xref: /openbmc/linux/fs/ocfs2/journal.c (revision 3211949f)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "quota.h"
52 
53 #include "buffer_head_io.h"
54 
55 DEFINE_SPINLOCK(trans_inc_lock);
56 
57 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
58 
59 static int ocfs2_force_read_journal(struct inode *inode);
60 static int ocfs2_recover_node(struct ocfs2_super *osb,
61 			      int node_num, int slot_num);
62 static int __ocfs2_recovery_thread(void *arg);
63 static int ocfs2_commit_cache(struct ocfs2_super *osb);
64 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
65 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
66 				      int dirty, int replayed);
67 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
68 				 int slot_num);
69 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
70 				 int slot);
71 static int ocfs2_commit_thread(void *arg);
72 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
73 					    int slot_num,
74 					    struct ocfs2_dinode *la_dinode,
75 					    struct ocfs2_dinode *tl_dinode,
76 					    struct ocfs2_quota_recovery *qrec);
77 
78 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
79 {
80 	return __ocfs2_wait_on_mount(osb, 0);
81 }
82 
83 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
84 {
85 	return __ocfs2_wait_on_mount(osb, 1);
86 }
87 
88 /*
89  * This replay_map is to track online/offline slots, so we could recover
90  * offline slots during recovery and mount
91  */
92 
93 enum ocfs2_replay_state {
94 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
95 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
96 	REPLAY_DONE 		/* Replay was already queued */
97 };
98 
99 struct ocfs2_replay_map {
100 	unsigned int rm_slots;
101 	enum ocfs2_replay_state rm_state;
102 	unsigned char rm_replay_slots[0];
103 };
104 
105 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
106 {
107 	if (!osb->replay_map)
108 		return;
109 
110 	/* If we've already queued the replay, we don't have any more to do */
111 	if (osb->replay_map->rm_state == REPLAY_DONE)
112 		return;
113 
114 	osb->replay_map->rm_state = state;
115 }
116 
117 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
118 {
119 	struct ocfs2_replay_map *replay_map;
120 	int i, node_num;
121 
122 	/* If replay map is already set, we don't do it again */
123 	if (osb->replay_map)
124 		return 0;
125 
126 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
127 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
128 
129 	if (!replay_map) {
130 		mlog_errno(-ENOMEM);
131 		return -ENOMEM;
132 	}
133 
134 	spin_lock(&osb->osb_lock);
135 
136 	replay_map->rm_slots = osb->max_slots;
137 	replay_map->rm_state = REPLAY_UNNEEDED;
138 
139 	/* set rm_replay_slots for offline slot(s) */
140 	for (i = 0; i < replay_map->rm_slots; i++) {
141 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
142 			replay_map->rm_replay_slots[i] = 1;
143 	}
144 
145 	osb->replay_map = replay_map;
146 	spin_unlock(&osb->osb_lock);
147 	return 0;
148 }
149 
150 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
151 {
152 	struct ocfs2_replay_map *replay_map = osb->replay_map;
153 	int i;
154 
155 	if (!replay_map)
156 		return;
157 
158 	if (replay_map->rm_state != REPLAY_NEEDED)
159 		return;
160 
161 	for (i = 0; i < replay_map->rm_slots; i++)
162 		if (replay_map->rm_replay_slots[i])
163 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
164 							NULL, NULL);
165 	replay_map->rm_state = REPLAY_DONE;
166 }
167 
168 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
169 {
170 	struct ocfs2_replay_map *replay_map = osb->replay_map;
171 
172 	if (!osb->replay_map)
173 		return;
174 
175 	kfree(replay_map);
176 	osb->replay_map = NULL;
177 }
178 
179 int ocfs2_recovery_init(struct ocfs2_super *osb)
180 {
181 	struct ocfs2_recovery_map *rm;
182 
183 	mutex_init(&osb->recovery_lock);
184 	osb->disable_recovery = 0;
185 	osb->recovery_thread_task = NULL;
186 	init_waitqueue_head(&osb->recovery_event);
187 
188 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
189 		     osb->max_slots * sizeof(unsigned int),
190 		     GFP_KERNEL);
191 	if (!rm) {
192 		mlog_errno(-ENOMEM);
193 		return -ENOMEM;
194 	}
195 
196 	rm->rm_entries = (unsigned int *)((char *)rm +
197 					  sizeof(struct ocfs2_recovery_map));
198 	osb->recovery_map = rm;
199 
200 	return 0;
201 }
202 
203 /* we can't grab the goofy sem lock from inside wait_event, so we use
204  * memory barriers to make sure that we'll see the null task before
205  * being woken up */
206 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
207 {
208 	mb();
209 	return osb->recovery_thread_task != NULL;
210 }
211 
212 void ocfs2_recovery_exit(struct ocfs2_super *osb)
213 {
214 	struct ocfs2_recovery_map *rm;
215 
216 	/* disable any new recovery threads and wait for any currently
217 	 * running ones to exit. Do this before setting the vol_state. */
218 	mutex_lock(&osb->recovery_lock);
219 	osb->disable_recovery = 1;
220 	mutex_unlock(&osb->recovery_lock);
221 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
222 
223 	/* At this point, we know that no more recovery threads can be
224 	 * launched, so wait for any recovery completion work to
225 	 * complete. */
226 	flush_workqueue(ocfs2_wq);
227 
228 	/*
229 	 * Now that recovery is shut down, and the osb is about to be
230 	 * freed,  the osb_lock is not taken here.
231 	 */
232 	rm = osb->recovery_map;
233 	/* XXX: Should we bug if there are dirty entries? */
234 
235 	kfree(rm);
236 }
237 
238 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
239 				     unsigned int node_num)
240 {
241 	int i;
242 	struct ocfs2_recovery_map *rm = osb->recovery_map;
243 
244 	assert_spin_locked(&osb->osb_lock);
245 
246 	for (i = 0; i < rm->rm_used; i++) {
247 		if (rm->rm_entries[i] == node_num)
248 			return 1;
249 	}
250 
251 	return 0;
252 }
253 
254 /* Behaves like test-and-set.  Returns the previous value */
255 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
256 				  unsigned int node_num)
257 {
258 	struct ocfs2_recovery_map *rm = osb->recovery_map;
259 
260 	spin_lock(&osb->osb_lock);
261 	if (__ocfs2_recovery_map_test(osb, node_num)) {
262 		spin_unlock(&osb->osb_lock);
263 		return 1;
264 	}
265 
266 	/* XXX: Can this be exploited? Not from o2dlm... */
267 	BUG_ON(rm->rm_used >= osb->max_slots);
268 
269 	rm->rm_entries[rm->rm_used] = node_num;
270 	rm->rm_used++;
271 	spin_unlock(&osb->osb_lock);
272 
273 	return 0;
274 }
275 
276 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
277 				     unsigned int node_num)
278 {
279 	int i;
280 	struct ocfs2_recovery_map *rm = osb->recovery_map;
281 
282 	spin_lock(&osb->osb_lock);
283 
284 	for (i = 0; i < rm->rm_used; i++) {
285 		if (rm->rm_entries[i] == node_num)
286 			break;
287 	}
288 
289 	if (i < rm->rm_used) {
290 		/* XXX: be careful with the pointer math */
291 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
292 			(rm->rm_used - i - 1) * sizeof(unsigned int));
293 		rm->rm_used--;
294 	}
295 
296 	spin_unlock(&osb->osb_lock);
297 }
298 
299 static int ocfs2_commit_cache(struct ocfs2_super *osb)
300 {
301 	int status = 0;
302 	unsigned int flushed;
303 	unsigned long old_id;
304 	struct ocfs2_journal *journal = NULL;
305 
306 	mlog_entry_void();
307 
308 	journal = osb->journal;
309 
310 	/* Flush all pending commits and checkpoint the journal. */
311 	down_write(&journal->j_trans_barrier);
312 
313 	if (atomic_read(&journal->j_num_trans) == 0) {
314 		up_write(&journal->j_trans_barrier);
315 		mlog(0, "No transactions for me to flush!\n");
316 		goto finally;
317 	}
318 
319 	jbd2_journal_lock_updates(journal->j_journal);
320 	status = jbd2_journal_flush(journal->j_journal);
321 	jbd2_journal_unlock_updates(journal->j_journal);
322 	if (status < 0) {
323 		up_write(&journal->j_trans_barrier);
324 		mlog_errno(status);
325 		goto finally;
326 	}
327 
328 	old_id = ocfs2_inc_trans_id(journal);
329 
330 	flushed = atomic_read(&journal->j_num_trans);
331 	atomic_set(&journal->j_num_trans, 0);
332 	up_write(&journal->j_trans_barrier);
333 
334 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
335 	     journal->j_trans_id, flushed);
336 
337 	ocfs2_wake_downconvert_thread(osb);
338 	wake_up(&journal->j_checkpointed);
339 finally:
340 	mlog_exit(status);
341 	return status;
342 }
343 
344 /* pass it NULL and it will allocate a new handle object for you.  If
345  * you pass it a handle however, it may still return error, in which
346  * case it has free'd the passed handle for you. */
347 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
348 {
349 	journal_t *journal = osb->journal->j_journal;
350 	handle_t *handle;
351 
352 	BUG_ON(!osb || !osb->journal->j_journal);
353 
354 	if (ocfs2_is_hard_readonly(osb))
355 		return ERR_PTR(-EROFS);
356 
357 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
358 	BUG_ON(max_buffs <= 0);
359 
360 	/* Nested transaction? Just return the handle... */
361 	if (journal_current_handle())
362 		return jbd2_journal_start(journal, max_buffs);
363 
364 	down_read(&osb->journal->j_trans_barrier);
365 
366 	handle = jbd2_journal_start(journal, max_buffs);
367 	if (IS_ERR(handle)) {
368 		up_read(&osb->journal->j_trans_barrier);
369 
370 		mlog_errno(PTR_ERR(handle));
371 
372 		if (is_journal_aborted(journal)) {
373 			ocfs2_abort(osb->sb, "Detected aborted journal");
374 			handle = ERR_PTR(-EROFS);
375 		}
376 	} else {
377 		if (!ocfs2_mount_local(osb))
378 			atomic_inc(&(osb->journal->j_num_trans));
379 	}
380 
381 	return handle;
382 }
383 
384 int ocfs2_commit_trans(struct ocfs2_super *osb,
385 		       handle_t *handle)
386 {
387 	int ret, nested;
388 	struct ocfs2_journal *journal = osb->journal;
389 
390 	BUG_ON(!handle);
391 
392 	nested = handle->h_ref > 1;
393 	ret = jbd2_journal_stop(handle);
394 	if (ret < 0)
395 		mlog_errno(ret);
396 
397 	if (!nested)
398 		up_read(&journal->j_trans_barrier);
399 
400 	return ret;
401 }
402 
403 /*
404  * 'nblocks' is what you want to add to the current
405  * transaction. extend_trans will either extend the current handle by
406  * nblocks, or commit it and start a new one with nblocks credits.
407  *
408  * This might call jbd2_journal_restart() which will commit dirty buffers
409  * and then restart the transaction. Before calling
410  * ocfs2_extend_trans(), any changed blocks should have been
411  * dirtied. After calling it, all blocks which need to be changed must
412  * go through another set of journal_access/journal_dirty calls.
413  *
414  * WARNING: This will not release any semaphores or disk locks taken
415  * during the transaction, so make sure they were taken *before*
416  * start_trans or we'll have ordering deadlocks.
417  *
418  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
419  * good because transaction ids haven't yet been recorded on the
420  * cluster locks associated with this handle.
421  */
422 int ocfs2_extend_trans(handle_t *handle, int nblocks)
423 {
424 	int status;
425 
426 	BUG_ON(!handle);
427 	BUG_ON(!nblocks);
428 
429 	mlog_entry_void();
430 
431 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
432 
433 #ifdef CONFIG_OCFS2_DEBUG_FS
434 	status = 1;
435 #else
436 	status = jbd2_journal_extend(handle, nblocks);
437 	if (status < 0) {
438 		mlog_errno(status);
439 		goto bail;
440 	}
441 #endif
442 
443 	if (status > 0) {
444 		mlog(0,
445 		     "jbd2_journal_extend failed, trying "
446 		     "jbd2_journal_restart\n");
447 		status = jbd2_journal_restart(handle, nblocks);
448 		if (status < 0) {
449 			mlog_errno(status);
450 			goto bail;
451 		}
452 	}
453 
454 	status = 0;
455 bail:
456 
457 	mlog_exit(status);
458 	return status;
459 }
460 
461 struct ocfs2_triggers {
462 	struct jbd2_buffer_trigger_type	ot_triggers;
463 	int				ot_offset;
464 };
465 
466 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
467 {
468 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
469 }
470 
471 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
472 				 struct buffer_head *bh,
473 				 void *data, size_t size)
474 {
475 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
476 
477 	/*
478 	 * We aren't guaranteed to have the superblock here, so we
479 	 * must unconditionally compute the ecc data.
480 	 * __ocfs2_journal_access() will only set the triggers if
481 	 * metaecc is enabled.
482 	 */
483 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
484 }
485 
486 /*
487  * Quota blocks have their own trigger because the struct ocfs2_block_check
488  * offset depends on the blocksize.
489  */
490 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
491 				 struct buffer_head *bh,
492 				 void *data, size_t size)
493 {
494 	struct ocfs2_disk_dqtrailer *dqt =
495 		ocfs2_block_dqtrailer(size, data);
496 
497 	/*
498 	 * We aren't guaranteed to have the superblock here, so we
499 	 * must unconditionally compute the ecc data.
500 	 * __ocfs2_journal_access() will only set the triggers if
501 	 * metaecc is enabled.
502 	 */
503 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
504 }
505 
506 /*
507  * Directory blocks also have their own trigger because the
508  * struct ocfs2_block_check offset depends on the blocksize.
509  */
510 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
511 				 struct buffer_head *bh,
512 				 void *data, size_t size)
513 {
514 	struct ocfs2_dir_block_trailer *trailer =
515 		ocfs2_dir_trailer_from_size(size, data);
516 
517 	/*
518 	 * We aren't guaranteed to have the superblock here, so we
519 	 * must unconditionally compute the ecc data.
520 	 * __ocfs2_journal_access() will only set the triggers if
521 	 * metaecc is enabled.
522 	 */
523 	ocfs2_block_check_compute(data, size, &trailer->db_check);
524 }
525 
526 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
527 				struct buffer_head *bh)
528 {
529 	mlog(ML_ERROR,
530 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
531 	     "bh->b_blocknr = %llu\n",
532 	     (unsigned long)bh,
533 	     (unsigned long long)bh->b_blocknr);
534 
535 	/* We aren't guaranteed to have the superblock here - but if we
536 	 * don't, it'll just crash. */
537 	ocfs2_error(bh->b_assoc_map->host->i_sb,
538 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
539 }
540 
541 static struct ocfs2_triggers di_triggers = {
542 	.ot_triggers = {
543 		.t_commit = ocfs2_commit_trigger,
544 		.t_abort = ocfs2_abort_trigger,
545 	},
546 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
547 };
548 
549 static struct ocfs2_triggers eb_triggers = {
550 	.ot_triggers = {
551 		.t_commit = ocfs2_commit_trigger,
552 		.t_abort = ocfs2_abort_trigger,
553 	},
554 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
555 };
556 
557 static struct ocfs2_triggers gd_triggers = {
558 	.ot_triggers = {
559 		.t_commit = ocfs2_commit_trigger,
560 		.t_abort = ocfs2_abort_trigger,
561 	},
562 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
563 };
564 
565 static struct ocfs2_triggers db_triggers = {
566 	.ot_triggers = {
567 		.t_commit = ocfs2_db_commit_trigger,
568 		.t_abort = ocfs2_abort_trigger,
569 	},
570 };
571 
572 static struct ocfs2_triggers xb_triggers = {
573 	.ot_triggers = {
574 		.t_commit = ocfs2_commit_trigger,
575 		.t_abort = ocfs2_abort_trigger,
576 	},
577 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
578 };
579 
580 static struct ocfs2_triggers dq_triggers = {
581 	.ot_triggers = {
582 		.t_commit = ocfs2_dq_commit_trigger,
583 		.t_abort = ocfs2_abort_trigger,
584 	},
585 };
586 
587 static struct ocfs2_triggers dr_triggers = {
588 	.ot_triggers = {
589 		.t_commit = ocfs2_commit_trigger,
590 		.t_abort = ocfs2_abort_trigger,
591 	},
592 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
593 };
594 
595 static struct ocfs2_triggers dl_triggers = {
596 	.ot_triggers = {
597 		.t_commit = ocfs2_commit_trigger,
598 		.t_abort = ocfs2_abort_trigger,
599 	},
600 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
601 };
602 
603 static int __ocfs2_journal_access(handle_t *handle,
604 				  struct inode *inode,
605 				  struct buffer_head *bh,
606 				  struct ocfs2_triggers *triggers,
607 				  int type)
608 {
609 	int status;
610 
611 	BUG_ON(!inode);
612 	BUG_ON(!handle);
613 	BUG_ON(!bh);
614 
615 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
616 		   (unsigned long long)bh->b_blocknr, type,
617 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
618 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
619 		   "OCFS2_JOURNAL_ACCESS_WRITE",
620 		   bh->b_size);
621 
622 	/* we can safely remove this assertion after testing. */
623 	if (!buffer_uptodate(bh)) {
624 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
625 		mlog(ML_ERROR, "b_blocknr=%llu\n",
626 		     (unsigned long long)bh->b_blocknr);
627 		BUG();
628 	}
629 
630 	/* Set the current transaction information on the inode so
631 	 * that the locking code knows whether it can drop it's locks
632 	 * on this inode or not. We're protected from the commit
633 	 * thread updating the current transaction id until
634 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
635 	 * j_trans_barrier for us. */
636 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
637 
638 	mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
639 	switch (type) {
640 	case OCFS2_JOURNAL_ACCESS_CREATE:
641 	case OCFS2_JOURNAL_ACCESS_WRITE:
642 		status = jbd2_journal_get_write_access(handle, bh);
643 		break;
644 
645 	case OCFS2_JOURNAL_ACCESS_UNDO:
646 		status = jbd2_journal_get_undo_access(handle, bh);
647 		break;
648 
649 	default:
650 		status = -EINVAL;
651 		mlog(ML_ERROR, "Uknown access type!\n");
652 	}
653 	if (!status && ocfs2_meta_ecc(OCFS2_SB(inode->i_sb)) && triggers)
654 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
655 	mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
656 
657 	if (status < 0)
658 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
659 		     status, type);
660 
661 	mlog_exit(status);
662 	return status;
663 }
664 
665 int ocfs2_journal_access_di(handle_t *handle, struct inode *inode,
666 			       struct buffer_head *bh, int type)
667 {
668 	return __ocfs2_journal_access(handle, inode, bh, &di_triggers,
669 				      type);
670 }
671 
672 int ocfs2_journal_access_eb(handle_t *handle, struct inode *inode,
673 			    struct buffer_head *bh, int type)
674 {
675 	return __ocfs2_journal_access(handle, inode, bh, &eb_triggers,
676 				      type);
677 }
678 
679 int ocfs2_journal_access_gd(handle_t *handle, struct inode *inode,
680 			    struct buffer_head *bh, int type)
681 {
682 	return __ocfs2_journal_access(handle, inode, bh, &gd_triggers,
683 				      type);
684 }
685 
686 int ocfs2_journal_access_db(handle_t *handle, struct inode *inode,
687 			    struct buffer_head *bh, int type)
688 {
689 	return __ocfs2_journal_access(handle, inode, bh, &db_triggers,
690 				      type);
691 }
692 
693 int ocfs2_journal_access_xb(handle_t *handle, struct inode *inode,
694 			    struct buffer_head *bh, int type)
695 {
696 	return __ocfs2_journal_access(handle, inode, bh, &xb_triggers,
697 				      type);
698 }
699 
700 int ocfs2_journal_access_dq(handle_t *handle, struct inode *inode,
701 			    struct buffer_head *bh, int type)
702 {
703 	return __ocfs2_journal_access(handle, inode, bh, &dq_triggers,
704 				      type);
705 }
706 
707 int ocfs2_journal_access_dr(handle_t *handle, struct inode *inode,
708 			    struct buffer_head *bh, int type)
709 {
710 	return __ocfs2_journal_access(handle, inode, bh, &dr_triggers,
711 				      type);
712 }
713 
714 int ocfs2_journal_access_dl(handle_t *handle, struct inode *inode,
715 			    struct buffer_head *bh, int type)
716 {
717 	return __ocfs2_journal_access(handle, inode, bh, &dl_triggers,
718 				      type);
719 }
720 
721 int ocfs2_journal_access(handle_t *handle, struct inode *inode,
722 			 struct buffer_head *bh, int type)
723 {
724 	return __ocfs2_journal_access(handle, inode, bh, NULL, type);
725 }
726 
727 int ocfs2_journal_dirty(handle_t *handle,
728 			struct buffer_head *bh)
729 {
730 	int status;
731 
732 	mlog_entry("(bh->b_blocknr=%llu)\n",
733 		   (unsigned long long)bh->b_blocknr);
734 
735 	status = jbd2_journal_dirty_metadata(handle, bh);
736 	if (status < 0)
737 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
738 		     "(bh->b_blocknr=%llu)\n",
739 		     (unsigned long long)bh->b_blocknr);
740 
741 	mlog_exit(status);
742 	return status;
743 }
744 
745 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
746 
747 void ocfs2_set_journal_params(struct ocfs2_super *osb)
748 {
749 	journal_t *journal = osb->journal->j_journal;
750 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
751 
752 	if (osb->osb_commit_interval)
753 		commit_interval = osb->osb_commit_interval;
754 
755 	spin_lock(&journal->j_state_lock);
756 	journal->j_commit_interval = commit_interval;
757 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
758 		journal->j_flags |= JBD2_BARRIER;
759 	else
760 		journal->j_flags &= ~JBD2_BARRIER;
761 	spin_unlock(&journal->j_state_lock);
762 }
763 
764 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
765 {
766 	int status = -1;
767 	struct inode *inode = NULL; /* the journal inode */
768 	journal_t *j_journal = NULL;
769 	struct ocfs2_dinode *di = NULL;
770 	struct buffer_head *bh = NULL;
771 	struct ocfs2_super *osb;
772 	int inode_lock = 0;
773 
774 	mlog_entry_void();
775 
776 	BUG_ON(!journal);
777 
778 	osb = journal->j_osb;
779 
780 	/* already have the inode for our journal */
781 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
782 					    osb->slot_num);
783 	if (inode == NULL) {
784 		status = -EACCES;
785 		mlog_errno(status);
786 		goto done;
787 	}
788 	if (is_bad_inode(inode)) {
789 		mlog(ML_ERROR, "access error (bad inode)\n");
790 		iput(inode);
791 		inode = NULL;
792 		status = -EACCES;
793 		goto done;
794 	}
795 
796 	SET_INODE_JOURNAL(inode);
797 	OCFS2_I(inode)->ip_open_count++;
798 
799 	/* Skip recovery waits here - journal inode metadata never
800 	 * changes in a live cluster so it can be considered an
801 	 * exception to the rule. */
802 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
803 	if (status < 0) {
804 		if (status != -ERESTARTSYS)
805 			mlog(ML_ERROR, "Could not get lock on journal!\n");
806 		goto done;
807 	}
808 
809 	inode_lock = 1;
810 	di = (struct ocfs2_dinode *)bh->b_data;
811 
812 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
813 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
814 		     inode->i_size);
815 		status = -EINVAL;
816 		goto done;
817 	}
818 
819 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
820 	mlog(0, "inode->i_blocks = %llu\n",
821 			(unsigned long long)inode->i_blocks);
822 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
823 
824 	/* call the kernels journal init function now */
825 	j_journal = jbd2_journal_init_inode(inode);
826 	if (j_journal == NULL) {
827 		mlog(ML_ERROR, "Linux journal layer error\n");
828 		status = -EINVAL;
829 		goto done;
830 	}
831 
832 	mlog(0, "Returned from jbd2_journal_init_inode\n");
833 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
834 
835 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
836 		  OCFS2_JOURNAL_DIRTY_FL);
837 
838 	journal->j_journal = j_journal;
839 	journal->j_inode = inode;
840 	journal->j_bh = bh;
841 
842 	ocfs2_set_journal_params(osb);
843 
844 	journal->j_state = OCFS2_JOURNAL_LOADED;
845 
846 	status = 0;
847 done:
848 	if (status < 0) {
849 		if (inode_lock)
850 			ocfs2_inode_unlock(inode, 1);
851 		brelse(bh);
852 		if (inode) {
853 			OCFS2_I(inode)->ip_open_count--;
854 			iput(inode);
855 		}
856 	}
857 
858 	mlog_exit(status);
859 	return status;
860 }
861 
862 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
863 {
864 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
865 }
866 
867 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
868 {
869 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
870 }
871 
872 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
873 				      int dirty, int replayed)
874 {
875 	int status;
876 	unsigned int flags;
877 	struct ocfs2_journal *journal = osb->journal;
878 	struct buffer_head *bh = journal->j_bh;
879 	struct ocfs2_dinode *fe;
880 
881 	mlog_entry_void();
882 
883 	fe = (struct ocfs2_dinode *)bh->b_data;
884 
885 	/* The journal bh on the osb always comes from ocfs2_journal_init()
886 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
887 	 * code bug if we mess it up. */
888 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
889 
890 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
891 	if (dirty)
892 		flags |= OCFS2_JOURNAL_DIRTY_FL;
893 	else
894 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
895 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
896 
897 	if (replayed)
898 		ocfs2_bump_recovery_generation(fe);
899 
900 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
901 	status = ocfs2_write_block(osb, bh, journal->j_inode);
902 	if (status < 0)
903 		mlog_errno(status);
904 
905 	mlog_exit(status);
906 	return status;
907 }
908 
909 /*
910  * If the journal has been kmalloc'd it needs to be freed after this
911  * call.
912  */
913 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
914 {
915 	struct ocfs2_journal *journal = NULL;
916 	int status = 0;
917 	struct inode *inode = NULL;
918 	int num_running_trans = 0;
919 
920 	mlog_entry_void();
921 
922 	BUG_ON(!osb);
923 
924 	journal = osb->journal;
925 	if (!journal)
926 		goto done;
927 
928 	inode = journal->j_inode;
929 
930 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
931 		goto done;
932 
933 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
934 	if (!igrab(inode))
935 		BUG();
936 
937 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
938 	if (num_running_trans > 0)
939 		mlog(0, "Shutting down journal: must wait on %d "
940 		     "running transactions!\n",
941 		     num_running_trans);
942 
943 	/* Do a commit_cache here. It will flush our journal, *and*
944 	 * release any locks that are still held.
945 	 * set the SHUTDOWN flag and release the trans lock.
946 	 * the commit thread will take the trans lock for us below. */
947 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
948 
949 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
950 	 * drop the trans_lock (which we want to hold until we
951 	 * completely destroy the journal. */
952 	if (osb->commit_task) {
953 		/* Wait for the commit thread */
954 		mlog(0, "Waiting for ocfs2commit to exit....\n");
955 		kthread_stop(osb->commit_task);
956 		osb->commit_task = NULL;
957 	}
958 
959 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
960 
961 	if (ocfs2_mount_local(osb)) {
962 		jbd2_journal_lock_updates(journal->j_journal);
963 		status = jbd2_journal_flush(journal->j_journal);
964 		jbd2_journal_unlock_updates(journal->j_journal);
965 		if (status < 0)
966 			mlog_errno(status);
967 	}
968 
969 	if (status == 0) {
970 		/*
971 		 * Do not toggle if flush was unsuccessful otherwise
972 		 * will leave dirty metadata in a "clean" journal
973 		 */
974 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
975 		if (status < 0)
976 			mlog_errno(status);
977 	}
978 
979 	/* Shutdown the kernel journal system */
980 	jbd2_journal_destroy(journal->j_journal);
981 	journal->j_journal = NULL;
982 
983 	OCFS2_I(inode)->ip_open_count--;
984 
985 	/* unlock our journal */
986 	ocfs2_inode_unlock(inode, 1);
987 
988 	brelse(journal->j_bh);
989 	journal->j_bh = NULL;
990 
991 	journal->j_state = OCFS2_JOURNAL_FREE;
992 
993 //	up_write(&journal->j_trans_barrier);
994 done:
995 	if (inode)
996 		iput(inode);
997 	mlog_exit_void();
998 }
999 
1000 static void ocfs2_clear_journal_error(struct super_block *sb,
1001 				      journal_t *journal,
1002 				      int slot)
1003 {
1004 	int olderr;
1005 
1006 	olderr = jbd2_journal_errno(journal);
1007 	if (olderr) {
1008 		mlog(ML_ERROR, "File system error %d recorded in "
1009 		     "journal %u.\n", olderr, slot);
1010 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1011 		     sb->s_id);
1012 
1013 		jbd2_journal_ack_err(journal);
1014 		jbd2_journal_clear_err(journal);
1015 	}
1016 }
1017 
1018 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1019 {
1020 	int status = 0;
1021 	struct ocfs2_super *osb;
1022 
1023 	mlog_entry_void();
1024 
1025 	BUG_ON(!journal);
1026 
1027 	osb = journal->j_osb;
1028 
1029 	status = jbd2_journal_load(journal->j_journal);
1030 	if (status < 0) {
1031 		mlog(ML_ERROR, "Failed to load journal!\n");
1032 		goto done;
1033 	}
1034 
1035 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1036 
1037 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1038 	if (status < 0) {
1039 		mlog_errno(status);
1040 		goto done;
1041 	}
1042 
1043 	/* Launch the commit thread */
1044 	if (!local) {
1045 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1046 					       "ocfs2cmt");
1047 		if (IS_ERR(osb->commit_task)) {
1048 			status = PTR_ERR(osb->commit_task);
1049 			osb->commit_task = NULL;
1050 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1051 			     "error=%d", status);
1052 			goto done;
1053 		}
1054 	} else
1055 		osb->commit_task = NULL;
1056 
1057 done:
1058 	mlog_exit(status);
1059 	return status;
1060 }
1061 
1062 
1063 /* 'full' flag tells us whether we clear out all blocks or if we just
1064  * mark the journal clean */
1065 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1066 {
1067 	int status;
1068 
1069 	mlog_entry_void();
1070 
1071 	BUG_ON(!journal);
1072 
1073 	status = jbd2_journal_wipe(journal->j_journal, full);
1074 	if (status < 0) {
1075 		mlog_errno(status);
1076 		goto bail;
1077 	}
1078 
1079 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1080 	if (status < 0)
1081 		mlog_errno(status);
1082 
1083 bail:
1084 	mlog_exit(status);
1085 	return status;
1086 }
1087 
1088 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1089 {
1090 	int empty;
1091 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1092 
1093 	spin_lock(&osb->osb_lock);
1094 	empty = (rm->rm_used == 0);
1095 	spin_unlock(&osb->osb_lock);
1096 
1097 	return empty;
1098 }
1099 
1100 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1101 {
1102 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1103 }
1104 
1105 /*
1106  * JBD Might read a cached version of another nodes journal file. We
1107  * don't want this as this file changes often and we get no
1108  * notification on those changes. The only way to be sure that we've
1109  * got the most up to date version of those blocks then is to force
1110  * read them off disk. Just searching through the buffer cache won't
1111  * work as there may be pages backing this file which are still marked
1112  * up to date. We know things can't change on this file underneath us
1113  * as we have the lock by now :)
1114  */
1115 static int ocfs2_force_read_journal(struct inode *inode)
1116 {
1117 	int status = 0;
1118 	int i;
1119 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1120 #define CONCURRENT_JOURNAL_FILL 32ULL
1121 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1122 
1123 	mlog_entry_void();
1124 
1125 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1126 
1127 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1128 	v_blkno = 0;
1129 	while (v_blkno < num_blocks) {
1130 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1131 						     &p_blkno, &p_blocks, NULL);
1132 		if (status < 0) {
1133 			mlog_errno(status);
1134 			goto bail;
1135 		}
1136 
1137 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1138 			p_blocks = CONCURRENT_JOURNAL_FILL;
1139 
1140 		/* We are reading journal data which should not
1141 		 * be put in the uptodate cache */
1142 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1143 						p_blkno, p_blocks, bhs);
1144 		if (status < 0) {
1145 			mlog_errno(status);
1146 			goto bail;
1147 		}
1148 
1149 		for(i = 0; i < p_blocks; i++) {
1150 			brelse(bhs[i]);
1151 			bhs[i] = NULL;
1152 		}
1153 
1154 		v_blkno += p_blocks;
1155 	}
1156 
1157 bail:
1158 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1159 		brelse(bhs[i]);
1160 	mlog_exit(status);
1161 	return status;
1162 }
1163 
1164 struct ocfs2_la_recovery_item {
1165 	struct list_head	lri_list;
1166 	int			lri_slot;
1167 	struct ocfs2_dinode	*lri_la_dinode;
1168 	struct ocfs2_dinode	*lri_tl_dinode;
1169 	struct ocfs2_quota_recovery *lri_qrec;
1170 };
1171 
1172 /* Does the second half of the recovery process. By this point, the
1173  * node is marked clean and can actually be considered recovered,
1174  * hence it's no longer in the recovery map, but there's still some
1175  * cleanup we can do which shouldn't happen within the recovery thread
1176  * as locking in that context becomes very difficult if we are to take
1177  * recovering nodes into account.
1178  *
1179  * NOTE: This function can and will sleep on recovery of other nodes
1180  * during cluster locking, just like any other ocfs2 process.
1181  */
1182 void ocfs2_complete_recovery(struct work_struct *work)
1183 {
1184 	int ret;
1185 	struct ocfs2_journal *journal =
1186 		container_of(work, struct ocfs2_journal, j_recovery_work);
1187 	struct ocfs2_super *osb = journal->j_osb;
1188 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1189 	struct ocfs2_la_recovery_item *item, *n;
1190 	struct ocfs2_quota_recovery *qrec;
1191 	LIST_HEAD(tmp_la_list);
1192 
1193 	mlog_entry_void();
1194 
1195 	mlog(0, "completing recovery from keventd\n");
1196 
1197 	spin_lock(&journal->j_lock);
1198 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1199 	spin_unlock(&journal->j_lock);
1200 
1201 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1202 		list_del_init(&item->lri_list);
1203 
1204 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1205 
1206 		ocfs2_wait_on_quotas(osb);
1207 
1208 		la_dinode = item->lri_la_dinode;
1209 		if (la_dinode) {
1210 			mlog(0, "Clean up local alloc %llu\n",
1211 			     (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1212 
1213 			ret = ocfs2_complete_local_alloc_recovery(osb,
1214 								  la_dinode);
1215 			if (ret < 0)
1216 				mlog_errno(ret);
1217 
1218 			kfree(la_dinode);
1219 		}
1220 
1221 		tl_dinode = item->lri_tl_dinode;
1222 		if (tl_dinode) {
1223 			mlog(0, "Clean up truncate log %llu\n",
1224 			     (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1225 
1226 			ret = ocfs2_complete_truncate_log_recovery(osb,
1227 								   tl_dinode);
1228 			if (ret < 0)
1229 				mlog_errno(ret);
1230 
1231 			kfree(tl_dinode);
1232 		}
1233 
1234 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
1235 		if (ret < 0)
1236 			mlog_errno(ret);
1237 
1238 		qrec = item->lri_qrec;
1239 		if (qrec) {
1240 			mlog(0, "Recovering quota files");
1241 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1242 							  item->lri_slot);
1243 			if (ret < 0)
1244 				mlog_errno(ret);
1245 			/* Recovery info is already freed now */
1246 		}
1247 
1248 		kfree(item);
1249 	}
1250 
1251 	mlog(0, "Recovery completion\n");
1252 	mlog_exit_void();
1253 }
1254 
1255 /* NOTE: This function always eats your references to la_dinode and
1256  * tl_dinode, either manually on error, or by passing them to
1257  * ocfs2_complete_recovery */
1258 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1259 					    int slot_num,
1260 					    struct ocfs2_dinode *la_dinode,
1261 					    struct ocfs2_dinode *tl_dinode,
1262 					    struct ocfs2_quota_recovery *qrec)
1263 {
1264 	struct ocfs2_la_recovery_item *item;
1265 
1266 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1267 	if (!item) {
1268 		/* Though we wish to avoid it, we are in fact safe in
1269 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1270 		 * than capable of reclaiming unused space. */
1271 		if (la_dinode)
1272 			kfree(la_dinode);
1273 
1274 		if (tl_dinode)
1275 			kfree(tl_dinode);
1276 
1277 		if (qrec)
1278 			ocfs2_free_quota_recovery(qrec);
1279 
1280 		mlog_errno(-ENOMEM);
1281 		return;
1282 	}
1283 
1284 	INIT_LIST_HEAD(&item->lri_list);
1285 	item->lri_la_dinode = la_dinode;
1286 	item->lri_slot = slot_num;
1287 	item->lri_tl_dinode = tl_dinode;
1288 	item->lri_qrec = qrec;
1289 
1290 	spin_lock(&journal->j_lock);
1291 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1292 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1293 	spin_unlock(&journal->j_lock);
1294 }
1295 
1296 /* Called by the mount code to queue recovery the last part of
1297  * recovery for it's own and offline slot(s). */
1298 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1299 {
1300 	struct ocfs2_journal *journal = osb->journal;
1301 
1302 	/* No need to queue up our truncate_log as regular cleanup will catch
1303 	 * that */
1304 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1305 					osb->local_alloc_copy, NULL, NULL);
1306 	ocfs2_schedule_truncate_log_flush(osb, 0);
1307 
1308 	osb->local_alloc_copy = NULL;
1309 	osb->dirty = 0;
1310 
1311 	/* queue to recover orphan slots for all offline slots */
1312 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1313 	ocfs2_queue_replay_slots(osb);
1314 	ocfs2_free_replay_slots(osb);
1315 }
1316 
1317 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1318 {
1319 	if (osb->quota_rec) {
1320 		ocfs2_queue_recovery_completion(osb->journal,
1321 						osb->slot_num,
1322 						NULL,
1323 						NULL,
1324 						osb->quota_rec);
1325 		osb->quota_rec = NULL;
1326 	}
1327 }
1328 
1329 static int __ocfs2_recovery_thread(void *arg)
1330 {
1331 	int status, node_num, slot_num;
1332 	struct ocfs2_super *osb = arg;
1333 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1334 	int *rm_quota = NULL;
1335 	int rm_quota_used = 0, i;
1336 	struct ocfs2_quota_recovery *qrec;
1337 
1338 	mlog_entry_void();
1339 
1340 	status = ocfs2_wait_on_mount(osb);
1341 	if (status < 0) {
1342 		goto bail;
1343 	}
1344 
1345 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1346 	if (!rm_quota) {
1347 		status = -ENOMEM;
1348 		goto bail;
1349 	}
1350 restart:
1351 	status = ocfs2_super_lock(osb, 1);
1352 	if (status < 0) {
1353 		mlog_errno(status);
1354 		goto bail;
1355 	}
1356 
1357 	status = ocfs2_compute_replay_slots(osb);
1358 	if (status < 0)
1359 		mlog_errno(status);
1360 
1361 	/* queue recovery for our own slot */
1362 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1363 					NULL, NULL);
1364 
1365 	spin_lock(&osb->osb_lock);
1366 	while (rm->rm_used) {
1367 		/* It's always safe to remove entry zero, as we won't
1368 		 * clear it until ocfs2_recover_node() has succeeded. */
1369 		node_num = rm->rm_entries[0];
1370 		spin_unlock(&osb->osb_lock);
1371 		mlog(0, "checking node %d\n", node_num);
1372 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1373 		if (slot_num == -ENOENT) {
1374 			status = 0;
1375 			mlog(0, "no slot for this node, so no recovery"
1376 			     "required.\n");
1377 			goto skip_recovery;
1378 		}
1379 		mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1380 
1381 		/* It is a bit subtle with quota recovery. We cannot do it
1382 		 * immediately because we have to obtain cluster locks from
1383 		 * quota files and we also don't want to just skip it because
1384 		 * then quota usage would be out of sync until some node takes
1385 		 * the slot. So we remember which nodes need quota recovery
1386 		 * and when everything else is done, we recover quotas. */
1387 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1388 		if (i == rm_quota_used)
1389 			rm_quota[rm_quota_used++] = slot_num;
1390 
1391 		status = ocfs2_recover_node(osb, node_num, slot_num);
1392 skip_recovery:
1393 		if (!status) {
1394 			ocfs2_recovery_map_clear(osb, node_num);
1395 		} else {
1396 			mlog(ML_ERROR,
1397 			     "Error %d recovering node %d on device (%u,%u)!\n",
1398 			     status, node_num,
1399 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1400 			mlog(ML_ERROR, "Volume requires unmount.\n");
1401 		}
1402 
1403 		spin_lock(&osb->osb_lock);
1404 	}
1405 	spin_unlock(&osb->osb_lock);
1406 	mlog(0, "All nodes recovered\n");
1407 
1408 	/* Refresh all journal recovery generations from disk */
1409 	status = ocfs2_check_journals_nolocks(osb);
1410 	status = (status == -EROFS) ? 0 : status;
1411 	if (status < 0)
1412 		mlog_errno(status);
1413 
1414 	/* Now it is right time to recover quotas... We have to do this under
1415 	 * superblock lock so that noone can start using the slot (and crash)
1416 	 * before we recover it */
1417 	for (i = 0; i < rm_quota_used; i++) {
1418 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1419 		if (IS_ERR(qrec)) {
1420 			status = PTR_ERR(qrec);
1421 			mlog_errno(status);
1422 			continue;
1423 		}
1424 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1425 						NULL, NULL, qrec);
1426 	}
1427 
1428 	ocfs2_super_unlock(osb, 1);
1429 
1430 	/* queue recovery for offline slots */
1431 	ocfs2_queue_replay_slots(osb);
1432 
1433 bail:
1434 	mutex_lock(&osb->recovery_lock);
1435 	if (!status && !ocfs2_recovery_completed(osb)) {
1436 		mutex_unlock(&osb->recovery_lock);
1437 		goto restart;
1438 	}
1439 
1440 	ocfs2_free_replay_slots(osb);
1441 	osb->recovery_thread_task = NULL;
1442 	mb(); /* sync with ocfs2_recovery_thread_running */
1443 	wake_up(&osb->recovery_event);
1444 
1445 	mutex_unlock(&osb->recovery_lock);
1446 
1447 	if (rm_quota)
1448 		kfree(rm_quota);
1449 
1450 	mlog_exit(status);
1451 	/* no one is callint kthread_stop() for us so the kthread() api
1452 	 * requires that we call do_exit().  And it isn't exported, but
1453 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1454 	complete_and_exit(NULL, status);
1455 	return status;
1456 }
1457 
1458 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1459 {
1460 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1461 		   node_num, osb->node_num);
1462 
1463 	mutex_lock(&osb->recovery_lock);
1464 	if (osb->disable_recovery)
1465 		goto out;
1466 
1467 	/* People waiting on recovery will wait on
1468 	 * the recovery map to empty. */
1469 	if (ocfs2_recovery_map_set(osb, node_num))
1470 		mlog(0, "node %d already in recovery map.\n", node_num);
1471 
1472 	mlog(0, "starting recovery thread...\n");
1473 
1474 	if (osb->recovery_thread_task)
1475 		goto out;
1476 
1477 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1478 						 "ocfs2rec");
1479 	if (IS_ERR(osb->recovery_thread_task)) {
1480 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1481 		osb->recovery_thread_task = NULL;
1482 	}
1483 
1484 out:
1485 	mutex_unlock(&osb->recovery_lock);
1486 	wake_up(&osb->recovery_event);
1487 
1488 	mlog_exit_void();
1489 }
1490 
1491 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1492 				    int slot_num,
1493 				    struct buffer_head **bh,
1494 				    struct inode **ret_inode)
1495 {
1496 	int status = -EACCES;
1497 	struct inode *inode = NULL;
1498 
1499 	BUG_ON(slot_num >= osb->max_slots);
1500 
1501 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1502 					    slot_num);
1503 	if (!inode || is_bad_inode(inode)) {
1504 		mlog_errno(status);
1505 		goto bail;
1506 	}
1507 	SET_INODE_JOURNAL(inode);
1508 
1509 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1510 	if (status < 0) {
1511 		mlog_errno(status);
1512 		goto bail;
1513 	}
1514 
1515 	status = 0;
1516 
1517 bail:
1518 	if (inode) {
1519 		if (status || !ret_inode)
1520 			iput(inode);
1521 		else
1522 			*ret_inode = inode;
1523 	}
1524 	return status;
1525 }
1526 
1527 /* Does the actual journal replay and marks the journal inode as
1528  * clean. Will only replay if the journal inode is marked dirty. */
1529 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1530 				int node_num,
1531 				int slot_num)
1532 {
1533 	int status;
1534 	int got_lock = 0;
1535 	unsigned int flags;
1536 	struct inode *inode = NULL;
1537 	struct ocfs2_dinode *fe;
1538 	journal_t *journal = NULL;
1539 	struct buffer_head *bh = NULL;
1540 	u32 slot_reco_gen;
1541 
1542 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1543 	if (status) {
1544 		mlog_errno(status);
1545 		goto done;
1546 	}
1547 
1548 	fe = (struct ocfs2_dinode *)bh->b_data;
1549 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1550 	brelse(bh);
1551 	bh = NULL;
1552 
1553 	/*
1554 	 * As the fs recovery is asynchronous, there is a small chance that
1555 	 * another node mounted (and recovered) the slot before the recovery
1556 	 * thread could get the lock. To handle that, we dirty read the journal
1557 	 * inode for that slot to get the recovery generation. If it is
1558 	 * different than what we expected, the slot has been recovered.
1559 	 * If not, it needs recovery.
1560 	 */
1561 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1562 		mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1563 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1564 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1565 		status = -EBUSY;
1566 		goto done;
1567 	}
1568 
1569 	/* Continue with recovery as the journal has not yet been recovered */
1570 
1571 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1572 	if (status < 0) {
1573 		mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1574 		if (status != -ERESTARTSYS)
1575 			mlog(ML_ERROR, "Could not lock journal!\n");
1576 		goto done;
1577 	}
1578 	got_lock = 1;
1579 
1580 	fe = (struct ocfs2_dinode *) bh->b_data;
1581 
1582 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1583 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1584 
1585 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1586 		mlog(0, "No recovery required for node %d\n", node_num);
1587 		/* Refresh recovery generation for the slot */
1588 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1589 		goto done;
1590 	}
1591 
1592 	/* we need to run complete recovery for offline orphan slots */
1593 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1594 
1595 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1596 	     node_num, slot_num,
1597 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1598 
1599 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1600 
1601 	status = ocfs2_force_read_journal(inode);
1602 	if (status < 0) {
1603 		mlog_errno(status);
1604 		goto done;
1605 	}
1606 
1607 	mlog(0, "calling journal_init_inode\n");
1608 	journal = jbd2_journal_init_inode(inode);
1609 	if (journal == NULL) {
1610 		mlog(ML_ERROR, "Linux journal layer error\n");
1611 		status = -EIO;
1612 		goto done;
1613 	}
1614 
1615 	status = jbd2_journal_load(journal);
1616 	if (status < 0) {
1617 		mlog_errno(status);
1618 		if (!igrab(inode))
1619 			BUG();
1620 		jbd2_journal_destroy(journal);
1621 		goto done;
1622 	}
1623 
1624 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1625 
1626 	/* wipe the journal */
1627 	mlog(0, "flushing the journal.\n");
1628 	jbd2_journal_lock_updates(journal);
1629 	status = jbd2_journal_flush(journal);
1630 	jbd2_journal_unlock_updates(journal);
1631 	if (status < 0)
1632 		mlog_errno(status);
1633 
1634 	/* This will mark the node clean */
1635 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1636 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1637 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1638 
1639 	/* Increment recovery generation to indicate successful recovery */
1640 	ocfs2_bump_recovery_generation(fe);
1641 	osb->slot_recovery_generations[slot_num] =
1642 					ocfs2_get_recovery_generation(fe);
1643 
1644 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1645 	status = ocfs2_write_block(osb, bh, inode);
1646 	if (status < 0)
1647 		mlog_errno(status);
1648 
1649 	if (!igrab(inode))
1650 		BUG();
1651 
1652 	jbd2_journal_destroy(journal);
1653 
1654 done:
1655 	/* drop the lock on this nodes journal */
1656 	if (got_lock)
1657 		ocfs2_inode_unlock(inode, 1);
1658 
1659 	if (inode)
1660 		iput(inode);
1661 
1662 	brelse(bh);
1663 
1664 	mlog_exit(status);
1665 	return status;
1666 }
1667 
1668 /*
1669  * Do the most important parts of node recovery:
1670  *  - Replay it's journal
1671  *  - Stamp a clean local allocator file
1672  *  - Stamp a clean truncate log
1673  *  - Mark the node clean
1674  *
1675  * If this function completes without error, a node in OCFS2 can be
1676  * said to have been safely recovered. As a result, failure during the
1677  * second part of a nodes recovery process (local alloc recovery) is
1678  * far less concerning.
1679  */
1680 static int ocfs2_recover_node(struct ocfs2_super *osb,
1681 			      int node_num, int slot_num)
1682 {
1683 	int status = 0;
1684 	struct ocfs2_dinode *la_copy = NULL;
1685 	struct ocfs2_dinode *tl_copy = NULL;
1686 
1687 	mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1688 		   node_num, slot_num, osb->node_num);
1689 
1690 	/* Should not ever be called to recover ourselves -- in that
1691 	 * case we should've called ocfs2_journal_load instead. */
1692 	BUG_ON(osb->node_num == node_num);
1693 
1694 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1695 	if (status < 0) {
1696 		if (status == -EBUSY) {
1697 			mlog(0, "Skipping recovery for slot %u (node %u) "
1698 			     "as another node has recovered it\n", slot_num,
1699 			     node_num);
1700 			status = 0;
1701 			goto done;
1702 		}
1703 		mlog_errno(status);
1704 		goto done;
1705 	}
1706 
1707 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1708 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1709 	if (status < 0) {
1710 		mlog_errno(status);
1711 		goto done;
1712 	}
1713 
1714 	/* An error from begin_truncate_log_recovery is not
1715 	 * serious enough to warrant halting the rest of
1716 	 * recovery. */
1717 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1718 	if (status < 0)
1719 		mlog_errno(status);
1720 
1721 	/* Likewise, this would be a strange but ultimately not so
1722 	 * harmful place to get an error... */
1723 	status = ocfs2_clear_slot(osb, slot_num);
1724 	if (status < 0)
1725 		mlog_errno(status);
1726 
1727 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1728 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1729 					tl_copy, NULL);
1730 
1731 	status = 0;
1732 done:
1733 
1734 	mlog_exit(status);
1735 	return status;
1736 }
1737 
1738 /* Test node liveness by trylocking his journal. If we get the lock,
1739  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1740  * still alive (we couldn't get the lock) and < 0 on error. */
1741 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1742 				 int slot_num)
1743 {
1744 	int status, flags;
1745 	struct inode *inode = NULL;
1746 
1747 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1748 					    slot_num);
1749 	if (inode == NULL) {
1750 		mlog(ML_ERROR, "access error\n");
1751 		status = -EACCES;
1752 		goto bail;
1753 	}
1754 	if (is_bad_inode(inode)) {
1755 		mlog(ML_ERROR, "access error (bad inode)\n");
1756 		iput(inode);
1757 		inode = NULL;
1758 		status = -EACCES;
1759 		goto bail;
1760 	}
1761 	SET_INODE_JOURNAL(inode);
1762 
1763 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1764 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1765 	if (status < 0) {
1766 		if (status != -EAGAIN)
1767 			mlog_errno(status);
1768 		goto bail;
1769 	}
1770 
1771 	ocfs2_inode_unlock(inode, 1);
1772 bail:
1773 	if (inode)
1774 		iput(inode);
1775 
1776 	return status;
1777 }
1778 
1779 /* Call this underneath ocfs2_super_lock. It also assumes that the
1780  * slot info struct has been updated from disk. */
1781 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1782 {
1783 	unsigned int node_num;
1784 	int status, i;
1785 	u32 gen;
1786 	struct buffer_head *bh = NULL;
1787 	struct ocfs2_dinode *di;
1788 
1789 	/* This is called with the super block cluster lock, so we
1790 	 * know that the slot map can't change underneath us. */
1791 
1792 	for (i = 0; i < osb->max_slots; i++) {
1793 		/* Read journal inode to get the recovery generation */
1794 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1795 		if (status) {
1796 			mlog_errno(status);
1797 			goto bail;
1798 		}
1799 		di = (struct ocfs2_dinode *)bh->b_data;
1800 		gen = ocfs2_get_recovery_generation(di);
1801 		brelse(bh);
1802 		bh = NULL;
1803 
1804 		spin_lock(&osb->osb_lock);
1805 		osb->slot_recovery_generations[i] = gen;
1806 
1807 		mlog(0, "Slot %u recovery generation is %u\n", i,
1808 		     osb->slot_recovery_generations[i]);
1809 
1810 		if (i == osb->slot_num) {
1811 			spin_unlock(&osb->osb_lock);
1812 			continue;
1813 		}
1814 
1815 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1816 		if (status == -ENOENT) {
1817 			spin_unlock(&osb->osb_lock);
1818 			continue;
1819 		}
1820 
1821 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1822 			spin_unlock(&osb->osb_lock);
1823 			continue;
1824 		}
1825 		spin_unlock(&osb->osb_lock);
1826 
1827 		/* Ok, we have a slot occupied by another node which
1828 		 * is not in the recovery map. We trylock his journal
1829 		 * file here to test if he's alive. */
1830 		status = ocfs2_trylock_journal(osb, i);
1831 		if (!status) {
1832 			/* Since we're called from mount, we know that
1833 			 * the recovery thread can't race us on
1834 			 * setting / checking the recovery bits. */
1835 			ocfs2_recovery_thread(osb, node_num);
1836 		} else if ((status < 0) && (status != -EAGAIN)) {
1837 			mlog_errno(status);
1838 			goto bail;
1839 		}
1840 	}
1841 
1842 	status = 0;
1843 bail:
1844 	mlog_exit(status);
1845 	return status;
1846 }
1847 
1848 /*
1849  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1850  * randomness to the timeout to minimize multple nodes firing the timer at the
1851  * same time.
1852  */
1853 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1854 {
1855 	unsigned long time;
1856 
1857 	get_random_bytes(&time, sizeof(time));
1858 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1859 	return msecs_to_jiffies(time);
1860 }
1861 
1862 /*
1863  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1864  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1865  * is done to catch any orphans that are left over in orphan directories.
1866  *
1867  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1868  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1869  * stored in LVB. If the sequence number has changed, it means some other
1870  * node has done the scan.  This node skips the scan and tracks the
1871  * sequence number.  If the sequence number didn't change, it means a scan
1872  * hasn't happened.  The node queues a scan and increments the
1873  * sequence number in the LVB.
1874  */
1875 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1876 {
1877 	struct ocfs2_orphan_scan *os;
1878 	int status, i;
1879 	u32 seqno = 0;
1880 
1881 	os = &osb->osb_orphan_scan;
1882 
1883 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1884 		goto out;
1885 
1886 	status = ocfs2_orphan_scan_lock(osb, &seqno, DLM_LOCK_EX);
1887 	if (status < 0) {
1888 		if (status != -EAGAIN)
1889 			mlog_errno(status);
1890 		goto out;
1891 	}
1892 
1893 	/* Do no queue the tasks if the volume is being umounted */
1894 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1895 		goto unlock;
1896 
1897 	if (os->os_seqno != seqno) {
1898 		os->os_seqno = seqno;
1899 		goto unlock;
1900 	}
1901 
1902 	for (i = 0; i < osb->max_slots; i++)
1903 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1904 						NULL);
1905 	/*
1906 	 * We queued a recovery on orphan slots, increment the sequence
1907 	 * number and update LVB so other node will skip the scan for a while
1908 	 */
1909 	seqno++;
1910 	os->os_count++;
1911 	os->os_scantime = CURRENT_TIME;
1912 unlock:
1913 	ocfs2_orphan_scan_unlock(osb, seqno, DLM_LOCK_EX);
1914 out:
1915 	return;
1916 }
1917 
1918 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1919 void ocfs2_orphan_scan_work(struct work_struct *work)
1920 {
1921 	struct ocfs2_orphan_scan *os;
1922 	struct ocfs2_super *osb;
1923 
1924 	os = container_of(work, struct ocfs2_orphan_scan,
1925 			  os_orphan_scan_work.work);
1926 	osb = os->os_osb;
1927 
1928 	mutex_lock(&os->os_lock);
1929 	ocfs2_queue_orphan_scan(osb);
1930 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1931 		schedule_delayed_work(&os->os_orphan_scan_work,
1932 				      ocfs2_orphan_scan_timeout());
1933 	mutex_unlock(&os->os_lock);
1934 }
1935 
1936 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1937 {
1938 	struct ocfs2_orphan_scan *os;
1939 
1940 	os = &osb->osb_orphan_scan;
1941 	atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1942 	mutex_lock(&os->os_lock);
1943 	cancel_delayed_work(&os->os_orphan_scan_work);
1944 	mutex_unlock(&os->os_lock);
1945 }
1946 
1947 int ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1948 {
1949 	struct ocfs2_orphan_scan *os;
1950 
1951 	os = &osb->osb_orphan_scan;
1952 	atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1953 	os->os_osb = osb;
1954 	os->os_count = 0;
1955 	os->os_seqno = 0;
1956 	os->os_scantime = CURRENT_TIME;
1957 	mutex_init(&os->os_lock);
1958 
1959 	INIT_DELAYED_WORK(&os->os_orphan_scan_work,
1960 			  ocfs2_orphan_scan_work);
1961 	schedule_delayed_work(&os->os_orphan_scan_work,
1962 			      ocfs2_orphan_scan_timeout());
1963 	return 0;
1964 }
1965 
1966 struct ocfs2_orphan_filldir_priv {
1967 	struct inode		*head;
1968 	struct ocfs2_super	*osb;
1969 };
1970 
1971 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1972 				loff_t pos, u64 ino, unsigned type)
1973 {
1974 	struct ocfs2_orphan_filldir_priv *p = priv;
1975 	struct inode *iter;
1976 
1977 	if (name_len == 1 && !strncmp(".", name, 1))
1978 		return 0;
1979 	if (name_len == 2 && !strncmp("..", name, 2))
1980 		return 0;
1981 
1982 	/* Skip bad inodes so that recovery can continue */
1983 	iter = ocfs2_iget(p->osb, ino,
1984 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1985 	if (IS_ERR(iter))
1986 		return 0;
1987 
1988 	mlog(0, "queue orphan %llu\n",
1989 	     (unsigned long long)OCFS2_I(iter)->ip_blkno);
1990 	/* No locking is required for the next_orphan queue as there
1991 	 * is only ever a single process doing orphan recovery. */
1992 	OCFS2_I(iter)->ip_next_orphan = p->head;
1993 	p->head = iter;
1994 
1995 	return 0;
1996 }
1997 
1998 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1999 			       int slot,
2000 			       struct inode **head)
2001 {
2002 	int status;
2003 	struct inode *orphan_dir_inode = NULL;
2004 	struct ocfs2_orphan_filldir_priv priv;
2005 	loff_t pos = 0;
2006 
2007 	priv.osb = osb;
2008 	priv.head = *head;
2009 
2010 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2011 						       ORPHAN_DIR_SYSTEM_INODE,
2012 						       slot);
2013 	if  (!orphan_dir_inode) {
2014 		status = -ENOENT;
2015 		mlog_errno(status);
2016 		return status;
2017 	}
2018 
2019 	mutex_lock(&orphan_dir_inode->i_mutex);
2020 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2021 	if (status < 0) {
2022 		mlog_errno(status);
2023 		goto out;
2024 	}
2025 
2026 	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2027 				   ocfs2_orphan_filldir);
2028 	if (status) {
2029 		mlog_errno(status);
2030 		goto out_cluster;
2031 	}
2032 
2033 	*head = priv.head;
2034 
2035 out_cluster:
2036 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2037 out:
2038 	mutex_unlock(&orphan_dir_inode->i_mutex);
2039 	iput(orphan_dir_inode);
2040 	return status;
2041 }
2042 
2043 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2044 					      int slot)
2045 {
2046 	int ret;
2047 
2048 	spin_lock(&osb->osb_lock);
2049 	ret = !osb->osb_orphan_wipes[slot];
2050 	spin_unlock(&osb->osb_lock);
2051 	return ret;
2052 }
2053 
2054 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2055 					     int slot)
2056 {
2057 	spin_lock(&osb->osb_lock);
2058 	/* Mark ourselves such that new processes in delete_inode()
2059 	 * know to quit early. */
2060 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2061 	while (osb->osb_orphan_wipes[slot]) {
2062 		/* If any processes are already in the middle of an
2063 		 * orphan wipe on this dir, then we need to wait for
2064 		 * them. */
2065 		spin_unlock(&osb->osb_lock);
2066 		wait_event_interruptible(osb->osb_wipe_event,
2067 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2068 		spin_lock(&osb->osb_lock);
2069 	}
2070 	spin_unlock(&osb->osb_lock);
2071 }
2072 
2073 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2074 					      int slot)
2075 {
2076 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2077 }
2078 
2079 /*
2080  * Orphan recovery. Each mounted node has it's own orphan dir which we
2081  * must run during recovery. Our strategy here is to build a list of
2082  * the inodes in the orphan dir and iget/iput them. The VFS does
2083  * (most) of the rest of the work.
2084  *
2085  * Orphan recovery can happen at any time, not just mount so we have a
2086  * couple of extra considerations.
2087  *
2088  * - We grab as many inodes as we can under the orphan dir lock -
2089  *   doing iget() outside the orphan dir risks getting a reference on
2090  *   an invalid inode.
2091  * - We must be sure not to deadlock with other processes on the
2092  *   system wanting to run delete_inode(). This can happen when they go
2093  *   to lock the orphan dir and the orphan recovery process attempts to
2094  *   iget() inside the orphan dir lock. This can be avoided by
2095  *   advertising our state to ocfs2_delete_inode().
2096  */
2097 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2098 				 int slot)
2099 {
2100 	int ret = 0;
2101 	struct inode *inode = NULL;
2102 	struct inode *iter;
2103 	struct ocfs2_inode_info *oi;
2104 
2105 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2106 
2107 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2108 	ret = ocfs2_queue_orphans(osb, slot, &inode);
2109 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2110 
2111 	/* Error here should be noted, but we want to continue with as
2112 	 * many queued inodes as we've got. */
2113 	if (ret)
2114 		mlog_errno(ret);
2115 
2116 	while (inode) {
2117 		oi = OCFS2_I(inode);
2118 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
2119 
2120 		iter = oi->ip_next_orphan;
2121 
2122 		spin_lock(&oi->ip_lock);
2123 		/* The remote delete code may have set these on the
2124 		 * assumption that the other node would wipe them
2125 		 * successfully.  If they are still in the node's
2126 		 * orphan dir, we need to reset that state. */
2127 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2128 
2129 		/* Set the proper information to get us going into
2130 		 * ocfs2_delete_inode. */
2131 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2132 		spin_unlock(&oi->ip_lock);
2133 
2134 		iput(inode);
2135 
2136 		inode = iter;
2137 	}
2138 
2139 	return ret;
2140 }
2141 
2142 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2143 {
2144 	/* This check is good because ocfs2 will wait on our recovery
2145 	 * thread before changing it to something other than MOUNTED
2146 	 * or DISABLED. */
2147 	wait_event(osb->osb_mount_event,
2148 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2149 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2150 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2151 
2152 	/* If there's an error on mount, then we may never get to the
2153 	 * MOUNTED flag, but this is set right before
2154 	 * dismount_volume() so we can trust it. */
2155 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2156 		mlog(0, "mount error, exiting!\n");
2157 		return -EBUSY;
2158 	}
2159 
2160 	return 0;
2161 }
2162 
2163 static int ocfs2_commit_thread(void *arg)
2164 {
2165 	int status;
2166 	struct ocfs2_super *osb = arg;
2167 	struct ocfs2_journal *journal = osb->journal;
2168 
2169 	/* we can trust j_num_trans here because _should_stop() is only set in
2170 	 * shutdown and nobody other than ourselves should be able to start
2171 	 * transactions.  committing on shutdown might take a few iterations
2172 	 * as final transactions put deleted inodes on the list */
2173 	while (!(kthread_should_stop() &&
2174 		 atomic_read(&journal->j_num_trans) == 0)) {
2175 
2176 		wait_event_interruptible(osb->checkpoint_event,
2177 					 atomic_read(&journal->j_num_trans)
2178 					 || kthread_should_stop());
2179 
2180 		status = ocfs2_commit_cache(osb);
2181 		if (status < 0)
2182 			mlog_errno(status);
2183 
2184 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2185 			mlog(ML_KTHREAD,
2186 			     "commit_thread: %u transactions pending on "
2187 			     "shutdown\n",
2188 			     atomic_read(&journal->j_num_trans));
2189 		}
2190 	}
2191 
2192 	return 0;
2193 }
2194 
2195 /* Reads all the journal inodes without taking any cluster locks. Used
2196  * for hard readonly access to determine whether any journal requires
2197  * recovery. Also used to refresh the recovery generation numbers after
2198  * a journal has been recovered by another node.
2199  */
2200 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2201 {
2202 	int ret = 0;
2203 	unsigned int slot;
2204 	struct buffer_head *di_bh = NULL;
2205 	struct ocfs2_dinode *di;
2206 	int journal_dirty = 0;
2207 
2208 	for(slot = 0; slot < osb->max_slots; slot++) {
2209 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2210 		if (ret) {
2211 			mlog_errno(ret);
2212 			goto out;
2213 		}
2214 
2215 		di = (struct ocfs2_dinode *) di_bh->b_data;
2216 
2217 		osb->slot_recovery_generations[slot] =
2218 					ocfs2_get_recovery_generation(di);
2219 
2220 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2221 		    OCFS2_JOURNAL_DIRTY_FL)
2222 			journal_dirty = 1;
2223 
2224 		brelse(di_bh);
2225 		di_bh = NULL;
2226 	}
2227 
2228 out:
2229 	if (journal_dirty)
2230 		ret = -EROFS;
2231 	return ret;
2232 }
2233