1111 goto done; 1112 } 1113 1114 /* Launch the commit thread */ 1115 if (!local) { 1116 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1117 "ocfs2cmt-%s", osb->uuid_str); 1118 if (IS_ERR(osb->commit_task)) { 1119 status = PTR_ERR(osb->commit_task); 1120 osb->commit_task = NULL; 1121 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1122 "error=%d", status); 1123 goto done; 1124 } 1125 } else 1126 osb->commit_task = NULL; 1127 1128 done: 1129 return status; 1130 } 1131 1132 1133 /* 'full' flag tells us whether we clear out all blocks or if we just 1134 * mark the journal clean */ 1135 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1136 { 1137 int status; 1138 1139 BUG_ON(!journal); 1140 1141 status = jbd2_journal_wipe(journal->j_journal, full); 1142 if (status < 0) { 1143 mlog_errno(status); 1144 goto bail; 1145 } 1146 1147 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1148 if (status < 0) 1149 mlog_errno(status); 1150 1151 bail: 1152 return status; 1153 } 1154 1155 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1156 { 1157 int empty; 1158 struct ocfs2_recovery_map *rm = osb->recovery_map; 1159 1160 spin_lock(&osb->osb_lock); 1161 empty = (rm->rm_used == 0); 1162 spin_unlock(&osb->osb_lock); 1163 1164 return empty; 1165 } 1166 1167 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1168 { 1169 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1170 } 1171 1172 /* 1173 * JBD Might read a cached version of another nodes journal file. We 1174 * don't want this as this file changes often and we get no 1175 * notification on those changes. The only way to be sure that we've 1176 * got the most up to date version of those blocks then is to force 1177 * read them off disk. Just searching through the buffer cache won't 1178 * work as there may be pages backing this file which are still marked 1179 * up to date. We know things can't change on this file underneath us 1180 * as we have the lock by now :) 1181 */ 1182 static int ocfs2_force_read_journal(struct inode *inode) 1183 { 1184 int status = 0; 1185 int i; 1186 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1187 struct buffer_head *bh = NULL; 1188 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1189 1190 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1191 v_blkno = 0; 1192 while (v_blkno < num_blocks) { 1193 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1194 &p_blkno, &p_blocks, NULL); 1195 if (status < 0) { 1196 mlog_errno(status); 1197 goto bail; 1198 } 1199 1200 for (i = 0; i < p_blocks; i++, p_blkno++) { 1201 bh = __find_get_block(osb->sb->s_bdev, p_blkno, 1202 osb->sb->s_blocksize); 1203 /* block not cached. */ 1204 if (!bh) 1205 continue; 1206 1207 brelse(bh); 1208 bh = NULL; 1209 /* We are reading journal data which should not 1210 * be put in the uptodate cache. 1211 */ 1212 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1213 if (status < 0) { 1214 mlog_errno(status); 1215 goto bail; 1216 } 1217 1218 brelse(bh); 1219 bh = NULL; 1220 } 1221 1222 v_blkno += p_blocks; 1223 } 1224 1225 bail: 1226 return status; 1227 } 1228 1229 struct ocfs2_la_recovery_item { 1230 struct list_head lri_list; 1231 int lri_slot; 1232 struct ocfs2_dinode *lri_la_dinode; 1233 struct ocfs2_dinode *lri_tl_dinode; 1234 struct ocfs2_quota_recovery *lri_qrec; 1235 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1236 }; 1237 1238 /* Does the second half of the recovery process. By this point, the 1239 * node is marked clean and can actually be considered recovered, 1240 * hence it's no longer in the recovery map, but there's still some 1241 * cleanup we can do which shouldn't happen within the recovery thread 1242 * as locking in that context becomes very difficult if we are to take 1243 * recovering nodes into account. 1244 * 1245 * NOTE: This function can and will sleep on recovery of other nodes 1246 * during cluster locking, just like any other ocfs2 process. 1247 */ 1248 void ocfs2_complete_recovery(struct work_struct *work) 1249 { 1250 int ret = 0; 1251 struct ocfs2_journal *journal = 1252 container_of(work, struct ocfs2_journal, j_recovery_work); 1253 struct ocfs2_super *osb = journal->j_osb; 1254 struct ocfs2_dinode *la_dinode, *tl_dinode; 1255 struct ocfs2_la_recovery_item *item, *n; 1256 struct ocfs2_quota_recovery *qrec; 1257 enum ocfs2_orphan_reco_type orphan_reco_type; 1258 LIST_HEAD(tmp_la_list); 1259 1260 trace_ocfs2_complete_recovery( 1261 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1262 1263 spin_lock(&journal->j_lock); 1264 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1265 spin_unlock(&journal->j_lock); 1266 1267 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1268 list_del_init(&item->lri_list); 1269 1270 ocfs2_wait_on_quotas(osb); 1271 1272 la_dinode = item->lri_la_dinode; 1273 tl_dinode = item->lri_tl_dinode; 1274 qrec = item->lri_qrec; 1275 orphan_reco_type = item->lri_orphan_reco_type; 1276 1277 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1278 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1279 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1280 qrec); 1281 1282 if (la_dinode) { 1283 ret = ocfs2_complete_local_alloc_recovery(osb, 1284 la_dinode); 1285 if (ret < 0) 1286 mlog_errno(ret); 1287 1288 kfree(la_dinode); 1289 } 1290 1291 if (tl_dinode) { 1292 ret = ocfs2_complete_truncate_log_recovery(osb, 1293 tl_dinode); 1294 if (ret < 0) 1295 mlog_errno(ret); 1296 1297 kfree(tl_dinode); 1298 } 1299 1300 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1301 orphan_reco_type); 1302 if (ret < 0) 1303 mlog_errno(ret); 1304 1305 if (qrec) { 1306 ret = ocfs2_finish_quota_recovery(osb, qrec, 1307 item->lri_slot); 1308 if (ret < 0) 1309 mlog_errno(ret); 1310 /* Recovery info is already freed now */ 1311 } 1312 1313 kfree(item); 1314 } 1315 1316 trace_ocfs2_complete_recovery_end(ret); 1317 } 1318 1319 /* NOTE: This function always eats your references to la_dinode and 1320 * tl_dinode, either manually on error, or by passing them to 1321 * ocfs2_complete_recovery */ 1322 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1323 int slot_num, 1324 struct ocfs2_dinode *la_dinode, 1325 struct ocfs2_dinode *tl_dinode, 1326 struct ocfs2_quota_recovery *qrec, 1327 enum ocfs2_orphan_reco_type orphan_reco_type) 1328 { 1329 struct ocfs2_la_recovery_item *item; 1330 1331 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1332 if (!item) { 1333 /* Though we wish to avoid it, we are in fact safe in 1334 * skipping local alloc cleanup as fsck.ocfs2 is more 1335 * than capable of reclaiming unused space. */ 1336 kfree(la_dinode); 1337 kfree(tl_dinode); 1338 1339 if (qrec) 1340 ocfs2_free_quota_recovery(qrec); 1341 1342 mlog_errno(-ENOMEM); 1343 return; 1344 } 1345 1346 INIT_LIST_HEAD(&item->lri_list); 1347 item->lri_la_dinode = la_dinode; 1348 item->lri_slot = slot_num; 1349 item->lri_tl_dinode = tl_dinode; 1350 item->lri_qrec = qrec; 1351 item->lri_orphan_reco_type = orphan_reco_type; 1352 1353 spin_lock(&journal->j_lock); 1354 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1355 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1356 spin_unlock(&journal->j_lock); 1357 } 1358 1359 /* Called by the mount code to queue recovery the last part of 1360 * recovery for it's own and offline slot(s). */ 1361 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1362 { 1363 struct ocfs2_journal *journal = osb->journal; 1364 1365 if (ocfs2_is_hard_readonly(osb)) 1366 return; 1367 1368 /* No need to queue up our truncate_log as regular cleanup will catch 1369 * that */ 1370 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1371 osb->local_alloc_copy, NULL, NULL, 1372 ORPHAN_NEED_TRUNCATE); 1373 ocfs2_schedule_truncate_log_flush(osb, 0); 1374 1375 osb->local_alloc_copy = NULL; 1376 1377 /* queue to recover orphan slots for all offline slots */ 1378 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1379 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1380 ocfs2_free_replay_slots(osb); 1381 } 1382 1383 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1384 { 1385 if (osb->quota_rec) { 1386 ocfs2_queue_recovery_completion(osb->journal, 1387 osb->slot_num, 1388 NULL, 1389 NULL, 1390 osb->quota_rec, 1391 ORPHAN_NEED_TRUNCATE); 1392 osb->quota_rec = NULL; 1393 } 1394 } 1395 1396 static int __ocfs2_recovery_thread(void *arg) 1397 { 1398 int status, node_num, slot_num; 1399 struct ocfs2_super *osb = arg; 1400 struct ocfs2_recovery_map *rm = osb->recovery_map; 1401 int *rm_quota = NULL; 1402 int rm_quota_used = 0, i; 1403 struct ocfs2_quota_recovery *qrec; 1404 1405 /* Whether the quota supported. */ 1406 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1407 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1408 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1409 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1410 1411 status = ocfs2_wait_on_mount(osb); 1412 if (status < 0) { 1413 goto bail; 1414 } 1415 1416 if (quota_enabled) { 1417 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1418 if (!rm_quota) { 1419 status = -ENOMEM; 1420 goto bail; 1421 } 1422 } 1423 restart: 1424 status = ocfs2_super_lock(osb, 1); 1425 if (status < 0) { 1426 mlog_errno(status); 1427 goto bail; 1428 } 1429 1430 status = ocfs2_compute_replay_slots(osb); 1431 if (status < 0) 1432 mlog_errno(status); 1433 1434 /* queue recovery for our own slot */ 1435 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1436 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1437 1438 spin_lock(&osb->osb_lock); 1439 while (rm->rm_used) { 1440 /* It's always safe to remove entry zero, as we won't 1441 * clear it until ocfs2_recover_node() has succeeded. */ 1442 node_num = rm->rm_entries[0]; 1443 spin_unlock(&osb->osb_lock); 1444 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1445 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1446 if (slot_num == -ENOENT) { 1447 status = 0; 1448 goto skip_recovery; 1449 } 1450 1451 /* It is a bit subtle with quota recovery. We cannot do it 1452 * immediately because we have to obtain cluster locks from 1453 * quota files and we also don't want to just skip it because 1454 * then quota usage would be out of sync until some node takes 1455 * the slot. So we remember which nodes need quota recovery 1456 * and when everything else is done, we recover quotas. */ 1457 if (quota_enabled) { 1458 for (i = 0; i < rm_quota_used 1459 && rm_quota[i] != slot_num; i++) 1460 ; 1461 1462 if (i == rm_quota_used) 1463 rm_quota[rm_quota_used++] = slot_num; 1464 } 1465 1466 status = ocfs2_recover_node(osb, node_num, slot_num); 1467 skip_recovery: 1468 if (!status) { 1469 ocfs2_recovery_map_clear(osb, node_num); 1470 } else { 1471 mlog(ML_ERROR, 1472 "Error %d recovering node %d on device (%u,%u)!\n", 1473 status, node_num, 1474 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1475 mlog(ML_ERROR, "Volume requires unmount.\n"); 1476 } 1477 1478 spin_lock(&osb->osb_lock); 1479 } 1480 spin_unlock(&osb->osb_lock); 1481 trace_ocfs2_recovery_thread_end(status); 1482 1483 /* Refresh all journal recovery generations from disk */ 1484 status = ocfs2_check_journals_nolocks(osb); 1485 status = (status == -EROFS) ? 0 : status; 1486 if (status < 0) 1487 mlog_errno(status); 1488 1489 /* Now it is right time to recover quotas... We have to do this under 1490 * superblock lock so that no one can start using the slot (and crash) 1491 * before we recover it */ 1492 if (quota_enabled) { 1493 for (i = 0; i < rm_quota_used; i++) { 1494 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1495 if (IS_ERR(qrec)) { 1496 status = PTR_ERR(qrec); 1497 mlog_errno(status); 1498 continue; 1499 } 1500 ocfs2_queue_recovery_completion(osb->journal, 1501 rm_quota[i], 1502 NULL, NULL, qrec, 1503 ORPHAN_NEED_TRUNCATE); 1504 } 1505 } 1506 1507 ocfs2_super_unlock(osb, 1); 1508 1509 /* queue recovery for offline slots */ 1510 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1511 1512 bail: 1513 mutex_lock(&osb->recovery_lock); 1514 if (!status && !ocfs2_recovery_completed(osb)) { 1515 mutex_unlock(&osb->recovery_lock); 1516 goto restart; 1517 } 1518 1519 ocfs2_free_replay_slots(osb); 1520 osb->recovery_thread_task = NULL; 1521 mb(); /* sync with ocfs2_recovery_thread_running */ 1522 wake_up(&osb->recovery_event); 1523 1524 mutex_unlock(&osb->recovery_lock); 1525 1526 if (quota_enabled) 1527 kfree(rm_quota); 1528 1529 return status; 1530 } 1531 1532 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1533 { 1534 mutex_lock(&osb->recovery_lock); 1535 1536 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1537 osb->disable_recovery, osb->recovery_thread_task, 1538 osb->disable_recovery ? 1539 -1 : ocfs2_recovery_map_set(osb, node_num)); 1540 1541 if (osb->disable_recovery) 1542 goto out; 1543 1544 if (osb->recovery_thread_task) 1545 goto out; 1546 1547 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1548 "ocfs2rec-%s", osb->uuid_str); 1549 if (IS_ERR(osb->recovery_thread_task)) { 1550 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1551 osb->recovery_thread_task = NULL; 1552 } 1553 1554 out: 1555 mutex_unlock(&osb->recovery_lock); 1556 wake_up(&osb->recovery_event); 1557 } 1558 1559 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1560 int slot_num, 1561 struct buffer_head **bh, 1562 struct inode **ret_inode) 1563 { 1564 int status = -EACCES; 1565 struct inode *inode = NULL; 1566 1567 BUG_ON(slot_num >= osb->max_slots); 1568 1569 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1570 slot_num); 1571 if (!inode || is_bad_inode(inode)) { 1572 mlog_errno(status); 1573 goto bail; 1574 } 1575 SET_INODE_JOURNAL(inode); 1576 1577 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1578 if (status < 0) { 1579 mlog_errno(status); 1580 goto bail; 1581 } 1582 1583 status = 0; 1584 1585 bail: 1586 if (inode) { 1587 if (status || !ret_inode) 1588 iput(inode); 1589 else 1590 *ret_inode = inode; 1591 } 1592 return status; 1593 } 1594 1595 /* Does the actual journal replay and marks the journal inode as 1596 * clean. Will only replay if the journal inode is marked dirty. */ 1597 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1598 int node_num, 1599 int slot_num) 1600 { 1601 int status; 1602 int got_lock = 0; 1603 unsigned int flags; 1604 struct inode *inode = NULL; 1605 struct ocfs2_dinode *fe; 1606 journal_t *journal = NULL; 1607 struct buffer_head *bh = NULL; 1608 u32 slot_reco_gen; 1609 1610 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1611 if (status) { 1612 mlog_errno(status); 1613 goto done; 1614 } 1615 1616 fe = (struct ocfs2_dinode *)bh->b_data; 1617 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1618 brelse(bh); 1619 bh = NULL; 1620 1621 /* 1622 * As the fs recovery is asynchronous, there is a small chance that 1623 * another node mounted (and recovered) the slot before the recovery 1624 * thread could get the lock. To handle that, we dirty read the journal 1625 * inode for that slot to get the recovery generation. If it is 1626 * different than what we expected, the slot has been recovered. 1627 * If not, it needs recovery. 1628 */ 1629 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1630 trace_ocfs2_replay_journal_recovered(slot_num, 1631 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1632 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1633 status = -EBUSY; 1634 goto done; 1635 } 1636 1637 /* Continue with recovery as the journal has not yet been recovered */ 1638 1639 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1640 if (status < 0) { 1641 trace_ocfs2_replay_journal_lock_err(status); 1642 if (status != -ERESTARTSYS) 1643 mlog(ML_ERROR, "Could not lock journal!\n"); 1644 goto done; 1645 } 1646 got_lock = 1; 1647 1648 fe = (struct ocfs2_dinode *) bh->b_data; 1649 1650 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1651 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1652 1653 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1654 trace_ocfs2_replay_journal_skip(node_num); 1655 /* Refresh recovery generation for the slot */ 1656 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1657 goto done; 1658 } 1659 1660 /* we need to run complete recovery for offline orphan slots */ 1661 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1662 1663 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1664 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1665 MINOR(osb->sb->s_dev)); 1666 1667 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1668 1669 status = ocfs2_force_read_journal(inode); 1670 if (status < 0) { 1671 mlog_errno(status); 1672 goto done; 1673 } 1674 1675 journal = jbd2_journal_init_inode(inode); 1676 if (journal == NULL) { 1677 mlog(ML_ERROR, "Linux journal layer error\n"); 1678 status = -EIO; 1679 goto done; 1680 } 1681 1682 status = jbd2_journal_load(journal); 1683 if (status < 0) { 1684 mlog_errno(status); 1685 BUG_ON(!igrab(inode)); 1686 jbd2_journal_destroy(journal); 1687 goto done; 1688 } 1689 1690 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1691 1692 /* wipe the journal */ 1693 jbd2_journal_lock_updates(journal); 1694 status = jbd2_journal_flush(journal, 0); 1695 jbd2_journal_unlock_updates(journal); 1696 if (status < 0) 1697 mlog_errno(status); 1698 1699 /* This will mark the node clean */ 1700 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1701 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1702 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1703 1704 /* Increment recovery generation to indicate successful recovery */ 1705 ocfs2_bump_recovery_generation(fe); 1706 osb->slot_recovery_generations[slot_num] = 1707 ocfs2_get_recovery_generation(fe); 1708 1709 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1710 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1711 if (status < 0) 1712 mlog_errno(status); 1713 1714 BUG_ON(!igrab(inode)); 1715 1716 jbd2_journal_destroy(journal); 1717 1718 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1719 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1720 MINOR(osb->sb->s_dev)); 1721 done: 1722 /* drop the lock on this nodes journal */ 1723 if (got_lock) 1724 ocfs2_inode_unlock(inode, 1); 1725 1726 iput(inode); 1727 brelse(bh); 1728 1729 return status; 1730 } 1731 1732 /* 1733 * Do the most important parts of node recovery: 1734 * - Replay it's journal 1735 * - Stamp a clean local allocator file 1736 * - Stamp a clean truncate log 1737 * - Mark the node clean 1738 * 1739 * If this function completes without error, a node in OCFS2 can be 1740 * said to have been safely recovered. As a result, failure during the 1741 * second part of a nodes recovery process (local alloc recovery) is 1742 * far less concerning. 1743 */ 1744 static int ocfs2_recover_node(struct ocfs2_super *osb, 1745 int node_num, int slot_num) 1746 { 1747 int status = 0; 1748 struct ocfs2_dinode *la_copy = NULL; 1749 struct ocfs2_dinode *tl_copy = NULL; 1750 1751 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1752 1753 /* Should not ever be called to recover ourselves -- in that 1754 * case we should've called ocfs2_journal_load instead. */ 1755 BUG_ON(osb->node_num == node_num); 1756 1757 status = ocfs2_replay_journal(osb, node_num, slot_num); 1758 if (status < 0) { 1759 if (status == -EBUSY) { 1760 trace_ocfs2_recover_node_skip(slot_num, node_num); 1761 status = 0; 1762 goto done; 1763 } 1764 mlog_errno(status); 1765 goto done; 1766 } 1767 1768 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1769 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1770 if (status < 0) { 1771 mlog_errno(status); 1772 goto done; 1773 } 1774 1775 /* An error from begin_truncate_log_recovery is not 1776 * serious enough to warrant halting the rest of 1777 * recovery. */ 1778 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1779 if (status < 0) 1780 mlog_errno(status); 1781 1782 /* Likewise, this would be a strange but ultimately not so 1783 * harmful place to get an error... */ 1784 status = ocfs2_clear_slot(osb, slot_num); 1785 if (status < 0) 1786 mlog_errno(status); 1787 1788 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1789 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1790 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1791 1792 status = 0; 1793 done: 1794 1795 return status; 1796 } 1797 1798 /* Test node liveness by trylocking his journal. If we get the lock, 1799 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1800 * still alive (we couldn't get the lock) and < 0 on error. */ 1801 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1802 int slot_num) 1803 { 1804 int status, flags; 1805 struct inode *inode = NULL; 1806 1807 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1808 slot_num); 1809 if (inode == NULL) { 1810 mlog(ML_ERROR, "access error\n"); 1811 status = -EACCES; 1812 goto bail; 1813 } 1814 if (is_bad_inode(inode)) { 1815 mlog(ML_ERROR, "access error (bad inode)\n"); 1816 iput(inode); 1817 inode = NULL; 1818 status = -EACCES; 1819 goto bail; 1820 } 1821 SET_INODE_JOURNAL(inode); 1822 1823 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1824 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1825 if (status < 0) { 1826 if (status != -EAGAIN) 1827 mlog_errno(status); 1828 goto bail; 1829 } 1830 1831 ocfs2_inode_unlock(inode, 1); 1832 bail: 1833 iput(inode); 1834 1835 return status; 1836 } 1837 1838 /* Call this underneath ocfs2_super_lock. It also assumes that the 1839 * slot info struct has been updated from disk. */ 1840 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1841 { 1842 unsigned int node_num; 1843 int status, i; 1844 u32 gen; 1845 struct buffer_head *bh = NULL; 1846 struct ocfs2_dinode *di; 1847 1848 /* This is called with the super block cluster lock, so we 1849 * know that the slot map can't change underneath us. */ 1850 1851 for (i = 0; i < osb->max_slots; i++) { 1852 /* Read journal inode to get the recovery generation */ 1853 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1854 if (status) { 1855 mlog_errno(status); 1856 goto bail; 1857 } 1858 di = (struct ocfs2_dinode *)bh->b_data; 1859 gen = ocfs2_get_recovery_generation(di); 1860 brelse(bh); 1861 bh = NULL; 1862 1863 spin_lock(&osb->osb_lock); 1864 osb->slot_recovery_generations[i] = gen; 1865 1866 trace_ocfs2_mark_dead_nodes(i, 1867 osb->slot_recovery_generations[i]); 1868 1869 if (i == osb->slot_num) { 1870 spin_unlock(&osb->osb_lock); 1871 continue; 1872 } 1873 1874 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1875 if (status == -ENOENT) { 1876 spin_unlock(&osb->osb_lock); 1877 continue; 1878 } 1879 1880 if (__ocfs2_recovery_map_test(osb, node_num)) { 1881 spin_unlock(&osb->osb_lock); 1882 continue; 1883 } 1884 spin_unlock(&osb->osb_lock); 1885 1886 /* Ok, we have a slot occupied by another node which 1887 * is not in the recovery map. We trylock his journal 1888 * file here to test if he's alive. */ 1889 status = ocfs2_trylock_journal(osb, i); 1890 if (!status) { 1891 /* Since we're called from mount, we know that 1892 * the recovery thread can't race us on 1893 * setting / checking the recovery bits. */ 1894 ocfs2_recovery_thread(osb, node_num); 1895 } else if ((status < 0) && (status != -EAGAIN)) { 1896 mlog_errno(status); 1897 goto bail; 1898 } 1899 } 1900 1901 status = 0; 1902 bail: 1903 return status; 1904 } 1905 1906 /* 1907 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1908 * randomness to the timeout to minimize multple nodes firing the timer at the 1909 * same time. 1910 */ 1911 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1912 { 1913 unsigned long time; 1914 1915 get_random_bytes(&time, sizeof(time)); 1916 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1917 return msecs_to_jiffies(time); 1918 } 1919 1920 /* 1921 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1922 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1923 * is done to catch any orphans that are left over in orphan directories. 1924 * 1925 * It scans all slots, even ones that are in use. It does so to handle the 1926 * case described below: 1927 * 1928 * Node 1 has an inode it was using. The dentry went away due to memory 1929 * pressure. Node 1 closes the inode, but it's on the free list. The node 1930 * has the open lock. 1931 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1932 * but node 1 has no dentry and doesn't get the message. It trylocks the 1933 * open lock, sees that another node has a PR, and does nothing. 1934 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1935 * open lock, sees the PR still, and does nothing. 1936 * Basically, we have to trigger an orphan iput on node 1. The only way 1937 * for this to happen is if node 1 runs node 2's orphan dir. 1938 * 1939 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1940 * seconds. It gets an EX lock on os_lockres and checks sequence number 1941 * stored in LVB. If the sequence number has changed, it means some other 1942 * node has done the scan. This node skips the scan and tracks the 1943 * sequence number. If the sequence number didn't change, it means a scan 1944 * hasn't happened. The node queues a scan and increments the 1945 * sequence number in the LVB. 1946 */ 1947 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1948 { 1949 struct ocfs2_orphan_scan *os; 1950 int status, i; 1951 u32 seqno = 0; 1952 1953 os = &osb->osb_orphan_scan; 1954 1955 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1956 goto out; 1957 1958 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1959 atomic_read(&os->os_state)); 1960 1961 status = ocfs2_orphan_scan_lock(osb, &seqno); 1962 if (status < 0) { 1963 if (status != -EAGAIN) 1964 mlog_errno(status); 1965 goto out; 1966 } 1967 1968 /* Do no queue the tasks if the volume is being umounted */ 1969 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1970 goto unlock; 1971 1972 if (os->os_seqno != seqno) { 1973 os->os_seqno = seqno; 1974 goto unlock; 1975 } 1976 1977 for (i = 0; i < osb->max_slots; i++) 1978 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1979 NULL, ORPHAN_NO_NEED_TRUNCATE); 1980 /* 1981 * We queued a recovery on orphan slots, increment the sequence 1982 * number and update LVB so other node will skip the scan for a while 1983 */ 1984 seqno++; 1985 os->os_count++; 1986 os->os_scantime = ktime_get_seconds(); 1987 unlock: 1988 ocfs2_orphan_scan_unlock(osb, seqno); 1989 out: 1990 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 1991 atomic_read(&os->os_state)); 1992 return; 1993 } 1994 1995 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1996 static void ocfs2_orphan_scan_work(struct work_struct *work) 1997 { 1998 struct ocfs2_orphan_scan *os; 1999 struct ocfs2_super *osb; 2000 2001 os = container_of(work, struct ocfs2_orphan_scan, 2002 os_orphan_scan_work.work); 2003 osb = os->os_osb; 2004 2005 mutex_lock(&os->os_lock); 2006 ocfs2_queue_orphan_scan(osb); 2007 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 2008 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2009 ocfs2_orphan_scan_timeout()); 2010 mutex_unlock(&os->os_lock); 2011 } 2012 2013 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 2014 { 2015 struct ocfs2_orphan_scan *os; 2016 2017 os = &osb->osb_orphan_scan; 2018 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 2019 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2020 mutex_lock(&os->os_lock); 2021 cancel_delayed_work(&os->os_orphan_scan_work); 2022 mutex_unlock(&os->os_lock); 2023 } 2024 } 2025 2026 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 2027 { 2028 struct ocfs2_orphan_scan *os; 2029 2030 os = &osb->osb_orphan_scan; 2031 os->os_osb = osb; 2032 os->os_count = 0; 2033 os->os_seqno = 0; 2034 mutex_init(&os->os_lock); 2035 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2036 } 2037 2038 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2039 { 2040 struct ocfs2_orphan_scan *os; 2041 2042 os = &osb->osb_orphan_scan; 2043 os->os_scantime = ktime_get_seconds(); 2044 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2045 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2046 else { 2047 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2048 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2049 ocfs2_orphan_scan_timeout()); 2050 } 2051 } 2052 2053 struct ocfs2_orphan_filldir_priv { 2054 struct dir_context ctx; 2055 struct inode *head; 2056 struct ocfs2_super *osb; 2057 enum ocfs2_orphan_reco_type orphan_reco_type; 2058 }; 2059 2060 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2061 int name_len, loff_t pos, u64 ino, 2062 unsigned type) 2063 { 2064 struct ocfs2_orphan_filldir_priv *p = 2065 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2066 struct inode *iter; 2067 2068 if (name_len == 1 && !strncmp(".", name, 1)) 2069 return true; 2070 if (name_len == 2 && !strncmp("..", name, 2)) 2071 return true; 2072 2073 /* do not include dio entry in case of orphan scan */ 2074 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2075 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2076 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2077 return true; 2078 2079 /* Skip bad inodes so that recovery can continue */ 2080 iter = ocfs2_iget(p->osb, ino, 2081 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2082 if (IS_ERR(iter)) 2083 return true; 2084 2085 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2086 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2087 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2088 2089 /* Skip inodes which are already added to recover list, since dio may 2090 * happen concurrently with unlink/rename */ 2091 if (OCFS2_I(iter)->ip_next_orphan) { 2092 iput(iter); 2093 return true; 2094 } 2095 2096 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2097 /* No locking is required for the next_orphan queue as there 2098 * is only ever a single process doing orphan recovery. */ 2099 OCFS2_I(iter)->ip_next_orphan = p->head; 2100 p->head = iter; 2101 2102 return true; 2103 } 2104 2105 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2106 int slot, 2107 struct inode **head, 2108 enum ocfs2_orphan_reco_type orphan_reco_type) 2109 { 2110 int status; 2111 struct inode *orphan_dir_inode = NULL; 2112 struct ocfs2_orphan_filldir_priv priv = { 2113 .ctx.actor = ocfs2_orphan_filldir, 2114 .osb = osb, 2115 .head = *head, 2116 .orphan_reco_type = orphan_reco_type 2117 }; 2118 2119 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2120 ORPHAN_DIR_SYSTEM_INODE, 2121 slot); 2122 if (!orphan_dir_inode) { 2123 status = -ENOENT; 2124 mlog_errno(status); 2125 return status; 2126 } 2127 2128 inode_lock(orphan_dir_inode); 2129 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2130 if (status < 0) { 2131 mlog_errno(status); 2132 goto out; 2133 } 2134 2135 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2136 if (status) { 2137 mlog_errno(status); 2138 goto out_cluster; 2139 } 2140 2141 *head = priv.head; 2142 2143 out_cluster: 2144 ocfs2_inode_unlock(orphan_dir_inode, 0); 2145 out: 2146 inode_unlock(orphan_dir_inode); 2147 iput(orphan_dir_inode); 2148 return status; 2149 } 2150 2151 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2152 int slot) 2153 { 2154 int ret; 2155 2156 spin_lock(&osb->osb_lock); 2157 ret = !osb->osb_orphan_wipes[slot]; 2158 spin_unlock(&osb->osb_lock); 2159 return ret; 2160 } 2161 2162 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2163 int slot) 2164 { 2165 spin_lock(&osb->osb_lock); 2166 /* Mark ourselves such that new processes in delete_inode() 2167 * know to quit early. */ 2168 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2169 while (osb->osb_orphan_wipes[slot]) { 2170 /* If any processes are already in the middle of an 2171 * orphan wipe on this dir, then we need to wait for 2172 * them. */ 2173 spin_unlock(&osb->osb_lock); 2174 wait_event_interruptible(osb->osb_wipe_event, 2175 ocfs2_orphan_recovery_can_continue(osb, slot)); 2176 spin_lock(&osb->osb_lock); 2177 } 2178 spin_unlock(&osb->osb_lock); 2179 } 2180 2181 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2182 int slot) 2183 { 2184 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2185 } 2186 2187 /* 2188 * Orphan recovery. Each mounted node has it's own orphan dir which we 2189 * must run during recovery. Our strategy here is to build a list of 2190 * the inodes in the orphan dir and iget/iput them. The VFS does 2191 * (most) of the rest of the work. 2192 * 2193 * Orphan recovery can happen at any time, not just mount so we have a 2194 * couple of extra considerations. 2195 * 2196 * - We grab as many inodes as we can under the orphan dir lock - 2197 * doing iget() outside the orphan dir risks getting a reference on 2198 * an invalid inode. 2199 * - We must be sure not to deadlock with other processes on the 2200 * system wanting to run delete_inode(). This can happen when they go 2201 * to lock the orphan dir and the orphan recovery process attempts to 2202 * iget() inside the orphan dir lock. This can be avoided by 2203 * advertising our state to ocfs2_delete_inode(). 2204 */ 2205 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2206 int slot, 2207 enum ocfs2_orphan_reco_type orphan_reco_type) 2208 { 2209 int ret = 0; 2210 struct inode *inode = NULL; 2211 struct inode *iter; 2212 struct ocfs2_inode_info *oi; 2213 struct buffer_head *di_bh = NULL; 2214 struct ocfs2_dinode *di = NULL; 2215 2216 trace_ocfs2_recover_orphans(slot); 2217 2218 ocfs2_mark_recovering_orphan_dir(osb, slot); 2219 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2220 ocfs2_clear_recovering_orphan_dir(osb, slot); 2221 2222 /* Error here should be noted, but we want to continue with as 2223 * many queued inodes as we've got. */ 2224 if (ret) 2225 mlog_errno(ret); 2226 2227 while (inode) { 2228 oi = OCFS2_I(inode); 2229 trace_ocfs2_recover_orphans_iput( 2230 (unsigned long long)oi->ip_blkno); 2231 2232 iter = oi->ip_next_orphan; 2233 oi->ip_next_orphan = NULL; 2234 2235 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2236 inode_lock(inode); 2237 ret = ocfs2_rw_lock(inode, 1); 2238 if (ret < 0) { 2239 mlog_errno(ret); 2240 goto unlock_mutex; 2241 } 2242 /* 2243 * We need to take and drop the inode lock to 2244 * force read inode from disk. 2245 */ 2246 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2247 if (ret) { 2248 mlog_errno(ret); 2249 goto unlock_rw; 2250 } 2251 2252 di = (struct ocfs2_dinode *)di_bh->b_data; 2253 2254 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2255 ret = ocfs2_truncate_file(inode, di_bh, 2256 i_size_read(inode)); 2257 if (ret < 0) { 2258 if (ret != -ENOSPC) 2259 mlog_errno(ret); 2260 goto unlock_inode; 2261 } 2262 2263 ret = ocfs2_del_inode_from_orphan(osb, inode, 2264 di_bh, 0, 0); 2265 if (ret) 2266 mlog_errno(ret); 2267 } 2268 unlock_inode: 2269 ocfs2_inode_unlock(inode, 1); 2270 brelse(di_bh); 2271 di_bh = NULL; 2272 unlock_rw: 2273 ocfs2_rw_unlock(inode, 1); 2274 unlock_mutex: 2275 inode_unlock(inode); 2276 2277 /* clear dio flag in ocfs2_inode_info */ 2278 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2279 } else { 2280 spin_lock(&oi->ip_lock); 2281 /* Set the proper information to get us going into 2282 * ocfs2_delete_inode. */ 2283 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2284 spin_unlock(&oi->ip_lock); 2285 } 2286 2287 iput(inode); 2288 inode = iter; 2289 } 2290 2291 return ret; 2292 } 2293 2294 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2295 { 2296 /* This check is good because ocfs2 will wait on our recovery 2297 * thread before changing it to something other than MOUNTED 2298 * or DISABLED. */ 2299 wait_event(osb->osb_mount_event, 2300 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2301 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2302 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2303 2304 /* If there's an error on mount, then we may never get to the 2305 * MOUNTED flag, but this is set right before 2306 * dismount_volume() so we can trust it. */ 2307 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2308 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2309 mlog(0, "mount error, exiting!\n"); 2310 return -EBUSY; 2311 } 2312 2313 return 0; 2314 } 2315 2316 static int ocfs2_commit_thread(void *arg) 2317 { 2318 int status; 2319 struct ocfs2_super *osb = arg; 2320 struct ocfs2_journal *journal = osb->journal; 2321 2322 /* we can trust j_num_trans here because _should_stop() is only set in 2323 * shutdown and nobody other than ourselves should be able to start 2324 * transactions. committing on shutdown might take a few iterations 2325 * as final transactions put deleted inodes on the list */ 2326 while (!(kthread_should_stop() && 2327 atomic_read(&journal->j_num_trans) == 0)) { 2328 2329 wait_event_interruptible(osb->checkpoint_event, 2330 atomic_read(&journal->j_num_trans) 2331 || kthread_should_stop()); 2332 2333 status = ocfs2_commit_cache(osb); 2334 if (status < 0) { 2335 static unsigned long abort_warn_time; 2336 2337 /* Warn about this once per minute */ 2338 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2339 mlog(ML_ERROR, "status = %d, journal is " 2340 "already aborted.\n", status); 2341 /* 2342 * After ocfs2_commit_cache() fails, j_num_trans has a 2343 * non-zero value. Sleep here to avoid a busy-wait 2344 * loop. 2345 */ 2346 msleep_interruptible(1000); 2347 } 2348 2349 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2350 mlog(ML_KTHREAD, 2351 "commit_thread: %u transactions pending on " 2352 "shutdown\n", 2353 atomic_read(&journal->j_num_trans)); 2354 } 2355 } 2356 2357 return 0; 2358 } 2359 2360 /* Reads all the journal inodes without taking any cluster locks. Used 2361 * for hard readonly access to determine whether any journal requires 2362 * recovery. Also used to refresh the recovery generation numbers after 2363 * a journal has been recovered by another node. 2364 */ 2365 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2366 { 2367 int ret = 0; 2368 unsigned int slot; 2369 struct buffer_head *di_bh = NULL; 2370 struct ocfs2_dinode *di; 2371 int journal_dirty = 0; 2372 2373 for(slot = 0; slot < osb->max_slots; slot++) { 2374 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2375 if (ret) { 2376 mlog_errno(ret); 2377 goto out; 2378 } 2379 2380 di = (struct ocfs2_dinode *) di_bh->b_data; 2381 2382 osb->slot_recovery_generations[slot] = 2383 ocfs2_get_recovery_generation(di); 2384 2385 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2386 OCFS2_JOURNAL_DIRTY_FL) 2387 journal_dirty = 1; 2388 2389 brelse(di_bh); 2390 di_bh = NULL; 2391 } 2392 2393 out: 2394 if (journal_dirty) 2395 ret = -EROFS; 2396 return ret; 2397 } 2398