xref: /openbmc/linux/fs/ocfs2/journal.c (revision 22fc4c4c9fd60427bcda00878cee94e7622cfa7a)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34 
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55 
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58 
59 DEFINE_SPINLOCK(trans_inc_lock);
60 
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62 
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 			      int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 				      int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 				 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 				 int slot,
75 				 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 					    int slot_num,
79 					    struct ocfs2_dinode *la_dinode,
80 					    struct ocfs2_dinode *tl_dinode,
81 					    struct ocfs2_quota_recovery *qrec,
82 					    enum ocfs2_orphan_reco_type orphan_reco_type);
83 
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86 	return __ocfs2_wait_on_mount(osb, 0);
87 }
88 
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91 	return __ocfs2_wait_on_mount(osb, 1);
92 }
93 
94 /*
95  * This replay_map is to track online/offline slots, so we could recover
96  * offline slots during recovery and mount
97  */
98 
99 enum ocfs2_replay_state {
100 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
101 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
102 	REPLAY_DONE 		/* Replay was already queued */
103 };
104 
105 struct ocfs2_replay_map {
106 	unsigned int rm_slots;
107 	enum ocfs2_replay_state rm_state;
108 	unsigned char rm_replay_slots[0];
109 };
110 
111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113 	if (!osb->replay_map)
114 		return;
115 
116 	/* If we've already queued the replay, we don't have any more to do */
117 	if (osb->replay_map->rm_state == REPLAY_DONE)
118 		return;
119 
120 	osb->replay_map->rm_state = state;
121 }
122 
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125 	struct ocfs2_replay_map *replay_map;
126 	int i, node_num;
127 
128 	/* If replay map is already set, we don't do it again */
129 	if (osb->replay_map)
130 		return 0;
131 
132 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
134 
135 	if (!replay_map) {
136 		mlog_errno(-ENOMEM);
137 		return -ENOMEM;
138 	}
139 
140 	spin_lock(&osb->osb_lock);
141 
142 	replay_map->rm_slots = osb->max_slots;
143 	replay_map->rm_state = REPLAY_UNNEEDED;
144 
145 	/* set rm_replay_slots for offline slot(s) */
146 	for (i = 0; i < replay_map->rm_slots; i++) {
147 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 			replay_map->rm_replay_slots[i] = 1;
149 	}
150 
151 	osb->replay_map = replay_map;
152 	spin_unlock(&osb->osb_lock);
153 	return 0;
154 }
155 
156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 		enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159 	struct ocfs2_replay_map *replay_map = osb->replay_map;
160 	int i;
161 
162 	if (!replay_map)
163 		return;
164 
165 	if (replay_map->rm_state != REPLAY_NEEDED)
166 		return;
167 
168 	for (i = 0; i < replay_map->rm_slots; i++)
169 		if (replay_map->rm_replay_slots[i])
170 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 							NULL, NULL,
172 							orphan_reco_type);
173 	replay_map->rm_state = REPLAY_DONE;
174 }
175 
176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178 	struct ocfs2_replay_map *replay_map = osb->replay_map;
179 
180 	if (!osb->replay_map)
181 		return;
182 
183 	kfree(replay_map);
184 	osb->replay_map = NULL;
185 }
186 
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189 	struct ocfs2_recovery_map *rm;
190 
191 	mutex_init(&osb->recovery_lock);
192 	osb->disable_recovery = 0;
193 	osb->recovery_thread_task = NULL;
194 	init_waitqueue_head(&osb->recovery_event);
195 
196 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 		     osb->max_slots * sizeof(unsigned int),
198 		     GFP_KERNEL);
199 	if (!rm) {
200 		mlog_errno(-ENOMEM);
201 		return -ENOMEM;
202 	}
203 
204 	rm->rm_entries = (unsigned int *)((char *)rm +
205 					  sizeof(struct ocfs2_recovery_map));
206 	osb->recovery_map = rm;
207 
208 	return 0;
209 }
210 
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212  * memory barriers to make sure that we'll see the null task before
213  * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216 	mb();
217 	return osb->recovery_thread_task != NULL;
218 }
219 
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222 	struct ocfs2_recovery_map *rm;
223 
224 	/* disable any new recovery threads and wait for any currently
225 	 * running ones to exit. Do this before setting the vol_state. */
226 	mutex_lock(&osb->recovery_lock);
227 	osb->disable_recovery = 1;
228 	mutex_unlock(&osb->recovery_lock);
229 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230 
231 	/* At this point, we know that no more recovery threads can be
232 	 * launched, so wait for any recovery completion work to
233 	 * complete. */
234 	flush_workqueue(osb->ocfs2_wq);
235 
236 	/*
237 	 * Now that recovery is shut down, and the osb is about to be
238 	 * freed,  the osb_lock is not taken here.
239 	 */
240 	rm = osb->recovery_map;
241 	/* XXX: Should we bug if there are dirty entries? */
242 
243 	kfree(rm);
244 }
245 
246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247 				     unsigned int node_num)
248 {
249 	int i;
250 	struct ocfs2_recovery_map *rm = osb->recovery_map;
251 
252 	assert_spin_locked(&osb->osb_lock);
253 
254 	for (i = 0; i < rm->rm_used; i++) {
255 		if (rm->rm_entries[i] == node_num)
256 			return 1;
257 	}
258 
259 	return 0;
260 }
261 
262 /* Behaves like test-and-set.  Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264 				  unsigned int node_num)
265 {
266 	struct ocfs2_recovery_map *rm = osb->recovery_map;
267 
268 	spin_lock(&osb->osb_lock);
269 	if (__ocfs2_recovery_map_test(osb, node_num)) {
270 		spin_unlock(&osb->osb_lock);
271 		return 1;
272 	}
273 
274 	/* XXX: Can this be exploited? Not from o2dlm... */
275 	BUG_ON(rm->rm_used >= osb->max_slots);
276 
277 	rm->rm_entries[rm->rm_used] = node_num;
278 	rm->rm_used++;
279 	spin_unlock(&osb->osb_lock);
280 
281 	return 0;
282 }
283 
284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285 				     unsigned int node_num)
286 {
287 	int i;
288 	struct ocfs2_recovery_map *rm = osb->recovery_map;
289 
290 	spin_lock(&osb->osb_lock);
291 
292 	for (i = 0; i < rm->rm_used; i++) {
293 		if (rm->rm_entries[i] == node_num)
294 			break;
295 	}
296 
297 	if (i < rm->rm_used) {
298 		/* XXX: be careful with the pointer math */
299 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300 			(rm->rm_used - i - 1) * sizeof(unsigned int));
301 		rm->rm_used--;
302 	}
303 
304 	spin_unlock(&osb->osb_lock);
305 }
306 
307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
308 {
309 	int status = 0;
310 	unsigned int flushed;
311 	struct ocfs2_journal *journal = NULL;
312 
313 	journal = osb->journal;
314 
315 	/* Flush all pending commits and checkpoint the journal. */
316 	down_write(&journal->j_trans_barrier);
317 
318 	flushed = atomic_read(&journal->j_num_trans);
319 	trace_ocfs2_commit_cache_begin(flushed);
320 	if (flushed == 0) {
321 		up_write(&journal->j_trans_barrier);
322 		goto finally;
323 	}
324 
325 	jbd2_journal_lock_updates(journal->j_journal);
326 	status = jbd2_journal_flush(journal->j_journal);
327 	jbd2_journal_unlock_updates(journal->j_journal);
328 	if (status < 0) {
329 		up_write(&journal->j_trans_barrier);
330 		mlog_errno(status);
331 		goto finally;
332 	}
333 
334 	ocfs2_inc_trans_id(journal);
335 
336 	flushed = atomic_read(&journal->j_num_trans);
337 	atomic_set(&journal->j_num_trans, 0);
338 	up_write(&journal->j_trans_barrier);
339 
340 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
341 
342 	ocfs2_wake_downconvert_thread(osb);
343 	wake_up(&journal->j_checkpointed);
344 finally:
345 	return status;
346 }
347 
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350 	journal_t *journal = osb->journal->j_journal;
351 	handle_t *handle;
352 
353 	BUG_ON(!osb || !osb->journal->j_journal);
354 
355 	if (ocfs2_is_hard_readonly(osb))
356 		return ERR_PTR(-EROFS);
357 
358 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 	BUG_ON(max_buffs <= 0);
360 
361 	/* Nested transaction? Just return the handle... */
362 	if (journal_current_handle())
363 		return jbd2_journal_start(journal, max_buffs);
364 
365 	sb_start_intwrite(osb->sb);
366 
367 	down_read(&osb->journal->j_trans_barrier);
368 
369 	handle = jbd2_journal_start(journal, max_buffs);
370 	if (IS_ERR(handle)) {
371 		up_read(&osb->journal->j_trans_barrier);
372 		sb_end_intwrite(osb->sb);
373 
374 		mlog_errno(PTR_ERR(handle));
375 
376 		if (is_journal_aborted(journal)) {
377 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
378 			handle = ERR_PTR(-EROFS);
379 		}
380 	} else {
381 		if (!ocfs2_mount_local(osb))
382 			atomic_inc(&(osb->journal->j_num_trans));
383 	}
384 
385 	return handle;
386 }
387 
388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389 		       handle_t *handle)
390 {
391 	int ret, nested;
392 	struct ocfs2_journal *journal = osb->journal;
393 
394 	BUG_ON(!handle);
395 
396 	nested = handle->h_ref > 1;
397 	ret = jbd2_journal_stop(handle);
398 	if (ret < 0)
399 		mlog_errno(ret);
400 
401 	if (!nested) {
402 		up_read(&journal->j_trans_barrier);
403 		sb_end_intwrite(osb->sb);
404 	}
405 
406 	return ret;
407 }
408 
409 /*
410  * 'nblocks' is what you want to add to the current transaction.
411  *
412  * This might call jbd2_journal_restart() which will commit dirty buffers
413  * and then restart the transaction. Before calling
414  * ocfs2_extend_trans(), any changed blocks should have been
415  * dirtied. After calling it, all blocks which need to be changed must
416  * go through another set of journal_access/journal_dirty calls.
417  *
418  * WARNING: This will not release any semaphores or disk locks taken
419  * during the transaction, so make sure they were taken *before*
420  * start_trans or we'll have ordering deadlocks.
421  *
422  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423  * good because transaction ids haven't yet been recorded on the
424  * cluster locks associated with this handle.
425  */
426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
427 {
428 	int status, old_nblocks;
429 
430 	BUG_ON(!handle);
431 	BUG_ON(nblocks < 0);
432 
433 	if (!nblocks)
434 		return 0;
435 
436 	old_nblocks = handle->h_buffer_credits;
437 
438 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
439 
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441 	status = 1;
442 #else
443 	status = jbd2_journal_extend(handle, nblocks);
444 	if (status < 0) {
445 		mlog_errno(status);
446 		goto bail;
447 	}
448 #endif
449 
450 	if (status > 0) {
451 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452 		status = jbd2_journal_restart(handle,
453 					      old_nblocks + nblocks);
454 		if (status < 0) {
455 			mlog_errno(status);
456 			goto bail;
457 		}
458 	}
459 
460 	status = 0;
461 bail:
462 	return status;
463 }
464 
465 /*
466  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467  * If that fails, restart the transaction & regain write access for the
468  * buffer head which is used for metadata modifications.
469  * Taken from Ext4: extend_or_restart_transaction()
470  */
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473 	int status, old_nblks;
474 
475 	BUG_ON(!handle);
476 
477 	old_nblks = handle->h_buffer_credits;
478 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479 
480 	if (old_nblks < thresh)
481 		return 0;
482 
483 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484 	if (status < 0) {
485 		mlog_errno(status);
486 		goto bail;
487 	}
488 
489 	if (status > 0) {
490 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 		if (status < 0)
492 			mlog_errno(status);
493 	}
494 
495 bail:
496 	return status;
497 }
498 
499 
500 struct ocfs2_triggers {
501 	struct jbd2_buffer_trigger_type	ot_triggers;
502 	int				ot_offset;
503 };
504 
505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
506 {
507 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
508 }
509 
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 				 struct buffer_head *bh,
512 				 void *data, size_t size)
513 {
514 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
515 
516 	/*
517 	 * We aren't guaranteed to have the superblock here, so we
518 	 * must unconditionally compute the ecc data.
519 	 * __ocfs2_journal_access() will only set the triggers if
520 	 * metaecc is enabled.
521 	 */
522 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
523 }
524 
525 /*
526  * Quota blocks have their own trigger because the struct ocfs2_block_check
527  * offset depends on the blocksize.
528  */
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530 				 struct buffer_head *bh,
531 				 void *data, size_t size)
532 {
533 	struct ocfs2_disk_dqtrailer *dqt =
534 		ocfs2_block_dqtrailer(size, data);
535 
536 	/*
537 	 * We aren't guaranteed to have the superblock here, so we
538 	 * must unconditionally compute the ecc data.
539 	 * __ocfs2_journal_access() will only set the triggers if
540 	 * metaecc is enabled.
541 	 */
542 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
543 }
544 
545 /*
546  * Directory blocks also have their own trigger because the
547  * struct ocfs2_block_check offset depends on the blocksize.
548  */
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550 				 struct buffer_head *bh,
551 				 void *data, size_t size)
552 {
553 	struct ocfs2_dir_block_trailer *trailer =
554 		ocfs2_dir_trailer_from_size(size, data);
555 
556 	/*
557 	 * We aren't guaranteed to have the superblock here, so we
558 	 * must unconditionally compute the ecc data.
559 	 * __ocfs2_journal_access() will only set the triggers if
560 	 * metaecc is enabled.
561 	 */
562 	ocfs2_block_check_compute(data, size, &trailer->db_check);
563 }
564 
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566 				struct buffer_head *bh)
567 {
568 	mlog(ML_ERROR,
569 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
570 	     "bh->b_blocknr = %llu\n",
571 	     (unsigned long)bh,
572 	     (unsigned long long)bh->b_blocknr);
573 
574 	ocfs2_error(bh->b_bdev->bd_super,
575 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
576 }
577 
578 static struct ocfs2_triggers di_triggers = {
579 	.ot_triggers = {
580 		.t_frozen = ocfs2_frozen_trigger,
581 		.t_abort = ocfs2_abort_trigger,
582 	},
583 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
584 };
585 
586 static struct ocfs2_triggers eb_triggers = {
587 	.ot_triggers = {
588 		.t_frozen = ocfs2_frozen_trigger,
589 		.t_abort = ocfs2_abort_trigger,
590 	},
591 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
592 };
593 
594 static struct ocfs2_triggers rb_triggers = {
595 	.ot_triggers = {
596 		.t_frozen = ocfs2_frozen_trigger,
597 		.t_abort = ocfs2_abort_trigger,
598 	},
599 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
600 };
601 
602 static struct ocfs2_triggers gd_triggers = {
603 	.ot_triggers = {
604 		.t_frozen = ocfs2_frozen_trigger,
605 		.t_abort = ocfs2_abort_trigger,
606 	},
607 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
608 };
609 
610 static struct ocfs2_triggers db_triggers = {
611 	.ot_triggers = {
612 		.t_frozen = ocfs2_db_frozen_trigger,
613 		.t_abort = ocfs2_abort_trigger,
614 	},
615 };
616 
617 static struct ocfs2_triggers xb_triggers = {
618 	.ot_triggers = {
619 		.t_frozen = ocfs2_frozen_trigger,
620 		.t_abort = ocfs2_abort_trigger,
621 	},
622 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
623 };
624 
625 static struct ocfs2_triggers dq_triggers = {
626 	.ot_triggers = {
627 		.t_frozen = ocfs2_dq_frozen_trigger,
628 		.t_abort = ocfs2_abort_trigger,
629 	},
630 };
631 
632 static struct ocfs2_triggers dr_triggers = {
633 	.ot_triggers = {
634 		.t_frozen = ocfs2_frozen_trigger,
635 		.t_abort = ocfs2_abort_trigger,
636 	},
637 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
638 };
639 
640 static struct ocfs2_triggers dl_triggers = {
641 	.ot_triggers = {
642 		.t_frozen = ocfs2_frozen_trigger,
643 		.t_abort = ocfs2_abort_trigger,
644 	},
645 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
646 };
647 
648 static int __ocfs2_journal_access(handle_t *handle,
649 				  struct ocfs2_caching_info *ci,
650 				  struct buffer_head *bh,
651 				  struct ocfs2_triggers *triggers,
652 				  int type)
653 {
654 	int status;
655 	struct ocfs2_super *osb =
656 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
657 
658 	BUG_ON(!ci || !ci->ci_ops);
659 	BUG_ON(!handle);
660 	BUG_ON(!bh);
661 
662 	trace_ocfs2_journal_access(
663 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
664 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
665 
666 	/* we can safely remove this assertion after testing. */
667 	if (!buffer_uptodate(bh)) {
668 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
669 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
670 		     (unsigned long long)bh->b_blocknr, bh->b_state);
671 
672 		lock_buffer(bh);
673 		/*
674 		 * A previous transaction with a couple of buffer heads fail
675 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
676 		 * For current transaction, the bh is just among those error
677 		 * bhs which previous transaction handle. We can't just clear
678 		 * its BH_Write_EIO and reuse directly, since other bhs are
679 		 * not written to disk yet and that will cause metadata
680 		 * inconsistency. So we should set fs read-only to avoid
681 		 * further damage.
682 		 */
683 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
684 			unlock_buffer(bh);
685 			return ocfs2_error(osb->sb, "A previous attempt to "
686 					"write this buffer head failed\n");
687 		}
688 		unlock_buffer(bh);
689 	}
690 
691 	/* Set the current transaction information on the ci so
692 	 * that the locking code knows whether it can drop it's locks
693 	 * on this ci or not. We're protected from the commit
694 	 * thread updating the current transaction id until
695 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
696 	 * j_trans_barrier for us. */
697 	ocfs2_set_ci_lock_trans(osb->journal, ci);
698 
699 	ocfs2_metadata_cache_io_lock(ci);
700 	switch (type) {
701 	case OCFS2_JOURNAL_ACCESS_CREATE:
702 	case OCFS2_JOURNAL_ACCESS_WRITE:
703 		status = jbd2_journal_get_write_access(handle, bh);
704 		break;
705 
706 	case OCFS2_JOURNAL_ACCESS_UNDO:
707 		status = jbd2_journal_get_undo_access(handle, bh);
708 		break;
709 
710 	default:
711 		status = -EINVAL;
712 		mlog(ML_ERROR, "Unknown access type!\n");
713 	}
714 	if (!status && ocfs2_meta_ecc(osb) && triggers)
715 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
716 	ocfs2_metadata_cache_io_unlock(ci);
717 
718 	if (status < 0)
719 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
720 		     status, type);
721 
722 	return status;
723 }
724 
725 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
726 			    struct buffer_head *bh, int type)
727 {
728 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
729 }
730 
731 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
732 			    struct buffer_head *bh, int type)
733 {
734 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
735 }
736 
737 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
738 			    struct buffer_head *bh, int type)
739 {
740 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
741 				      type);
742 }
743 
744 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
745 			    struct buffer_head *bh, int type)
746 {
747 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
748 }
749 
750 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
751 			    struct buffer_head *bh, int type)
752 {
753 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
754 }
755 
756 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
757 			    struct buffer_head *bh, int type)
758 {
759 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
760 }
761 
762 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
763 			    struct buffer_head *bh, int type)
764 {
765 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
766 }
767 
768 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
769 			    struct buffer_head *bh, int type)
770 {
771 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
772 }
773 
774 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
775 			    struct buffer_head *bh, int type)
776 {
777 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
778 }
779 
780 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
781 			 struct buffer_head *bh, int type)
782 {
783 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
784 }
785 
786 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
787 {
788 	int status;
789 
790 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
791 
792 	status = jbd2_journal_dirty_metadata(handle, bh);
793 	if (status) {
794 		mlog_errno(status);
795 		if (!is_handle_aborted(handle)) {
796 			journal_t *journal = handle->h_transaction->t_journal;
797 			struct super_block *sb = bh->b_bdev->bd_super;
798 
799 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
800 					"Aborting transaction and journal.\n");
801 			handle->h_err = status;
802 			jbd2_journal_abort_handle(handle);
803 			jbd2_journal_abort(journal, status);
804 			ocfs2_abort(sb, "Journal already aborted.\n");
805 		}
806 	}
807 }
808 
809 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
810 
811 void ocfs2_set_journal_params(struct ocfs2_super *osb)
812 {
813 	journal_t *journal = osb->journal->j_journal;
814 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
815 
816 	if (osb->osb_commit_interval)
817 		commit_interval = osb->osb_commit_interval;
818 
819 	write_lock(&journal->j_state_lock);
820 	journal->j_commit_interval = commit_interval;
821 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
822 		journal->j_flags |= JBD2_BARRIER;
823 	else
824 		journal->j_flags &= ~JBD2_BARRIER;
825 	write_unlock(&journal->j_state_lock);
826 }
827 
828 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
829 {
830 	int status = -1;
831 	struct inode *inode = NULL; /* the journal inode */
832 	journal_t *j_journal = NULL;
833 	struct ocfs2_dinode *di = NULL;
834 	struct buffer_head *bh = NULL;
835 	struct ocfs2_super *osb;
836 	int inode_lock = 0;
837 
838 	BUG_ON(!journal);
839 
840 	osb = journal->j_osb;
841 
842 	/* already have the inode for our journal */
843 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
844 					    osb->slot_num);
845 	if (inode == NULL) {
846 		status = -EACCES;
847 		mlog_errno(status);
848 		goto done;
849 	}
850 	if (is_bad_inode(inode)) {
851 		mlog(ML_ERROR, "access error (bad inode)\n");
852 		iput(inode);
853 		inode = NULL;
854 		status = -EACCES;
855 		goto done;
856 	}
857 
858 	SET_INODE_JOURNAL(inode);
859 	OCFS2_I(inode)->ip_open_count++;
860 
861 	/* Skip recovery waits here - journal inode metadata never
862 	 * changes in a live cluster so it can be considered an
863 	 * exception to the rule. */
864 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
865 	if (status < 0) {
866 		if (status != -ERESTARTSYS)
867 			mlog(ML_ERROR, "Could not get lock on journal!\n");
868 		goto done;
869 	}
870 
871 	inode_lock = 1;
872 	di = (struct ocfs2_dinode *)bh->b_data;
873 
874 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
875 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
876 		     i_size_read(inode));
877 		status = -EINVAL;
878 		goto done;
879 	}
880 
881 	trace_ocfs2_journal_init(i_size_read(inode),
882 				 (unsigned long long)inode->i_blocks,
883 				 OCFS2_I(inode)->ip_clusters);
884 
885 	/* call the kernels journal init function now */
886 	j_journal = jbd2_journal_init_inode(inode);
887 	if (j_journal == NULL) {
888 		mlog(ML_ERROR, "Linux journal layer error\n");
889 		status = -EINVAL;
890 		goto done;
891 	}
892 
893 	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
894 
895 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
896 		  OCFS2_JOURNAL_DIRTY_FL);
897 
898 	journal->j_journal = j_journal;
899 	journal->j_inode = inode;
900 	journal->j_bh = bh;
901 
902 	ocfs2_set_journal_params(osb);
903 
904 	journal->j_state = OCFS2_JOURNAL_LOADED;
905 
906 	status = 0;
907 done:
908 	if (status < 0) {
909 		if (inode_lock)
910 			ocfs2_inode_unlock(inode, 1);
911 		brelse(bh);
912 		if (inode) {
913 			OCFS2_I(inode)->ip_open_count--;
914 			iput(inode);
915 		}
916 	}
917 
918 	return status;
919 }
920 
921 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
922 {
923 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
924 }
925 
926 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
927 {
928 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
929 }
930 
931 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
932 				      int dirty, int replayed)
933 {
934 	int status;
935 	unsigned int flags;
936 	struct ocfs2_journal *journal = osb->journal;
937 	struct buffer_head *bh = journal->j_bh;
938 	struct ocfs2_dinode *fe;
939 
940 	fe = (struct ocfs2_dinode *)bh->b_data;
941 
942 	/* The journal bh on the osb always comes from ocfs2_journal_init()
943 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
944 	 * code bug if we mess it up. */
945 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
946 
947 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
948 	if (dirty)
949 		flags |= OCFS2_JOURNAL_DIRTY_FL;
950 	else
951 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
952 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
953 
954 	if (replayed)
955 		ocfs2_bump_recovery_generation(fe);
956 
957 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
958 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
959 	if (status < 0)
960 		mlog_errno(status);
961 
962 	return status;
963 }
964 
965 /*
966  * If the journal has been kmalloc'd it needs to be freed after this
967  * call.
968  */
969 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
970 {
971 	struct ocfs2_journal *journal = NULL;
972 	int status = 0;
973 	struct inode *inode = NULL;
974 	int num_running_trans = 0;
975 
976 	BUG_ON(!osb);
977 
978 	journal = osb->journal;
979 	if (!journal)
980 		goto done;
981 
982 	inode = journal->j_inode;
983 
984 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
985 		goto done;
986 
987 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
988 	if (!igrab(inode))
989 		BUG();
990 
991 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
992 	trace_ocfs2_journal_shutdown(num_running_trans);
993 
994 	/* Do a commit_cache here. It will flush our journal, *and*
995 	 * release any locks that are still held.
996 	 * set the SHUTDOWN flag and release the trans lock.
997 	 * the commit thread will take the trans lock for us below. */
998 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
999 
1000 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1001 	 * drop the trans_lock (which we want to hold until we
1002 	 * completely destroy the journal. */
1003 	if (osb->commit_task) {
1004 		/* Wait for the commit thread */
1005 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1006 		kthread_stop(osb->commit_task);
1007 		osb->commit_task = NULL;
1008 	}
1009 
1010 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1011 
1012 	if (ocfs2_mount_local(osb)) {
1013 		jbd2_journal_lock_updates(journal->j_journal);
1014 		status = jbd2_journal_flush(journal->j_journal);
1015 		jbd2_journal_unlock_updates(journal->j_journal);
1016 		if (status < 0)
1017 			mlog_errno(status);
1018 	}
1019 
1020 	/* Shutdown the kernel journal system */
1021 	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1022 		/*
1023 		 * Do not toggle if flush was unsuccessful otherwise
1024 		 * will leave dirty metadata in a "clean" journal
1025 		 */
1026 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1027 		if (status < 0)
1028 			mlog_errno(status);
1029 	}
1030 	journal->j_journal = NULL;
1031 
1032 	OCFS2_I(inode)->ip_open_count--;
1033 
1034 	/* unlock our journal */
1035 	ocfs2_inode_unlock(inode, 1);
1036 
1037 	brelse(journal->j_bh);
1038 	journal->j_bh = NULL;
1039 
1040 	journal->j_state = OCFS2_JOURNAL_FREE;
1041 
1042 //	up_write(&journal->j_trans_barrier);
1043 done:
1044 	iput(inode);
1045 }
1046 
1047 static void ocfs2_clear_journal_error(struct super_block *sb,
1048 				      journal_t *journal,
1049 				      int slot)
1050 {
1051 	int olderr;
1052 
1053 	olderr = jbd2_journal_errno(journal);
1054 	if (olderr) {
1055 		mlog(ML_ERROR, "File system error %d recorded in "
1056 		     "journal %u.\n", olderr, slot);
1057 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1058 		     sb->s_id);
1059 
1060 		jbd2_journal_ack_err(journal);
1061 		jbd2_journal_clear_err(journal);
1062 	}
1063 }
1064 
1065 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1066 {
1067 	int status = 0;
1068 	struct ocfs2_super *osb;
1069 
1070 	BUG_ON(!journal);
1071 
1072 	osb = journal->j_osb;
1073 
1074 	status = jbd2_journal_load(journal->j_journal);
1075 	if (status < 0) {
1076 		mlog(ML_ERROR, "Failed to load journal!\n");
1077 		goto done;
1078 	}
1079 
1080 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1081 
1082 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1083 	if (status < 0) {
1084 		mlog_errno(status);
1085 		goto done;
1086 	}
1087 
1088 	/* Launch the commit thread */
1089 	if (!local) {
1090 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1091 				"ocfs2cmt-%s", osb->uuid_str);
1092 		if (IS_ERR(osb->commit_task)) {
1093 			status = PTR_ERR(osb->commit_task);
1094 			osb->commit_task = NULL;
1095 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1096 			     "error=%d", status);
1097 			goto done;
1098 		}
1099 	} else
1100 		osb->commit_task = NULL;
1101 
1102 done:
1103 	return status;
1104 }
1105 
1106 
1107 /* 'full' flag tells us whether we clear out all blocks or if we just
1108  * mark the journal clean */
1109 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1110 {
1111 	int status;
1112 
1113 	BUG_ON(!journal);
1114 
1115 	status = jbd2_journal_wipe(journal->j_journal, full);
1116 	if (status < 0) {
1117 		mlog_errno(status);
1118 		goto bail;
1119 	}
1120 
1121 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1122 	if (status < 0)
1123 		mlog_errno(status);
1124 
1125 bail:
1126 	return status;
1127 }
1128 
1129 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1130 {
1131 	int empty;
1132 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1133 
1134 	spin_lock(&osb->osb_lock);
1135 	empty = (rm->rm_used == 0);
1136 	spin_unlock(&osb->osb_lock);
1137 
1138 	return empty;
1139 }
1140 
1141 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1142 {
1143 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1144 }
1145 
1146 /*
1147  * JBD Might read a cached version of another nodes journal file. We
1148  * don't want this as this file changes often and we get no
1149  * notification on those changes. The only way to be sure that we've
1150  * got the most up to date version of those blocks then is to force
1151  * read them off disk. Just searching through the buffer cache won't
1152  * work as there may be pages backing this file which are still marked
1153  * up to date. We know things can't change on this file underneath us
1154  * as we have the lock by now :)
1155  */
1156 static int ocfs2_force_read_journal(struct inode *inode)
1157 {
1158 	int status = 0;
1159 	int i;
1160 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1161 	struct buffer_head *bh = NULL;
1162 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1163 
1164 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1165 	v_blkno = 0;
1166 	while (v_blkno < num_blocks) {
1167 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1168 						     &p_blkno, &p_blocks, NULL);
1169 		if (status < 0) {
1170 			mlog_errno(status);
1171 			goto bail;
1172 		}
1173 
1174 		for (i = 0; i < p_blocks; i++, p_blkno++) {
1175 			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1176 					osb->sb->s_blocksize);
1177 			/* block not cached. */
1178 			if (!bh)
1179 				continue;
1180 
1181 			brelse(bh);
1182 			bh = NULL;
1183 			/* We are reading journal data which should not
1184 			 * be put in the uptodate cache.
1185 			 */
1186 			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1187 			if (status < 0) {
1188 				mlog_errno(status);
1189 				goto bail;
1190 			}
1191 
1192 			brelse(bh);
1193 			bh = NULL;
1194 		}
1195 
1196 		v_blkno += p_blocks;
1197 	}
1198 
1199 bail:
1200 	return status;
1201 }
1202 
1203 struct ocfs2_la_recovery_item {
1204 	struct list_head	lri_list;
1205 	int			lri_slot;
1206 	struct ocfs2_dinode	*lri_la_dinode;
1207 	struct ocfs2_dinode	*lri_tl_dinode;
1208 	struct ocfs2_quota_recovery *lri_qrec;
1209 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1210 };
1211 
1212 /* Does the second half of the recovery process. By this point, the
1213  * node is marked clean and can actually be considered recovered,
1214  * hence it's no longer in the recovery map, but there's still some
1215  * cleanup we can do which shouldn't happen within the recovery thread
1216  * as locking in that context becomes very difficult if we are to take
1217  * recovering nodes into account.
1218  *
1219  * NOTE: This function can and will sleep on recovery of other nodes
1220  * during cluster locking, just like any other ocfs2 process.
1221  */
1222 void ocfs2_complete_recovery(struct work_struct *work)
1223 {
1224 	int ret = 0;
1225 	struct ocfs2_journal *journal =
1226 		container_of(work, struct ocfs2_journal, j_recovery_work);
1227 	struct ocfs2_super *osb = journal->j_osb;
1228 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1229 	struct ocfs2_la_recovery_item *item, *n;
1230 	struct ocfs2_quota_recovery *qrec;
1231 	enum ocfs2_orphan_reco_type orphan_reco_type;
1232 	LIST_HEAD(tmp_la_list);
1233 
1234 	trace_ocfs2_complete_recovery(
1235 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1236 
1237 	spin_lock(&journal->j_lock);
1238 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1239 	spin_unlock(&journal->j_lock);
1240 
1241 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1242 		list_del_init(&item->lri_list);
1243 
1244 		ocfs2_wait_on_quotas(osb);
1245 
1246 		la_dinode = item->lri_la_dinode;
1247 		tl_dinode = item->lri_tl_dinode;
1248 		qrec = item->lri_qrec;
1249 		orphan_reco_type = item->lri_orphan_reco_type;
1250 
1251 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1252 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1253 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1254 			qrec);
1255 
1256 		if (la_dinode) {
1257 			ret = ocfs2_complete_local_alloc_recovery(osb,
1258 								  la_dinode);
1259 			if (ret < 0)
1260 				mlog_errno(ret);
1261 
1262 			kfree(la_dinode);
1263 		}
1264 
1265 		if (tl_dinode) {
1266 			ret = ocfs2_complete_truncate_log_recovery(osb,
1267 								   tl_dinode);
1268 			if (ret < 0)
1269 				mlog_errno(ret);
1270 
1271 			kfree(tl_dinode);
1272 		}
1273 
1274 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1275 				orphan_reco_type);
1276 		if (ret < 0)
1277 			mlog_errno(ret);
1278 
1279 		if (qrec) {
1280 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1281 							  item->lri_slot);
1282 			if (ret < 0)
1283 				mlog_errno(ret);
1284 			/* Recovery info is already freed now */
1285 		}
1286 
1287 		kfree(item);
1288 	}
1289 
1290 	trace_ocfs2_complete_recovery_end(ret);
1291 }
1292 
1293 /* NOTE: This function always eats your references to la_dinode and
1294  * tl_dinode, either manually on error, or by passing them to
1295  * ocfs2_complete_recovery */
1296 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1297 					    int slot_num,
1298 					    struct ocfs2_dinode *la_dinode,
1299 					    struct ocfs2_dinode *tl_dinode,
1300 					    struct ocfs2_quota_recovery *qrec,
1301 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1302 {
1303 	struct ocfs2_la_recovery_item *item;
1304 
1305 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1306 	if (!item) {
1307 		/* Though we wish to avoid it, we are in fact safe in
1308 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1309 		 * than capable of reclaiming unused space. */
1310 		kfree(la_dinode);
1311 		kfree(tl_dinode);
1312 
1313 		if (qrec)
1314 			ocfs2_free_quota_recovery(qrec);
1315 
1316 		mlog_errno(-ENOMEM);
1317 		return;
1318 	}
1319 
1320 	INIT_LIST_HEAD(&item->lri_list);
1321 	item->lri_la_dinode = la_dinode;
1322 	item->lri_slot = slot_num;
1323 	item->lri_tl_dinode = tl_dinode;
1324 	item->lri_qrec = qrec;
1325 	item->lri_orphan_reco_type = orphan_reco_type;
1326 
1327 	spin_lock(&journal->j_lock);
1328 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1329 	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1330 	spin_unlock(&journal->j_lock);
1331 }
1332 
1333 /* Called by the mount code to queue recovery the last part of
1334  * recovery for it's own and offline slot(s). */
1335 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1336 {
1337 	struct ocfs2_journal *journal = osb->journal;
1338 
1339 	if (ocfs2_is_hard_readonly(osb))
1340 		return;
1341 
1342 	/* No need to queue up our truncate_log as regular cleanup will catch
1343 	 * that */
1344 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1345 					osb->local_alloc_copy, NULL, NULL,
1346 					ORPHAN_NEED_TRUNCATE);
1347 	ocfs2_schedule_truncate_log_flush(osb, 0);
1348 
1349 	osb->local_alloc_copy = NULL;
1350 
1351 	/* queue to recover orphan slots for all offline slots */
1352 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1353 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1354 	ocfs2_free_replay_slots(osb);
1355 }
1356 
1357 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1358 {
1359 	if (osb->quota_rec) {
1360 		ocfs2_queue_recovery_completion(osb->journal,
1361 						osb->slot_num,
1362 						NULL,
1363 						NULL,
1364 						osb->quota_rec,
1365 						ORPHAN_NEED_TRUNCATE);
1366 		osb->quota_rec = NULL;
1367 	}
1368 }
1369 
1370 static int __ocfs2_recovery_thread(void *arg)
1371 {
1372 	int status, node_num, slot_num;
1373 	struct ocfs2_super *osb = arg;
1374 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1375 	int *rm_quota = NULL;
1376 	int rm_quota_used = 0, i;
1377 	struct ocfs2_quota_recovery *qrec;
1378 
1379 	/* Whether the quota supported. */
1380 	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1381 			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1382 		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1383 			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1384 
1385 	status = ocfs2_wait_on_mount(osb);
1386 	if (status < 0) {
1387 		goto bail;
1388 	}
1389 
1390 	if (quota_enabled) {
1391 		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1392 		if (!rm_quota) {
1393 			status = -ENOMEM;
1394 			goto bail;
1395 		}
1396 	}
1397 restart:
1398 	status = ocfs2_super_lock(osb, 1);
1399 	if (status < 0) {
1400 		mlog_errno(status);
1401 		goto bail;
1402 	}
1403 
1404 	status = ocfs2_compute_replay_slots(osb);
1405 	if (status < 0)
1406 		mlog_errno(status);
1407 
1408 	/* queue recovery for our own slot */
1409 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1410 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1411 
1412 	spin_lock(&osb->osb_lock);
1413 	while (rm->rm_used) {
1414 		/* It's always safe to remove entry zero, as we won't
1415 		 * clear it until ocfs2_recover_node() has succeeded. */
1416 		node_num = rm->rm_entries[0];
1417 		spin_unlock(&osb->osb_lock);
1418 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1419 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1420 		if (slot_num == -ENOENT) {
1421 			status = 0;
1422 			goto skip_recovery;
1423 		}
1424 
1425 		/* It is a bit subtle with quota recovery. We cannot do it
1426 		 * immediately because we have to obtain cluster locks from
1427 		 * quota files and we also don't want to just skip it because
1428 		 * then quota usage would be out of sync until some node takes
1429 		 * the slot. So we remember which nodes need quota recovery
1430 		 * and when everything else is done, we recover quotas. */
1431 		if (quota_enabled) {
1432 			for (i = 0; i < rm_quota_used
1433 					&& rm_quota[i] != slot_num; i++)
1434 				;
1435 
1436 			if (i == rm_quota_used)
1437 				rm_quota[rm_quota_used++] = slot_num;
1438 		}
1439 
1440 		status = ocfs2_recover_node(osb, node_num, slot_num);
1441 skip_recovery:
1442 		if (!status) {
1443 			ocfs2_recovery_map_clear(osb, node_num);
1444 		} else {
1445 			mlog(ML_ERROR,
1446 			     "Error %d recovering node %d on device (%u,%u)!\n",
1447 			     status, node_num,
1448 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1449 			mlog(ML_ERROR, "Volume requires unmount.\n");
1450 		}
1451 
1452 		spin_lock(&osb->osb_lock);
1453 	}
1454 	spin_unlock(&osb->osb_lock);
1455 	trace_ocfs2_recovery_thread_end(status);
1456 
1457 	/* Refresh all journal recovery generations from disk */
1458 	status = ocfs2_check_journals_nolocks(osb);
1459 	status = (status == -EROFS) ? 0 : status;
1460 	if (status < 0)
1461 		mlog_errno(status);
1462 
1463 	/* Now it is right time to recover quotas... We have to do this under
1464 	 * superblock lock so that no one can start using the slot (and crash)
1465 	 * before we recover it */
1466 	if (quota_enabled) {
1467 		for (i = 0; i < rm_quota_used; i++) {
1468 			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1469 			if (IS_ERR(qrec)) {
1470 				status = PTR_ERR(qrec);
1471 				mlog_errno(status);
1472 				continue;
1473 			}
1474 			ocfs2_queue_recovery_completion(osb->journal,
1475 					rm_quota[i],
1476 					NULL, NULL, qrec,
1477 					ORPHAN_NEED_TRUNCATE);
1478 		}
1479 	}
1480 
1481 	ocfs2_super_unlock(osb, 1);
1482 
1483 	/* queue recovery for offline slots */
1484 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1485 
1486 bail:
1487 	mutex_lock(&osb->recovery_lock);
1488 	if (!status && !ocfs2_recovery_completed(osb)) {
1489 		mutex_unlock(&osb->recovery_lock);
1490 		goto restart;
1491 	}
1492 
1493 	ocfs2_free_replay_slots(osb);
1494 	osb->recovery_thread_task = NULL;
1495 	mb(); /* sync with ocfs2_recovery_thread_running */
1496 	wake_up(&osb->recovery_event);
1497 
1498 	mutex_unlock(&osb->recovery_lock);
1499 
1500 	if (quota_enabled)
1501 		kfree(rm_quota);
1502 
1503 	/* no one is callint kthread_stop() for us so the kthread() api
1504 	 * requires that we call do_exit().  And it isn't exported, but
1505 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1506 	complete_and_exit(NULL, status);
1507 }
1508 
1509 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1510 {
1511 	mutex_lock(&osb->recovery_lock);
1512 
1513 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1514 		osb->disable_recovery, osb->recovery_thread_task,
1515 		osb->disable_recovery ?
1516 		-1 : ocfs2_recovery_map_set(osb, node_num));
1517 
1518 	if (osb->disable_recovery)
1519 		goto out;
1520 
1521 	if (osb->recovery_thread_task)
1522 		goto out;
1523 
1524 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1525 			"ocfs2rec-%s", osb->uuid_str);
1526 	if (IS_ERR(osb->recovery_thread_task)) {
1527 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1528 		osb->recovery_thread_task = NULL;
1529 	}
1530 
1531 out:
1532 	mutex_unlock(&osb->recovery_lock);
1533 	wake_up(&osb->recovery_event);
1534 }
1535 
1536 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1537 				    int slot_num,
1538 				    struct buffer_head **bh,
1539 				    struct inode **ret_inode)
1540 {
1541 	int status = -EACCES;
1542 	struct inode *inode = NULL;
1543 
1544 	BUG_ON(slot_num >= osb->max_slots);
1545 
1546 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1547 					    slot_num);
1548 	if (!inode || is_bad_inode(inode)) {
1549 		mlog_errno(status);
1550 		goto bail;
1551 	}
1552 	SET_INODE_JOURNAL(inode);
1553 
1554 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1555 	if (status < 0) {
1556 		mlog_errno(status);
1557 		goto bail;
1558 	}
1559 
1560 	status = 0;
1561 
1562 bail:
1563 	if (inode) {
1564 		if (status || !ret_inode)
1565 			iput(inode);
1566 		else
1567 			*ret_inode = inode;
1568 	}
1569 	return status;
1570 }
1571 
1572 /* Does the actual journal replay and marks the journal inode as
1573  * clean. Will only replay if the journal inode is marked dirty. */
1574 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1575 				int node_num,
1576 				int slot_num)
1577 {
1578 	int status;
1579 	int got_lock = 0;
1580 	unsigned int flags;
1581 	struct inode *inode = NULL;
1582 	struct ocfs2_dinode *fe;
1583 	journal_t *journal = NULL;
1584 	struct buffer_head *bh = NULL;
1585 	u32 slot_reco_gen;
1586 
1587 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1588 	if (status) {
1589 		mlog_errno(status);
1590 		goto done;
1591 	}
1592 
1593 	fe = (struct ocfs2_dinode *)bh->b_data;
1594 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1595 	brelse(bh);
1596 	bh = NULL;
1597 
1598 	/*
1599 	 * As the fs recovery is asynchronous, there is a small chance that
1600 	 * another node mounted (and recovered) the slot before the recovery
1601 	 * thread could get the lock. To handle that, we dirty read the journal
1602 	 * inode for that slot to get the recovery generation. If it is
1603 	 * different than what we expected, the slot has been recovered.
1604 	 * If not, it needs recovery.
1605 	 */
1606 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1607 		trace_ocfs2_replay_journal_recovered(slot_num,
1608 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1609 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1610 		status = -EBUSY;
1611 		goto done;
1612 	}
1613 
1614 	/* Continue with recovery as the journal has not yet been recovered */
1615 
1616 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1617 	if (status < 0) {
1618 		trace_ocfs2_replay_journal_lock_err(status);
1619 		if (status != -ERESTARTSYS)
1620 			mlog(ML_ERROR, "Could not lock journal!\n");
1621 		goto done;
1622 	}
1623 	got_lock = 1;
1624 
1625 	fe = (struct ocfs2_dinode *) bh->b_data;
1626 
1627 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1628 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1629 
1630 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1631 		trace_ocfs2_replay_journal_skip(node_num);
1632 		/* Refresh recovery generation for the slot */
1633 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1634 		goto done;
1635 	}
1636 
1637 	/* we need to run complete recovery for offline orphan slots */
1638 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1639 
1640 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1641 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1642 	       MINOR(osb->sb->s_dev));
1643 
1644 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1645 
1646 	status = ocfs2_force_read_journal(inode);
1647 	if (status < 0) {
1648 		mlog_errno(status);
1649 		goto done;
1650 	}
1651 
1652 	journal = jbd2_journal_init_inode(inode);
1653 	if (journal == NULL) {
1654 		mlog(ML_ERROR, "Linux journal layer error\n");
1655 		status = -EIO;
1656 		goto done;
1657 	}
1658 
1659 	status = jbd2_journal_load(journal);
1660 	if (status < 0) {
1661 		mlog_errno(status);
1662 		if (!igrab(inode))
1663 			BUG();
1664 		jbd2_journal_destroy(journal);
1665 		goto done;
1666 	}
1667 
1668 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1669 
1670 	/* wipe the journal */
1671 	jbd2_journal_lock_updates(journal);
1672 	status = jbd2_journal_flush(journal);
1673 	jbd2_journal_unlock_updates(journal);
1674 	if (status < 0)
1675 		mlog_errno(status);
1676 
1677 	/* This will mark the node clean */
1678 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1679 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1680 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1681 
1682 	/* Increment recovery generation to indicate successful recovery */
1683 	ocfs2_bump_recovery_generation(fe);
1684 	osb->slot_recovery_generations[slot_num] =
1685 					ocfs2_get_recovery_generation(fe);
1686 
1687 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1688 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1689 	if (status < 0)
1690 		mlog_errno(status);
1691 
1692 	if (!igrab(inode))
1693 		BUG();
1694 
1695 	jbd2_journal_destroy(journal);
1696 
1697 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1698 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1699 	       MINOR(osb->sb->s_dev));
1700 done:
1701 	/* drop the lock on this nodes journal */
1702 	if (got_lock)
1703 		ocfs2_inode_unlock(inode, 1);
1704 
1705 	iput(inode);
1706 	brelse(bh);
1707 
1708 	return status;
1709 }
1710 
1711 /*
1712  * Do the most important parts of node recovery:
1713  *  - Replay it's journal
1714  *  - Stamp a clean local allocator file
1715  *  - Stamp a clean truncate log
1716  *  - Mark the node clean
1717  *
1718  * If this function completes without error, a node in OCFS2 can be
1719  * said to have been safely recovered. As a result, failure during the
1720  * second part of a nodes recovery process (local alloc recovery) is
1721  * far less concerning.
1722  */
1723 static int ocfs2_recover_node(struct ocfs2_super *osb,
1724 			      int node_num, int slot_num)
1725 {
1726 	int status = 0;
1727 	struct ocfs2_dinode *la_copy = NULL;
1728 	struct ocfs2_dinode *tl_copy = NULL;
1729 
1730 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1731 
1732 	/* Should not ever be called to recover ourselves -- in that
1733 	 * case we should've called ocfs2_journal_load instead. */
1734 	BUG_ON(osb->node_num == node_num);
1735 
1736 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1737 	if (status < 0) {
1738 		if (status == -EBUSY) {
1739 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1740 			status = 0;
1741 			goto done;
1742 		}
1743 		mlog_errno(status);
1744 		goto done;
1745 	}
1746 
1747 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1748 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1749 	if (status < 0) {
1750 		mlog_errno(status);
1751 		goto done;
1752 	}
1753 
1754 	/* An error from begin_truncate_log_recovery is not
1755 	 * serious enough to warrant halting the rest of
1756 	 * recovery. */
1757 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1758 	if (status < 0)
1759 		mlog_errno(status);
1760 
1761 	/* Likewise, this would be a strange but ultimately not so
1762 	 * harmful place to get an error... */
1763 	status = ocfs2_clear_slot(osb, slot_num);
1764 	if (status < 0)
1765 		mlog_errno(status);
1766 
1767 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1768 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1769 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1770 
1771 	status = 0;
1772 done:
1773 
1774 	return status;
1775 }
1776 
1777 /* Test node liveness by trylocking his journal. If we get the lock,
1778  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1779  * still alive (we couldn't get the lock) and < 0 on error. */
1780 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1781 				 int slot_num)
1782 {
1783 	int status, flags;
1784 	struct inode *inode = NULL;
1785 
1786 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1787 					    slot_num);
1788 	if (inode == NULL) {
1789 		mlog(ML_ERROR, "access error\n");
1790 		status = -EACCES;
1791 		goto bail;
1792 	}
1793 	if (is_bad_inode(inode)) {
1794 		mlog(ML_ERROR, "access error (bad inode)\n");
1795 		iput(inode);
1796 		inode = NULL;
1797 		status = -EACCES;
1798 		goto bail;
1799 	}
1800 	SET_INODE_JOURNAL(inode);
1801 
1802 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1803 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1804 	if (status < 0) {
1805 		if (status != -EAGAIN)
1806 			mlog_errno(status);
1807 		goto bail;
1808 	}
1809 
1810 	ocfs2_inode_unlock(inode, 1);
1811 bail:
1812 	iput(inode);
1813 
1814 	return status;
1815 }
1816 
1817 /* Call this underneath ocfs2_super_lock. It also assumes that the
1818  * slot info struct has been updated from disk. */
1819 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1820 {
1821 	unsigned int node_num;
1822 	int status, i;
1823 	u32 gen;
1824 	struct buffer_head *bh = NULL;
1825 	struct ocfs2_dinode *di;
1826 
1827 	/* This is called with the super block cluster lock, so we
1828 	 * know that the slot map can't change underneath us. */
1829 
1830 	for (i = 0; i < osb->max_slots; i++) {
1831 		/* Read journal inode to get the recovery generation */
1832 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1833 		if (status) {
1834 			mlog_errno(status);
1835 			goto bail;
1836 		}
1837 		di = (struct ocfs2_dinode *)bh->b_data;
1838 		gen = ocfs2_get_recovery_generation(di);
1839 		brelse(bh);
1840 		bh = NULL;
1841 
1842 		spin_lock(&osb->osb_lock);
1843 		osb->slot_recovery_generations[i] = gen;
1844 
1845 		trace_ocfs2_mark_dead_nodes(i,
1846 					    osb->slot_recovery_generations[i]);
1847 
1848 		if (i == osb->slot_num) {
1849 			spin_unlock(&osb->osb_lock);
1850 			continue;
1851 		}
1852 
1853 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1854 		if (status == -ENOENT) {
1855 			spin_unlock(&osb->osb_lock);
1856 			continue;
1857 		}
1858 
1859 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1860 			spin_unlock(&osb->osb_lock);
1861 			continue;
1862 		}
1863 		spin_unlock(&osb->osb_lock);
1864 
1865 		/* Ok, we have a slot occupied by another node which
1866 		 * is not in the recovery map. We trylock his journal
1867 		 * file here to test if he's alive. */
1868 		status = ocfs2_trylock_journal(osb, i);
1869 		if (!status) {
1870 			/* Since we're called from mount, we know that
1871 			 * the recovery thread can't race us on
1872 			 * setting / checking the recovery bits. */
1873 			ocfs2_recovery_thread(osb, node_num);
1874 		} else if ((status < 0) && (status != -EAGAIN)) {
1875 			mlog_errno(status);
1876 			goto bail;
1877 		}
1878 	}
1879 
1880 	status = 0;
1881 bail:
1882 	return status;
1883 }
1884 
1885 /*
1886  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1887  * randomness to the timeout to minimize multple nodes firing the timer at the
1888  * same time.
1889  */
1890 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1891 {
1892 	unsigned long time;
1893 
1894 	get_random_bytes(&time, sizeof(time));
1895 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1896 	return msecs_to_jiffies(time);
1897 }
1898 
1899 /*
1900  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1901  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1902  * is done to catch any orphans that are left over in orphan directories.
1903  *
1904  * It scans all slots, even ones that are in use. It does so to handle the
1905  * case described below:
1906  *
1907  *   Node 1 has an inode it was using. The dentry went away due to memory
1908  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1909  *   has the open lock.
1910  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1911  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1912  *   open lock, sees that another node has a PR, and does nothing.
1913  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1914  *   open lock, sees the PR still, and does nothing.
1915  *   Basically, we have to trigger an orphan iput on node 1. The only way
1916  *   for this to happen is if node 1 runs node 2's orphan dir.
1917  *
1918  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1919  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1920  * stored in LVB. If the sequence number has changed, it means some other
1921  * node has done the scan.  This node skips the scan and tracks the
1922  * sequence number.  If the sequence number didn't change, it means a scan
1923  * hasn't happened.  The node queues a scan and increments the
1924  * sequence number in the LVB.
1925  */
1926 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1927 {
1928 	struct ocfs2_orphan_scan *os;
1929 	int status, i;
1930 	u32 seqno = 0;
1931 
1932 	os = &osb->osb_orphan_scan;
1933 
1934 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1935 		goto out;
1936 
1937 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1938 					    atomic_read(&os->os_state));
1939 
1940 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1941 	if (status < 0) {
1942 		if (status != -EAGAIN)
1943 			mlog_errno(status);
1944 		goto out;
1945 	}
1946 
1947 	/* Do no queue the tasks if the volume is being umounted */
1948 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1949 		goto unlock;
1950 
1951 	if (os->os_seqno != seqno) {
1952 		os->os_seqno = seqno;
1953 		goto unlock;
1954 	}
1955 
1956 	for (i = 0; i < osb->max_slots; i++)
1957 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1958 						NULL, ORPHAN_NO_NEED_TRUNCATE);
1959 	/*
1960 	 * We queued a recovery on orphan slots, increment the sequence
1961 	 * number and update LVB so other node will skip the scan for a while
1962 	 */
1963 	seqno++;
1964 	os->os_count++;
1965 	os->os_scantime = ktime_get_seconds();
1966 unlock:
1967 	ocfs2_orphan_scan_unlock(osb, seqno);
1968 out:
1969 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1970 					  atomic_read(&os->os_state));
1971 	return;
1972 }
1973 
1974 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1975 static void ocfs2_orphan_scan_work(struct work_struct *work)
1976 {
1977 	struct ocfs2_orphan_scan *os;
1978 	struct ocfs2_super *osb;
1979 
1980 	os = container_of(work, struct ocfs2_orphan_scan,
1981 			  os_orphan_scan_work.work);
1982 	osb = os->os_osb;
1983 
1984 	mutex_lock(&os->os_lock);
1985 	ocfs2_queue_orphan_scan(osb);
1986 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1987 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1988 				      ocfs2_orphan_scan_timeout());
1989 	mutex_unlock(&os->os_lock);
1990 }
1991 
1992 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1993 {
1994 	struct ocfs2_orphan_scan *os;
1995 
1996 	os = &osb->osb_orphan_scan;
1997 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1998 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1999 		mutex_lock(&os->os_lock);
2000 		cancel_delayed_work(&os->os_orphan_scan_work);
2001 		mutex_unlock(&os->os_lock);
2002 	}
2003 }
2004 
2005 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2006 {
2007 	struct ocfs2_orphan_scan *os;
2008 
2009 	os = &osb->osb_orphan_scan;
2010 	os->os_osb = osb;
2011 	os->os_count = 0;
2012 	os->os_seqno = 0;
2013 	mutex_init(&os->os_lock);
2014 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2015 }
2016 
2017 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2018 {
2019 	struct ocfs2_orphan_scan *os;
2020 
2021 	os = &osb->osb_orphan_scan;
2022 	os->os_scantime = ktime_get_seconds();
2023 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2024 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2025 	else {
2026 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2027 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2028 				   ocfs2_orphan_scan_timeout());
2029 	}
2030 }
2031 
2032 struct ocfs2_orphan_filldir_priv {
2033 	struct dir_context	ctx;
2034 	struct inode		*head;
2035 	struct ocfs2_super	*osb;
2036 	enum ocfs2_orphan_reco_type orphan_reco_type;
2037 };
2038 
2039 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2040 				int name_len, loff_t pos, u64 ino,
2041 				unsigned type)
2042 {
2043 	struct ocfs2_orphan_filldir_priv *p =
2044 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2045 	struct inode *iter;
2046 
2047 	if (name_len == 1 && !strncmp(".", name, 1))
2048 		return 0;
2049 	if (name_len == 2 && !strncmp("..", name, 2))
2050 		return 0;
2051 
2052 	/* do not include dio entry in case of orphan scan */
2053 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2054 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2055 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2056 		return 0;
2057 
2058 	/* Skip bad inodes so that recovery can continue */
2059 	iter = ocfs2_iget(p->osb, ino,
2060 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2061 	if (IS_ERR(iter))
2062 		return 0;
2063 
2064 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2065 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2066 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2067 
2068 	/* Skip inodes which are already added to recover list, since dio may
2069 	 * happen concurrently with unlink/rename */
2070 	if (OCFS2_I(iter)->ip_next_orphan) {
2071 		iput(iter);
2072 		return 0;
2073 	}
2074 
2075 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2076 	/* No locking is required for the next_orphan queue as there
2077 	 * is only ever a single process doing orphan recovery. */
2078 	OCFS2_I(iter)->ip_next_orphan = p->head;
2079 	p->head = iter;
2080 
2081 	return 0;
2082 }
2083 
2084 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2085 			       int slot,
2086 			       struct inode **head,
2087 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2088 {
2089 	int status;
2090 	struct inode *orphan_dir_inode = NULL;
2091 	struct ocfs2_orphan_filldir_priv priv = {
2092 		.ctx.actor = ocfs2_orphan_filldir,
2093 		.osb = osb,
2094 		.head = *head,
2095 		.orphan_reco_type = orphan_reco_type
2096 	};
2097 
2098 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2099 						       ORPHAN_DIR_SYSTEM_INODE,
2100 						       slot);
2101 	if  (!orphan_dir_inode) {
2102 		status = -ENOENT;
2103 		mlog_errno(status);
2104 		return status;
2105 	}
2106 
2107 	inode_lock(orphan_dir_inode);
2108 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2109 	if (status < 0) {
2110 		mlog_errno(status);
2111 		goto out;
2112 	}
2113 
2114 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2115 	if (status) {
2116 		mlog_errno(status);
2117 		goto out_cluster;
2118 	}
2119 
2120 	*head = priv.head;
2121 
2122 out_cluster:
2123 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2124 out:
2125 	inode_unlock(orphan_dir_inode);
2126 	iput(orphan_dir_inode);
2127 	return status;
2128 }
2129 
2130 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2131 					      int slot)
2132 {
2133 	int ret;
2134 
2135 	spin_lock(&osb->osb_lock);
2136 	ret = !osb->osb_orphan_wipes[slot];
2137 	spin_unlock(&osb->osb_lock);
2138 	return ret;
2139 }
2140 
2141 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2142 					     int slot)
2143 {
2144 	spin_lock(&osb->osb_lock);
2145 	/* Mark ourselves such that new processes in delete_inode()
2146 	 * know to quit early. */
2147 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2148 	while (osb->osb_orphan_wipes[slot]) {
2149 		/* If any processes are already in the middle of an
2150 		 * orphan wipe on this dir, then we need to wait for
2151 		 * them. */
2152 		spin_unlock(&osb->osb_lock);
2153 		wait_event_interruptible(osb->osb_wipe_event,
2154 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2155 		spin_lock(&osb->osb_lock);
2156 	}
2157 	spin_unlock(&osb->osb_lock);
2158 }
2159 
2160 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2161 					      int slot)
2162 {
2163 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2164 }
2165 
2166 /*
2167  * Orphan recovery. Each mounted node has it's own orphan dir which we
2168  * must run during recovery. Our strategy here is to build a list of
2169  * the inodes in the orphan dir and iget/iput them. The VFS does
2170  * (most) of the rest of the work.
2171  *
2172  * Orphan recovery can happen at any time, not just mount so we have a
2173  * couple of extra considerations.
2174  *
2175  * - We grab as many inodes as we can under the orphan dir lock -
2176  *   doing iget() outside the orphan dir risks getting a reference on
2177  *   an invalid inode.
2178  * - We must be sure not to deadlock with other processes on the
2179  *   system wanting to run delete_inode(). This can happen when they go
2180  *   to lock the orphan dir and the orphan recovery process attempts to
2181  *   iget() inside the orphan dir lock. This can be avoided by
2182  *   advertising our state to ocfs2_delete_inode().
2183  */
2184 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2185 				 int slot,
2186 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2187 {
2188 	int ret = 0;
2189 	struct inode *inode = NULL;
2190 	struct inode *iter;
2191 	struct ocfs2_inode_info *oi;
2192 	struct buffer_head *di_bh = NULL;
2193 	struct ocfs2_dinode *di = NULL;
2194 
2195 	trace_ocfs2_recover_orphans(slot);
2196 
2197 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2198 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2199 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2200 
2201 	/* Error here should be noted, but we want to continue with as
2202 	 * many queued inodes as we've got. */
2203 	if (ret)
2204 		mlog_errno(ret);
2205 
2206 	while (inode) {
2207 		oi = OCFS2_I(inode);
2208 		trace_ocfs2_recover_orphans_iput(
2209 					(unsigned long long)oi->ip_blkno);
2210 
2211 		iter = oi->ip_next_orphan;
2212 		oi->ip_next_orphan = NULL;
2213 
2214 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2215 			inode_lock(inode);
2216 			ret = ocfs2_rw_lock(inode, 1);
2217 			if (ret < 0) {
2218 				mlog_errno(ret);
2219 				goto unlock_mutex;
2220 			}
2221 			/*
2222 			 * We need to take and drop the inode lock to
2223 			 * force read inode from disk.
2224 			 */
2225 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2226 			if (ret) {
2227 				mlog_errno(ret);
2228 				goto unlock_rw;
2229 			}
2230 
2231 			di = (struct ocfs2_dinode *)di_bh->b_data;
2232 
2233 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2234 				ret = ocfs2_truncate_file(inode, di_bh,
2235 						i_size_read(inode));
2236 				if (ret < 0) {
2237 					if (ret != -ENOSPC)
2238 						mlog_errno(ret);
2239 					goto unlock_inode;
2240 				}
2241 
2242 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2243 						di_bh, 0, 0);
2244 				if (ret)
2245 					mlog_errno(ret);
2246 			}
2247 unlock_inode:
2248 			ocfs2_inode_unlock(inode, 1);
2249 			brelse(di_bh);
2250 			di_bh = NULL;
2251 unlock_rw:
2252 			ocfs2_rw_unlock(inode, 1);
2253 unlock_mutex:
2254 			inode_unlock(inode);
2255 
2256 			/* clear dio flag in ocfs2_inode_info */
2257 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2258 		} else {
2259 			spin_lock(&oi->ip_lock);
2260 			/* Set the proper information to get us going into
2261 			 * ocfs2_delete_inode. */
2262 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2263 			spin_unlock(&oi->ip_lock);
2264 		}
2265 
2266 		iput(inode);
2267 		inode = iter;
2268 	}
2269 
2270 	return ret;
2271 }
2272 
2273 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2274 {
2275 	/* This check is good because ocfs2 will wait on our recovery
2276 	 * thread before changing it to something other than MOUNTED
2277 	 * or DISABLED. */
2278 	wait_event(osb->osb_mount_event,
2279 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2280 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2281 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2282 
2283 	/* If there's an error on mount, then we may never get to the
2284 	 * MOUNTED flag, but this is set right before
2285 	 * dismount_volume() so we can trust it. */
2286 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2287 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2288 		mlog(0, "mount error, exiting!\n");
2289 		return -EBUSY;
2290 	}
2291 
2292 	return 0;
2293 }
2294 
2295 static int ocfs2_commit_thread(void *arg)
2296 {
2297 	int status;
2298 	struct ocfs2_super *osb = arg;
2299 	struct ocfs2_journal *journal = osb->journal;
2300 
2301 	/* we can trust j_num_trans here because _should_stop() is only set in
2302 	 * shutdown and nobody other than ourselves should be able to start
2303 	 * transactions.  committing on shutdown might take a few iterations
2304 	 * as final transactions put deleted inodes on the list */
2305 	while (!(kthread_should_stop() &&
2306 		 atomic_read(&journal->j_num_trans) == 0)) {
2307 
2308 		wait_event_interruptible(osb->checkpoint_event,
2309 					 atomic_read(&journal->j_num_trans)
2310 					 || kthread_should_stop());
2311 
2312 		status = ocfs2_commit_cache(osb);
2313 		if (status < 0) {
2314 			static unsigned long abort_warn_time;
2315 
2316 			/* Warn about this once per minute */
2317 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2318 				mlog(ML_ERROR, "status = %d, journal is "
2319 						"already aborted.\n", status);
2320 			/*
2321 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2322 			 * non-zero value.  Sleep here to avoid a busy-wait
2323 			 * loop.
2324 			 */
2325 			msleep_interruptible(1000);
2326 		}
2327 
2328 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2329 			mlog(ML_KTHREAD,
2330 			     "commit_thread: %u transactions pending on "
2331 			     "shutdown\n",
2332 			     atomic_read(&journal->j_num_trans));
2333 		}
2334 	}
2335 
2336 	return 0;
2337 }
2338 
2339 /* Reads all the journal inodes without taking any cluster locks. Used
2340  * for hard readonly access to determine whether any journal requires
2341  * recovery. Also used to refresh the recovery generation numbers after
2342  * a journal has been recovered by another node.
2343  */
2344 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2345 {
2346 	int ret = 0;
2347 	unsigned int slot;
2348 	struct buffer_head *di_bh = NULL;
2349 	struct ocfs2_dinode *di;
2350 	int journal_dirty = 0;
2351 
2352 	for(slot = 0; slot < osb->max_slots; slot++) {
2353 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2354 		if (ret) {
2355 			mlog_errno(ret);
2356 			goto out;
2357 		}
2358 
2359 		di = (struct ocfs2_dinode *) di_bh->b_data;
2360 
2361 		osb->slot_recovery_generations[slot] =
2362 					ocfs2_get_recovery_generation(di);
2363 
2364 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2365 		    OCFS2_JOURNAL_DIRTY_FL)
2366 			journal_dirty = 1;
2367 
2368 		brelse(di_bh);
2369 		di_bh = NULL;
2370 	}
2371 
2372 out:
2373 	if (journal_dirty)
2374 		ret = -EROFS;
2375 	return ret;
2376 }
2377