xref: /openbmc/linux/fs/ocfs2/journal.c (revision 3366e358)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 
54 #include "buffer_head_io.h"
55 
56 DEFINE_SPINLOCK(trans_inc_lock);
57 
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59 
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62 			      int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 				      int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 				 int slot_num);
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 				 int slot);
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 					    int slot_num,
75 					    struct ocfs2_dinode *la_dinode,
76 					    struct ocfs2_dinode *tl_dinode,
77 					    struct ocfs2_quota_recovery *qrec);
78 
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80 {
81 	return __ocfs2_wait_on_mount(osb, 0);
82 }
83 
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85 {
86 	return __ocfs2_wait_on_mount(osb, 1);
87 }
88 
89 /*
90  * This replay_map is to track online/offline slots, so we could recover
91  * offline slots during recovery and mount
92  */
93 
94 enum ocfs2_replay_state {
95 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
96 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
97 	REPLAY_DONE 		/* Replay was already queued */
98 };
99 
100 struct ocfs2_replay_map {
101 	unsigned int rm_slots;
102 	enum ocfs2_replay_state rm_state;
103 	unsigned char rm_replay_slots[0];
104 };
105 
106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107 {
108 	if (!osb->replay_map)
109 		return;
110 
111 	/* If we've already queued the replay, we don't have any more to do */
112 	if (osb->replay_map->rm_state == REPLAY_DONE)
113 		return;
114 
115 	osb->replay_map->rm_state = state;
116 }
117 
118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119 {
120 	struct ocfs2_replay_map *replay_map;
121 	int i, node_num;
122 
123 	/* If replay map is already set, we don't do it again */
124 	if (osb->replay_map)
125 		return 0;
126 
127 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
129 
130 	if (!replay_map) {
131 		mlog_errno(-ENOMEM);
132 		return -ENOMEM;
133 	}
134 
135 	spin_lock(&osb->osb_lock);
136 
137 	replay_map->rm_slots = osb->max_slots;
138 	replay_map->rm_state = REPLAY_UNNEEDED;
139 
140 	/* set rm_replay_slots for offline slot(s) */
141 	for (i = 0; i < replay_map->rm_slots; i++) {
142 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 			replay_map->rm_replay_slots[i] = 1;
144 	}
145 
146 	osb->replay_map = replay_map;
147 	spin_unlock(&osb->osb_lock);
148 	return 0;
149 }
150 
151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152 {
153 	struct ocfs2_replay_map *replay_map = osb->replay_map;
154 	int i;
155 
156 	if (!replay_map)
157 		return;
158 
159 	if (replay_map->rm_state != REPLAY_NEEDED)
160 		return;
161 
162 	for (i = 0; i < replay_map->rm_slots; i++)
163 		if (replay_map->rm_replay_slots[i])
164 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 							NULL, NULL);
166 	replay_map->rm_state = REPLAY_DONE;
167 }
168 
169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170 {
171 	struct ocfs2_replay_map *replay_map = osb->replay_map;
172 
173 	if (!osb->replay_map)
174 		return;
175 
176 	kfree(replay_map);
177 	osb->replay_map = NULL;
178 }
179 
180 int ocfs2_recovery_init(struct ocfs2_super *osb)
181 {
182 	struct ocfs2_recovery_map *rm;
183 
184 	mutex_init(&osb->recovery_lock);
185 	osb->disable_recovery = 0;
186 	osb->recovery_thread_task = NULL;
187 	init_waitqueue_head(&osb->recovery_event);
188 
189 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 		     osb->max_slots * sizeof(unsigned int),
191 		     GFP_KERNEL);
192 	if (!rm) {
193 		mlog_errno(-ENOMEM);
194 		return -ENOMEM;
195 	}
196 
197 	rm->rm_entries = (unsigned int *)((char *)rm +
198 					  sizeof(struct ocfs2_recovery_map));
199 	osb->recovery_map = rm;
200 
201 	return 0;
202 }
203 
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205  * memory barriers to make sure that we'll see the null task before
206  * being woken up */
207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208 {
209 	mb();
210 	return osb->recovery_thread_task != NULL;
211 }
212 
213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
214 {
215 	struct ocfs2_recovery_map *rm;
216 
217 	/* disable any new recovery threads and wait for any currently
218 	 * running ones to exit. Do this before setting the vol_state. */
219 	mutex_lock(&osb->recovery_lock);
220 	osb->disable_recovery = 1;
221 	mutex_unlock(&osb->recovery_lock);
222 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223 
224 	/* At this point, we know that no more recovery threads can be
225 	 * launched, so wait for any recovery completion work to
226 	 * complete. */
227 	flush_workqueue(ocfs2_wq);
228 
229 	/*
230 	 * Now that recovery is shut down, and the osb is about to be
231 	 * freed,  the osb_lock is not taken here.
232 	 */
233 	rm = osb->recovery_map;
234 	/* XXX: Should we bug if there are dirty entries? */
235 
236 	kfree(rm);
237 }
238 
239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 				     unsigned int node_num)
241 {
242 	int i;
243 	struct ocfs2_recovery_map *rm = osb->recovery_map;
244 
245 	assert_spin_locked(&osb->osb_lock);
246 
247 	for (i = 0; i < rm->rm_used; i++) {
248 		if (rm->rm_entries[i] == node_num)
249 			return 1;
250 	}
251 
252 	return 0;
253 }
254 
255 /* Behaves like test-and-set.  Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 				  unsigned int node_num)
258 {
259 	struct ocfs2_recovery_map *rm = osb->recovery_map;
260 
261 	spin_lock(&osb->osb_lock);
262 	if (__ocfs2_recovery_map_test(osb, node_num)) {
263 		spin_unlock(&osb->osb_lock);
264 		return 1;
265 	}
266 
267 	/* XXX: Can this be exploited? Not from o2dlm... */
268 	BUG_ON(rm->rm_used >= osb->max_slots);
269 
270 	rm->rm_entries[rm->rm_used] = node_num;
271 	rm->rm_used++;
272 	spin_unlock(&osb->osb_lock);
273 
274 	return 0;
275 }
276 
277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 				     unsigned int node_num)
279 {
280 	int i;
281 	struct ocfs2_recovery_map *rm = osb->recovery_map;
282 
283 	spin_lock(&osb->osb_lock);
284 
285 	for (i = 0; i < rm->rm_used; i++) {
286 		if (rm->rm_entries[i] == node_num)
287 			break;
288 	}
289 
290 	if (i < rm->rm_used) {
291 		/* XXX: be careful with the pointer math */
292 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 			(rm->rm_used - i - 1) * sizeof(unsigned int));
294 		rm->rm_used--;
295 	}
296 
297 	spin_unlock(&osb->osb_lock);
298 }
299 
300 static int ocfs2_commit_cache(struct ocfs2_super *osb)
301 {
302 	int status = 0;
303 	unsigned int flushed;
304 	unsigned long old_id;
305 	struct ocfs2_journal *journal = NULL;
306 
307 	mlog_entry_void();
308 
309 	journal = osb->journal;
310 
311 	/* Flush all pending commits and checkpoint the journal. */
312 	down_write(&journal->j_trans_barrier);
313 
314 	if (atomic_read(&journal->j_num_trans) == 0) {
315 		up_write(&journal->j_trans_barrier);
316 		mlog(0, "No transactions for me to flush!\n");
317 		goto finally;
318 	}
319 
320 	jbd2_journal_lock_updates(journal->j_journal);
321 	status = jbd2_journal_flush(journal->j_journal);
322 	jbd2_journal_unlock_updates(journal->j_journal);
323 	if (status < 0) {
324 		up_write(&journal->j_trans_barrier);
325 		mlog_errno(status);
326 		goto finally;
327 	}
328 
329 	old_id = ocfs2_inc_trans_id(journal);
330 
331 	flushed = atomic_read(&journal->j_num_trans);
332 	atomic_set(&journal->j_num_trans, 0);
333 	up_write(&journal->j_trans_barrier);
334 
335 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
336 	     journal->j_trans_id, flushed);
337 
338 	ocfs2_wake_downconvert_thread(osb);
339 	wake_up(&journal->j_checkpointed);
340 finally:
341 	mlog_exit(status);
342 	return status;
343 }
344 
345 /* pass it NULL and it will allocate a new handle object for you.  If
346  * you pass it a handle however, it may still return error, in which
347  * case it has free'd the passed handle for you. */
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350 	journal_t *journal = osb->journal->j_journal;
351 	handle_t *handle;
352 
353 	BUG_ON(!osb || !osb->journal->j_journal);
354 
355 	if (ocfs2_is_hard_readonly(osb))
356 		return ERR_PTR(-EROFS);
357 
358 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 	BUG_ON(max_buffs <= 0);
360 
361 	/* Nested transaction? Just return the handle... */
362 	if (journal_current_handle())
363 		return jbd2_journal_start(journal, max_buffs);
364 
365 	down_read(&osb->journal->j_trans_barrier);
366 
367 	handle = jbd2_journal_start(journal, max_buffs);
368 	if (IS_ERR(handle)) {
369 		up_read(&osb->journal->j_trans_barrier);
370 
371 		mlog_errno(PTR_ERR(handle));
372 
373 		if (is_journal_aborted(journal)) {
374 			ocfs2_abort(osb->sb, "Detected aborted journal");
375 			handle = ERR_PTR(-EROFS);
376 		}
377 	} else {
378 		if (!ocfs2_mount_local(osb))
379 			atomic_inc(&(osb->journal->j_num_trans));
380 	}
381 
382 	return handle;
383 }
384 
385 int ocfs2_commit_trans(struct ocfs2_super *osb,
386 		       handle_t *handle)
387 {
388 	int ret, nested;
389 	struct ocfs2_journal *journal = osb->journal;
390 
391 	BUG_ON(!handle);
392 
393 	nested = handle->h_ref > 1;
394 	ret = jbd2_journal_stop(handle);
395 	if (ret < 0)
396 		mlog_errno(ret);
397 
398 	if (!nested)
399 		up_read(&journal->j_trans_barrier);
400 
401 	return ret;
402 }
403 
404 /*
405  * 'nblocks' is what you want to add to the current
406  * transaction. extend_trans will either extend the current handle by
407  * nblocks, or commit it and start a new one with nblocks credits.
408  *
409  * This might call jbd2_journal_restart() which will commit dirty buffers
410  * and then restart the transaction. Before calling
411  * ocfs2_extend_trans(), any changed blocks should have been
412  * dirtied. After calling it, all blocks which need to be changed must
413  * go through another set of journal_access/journal_dirty calls.
414  *
415  * WARNING: This will not release any semaphores or disk locks taken
416  * during the transaction, so make sure they were taken *before*
417  * start_trans or we'll have ordering deadlocks.
418  *
419  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
420  * good because transaction ids haven't yet been recorded on the
421  * cluster locks associated with this handle.
422  */
423 int ocfs2_extend_trans(handle_t *handle, int nblocks)
424 {
425 	int status;
426 
427 	BUG_ON(!handle);
428 	BUG_ON(!nblocks);
429 
430 	mlog_entry_void();
431 
432 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
433 
434 #ifdef CONFIG_OCFS2_DEBUG_FS
435 	status = 1;
436 #else
437 	status = jbd2_journal_extend(handle, nblocks);
438 	if (status < 0) {
439 		mlog_errno(status);
440 		goto bail;
441 	}
442 #endif
443 
444 	if (status > 0) {
445 		mlog(0,
446 		     "jbd2_journal_extend failed, trying "
447 		     "jbd2_journal_restart\n");
448 		status = jbd2_journal_restart(handle, nblocks);
449 		if (status < 0) {
450 			mlog_errno(status);
451 			goto bail;
452 		}
453 	}
454 
455 	status = 0;
456 bail:
457 
458 	mlog_exit(status);
459 	return status;
460 }
461 
462 struct ocfs2_triggers {
463 	struct jbd2_buffer_trigger_type	ot_triggers;
464 	int				ot_offset;
465 };
466 
467 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
468 {
469 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
470 }
471 
472 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
473 				 struct buffer_head *bh,
474 				 void *data, size_t size)
475 {
476 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
477 
478 	/*
479 	 * We aren't guaranteed to have the superblock here, so we
480 	 * must unconditionally compute the ecc data.
481 	 * __ocfs2_journal_access() will only set the triggers if
482 	 * metaecc is enabled.
483 	 */
484 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
485 }
486 
487 /*
488  * Quota blocks have their own trigger because the struct ocfs2_block_check
489  * offset depends on the blocksize.
490  */
491 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
492 				 struct buffer_head *bh,
493 				 void *data, size_t size)
494 {
495 	struct ocfs2_disk_dqtrailer *dqt =
496 		ocfs2_block_dqtrailer(size, data);
497 
498 	/*
499 	 * We aren't guaranteed to have the superblock here, so we
500 	 * must unconditionally compute the ecc data.
501 	 * __ocfs2_journal_access() will only set the triggers if
502 	 * metaecc is enabled.
503 	 */
504 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
505 }
506 
507 /*
508  * Directory blocks also have their own trigger because the
509  * struct ocfs2_block_check offset depends on the blocksize.
510  */
511 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
512 				 struct buffer_head *bh,
513 				 void *data, size_t size)
514 {
515 	struct ocfs2_dir_block_trailer *trailer =
516 		ocfs2_dir_trailer_from_size(size, data);
517 
518 	/*
519 	 * We aren't guaranteed to have the superblock here, so we
520 	 * must unconditionally compute the ecc data.
521 	 * __ocfs2_journal_access() will only set the triggers if
522 	 * metaecc is enabled.
523 	 */
524 	ocfs2_block_check_compute(data, size, &trailer->db_check);
525 }
526 
527 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
528 				struct buffer_head *bh)
529 {
530 	mlog(ML_ERROR,
531 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
532 	     "bh->b_blocknr = %llu\n",
533 	     (unsigned long)bh,
534 	     (unsigned long long)bh->b_blocknr);
535 
536 	/* We aren't guaranteed to have the superblock here - but if we
537 	 * don't, it'll just crash. */
538 	ocfs2_error(bh->b_assoc_map->host->i_sb,
539 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
540 }
541 
542 static struct ocfs2_triggers di_triggers = {
543 	.ot_triggers = {
544 		.t_commit = ocfs2_commit_trigger,
545 		.t_abort = ocfs2_abort_trigger,
546 	},
547 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
548 };
549 
550 static struct ocfs2_triggers eb_triggers = {
551 	.ot_triggers = {
552 		.t_commit = ocfs2_commit_trigger,
553 		.t_abort = ocfs2_abort_trigger,
554 	},
555 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
556 };
557 
558 static struct ocfs2_triggers rb_triggers = {
559 	.ot_triggers = {
560 		.t_commit = ocfs2_commit_trigger,
561 		.t_abort = ocfs2_abort_trigger,
562 	},
563 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
564 };
565 
566 static struct ocfs2_triggers gd_triggers = {
567 	.ot_triggers = {
568 		.t_commit = ocfs2_commit_trigger,
569 		.t_abort = ocfs2_abort_trigger,
570 	},
571 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
572 };
573 
574 static struct ocfs2_triggers db_triggers = {
575 	.ot_triggers = {
576 		.t_commit = ocfs2_db_commit_trigger,
577 		.t_abort = ocfs2_abort_trigger,
578 	},
579 };
580 
581 static struct ocfs2_triggers xb_triggers = {
582 	.ot_triggers = {
583 		.t_commit = ocfs2_commit_trigger,
584 		.t_abort = ocfs2_abort_trigger,
585 	},
586 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
587 };
588 
589 static struct ocfs2_triggers dq_triggers = {
590 	.ot_triggers = {
591 		.t_commit = ocfs2_dq_commit_trigger,
592 		.t_abort = ocfs2_abort_trigger,
593 	},
594 };
595 
596 static struct ocfs2_triggers dr_triggers = {
597 	.ot_triggers = {
598 		.t_commit = ocfs2_commit_trigger,
599 		.t_abort = ocfs2_abort_trigger,
600 	},
601 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
602 };
603 
604 static struct ocfs2_triggers dl_triggers = {
605 	.ot_triggers = {
606 		.t_commit = ocfs2_commit_trigger,
607 		.t_abort = ocfs2_abort_trigger,
608 	},
609 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
610 };
611 
612 static int __ocfs2_journal_access(handle_t *handle,
613 				  struct ocfs2_caching_info *ci,
614 				  struct buffer_head *bh,
615 				  struct ocfs2_triggers *triggers,
616 				  int type)
617 {
618 	int status;
619 	struct ocfs2_super *osb =
620 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
621 
622 	BUG_ON(!ci || !ci->ci_ops);
623 	BUG_ON(!handle);
624 	BUG_ON(!bh);
625 
626 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
627 		   (unsigned long long)bh->b_blocknr, type,
628 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
629 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
630 		   "OCFS2_JOURNAL_ACCESS_WRITE",
631 		   bh->b_size);
632 
633 	/* we can safely remove this assertion after testing. */
634 	if (!buffer_uptodate(bh)) {
635 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
636 		mlog(ML_ERROR, "b_blocknr=%llu\n",
637 		     (unsigned long long)bh->b_blocknr);
638 		BUG();
639 	}
640 
641 	/* Set the current transaction information on the ci so
642 	 * that the locking code knows whether it can drop it's locks
643 	 * on this ci or not. We're protected from the commit
644 	 * thread updating the current transaction id until
645 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
646 	 * j_trans_barrier for us. */
647 	ocfs2_set_ci_lock_trans(osb->journal, ci);
648 
649 	ocfs2_metadata_cache_io_lock(ci);
650 	switch (type) {
651 	case OCFS2_JOURNAL_ACCESS_CREATE:
652 	case OCFS2_JOURNAL_ACCESS_WRITE:
653 		status = jbd2_journal_get_write_access(handle, bh);
654 		break;
655 
656 	case OCFS2_JOURNAL_ACCESS_UNDO:
657 		status = jbd2_journal_get_undo_access(handle, bh);
658 		break;
659 
660 	default:
661 		status = -EINVAL;
662 		mlog(ML_ERROR, "Unknown access type!\n");
663 	}
664 	if (!status && ocfs2_meta_ecc(osb) && triggers)
665 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
666 	ocfs2_metadata_cache_io_unlock(ci);
667 
668 	if (status < 0)
669 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
670 		     status, type);
671 
672 	mlog_exit(status);
673 	return status;
674 }
675 
676 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
677 			    struct buffer_head *bh, int type)
678 {
679 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
680 }
681 
682 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
683 			    struct buffer_head *bh, int type)
684 {
685 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
686 }
687 
688 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
689 			    struct buffer_head *bh, int type)
690 {
691 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
692 				      type);
693 }
694 
695 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
696 			    struct buffer_head *bh, int type)
697 {
698 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
699 }
700 
701 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
702 			    struct buffer_head *bh, int type)
703 {
704 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
705 }
706 
707 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
708 			    struct buffer_head *bh, int type)
709 {
710 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
711 }
712 
713 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
714 			    struct buffer_head *bh, int type)
715 {
716 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
717 }
718 
719 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
720 			    struct buffer_head *bh, int type)
721 {
722 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
723 }
724 
725 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
726 			    struct buffer_head *bh, int type)
727 {
728 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
729 }
730 
731 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
732 			 struct buffer_head *bh, int type)
733 {
734 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
735 }
736 
737 int ocfs2_journal_dirty(handle_t *handle,
738 			struct buffer_head *bh)
739 {
740 	int status;
741 
742 	mlog_entry("(bh->b_blocknr=%llu)\n",
743 		   (unsigned long long)bh->b_blocknr);
744 
745 	status = jbd2_journal_dirty_metadata(handle, bh);
746 	if (status < 0)
747 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
748 		     "(bh->b_blocknr=%llu)\n",
749 		     (unsigned long long)bh->b_blocknr);
750 
751 	mlog_exit(status);
752 	return status;
753 }
754 
755 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
756 
757 void ocfs2_set_journal_params(struct ocfs2_super *osb)
758 {
759 	journal_t *journal = osb->journal->j_journal;
760 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
761 
762 	if (osb->osb_commit_interval)
763 		commit_interval = osb->osb_commit_interval;
764 
765 	spin_lock(&journal->j_state_lock);
766 	journal->j_commit_interval = commit_interval;
767 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
768 		journal->j_flags |= JBD2_BARRIER;
769 	else
770 		journal->j_flags &= ~JBD2_BARRIER;
771 	spin_unlock(&journal->j_state_lock);
772 }
773 
774 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
775 {
776 	int status = -1;
777 	struct inode *inode = NULL; /* the journal inode */
778 	journal_t *j_journal = NULL;
779 	struct ocfs2_dinode *di = NULL;
780 	struct buffer_head *bh = NULL;
781 	struct ocfs2_super *osb;
782 	int inode_lock = 0;
783 
784 	mlog_entry_void();
785 
786 	BUG_ON(!journal);
787 
788 	osb = journal->j_osb;
789 
790 	/* already have the inode for our journal */
791 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
792 					    osb->slot_num);
793 	if (inode == NULL) {
794 		status = -EACCES;
795 		mlog_errno(status);
796 		goto done;
797 	}
798 	if (is_bad_inode(inode)) {
799 		mlog(ML_ERROR, "access error (bad inode)\n");
800 		iput(inode);
801 		inode = NULL;
802 		status = -EACCES;
803 		goto done;
804 	}
805 
806 	SET_INODE_JOURNAL(inode);
807 	OCFS2_I(inode)->ip_open_count++;
808 
809 	/* Skip recovery waits here - journal inode metadata never
810 	 * changes in a live cluster so it can be considered an
811 	 * exception to the rule. */
812 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
813 	if (status < 0) {
814 		if (status != -ERESTARTSYS)
815 			mlog(ML_ERROR, "Could not get lock on journal!\n");
816 		goto done;
817 	}
818 
819 	inode_lock = 1;
820 	di = (struct ocfs2_dinode *)bh->b_data;
821 
822 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
823 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
824 		     inode->i_size);
825 		status = -EINVAL;
826 		goto done;
827 	}
828 
829 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
830 	mlog(0, "inode->i_blocks = %llu\n",
831 			(unsigned long long)inode->i_blocks);
832 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
833 
834 	/* call the kernels journal init function now */
835 	j_journal = jbd2_journal_init_inode(inode);
836 	if (j_journal == NULL) {
837 		mlog(ML_ERROR, "Linux journal layer error\n");
838 		status = -EINVAL;
839 		goto done;
840 	}
841 
842 	mlog(0, "Returned from jbd2_journal_init_inode\n");
843 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
844 
845 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
846 		  OCFS2_JOURNAL_DIRTY_FL);
847 
848 	journal->j_journal = j_journal;
849 	journal->j_inode = inode;
850 	journal->j_bh = bh;
851 
852 	ocfs2_set_journal_params(osb);
853 
854 	journal->j_state = OCFS2_JOURNAL_LOADED;
855 
856 	status = 0;
857 done:
858 	if (status < 0) {
859 		if (inode_lock)
860 			ocfs2_inode_unlock(inode, 1);
861 		brelse(bh);
862 		if (inode) {
863 			OCFS2_I(inode)->ip_open_count--;
864 			iput(inode);
865 		}
866 	}
867 
868 	mlog_exit(status);
869 	return status;
870 }
871 
872 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
873 {
874 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
875 }
876 
877 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
878 {
879 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
880 }
881 
882 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
883 				      int dirty, int replayed)
884 {
885 	int status;
886 	unsigned int flags;
887 	struct ocfs2_journal *journal = osb->journal;
888 	struct buffer_head *bh = journal->j_bh;
889 	struct ocfs2_dinode *fe;
890 
891 	mlog_entry_void();
892 
893 	fe = (struct ocfs2_dinode *)bh->b_data;
894 
895 	/* The journal bh on the osb always comes from ocfs2_journal_init()
896 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
897 	 * code bug if we mess it up. */
898 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
899 
900 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
901 	if (dirty)
902 		flags |= OCFS2_JOURNAL_DIRTY_FL;
903 	else
904 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
905 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
906 
907 	if (replayed)
908 		ocfs2_bump_recovery_generation(fe);
909 
910 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
911 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
912 	if (status < 0)
913 		mlog_errno(status);
914 
915 	mlog_exit(status);
916 	return status;
917 }
918 
919 /*
920  * If the journal has been kmalloc'd it needs to be freed after this
921  * call.
922  */
923 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
924 {
925 	struct ocfs2_journal *journal = NULL;
926 	int status = 0;
927 	struct inode *inode = NULL;
928 	int num_running_trans = 0;
929 
930 	mlog_entry_void();
931 
932 	BUG_ON(!osb);
933 
934 	journal = osb->journal;
935 	if (!journal)
936 		goto done;
937 
938 	inode = journal->j_inode;
939 
940 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
941 		goto done;
942 
943 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
944 	if (!igrab(inode))
945 		BUG();
946 
947 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
948 	if (num_running_trans > 0)
949 		mlog(0, "Shutting down journal: must wait on %d "
950 		     "running transactions!\n",
951 		     num_running_trans);
952 
953 	/* Do a commit_cache here. It will flush our journal, *and*
954 	 * release any locks that are still held.
955 	 * set the SHUTDOWN flag and release the trans lock.
956 	 * the commit thread will take the trans lock for us below. */
957 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
958 
959 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
960 	 * drop the trans_lock (which we want to hold until we
961 	 * completely destroy the journal. */
962 	if (osb->commit_task) {
963 		/* Wait for the commit thread */
964 		mlog(0, "Waiting for ocfs2commit to exit....\n");
965 		kthread_stop(osb->commit_task);
966 		osb->commit_task = NULL;
967 	}
968 
969 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
970 
971 	if (ocfs2_mount_local(osb)) {
972 		jbd2_journal_lock_updates(journal->j_journal);
973 		status = jbd2_journal_flush(journal->j_journal);
974 		jbd2_journal_unlock_updates(journal->j_journal);
975 		if (status < 0)
976 			mlog_errno(status);
977 	}
978 
979 	if (status == 0) {
980 		/*
981 		 * Do not toggle if flush was unsuccessful otherwise
982 		 * will leave dirty metadata in a "clean" journal
983 		 */
984 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
985 		if (status < 0)
986 			mlog_errno(status);
987 	}
988 
989 	/* Shutdown the kernel journal system */
990 	jbd2_journal_destroy(journal->j_journal);
991 	journal->j_journal = NULL;
992 
993 	OCFS2_I(inode)->ip_open_count--;
994 
995 	/* unlock our journal */
996 	ocfs2_inode_unlock(inode, 1);
997 
998 	brelse(journal->j_bh);
999 	journal->j_bh = NULL;
1000 
1001 	journal->j_state = OCFS2_JOURNAL_FREE;
1002 
1003 //	up_write(&journal->j_trans_barrier);
1004 done:
1005 	if (inode)
1006 		iput(inode);
1007 	mlog_exit_void();
1008 }
1009 
1010 static void ocfs2_clear_journal_error(struct super_block *sb,
1011 				      journal_t *journal,
1012 				      int slot)
1013 {
1014 	int olderr;
1015 
1016 	olderr = jbd2_journal_errno(journal);
1017 	if (olderr) {
1018 		mlog(ML_ERROR, "File system error %d recorded in "
1019 		     "journal %u.\n", olderr, slot);
1020 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1021 		     sb->s_id);
1022 
1023 		jbd2_journal_ack_err(journal);
1024 		jbd2_journal_clear_err(journal);
1025 	}
1026 }
1027 
1028 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1029 {
1030 	int status = 0;
1031 	struct ocfs2_super *osb;
1032 
1033 	mlog_entry_void();
1034 
1035 	BUG_ON(!journal);
1036 
1037 	osb = journal->j_osb;
1038 
1039 	status = jbd2_journal_load(journal->j_journal);
1040 	if (status < 0) {
1041 		mlog(ML_ERROR, "Failed to load journal!\n");
1042 		goto done;
1043 	}
1044 
1045 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1046 
1047 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1048 	if (status < 0) {
1049 		mlog_errno(status);
1050 		goto done;
1051 	}
1052 
1053 	/* Launch the commit thread */
1054 	if (!local) {
1055 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1056 					       "ocfs2cmt");
1057 		if (IS_ERR(osb->commit_task)) {
1058 			status = PTR_ERR(osb->commit_task);
1059 			osb->commit_task = NULL;
1060 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1061 			     "error=%d", status);
1062 			goto done;
1063 		}
1064 	} else
1065 		osb->commit_task = NULL;
1066 
1067 done:
1068 	mlog_exit(status);
1069 	return status;
1070 }
1071 
1072 
1073 /* 'full' flag tells us whether we clear out all blocks or if we just
1074  * mark the journal clean */
1075 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1076 {
1077 	int status;
1078 
1079 	mlog_entry_void();
1080 
1081 	BUG_ON(!journal);
1082 
1083 	status = jbd2_journal_wipe(journal->j_journal, full);
1084 	if (status < 0) {
1085 		mlog_errno(status);
1086 		goto bail;
1087 	}
1088 
1089 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1090 	if (status < 0)
1091 		mlog_errno(status);
1092 
1093 bail:
1094 	mlog_exit(status);
1095 	return status;
1096 }
1097 
1098 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1099 {
1100 	int empty;
1101 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1102 
1103 	spin_lock(&osb->osb_lock);
1104 	empty = (rm->rm_used == 0);
1105 	spin_unlock(&osb->osb_lock);
1106 
1107 	return empty;
1108 }
1109 
1110 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1111 {
1112 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1113 }
1114 
1115 /*
1116  * JBD Might read a cached version of another nodes journal file. We
1117  * don't want this as this file changes often and we get no
1118  * notification on those changes. The only way to be sure that we've
1119  * got the most up to date version of those blocks then is to force
1120  * read them off disk. Just searching through the buffer cache won't
1121  * work as there may be pages backing this file which are still marked
1122  * up to date. We know things can't change on this file underneath us
1123  * as we have the lock by now :)
1124  */
1125 static int ocfs2_force_read_journal(struct inode *inode)
1126 {
1127 	int status = 0;
1128 	int i;
1129 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1130 #define CONCURRENT_JOURNAL_FILL 32ULL
1131 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1132 
1133 	mlog_entry_void();
1134 
1135 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1136 
1137 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1138 	v_blkno = 0;
1139 	while (v_blkno < num_blocks) {
1140 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1141 						     &p_blkno, &p_blocks, NULL);
1142 		if (status < 0) {
1143 			mlog_errno(status);
1144 			goto bail;
1145 		}
1146 
1147 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1148 			p_blocks = CONCURRENT_JOURNAL_FILL;
1149 
1150 		/* We are reading journal data which should not
1151 		 * be put in the uptodate cache */
1152 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1153 						p_blkno, p_blocks, bhs);
1154 		if (status < 0) {
1155 			mlog_errno(status);
1156 			goto bail;
1157 		}
1158 
1159 		for(i = 0; i < p_blocks; i++) {
1160 			brelse(bhs[i]);
1161 			bhs[i] = NULL;
1162 		}
1163 
1164 		v_blkno += p_blocks;
1165 	}
1166 
1167 bail:
1168 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1169 		brelse(bhs[i]);
1170 	mlog_exit(status);
1171 	return status;
1172 }
1173 
1174 struct ocfs2_la_recovery_item {
1175 	struct list_head	lri_list;
1176 	int			lri_slot;
1177 	struct ocfs2_dinode	*lri_la_dinode;
1178 	struct ocfs2_dinode	*lri_tl_dinode;
1179 	struct ocfs2_quota_recovery *lri_qrec;
1180 };
1181 
1182 /* Does the second half of the recovery process. By this point, the
1183  * node is marked clean and can actually be considered recovered,
1184  * hence it's no longer in the recovery map, but there's still some
1185  * cleanup we can do which shouldn't happen within the recovery thread
1186  * as locking in that context becomes very difficult if we are to take
1187  * recovering nodes into account.
1188  *
1189  * NOTE: This function can and will sleep on recovery of other nodes
1190  * during cluster locking, just like any other ocfs2 process.
1191  */
1192 void ocfs2_complete_recovery(struct work_struct *work)
1193 {
1194 	int ret;
1195 	struct ocfs2_journal *journal =
1196 		container_of(work, struct ocfs2_journal, j_recovery_work);
1197 	struct ocfs2_super *osb = journal->j_osb;
1198 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1199 	struct ocfs2_la_recovery_item *item, *n;
1200 	struct ocfs2_quota_recovery *qrec;
1201 	LIST_HEAD(tmp_la_list);
1202 
1203 	mlog_entry_void();
1204 
1205 	mlog(0, "completing recovery from keventd\n");
1206 
1207 	spin_lock(&journal->j_lock);
1208 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1209 	spin_unlock(&journal->j_lock);
1210 
1211 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1212 		list_del_init(&item->lri_list);
1213 
1214 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1215 
1216 		ocfs2_wait_on_quotas(osb);
1217 
1218 		la_dinode = item->lri_la_dinode;
1219 		if (la_dinode) {
1220 			mlog(0, "Clean up local alloc %llu\n",
1221 			     (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1222 
1223 			ret = ocfs2_complete_local_alloc_recovery(osb,
1224 								  la_dinode);
1225 			if (ret < 0)
1226 				mlog_errno(ret);
1227 
1228 			kfree(la_dinode);
1229 		}
1230 
1231 		tl_dinode = item->lri_tl_dinode;
1232 		if (tl_dinode) {
1233 			mlog(0, "Clean up truncate log %llu\n",
1234 			     (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1235 
1236 			ret = ocfs2_complete_truncate_log_recovery(osb,
1237 								   tl_dinode);
1238 			if (ret < 0)
1239 				mlog_errno(ret);
1240 
1241 			kfree(tl_dinode);
1242 		}
1243 
1244 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
1245 		if (ret < 0)
1246 			mlog_errno(ret);
1247 
1248 		qrec = item->lri_qrec;
1249 		if (qrec) {
1250 			mlog(0, "Recovering quota files");
1251 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1252 							  item->lri_slot);
1253 			if (ret < 0)
1254 				mlog_errno(ret);
1255 			/* Recovery info is already freed now */
1256 		}
1257 
1258 		kfree(item);
1259 	}
1260 
1261 	mlog(0, "Recovery completion\n");
1262 	mlog_exit_void();
1263 }
1264 
1265 /* NOTE: This function always eats your references to la_dinode and
1266  * tl_dinode, either manually on error, or by passing them to
1267  * ocfs2_complete_recovery */
1268 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1269 					    int slot_num,
1270 					    struct ocfs2_dinode *la_dinode,
1271 					    struct ocfs2_dinode *tl_dinode,
1272 					    struct ocfs2_quota_recovery *qrec)
1273 {
1274 	struct ocfs2_la_recovery_item *item;
1275 
1276 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1277 	if (!item) {
1278 		/* Though we wish to avoid it, we are in fact safe in
1279 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1280 		 * than capable of reclaiming unused space. */
1281 		if (la_dinode)
1282 			kfree(la_dinode);
1283 
1284 		if (tl_dinode)
1285 			kfree(tl_dinode);
1286 
1287 		if (qrec)
1288 			ocfs2_free_quota_recovery(qrec);
1289 
1290 		mlog_errno(-ENOMEM);
1291 		return;
1292 	}
1293 
1294 	INIT_LIST_HEAD(&item->lri_list);
1295 	item->lri_la_dinode = la_dinode;
1296 	item->lri_slot = slot_num;
1297 	item->lri_tl_dinode = tl_dinode;
1298 	item->lri_qrec = qrec;
1299 
1300 	spin_lock(&journal->j_lock);
1301 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1302 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1303 	spin_unlock(&journal->j_lock);
1304 }
1305 
1306 /* Called by the mount code to queue recovery the last part of
1307  * recovery for it's own and offline slot(s). */
1308 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1309 {
1310 	struct ocfs2_journal *journal = osb->journal;
1311 
1312 	/* No need to queue up our truncate_log as regular cleanup will catch
1313 	 * that */
1314 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1315 					osb->local_alloc_copy, NULL, NULL);
1316 	ocfs2_schedule_truncate_log_flush(osb, 0);
1317 
1318 	osb->local_alloc_copy = NULL;
1319 	osb->dirty = 0;
1320 
1321 	/* queue to recover orphan slots for all offline slots */
1322 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1323 	ocfs2_queue_replay_slots(osb);
1324 	ocfs2_free_replay_slots(osb);
1325 }
1326 
1327 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1328 {
1329 	if (osb->quota_rec) {
1330 		ocfs2_queue_recovery_completion(osb->journal,
1331 						osb->slot_num,
1332 						NULL,
1333 						NULL,
1334 						osb->quota_rec);
1335 		osb->quota_rec = NULL;
1336 	}
1337 }
1338 
1339 static int __ocfs2_recovery_thread(void *arg)
1340 {
1341 	int status, node_num, slot_num;
1342 	struct ocfs2_super *osb = arg;
1343 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1344 	int *rm_quota = NULL;
1345 	int rm_quota_used = 0, i;
1346 	struct ocfs2_quota_recovery *qrec;
1347 
1348 	mlog_entry_void();
1349 
1350 	status = ocfs2_wait_on_mount(osb);
1351 	if (status < 0) {
1352 		goto bail;
1353 	}
1354 
1355 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1356 	if (!rm_quota) {
1357 		status = -ENOMEM;
1358 		goto bail;
1359 	}
1360 restart:
1361 	status = ocfs2_super_lock(osb, 1);
1362 	if (status < 0) {
1363 		mlog_errno(status);
1364 		goto bail;
1365 	}
1366 
1367 	status = ocfs2_compute_replay_slots(osb);
1368 	if (status < 0)
1369 		mlog_errno(status);
1370 
1371 	/* queue recovery for our own slot */
1372 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1373 					NULL, NULL);
1374 
1375 	spin_lock(&osb->osb_lock);
1376 	while (rm->rm_used) {
1377 		/* It's always safe to remove entry zero, as we won't
1378 		 * clear it until ocfs2_recover_node() has succeeded. */
1379 		node_num = rm->rm_entries[0];
1380 		spin_unlock(&osb->osb_lock);
1381 		mlog(0, "checking node %d\n", node_num);
1382 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1383 		if (slot_num == -ENOENT) {
1384 			status = 0;
1385 			mlog(0, "no slot for this node, so no recovery"
1386 			     "required.\n");
1387 			goto skip_recovery;
1388 		}
1389 		mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1390 
1391 		/* It is a bit subtle with quota recovery. We cannot do it
1392 		 * immediately because we have to obtain cluster locks from
1393 		 * quota files and we also don't want to just skip it because
1394 		 * then quota usage would be out of sync until some node takes
1395 		 * the slot. So we remember which nodes need quota recovery
1396 		 * and when everything else is done, we recover quotas. */
1397 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1398 		if (i == rm_quota_used)
1399 			rm_quota[rm_quota_used++] = slot_num;
1400 
1401 		status = ocfs2_recover_node(osb, node_num, slot_num);
1402 skip_recovery:
1403 		if (!status) {
1404 			ocfs2_recovery_map_clear(osb, node_num);
1405 		} else {
1406 			mlog(ML_ERROR,
1407 			     "Error %d recovering node %d on device (%u,%u)!\n",
1408 			     status, node_num,
1409 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1410 			mlog(ML_ERROR, "Volume requires unmount.\n");
1411 		}
1412 
1413 		spin_lock(&osb->osb_lock);
1414 	}
1415 	spin_unlock(&osb->osb_lock);
1416 	mlog(0, "All nodes recovered\n");
1417 
1418 	/* Refresh all journal recovery generations from disk */
1419 	status = ocfs2_check_journals_nolocks(osb);
1420 	status = (status == -EROFS) ? 0 : status;
1421 	if (status < 0)
1422 		mlog_errno(status);
1423 
1424 	/* Now it is right time to recover quotas... We have to do this under
1425 	 * superblock lock so that noone can start using the slot (and crash)
1426 	 * before we recover it */
1427 	for (i = 0; i < rm_quota_used; i++) {
1428 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1429 		if (IS_ERR(qrec)) {
1430 			status = PTR_ERR(qrec);
1431 			mlog_errno(status);
1432 			continue;
1433 		}
1434 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1435 						NULL, NULL, qrec);
1436 	}
1437 
1438 	ocfs2_super_unlock(osb, 1);
1439 
1440 	/* queue recovery for offline slots */
1441 	ocfs2_queue_replay_slots(osb);
1442 
1443 bail:
1444 	mutex_lock(&osb->recovery_lock);
1445 	if (!status && !ocfs2_recovery_completed(osb)) {
1446 		mutex_unlock(&osb->recovery_lock);
1447 		goto restart;
1448 	}
1449 
1450 	ocfs2_free_replay_slots(osb);
1451 	osb->recovery_thread_task = NULL;
1452 	mb(); /* sync with ocfs2_recovery_thread_running */
1453 	wake_up(&osb->recovery_event);
1454 
1455 	mutex_unlock(&osb->recovery_lock);
1456 
1457 	if (rm_quota)
1458 		kfree(rm_quota);
1459 
1460 	mlog_exit(status);
1461 	/* no one is callint kthread_stop() for us so the kthread() api
1462 	 * requires that we call do_exit().  And it isn't exported, but
1463 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1464 	complete_and_exit(NULL, status);
1465 	return status;
1466 }
1467 
1468 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1469 {
1470 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1471 		   node_num, osb->node_num);
1472 
1473 	mutex_lock(&osb->recovery_lock);
1474 	if (osb->disable_recovery)
1475 		goto out;
1476 
1477 	/* People waiting on recovery will wait on
1478 	 * the recovery map to empty. */
1479 	if (ocfs2_recovery_map_set(osb, node_num))
1480 		mlog(0, "node %d already in recovery map.\n", node_num);
1481 
1482 	mlog(0, "starting recovery thread...\n");
1483 
1484 	if (osb->recovery_thread_task)
1485 		goto out;
1486 
1487 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1488 						 "ocfs2rec");
1489 	if (IS_ERR(osb->recovery_thread_task)) {
1490 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1491 		osb->recovery_thread_task = NULL;
1492 	}
1493 
1494 out:
1495 	mutex_unlock(&osb->recovery_lock);
1496 	wake_up(&osb->recovery_event);
1497 
1498 	mlog_exit_void();
1499 }
1500 
1501 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1502 				    int slot_num,
1503 				    struct buffer_head **bh,
1504 				    struct inode **ret_inode)
1505 {
1506 	int status = -EACCES;
1507 	struct inode *inode = NULL;
1508 
1509 	BUG_ON(slot_num >= osb->max_slots);
1510 
1511 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1512 					    slot_num);
1513 	if (!inode || is_bad_inode(inode)) {
1514 		mlog_errno(status);
1515 		goto bail;
1516 	}
1517 	SET_INODE_JOURNAL(inode);
1518 
1519 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1520 	if (status < 0) {
1521 		mlog_errno(status);
1522 		goto bail;
1523 	}
1524 
1525 	status = 0;
1526 
1527 bail:
1528 	if (inode) {
1529 		if (status || !ret_inode)
1530 			iput(inode);
1531 		else
1532 			*ret_inode = inode;
1533 	}
1534 	return status;
1535 }
1536 
1537 /* Does the actual journal replay and marks the journal inode as
1538  * clean. Will only replay if the journal inode is marked dirty. */
1539 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1540 				int node_num,
1541 				int slot_num)
1542 {
1543 	int status;
1544 	int got_lock = 0;
1545 	unsigned int flags;
1546 	struct inode *inode = NULL;
1547 	struct ocfs2_dinode *fe;
1548 	journal_t *journal = NULL;
1549 	struct buffer_head *bh = NULL;
1550 	u32 slot_reco_gen;
1551 
1552 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1553 	if (status) {
1554 		mlog_errno(status);
1555 		goto done;
1556 	}
1557 
1558 	fe = (struct ocfs2_dinode *)bh->b_data;
1559 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1560 	brelse(bh);
1561 	bh = NULL;
1562 
1563 	/*
1564 	 * As the fs recovery is asynchronous, there is a small chance that
1565 	 * another node mounted (and recovered) the slot before the recovery
1566 	 * thread could get the lock. To handle that, we dirty read the journal
1567 	 * inode for that slot to get the recovery generation. If it is
1568 	 * different than what we expected, the slot has been recovered.
1569 	 * If not, it needs recovery.
1570 	 */
1571 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1572 		mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1573 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1574 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1575 		status = -EBUSY;
1576 		goto done;
1577 	}
1578 
1579 	/* Continue with recovery as the journal has not yet been recovered */
1580 
1581 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1582 	if (status < 0) {
1583 		mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1584 		if (status != -ERESTARTSYS)
1585 			mlog(ML_ERROR, "Could not lock journal!\n");
1586 		goto done;
1587 	}
1588 	got_lock = 1;
1589 
1590 	fe = (struct ocfs2_dinode *) bh->b_data;
1591 
1592 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1593 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1594 
1595 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1596 		mlog(0, "No recovery required for node %d\n", node_num);
1597 		/* Refresh recovery generation for the slot */
1598 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1599 		goto done;
1600 	}
1601 
1602 	/* we need to run complete recovery for offline orphan slots */
1603 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1604 
1605 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1606 	     node_num, slot_num,
1607 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1608 
1609 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1610 
1611 	status = ocfs2_force_read_journal(inode);
1612 	if (status < 0) {
1613 		mlog_errno(status);
1614 		goto done;
1615 	}
1616 
1617 	mlog(0, "calling journal_init_inode\n");
1618 	journal = jbd2_journal_init_inode(inode);
1619 	if (journal == NULL) {
1620 		mlog(ML_ERROR, "Linux journal layer error\n");
1621 		status = -EIO;
1622 		goto done;
1623 	}
1624 
1625 	status = jbd2_journal_load(journal);
1626 	if (status < 0) {
1627 		mlog_errno(status);
1628 		if (!igrab(inode))
1629 			BUG();
1630 		jbd2_journal_destroy(journal);
1631 		goto done;
1632 	}
1633 
1634 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1635 
1636 	/* wipe the journal */
1637 	mlog(0, "flushing the journal.\n");
1638 	jbd2_journal_lock_updates(journal);
1639 	status = jbd2_journal_flush(journal);
1640 	jbd2_journal_unlock_updates(journal);
1641 	if (status < 0)
1642 		mlog_errno(status);
1643 
1644 	/* This will mark the node clean */
1645 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1646 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1647 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1648 
1649 	/* Increment recovery generation to indicate successful recovery */
1650 	ocfs2_bump_recovery_generation(fe);
1651 	osb->slot_recovery_generations[slot_num] =
1652 					ocfs2_get_recovery_generation(fe);
1653 
1654 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1655 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1656 	if (status < 0)
1657 		mlog_errno(status);
1658 
1659 	if (!igrab(inode))
1660 		BUG();
1661 
1662 	jbd2_journal_destroy(journal);
1663 
1664 done:
1665 	/* drop the lock on this nodes journal */
1666 	if (got_lock)
1667 		ocfs2_inode_unlock(inode, 1);
1668 
1669 	if (inode)
1670 		iput(inode);
1671 
1672 	brelse(bh);
1673 
1674 	mlog_exit(status);
1675 	return status;
1676 }
1677 
1678 /*
1679  * Do the most important parts of node recovery:
1680  *  - Replay it's journal
1681  *  - Stamp a clean local allocator file
1682  *  - Stamp a clean truncate log
1683  *  - Mark the node clean
1684  *
1685  * If this function completes without error, a node in OCFS2 can be
1686  * said to have been safely recovered. As a result, failure during the
1687  * second part of a nodes recovery process (local alloc recovery) is
1688  * far less concerning.
1689  */
1690 static int ocfs2_recover_node(struct ocfs2_super *osb,
1691 			      int node_num, int slot_num)
1692 {
1693 	int status = 0;
1694 	struct ocfs2_dinode *la_copy = NULL;
1695 	struct ocfs2_dinode *tl_copy = NULL;
1696 
1697 	mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1698 		   node_num, slot_num, osb->node_num);
1699 
1700 	/* Should not ever be called to recover ourselves -- in that
1701 	 * case we should've called ocfs2_journal_load instead. */
1702 	BUG_ON(osb->node_num == node_num);
1703 
1704 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1705 	if (status < 0) {
1706 		if (status == -EBUSY) {
1707 			mlog(0, "Skipping recovery for slot %u (node %u) "
1708 			     "as another node has recovered it\n", slot_num,
1709 			     node_num);
1710 			status = 0;
1711 			goto done;
1712 		}
1713 		mlog_errno(status);
1714 		goto done;
1715 	}
1716 
1717 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1718 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1719 	if (status < 0) {
1720 		mlog_errno(status);
1721 		goto done;
1722 	}
1723 
1724 	/* An error from begin_truncate_log_recovery is not
1725 	 * serious enough to warrant halting the rest of
1726 	 * recovery. */
1727 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1728 	if (status < 0)
1729 		mlog_errno(status);
1730 
1731 	/* Likewise, this would be a strange but ultimately not so
1732 	 * harmful place to get an error... */
1733 	status = ocfs2_clear_slot(osb, slot_num);
1734 	if (status < 0)
1735 		mlog_errno(status);
1736 
1737 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1738 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1739 					tl_copy, NULL);
1740 
1741 	status = 0;
1742 done:
1743 
1744 	mlog_exit(status);
1745 	return status;
1746 }
1747 
1748 /* Test node liveness by trylocking his journal. If we get the lock,
1749  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1750  * still alive (we couldn't get the lock) and < 0 on error. */
1751 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1752 				 int slot_num)
1753 {
1754 	int status, flags;
1755 	struct inode *inode = NULL;
1756 
1757 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1758 					    slot_num);
1759 	if (inode == NULL) {
1760 		mlog(ML_ERROR, "access error\n");
1761 		status = -EACCES;
1762 		goto bail;
1763 	}
1764 	if (is_bad_inode(inode)) {
1765 		mlog(ML_ERROR, "access error (bad inode)\n");
1766 		iput(inode);
1767 		inode = NULL;
1768 		status = -EACCES;
1769 		goto bail;
1770 	}
1771 	SET_INODE_JOURNAL(inode);
1772 
1773 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1774 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1775 	if (status < 0) {
1776 		if (status != -EAGAIN)
1777 			mlog_errno(status);
1778 		goto bail;
1779 	}
1780 
1781 	ocfs2_inode_unlock(inode, 1);
1782 bail:
1783 	if (inode)
1784 		iput(inode);
1785 
1786 	return status;
1787 }
1788 
1789 /* Call this underneath ocfs2_super_lock. It also assumes that the
1790  * slot info struct has been updated from disk. */
1791 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1792 {
1793 	unsigned int node_num;
1794 	int status, i;
1795 	u32 gen;
1796 	struct buffer_head *bh = NULL;
1797 	struct ocfs2_dinode *di;
1798 
1799 	/* This is called with the super block cluster lock, so we
1800 	 * know that the slot map can't change underneath us. */
1801 
1802 	for (i = 0; i < osb->max_slots; i++) {
1803 		/* Read journal inode to get the recovery generation */
1804 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1805 		if (status) {
1806 			mlog_errno(status);
1807 			goto bail;
1808 		}
1809 		di = (struct ocfs2_dinode *)bh->b_data;
1810 		gen = ocfs2_get_recovery_generation(di);
1811 		brelse(bh);
1812 		bh = NULL;
1813 
1814 		spin_lock(&osb->osb_lock);
1815 		osb->slot_recovery_generations[i] = gen;
1816 
1817 		mlog(0, "Slot %u recovery generation is %u\n", i,
1818 		     osb->slot_recovery_generations[i]);
1819 
1820 		if (i == osb->slot_num) {
1821 			spin_unlock(&osb->osb_lock);
1822 			continue;
1823 		}
1824 
1825 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1826 		if (status == -ENOENT) {
1827 			spin_unlock(&osb->osb_lock);
1828 			continue;
1829 		}
1830 
1831 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1832 			spin_unlock(&osb->osb_lock);
1833 			continue;
1834 		}
1835 		spin_unlock(&osb->osb_lock);
1836 
1837 		/* Ok, we have a slot occupied by another node which
1838 		 * is not in the recovery map. We trylock his journal
1839 		 * file here to test if he's alive. */
1840 		status = ocfs2_trylock_journal(osb, i);
1841 		if (!status) {
1842 			/* Since we're called from mount, we know that
1843 			 * the recovery thread can't race us on
1844 			 * setting / checking the recovery bits. */
1845 			ocfs2_recovery_thread(osb, node_num);
1846 		} else if ((status < 0) && (status != -EAGAIN)) {
1847 			mlog_errno(status);
1848 			goto bail;
1849 		}
1850 	}
1851 
1852 	status = 0;
1853 bail:
1854 	mlog_exit(status);
1855 	return status;
1856 }
1857 
1858 /*
1859  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1860  * randomness to the timeout to minimize multple nodes firing the timer at the
1861  * same time.
1862  */
1863 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1864 {
1865 	unsigned long time;
1866 
1867 	get_random_bytes(&time, sizeof(time));
1868 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1869 	return msecs_to_jiffies(time);
1870 }
1871 
1872 /*
1873  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1874  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1875  * is done to catch any orphans that are left over in orphan directories.
1876  *
1877  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1878  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1879  * stored in LVB. If the sequence number has changed, it means some other
1880  * node has done the scan.  This node skips the scan and tracks the
1881  * sequence number.  If the sequence number didn't change, it means a scan
1882  * hasn't happened.  The node queues a scan and increments the
1883  * sequence number in the LVB.
1884  */
1885 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1886 {
1887 	struct ocfs2_orphan_scan *os;
1888 	int status, i;
1889 	u32 seqno = 0;
1890 
1891 	os = &osb->osb_orphan_scan;
1892 
1893 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1894 		goto out;
1895 
1896 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1897 	if (status < 0) {
1898 		if (status != -EAGAIN)
1899 			mlog_errno(status);
1900 		goto out;
1901 	}
1902 
1903 	/* Do no queue the tasks if the volume is being umounted */
1904 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1905 		goto unlock;
1906 
1907 	if (os->os_seqno != seqno) {
1908 		os->os_seqno = seqno;
1909 		goto unlock;
1910 	}
1911 
1912 	for (i = 0; i < osb->max_slots; i++)
1913 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1914 						NULL);
1915 	/*
1916 	 * We queued a recovery on orphan slots, increment the sequence
1917 	 * number and update LVB so other node will skip the scan for a while
1918 	 */
1919 	seqno++;
1920 	os->os_count++;
1921 	os->os_scantime = CURRENT_TIME;
1922 unlock:
1923 	ocfs2_orphan_scan_unlock(osb, seqno);
1924 out:
1925 	return;
1926 }
1927 
1928 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1929 void ocfs2_orphan_scan_work(struct work_struct *work)
1930 {
1931 	struct ocfs2_orphan_scan *os;
1932 	struct ocfs2_super *osb;
1933 
1934 	os = container_of(work, struct ocfs2_orphan_scan,
1935 			  os_orphan_scan_work.work);
1936 	osb = os->os_osb;
1937 
1938 	mutex_lock(&os->os_lock);
1939 	ocfs2_queue_orphan_scan(osb);
1940 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1941 		schedule_delayed_work(&os->os_orphan_scan_work,
1942 				      ocfs2_orphan_scan_timeout());
1943 	mutex_unlock(&os->os_lock);
1944 }
1945 
1946 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1947 {
1948 	struct ocfs2_orphan_scan *os;
1949 
1950 	os = &osb->osb_orphan_scan;
1951 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1952 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1953 		mutex_lock(&os->os_lock);
1954 		cancel_delayed_work(&os->os_orphan_scan_work);
1955 		mutex_unlock(&os->os_lock);
1956 	}
1957 }
1958 
1959 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1960 {
1961 	struct ocfs2_orphan_scan *os;
1962 
1963 	os = &osb->osb_orphan_scan;
1964 	os->os_osb = osb;
1965 	os->os_count = 0;
1966 	os->os_seqno = 0;
1967 	mutex_init(&os->os_lock);
1968 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1969 }
1970 
1971 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1972 {
1973 	struct ocfs2_orphan_scan *os;
1974 
1975 	os = &osb->osb_orphan_scan;
1976 	os->os_scantime = CURRENT_TIME;
1977 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1978 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1979 	else {
1980 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1981 		schedule_delayed_work(&os->os_orphan_scan_work,
1982 				      ocfs2_orphan_scan_timeout());
1983 	}
1984 }
1985 
1986 struct ocfs2_orphan_filldir_priv {
1987 	struct inode		*head;
1988 	struct ocfs2_super	*osb;
1989 };
1990 
1991 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1992 				loff_t pos, u64 ino, unsigned type)
1993 {
1994 	struct ocfs2_orphan_filldir_priv *p = priv;
1995 	struct inode *iter;
1996 
1997 	if (name_len == 1 && !strncmp(".", name, 1))
1998 		return 0;
1999 	if (name_len == 2 && !strncmp("..", name, 2))
2000 		return 0;
2001 
2002 	/* Skip bad inodes so that recovery can continue */
2003 	iter = ocfs2_iget(p->osb, ino,
2004 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2005 	if (IS_ERR(iter))
2006 		return 0;
2007 
2008 	mlog(0, "queue orphan %llu\n",
2009 	     (unsigned long long)OCFS2_I(iter)->ip_blkno);
2010 	/* No locking is required for the next_orphan queue as there
2011 	 * is only ever a single process doing orphan recovery. */
2012 	OCFS2_I(iter)->ip_next_orphan = p->head;
2013 	p->head = iter;
2014 
2015 	return 0;
2016 }
2017 
2018 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2019 			       int slot,
2020 			       struct inode **head)
2021 {
2022 	int status;
2023 	struct inode *orphan_dir_inode = NULL;
2024 	struct ocfs2_orphan_filldir_priv priv;
2025 	loff_t pos = 0;
2026 
2027 	priv.osb = osb;
2028 	priv.head = *head;
2029 
2030 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2031 						       ORPHAN_DIR_SYSTEM_INODE,
2032 						       slot);
2033 	if  (!orphan_dir_inode) {
2034 		status = -ENOENT;
2035 		mlog_errno(status);
2036 		return status;
2037 	}
2038 
2039 	mutex_lock(&orphan_dir_inode->i_mutex);
2040 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2041 	if (status < 0) {
2042 		mlog_errno(status);
2043 		goto out;
2044 	}
2045 
2046 	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2047 				   ocfs2_orphan_filldir);
2048 	if (status) {
2049 		mlog_errno(status);
2050 		goto out_cluster;
2051 	}
2052 
2053 	*head = priv.head;
2054 
2055 out_cluster:
2056 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2057 out:
2058 	mutex_unlock(&orphan_dir_inode->i_mutex);
2059 	iput(orphan_dir_inode);
2060 	return status;
2061 }
2062 
2063 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2064 					      int slot)
2065 {
2066 	int ret;
2067 
2068 	spin_lock(&osb->osb_lock);
2069 	ret = !osb->osb_orphan_wipes[slot];
2070 	spin_unlock(&osb->osb_lock);
2071 	return ret;
2072 }
2073 
2074 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2075 					     int slot)
2076 {
2077 	spin_lock(&osb->osb_lock);
2078 	/* Mark ourselves such that new processes in delete_inode()
2079 	 * know to quit early. */
2080 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2081 	while (osb->osb_orphan_wipes[slot]) {
2082 		/* If any processes are already in the middle of an
2083 		 * orphan wipe on this dir, then we need to wait for
2084 		 * them. */
2085 		spin_unlock(&osb->osb_lock);
2086 		wait_event_interruptible(osb->osb_wipe_event,
2087 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2088 		spin_lock(&osb->osb_lock);
2089 	}
2090 	spin_unlock(&osb->osb_lock);
2091 }
2092 
2093 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2094 					      int slot)
2095 {
2096 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2097 }
2098 
2099 /*
2100  * Orphan recovery. Each mounted node has it's own orphan dir which we
2101  * must run during recovery. Our strategy here is to build a list of
2102  * the inodes in the orphan dir and iget/iput them. The VFS does
2103  * (most) of the rest of the work.
2104  *
2105  * Orphan recovery can happen at any time, not just mount so we have a
2106  * couple of extra considerations.
2107  *
2108  * - We grab as many inodes as we can under the orphan dir lock -
2109  *   doing iget() outside the orphan dir risks getting a reference on
2110  *   an invalid inode.
2111  * - We must be sure not to deadlock with other processes on the
2112  *   system wanting to run delete_inode(). This can happen when they go
2113  *   to lock the orphan dir and the orphan recovery process attempts to
2114  *   iget() inside the orphan dir lock. This can be avoided by
2115  *   advertising our state to ocfs2_delete_inode().
2116  */
2117 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2118 				 int slot)
2119 {
2120 	int ret = 0;
2121 	struct inode *inode = NULL;
2122 	struct inode *iter;
2123 	struct ocfs2_inode_info *oi;
2124 
2125 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2126 
2127 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2128 	ret = ocfs2_queue_orphans(osb, slot, &inode);
2129 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2130 
2131 	/* Error here should be noted, but we want to continue with as
2132 	 * many queued inodes as we've got. */
2133 	if (ret)
2134 		mlog_errno(ret);
2135 
2136 	while (inode) {
2137 		oi = OCFS2_I(inode);
2138 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
2139 
2140 		iter = oi->ip_next_orphan;
2141 
2142 		spin_lock(&oi->ip_lock);
2143 		/* The remote delete code may have set these on the
2144 		 * assumption that the other node would wipe them
2145 		 * successfully.  If they are still in the node's
2146 		 * orphan dir, we need to reset that state. */
2147 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2148 
2149 		/* Set the proper information to get us going into
2150 		 * ocfs2_delete_inode. */
2151 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2152 		spin_unlock(&oi->ip_lock);
2153 
2154 		iput(inode);
2155 
2156 		inode = iter;
2157 	}
2158 
2159 	return ret;
2160 }
2161 
2162 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2163 {
2164 	/* This check is good because ocfs2 will wait on our recovery
2165 	 * thread before changing it to something other than MOUNTED
2166 	 * or DISABLED. */
2167 	wait_event(osb->osb_mount_event,
2168 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2169 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2170 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2171 
2172 	/* If there's an error on mount, then we may never get to the
2173 	 * MOUNTED flag, but this is set right before
2174 	 * dismount_volume() so we can trust it. */
2175 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2176 		mlog(0, "mount error, exiting!\n");
2177 		return -EBUSY;
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 static int ocfs2_commit_thread(void *arg)
2184 {
2185 	int status;
2186 	struct ocfs2_super *osb = arg;
2187 	struct ocfs2_journal *journal = osb->journal;
2188 
2189 	/* we can trust j_num_trans here because _should_stop() is only set in
2190 	 * shutdown and nobody other than ourselves should be able to start
2191 	 * transactions.  committing on shutdown might take a few iterations
2192 	 * as final transactions put deleted inodes on the list */
2193 	while (!(kthread_should_stop() &&
2194 		 atomic_read(&journal->j_num_trans) == 0)) {
2195 
2196 		wait_event_interruptible(osb->checkpoint_event,
2197 					 atomic_read(&journal->j_num_trans)
2198 					 || kthread_should_stop());
2199 
2200 		status = ocfs2_commit_cache(osb);
2201 		if (status < 0)
2202 			mlog_errno(status);
2203 
2204 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2205 			mlog(ML_KTHREAD,
2206 			     "commit_thread: %u transactions pending on "
2207 			     "shutdown\n",
2208 			     atomic_read(&journal->j_num_trans));
2209 		}
2210 	}
2211 
2212 	return 0;
2213 }
2214 
2215 /* Reads all the journal inodes without taking any cluster locks. Used
2216  * for hard readonly access to determine whether any journal requires
2217  * recovery. Also used to refresh the recovery generation numbers after
2218  * a journal has been recovered by another node.
2219  */
2220 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2221 {
2222 	int ret = 0;
2223 	unsigned int slot;
2224 	struct buffer_head *di_bh = NULL;
2225 	struct ocfs2_dinode *di;
2226 	int journal_dirty = 0;
2227 
2228 	for(slot = 0; slot < osb->max_slots; slot++) {
2229 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2230 		if (ret) {
2231 			mlog_errno(ret);
2232 			goto out;
2233 		}
2234 
2235 		di = (struct ocfs2_dinode *) di_bh->b_data;
2236 
2237 		osb->slot_recovery_generations[slot] =
2238 					ocfs2_get_recovery_generation(di);
2239 
2240 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2241 		    OCFS2_JOURNAL_DIRTY_FL)
2242 			journal_dirty = 1;
2243 
2244 		brelse(di_bh);
2245 		di_bh = NULL;
2246 	}
2247 
2248 out:
2249 	if (journal_dirty)
2250 		ret = -EROFS;
2251 	return ret;
2252 }
2253