1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 32 #define MLOG_MASK_PREFIX ML_JOURNAL 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "dir.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "heartbeat.h" 42 #include "inode.h" 43 #include "journal.h" 44 #include "localalloc.h" 45 #include "slot_map.h" 46 #include "super.h" 47 #include "sysfile.h" 48 49 #include "buffer_head_io.h" 50 51 DEFINE_SPINLOCK(trans_inc_lock); 52 53 static int ocfs2_force_read_journal(struct inode *inode); 54 static int ocfs2_recover_node(struct ocfs2_super *osb, 55 int node_num); 56 static int __ocfs2_recovery_thread(void *arg); 57 static int ocfs2_commit_cache(struct ocfs2_super *osb); 58 static int ocfs2_wait_on_mount(struct ocfs2_super *osb); 59 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 60 int dirty); 61 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 62 int slot_num); 63 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 64 int slot); 65 static int ocfs2_commit_thread(void *arg); 66 67 68 /* 69 * The recovery_list is a simple linked list of node numbers to recover. 70 * It is protected by the recovery_lock. 71 */ 72 73 struct ocfs2_recovery_map { 74 unsigned int rm_used; 75 unsigned int *rm_entries; 76 }; 77 78 int ocfs2_recovery_init(struct ocfs2_super *osb) 79 { 80 struct ocfs2_recovery_map *rm; 81 82 mutex_init(&osb->recovery_lock); 83 osb->disable_recovery = 0; 84 osb->recovery_thread_task = NULL; 85 init_waitqueue_head(&osb->recovery_event); 86 87 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 88 osb->max_slots * sizeof(unsigned int), 89 GFP_KERNEL); 90 if (!rm) { 91 mlog_errno(-ENOMEM); 92 return -ENOMEM; 93 } 94 95 rm->rm_entries = (unsigned int *)((char *)rm + 96 sizeof(struct ocfs2_recovery_map)); 97 osb->recovery_map = rm; 98 99 return 0; 100 } 101 102 /* we can't grab the goofy sem lock from inside wait_event, so we use 103 * memory barriers to make sure that we'll see the null task before 104 * being woken up */ 105 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 106 { 107 mb(); 108 return osb->recovery_thread_task != NULL; 109 } 110 111 void ocfs2_recovery_exit(struct ocfs2_super *osb) 112 { 113 struct ocfs2_recovery_map *rm; 114 115 /* disable any new recovery threads and wait for any currently 116 * running ones to exit. Do this before setting the vol_state. */ 117 mutex_lock(&osb->recovery_lock); 118 osb->disable_recovery = 1; 119 mutex_unlock(&osb->recovery_lock); 120 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 121 122 /* At this point, we know that no more recovery threads can be 123 * launched, so wait for any recovery completion work to 124 * complete. */ 125 flush_workqueue(ocfs2_wq); 126 127 /* 128 * Now that recovery is shut down, and the osb is about to be 129 * freed, the osb_lock is not taken here. 130 */ 131 rm = osb->recovery_map; 132 /* XXX: Should we bug if there are dirty entries? */ 133 134 kfree(rm); 135 } 136 137 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 138 unsigned int node_num) 139 { 140 int i; 141 struct ocfs2_recovery_map *rm = osb->recovery_map; 142 143 assert_spin_locked(&osb->osb_lock); 144 145 for (i = 0; i < rm->rm_used; i++) { 146 if (rm->rm_entries[i] == node_num) 147 return 1; 148 } 149 150 return 0; 151 } 152 153 /* Behaves like test-and-set. Returns the previous value */ 154 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 155 unsigned int node_num) 156 { 157 struct ocfs2_recovery_map *rm = osb->recovery_map; 158 159 spin_lock(&osb->osb_lock); 160 if (__ocfs2_recovery_map_test(osb, node_num)) { 161 spin_unlock(&osb->osb_lock); 162 return 1; 163 } 164 165 /* XXX: Can this be exploited? Not from o2dlm... */ 166 BUG_ON(rm->rm_used >= osb->max_slots); 167 168 rm->rm_entries[rm->rm_used] = node_num; 169 rm->rm_used++; 170 spin_unlock(&osb->osb_lock); 171 172 return 0; 173 } 174 175 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 176 unsigned int node_num) 177 { 178 int i; 179 struct ocfs2_recovery_map *rm = osb->recovery_map; 180 181 spin_lock(&osb->osb_lock); 182 183 for (i = 0; i < rm->rm_used; i++) { 184 if (rm->rm_entries[i] == node_num) 185 break; 186 } 187 188 if (i < rm->rm_used) { 189 /* XXX: be careful with the pointer math */ 190 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 191 (rm->rm_used - i - 1) * sizeof(unsigned int)); 192 rm->rm_used--; 193 } 194 195 spin_unlock(&osb->osb_lock); 196 } 197 198 static int ocfs2_commit_cache(struct ocfs2_super *osb) 199 { 200 int status = 0; 201 unsigned int flushed; 202 unsigned long old_id; 203 struct ocfs2_journal *journal = NULL; 204 205 mlog_entry_void(); 206 207 journal = osb->journal; 208 209 /* Flush all pending commits and checkpoint the journal. */ 210 down_write(&journal->j_trans_barrier); 211 212 if (atomic_read(&journal->j_num_trans) == 0) { 213 up_write(&journal->j_trans_barrier); 214 mlog(0, "No transactions for me to flush!\n"); 215 goto finally; 216 } 217 218 journal_lock_updates(journal->j_journal); 219 status = journal_flush(journal->j_journal); 220 journal_unlock_updates(journal->j_journal); 221 if (status < 0) { 222 up_write(&journal->j_trans_barrier); 223 mlog_errno(status); 224 goto finally; 225 } 226 227 old_id = ocfs2_inc_trans_id(journal); 228 229 flushed = atomic_read(&journal->j_num_trans); 230 atomic_set(&journal->j_num_trans, 0); 231 up_write(&journal->j_trans_barrier); 232 233 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n", 234 journal->j_trans_id, flushed); 235 236 ocfs2_wake_downconvert_thread(osb); 237 wake_up(&journal->j_checkpointed); 238 finally: 239 mlog_exit(status); 240 return status; 241 } 242 243 /* pass it NULL and it will allocate a new handle object for you. If 244 * you pass it a handle however, it may still return error, in which 245 * case it has free'd the passed handle for you. */ 246 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 247 { 248 journal_t *journal = osb->journal->j_journal; 249 handle_t *handle; 250 251 BUG_ON(!osb || !osb->journal->j_journal); 252 253 if (ocfs2_is_hard_readonly(osb)) 254 return ERR_PTR(-EROFS); 255 256 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 257 BUG_ON(max_buffs <= 0); 258 259 /* JBD might support this, but our journalling code doesn't yet. */ 260 if (journal_current_handle()) { 261 mlog(ML_ERROR, "Recursive transaction attempted!\n"); 262 BUG(); 263 } 264 265 down_read(&osb->journal->j_trans_barrier); 266 267 handle = journal_start(journal, max_buffs); 268 if (IS_ERR(handle)) { 269 up_read(&osb->journal->j_trans_barrier); 270 271 mlog_errno(PTR_ERR(handle)); 272 273 if (is_journal_aborted(journal)) { 274 ocfs2_abort(osb->sb, "Detected aborted journal"); 275 handle = ERR_PTR(-EROFS); 276 } 277 } else { 278 if (!ocfs2_mount_local(osb)) 279 atomic_inc(&(osb->journal->j_num_trans)); 280 } 281 282 return handle; 283 } 284 285 int ocfs2_commit_trans(struct ocfs2_super *osb, 286 handle_t *handle) 287 { 288 int ret; 289 struct ocfs2_journal *journal = osb->journal; 290 291 BUG_ON(!handle); 292 293 ret = journal_stop(handle); 294 if (ret < 0) 295 mlog_errno(ret); 296 297 up_read(&journal->j_trans_barrier); 298 299 return ret; 300 } 301 302 /* 303 * 'nblocks' is what you want to add to the current 304 * transaction. extend_trans will either extend the current handle by 305 * nblocks, or commit it and start a new one with nblocks credits. 306 * 307 * This might call journal_restart() which will commit dirty buffers 308 * and then restart the transaction. Before calling 309 * ocfs2_extend_trans(), any changed blocks should have been 310 * dirtied. After calling it, all blocks which need to be changed must 311 * go through another set of journal_access/journal_dirty calls. 312 * 313 * WARNING: This will not release any semaphores or disk locks taken 314 * during the transaction, so make sure they were taken *before* 315 * start_trans or we'll have ordering deadlocks. 316 * 317 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 318 * good because transaction ids haven't yet been recorded on the 319 * cluster locks associated with this handle. 320 */ 321 int ocfs2_extend_trans(handle_t *handle, int nblocks) 322 { 323 int status; 324 325 BUG_ON(!handle); 326 BUG_ON(!nblocks); 327 328 mlog_entry_void(); 329 330 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks); 331 332 #ifdef OCFS2_DEBUG_FS 333 status = 1; 334 #else 335 status = journal_extend(handle, nblocks); 336 if (status < 0) { 337 mlog_errno(status); 338 goto bail; 339 } 340 #endif 341 342 if (status > 0) { 343 mlog(0, "journal_extend failed, trying journal_restart\n"); 344 status = journal_restart(handle, nblocks); 345 if (status < 0) { 346 mlog_errno(status); 347 goto bail; 348 } 349 } 350 351 status = 0; 352 bail: 353 354 mlog_exit(status); 355 return status; 356 } 357 358 int ocfs2_journal_access(handle_t *handle, 359 struct inode *inode, 360 struct buffer_head *bh, 361 int type) 362 { 363 int status; 364 365 BUG_ON(!inode); 366 BUG_ON(!handle); 367 BUG_ON(!bh); 368 369 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n", 370 (unsigned long long)bh->b_blocknr, type, 371 (type == OCFS2_JOURNAL_ACCESS_CREATE) ? 372 "OCFS2_JOURNAL_ACCESS_CREATE" : 373 "OCFS2_JOURNAL_ACCESS_WRITE", 374 bh->b_size); 375 376 /* we can safely remove this assertion after testing. */ 377 if (!buffer_uptodate(bh)) { 378 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 379 mlog(ML_ERROR, "b_blocknr=%llu\n", 380 (unsigned long long)bh->b_blocknr); 381 BUG(); 382 } 383 384 /* Set the current transaction information on the inode so 385 * that the locking code knows whether it can drop it's locks 386 * on this inode or not. We're protected from the commit 387 * thread updating the current transaction id until 388 * ocfs2_commit_trans() because ocfs2_start_trans() took 389 * j_trans_barrier for us. */ 390 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode); 391 392 mutex_lock(&OCFS2_I(inode)->ip_io_mutex); 393 switch (type) { 394 case OCFS2_JOURNAL_ACCESS_CREATE: 395 case OCFS2_JOURNAL_ACCESS_WRITE: 396 status = journal_get_write_access(handle, bh); 397 break; 398 399 case OCFS2_JOURNAL_ACCESS_UNDO: 400 status = journal_get_undo_access(handle, bh); 401 break; 402 403 default: 404 status = -EINVAL; 405 mlog(ML_ERROR, "Uknown access type!\n"); 406 } 407 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex); 408 409 if (status < 0) 410 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 411 status, type); 412 413 mlog_exit(status); 414 return status; 415 } 416 417 int ocfs2_journal_dirty(handle_t *handle, 418 struct buffer_head *bh) 419 { 420 int status; 421 422 mlog_entry("(bh->b_blocknr=%llu)\n", 423 (unsigned long long)bh->b_blocknr); 424 425 status = journal_dirty_metadata(handle, bh); 426 if (status < 0) 427 mlog(ML_ERROR, "Could not dirty metadata buffer. " 428 "(bh->b_blocknr=%llu)\n", 429 (unsigned long long)bh->b_blocknr); 430 431 mlog_exit(status); 432 return status; 433 } 434 435 int ocfs2_journal_dirty_data(handle_t *handle, 436 struct buffer_head *bh) 437 { 438 int err = journal_dirty_data(handle, bh); 439 if (err) 440 mlog_errno(err); 441 /* TODO: When we can handle it, abort the handle and go RO on 442 * error here. */ 443 444 return err; 445 } 446 447 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD_DEFAULT_MAX_COMMIT_AGE) 448 449 void ocfs2_set_journal_params(struct ocfs2_super *osb) 450 { 451 journal_t *journal = osb->journal->j_journal; 452 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 453 454 if (osb->osb_commit_interval) 455 commit_interval = osb->osb_commit_interval; 456 457 spin_lock(&journal->j_state_lock); 458 journal->j_commit_interval = commit_interval; 459 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 460 journal->j_flags |= JFS_BARRIER; 461 else 462 journal->j_flags &= ~JFS_BARRIER; 463 spin_unlock(&journal->j_state_lock); 464 } 465 466 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 467 { 468 int status = -1; 469 struct inode *inode = NULL; /* the journal inode */ 470 journal_t *j_journal = NULL; 471 struct ocfs2_dinode *di = NULL; 472 struct buffer_head *bh = NULL; 473 struct ocfs2_super *osb; 474 int inode_lock = 0; 475 476 mlog_entry_void(); 477 478 BUG_ON(!journal); 479 480 osb = journal->j_osb; 481 482 /* already have the inode for our journal */ 483 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 484 osb->slot_num); 485 if (inode == NULL) { 486 status = -EACCES; 487 mlog_errno(status); 488 goto done; 489 } 490 if (is_bad_inode(inode)) { 491 mlog(ML_ERROR, "access error (bad inode)\n"); 492 iput(inode); 493 inode = NULL; 494 status = -EACCES; 495 goto done; 496 } 497 498 SET_INODE_JOURNAL(inode); 499 OCFS2_I(inode)->ip_open_count++; 500 501 /* Skip recovery waits here - journal inode metadata never 502 * changes in a live cluster so it can be considered an 503 * exception to the rule. */ 504 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 505 if (status < 0) { 506 if (status != -ERESTARTSYS) 507 mlog(ML_ERROR, "Could not get lock on journal!\n"); 508 goto done; 509 } 510 511 inode_lock = 1; 512 di = (struct ocfs2_dinode *)bh->b_data; 513 514 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) { 515 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 516 inode->i_size); 517 status = -EINVAL; 518 goto done; 519 } 520 521 mlog(0, "inode->i_size = %lld\n", inode->i_size); 522 mlog(0, "inode->i_blocks = %llu\n", 523 (unsigned long long)inode->i_blocks); 524 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters); 525 526 /* call the kernels journal init function now */ 527 j_journal = journal_init_inode(inode); 528 if (j_journal == NULL) { 529 mlog(ML_ERROR, "Linux journal layer error\n"); 530 status = -EINVAL; 531 goto done; 532 } 533 534 mlog(0, "Returned from journal_init_inode\n"); 535 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen); 536 537 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 538 OCFS2_JOURNAL_DIRTY_FL); 539 540 journal->j_journal = j_journal; 541 journal->j_inode = inode; 542 journal->j_bh = bh; 543 544 ocfs2_set_journal_params(osb); 545 546 journal->j_state = OCFS2_JOURNAL_LOADED; 547 548 status = 0; 549 done: 550 if (status < 0) { 551 if (inode_lock) 552 ocfs2_inode_unlock(inode, 1); 553 if (bh != NULL) 554 brelse(bh); 555 if (inode) { 556 OCFS2_I(inode)->ip_open_count--; 557 iput(inode); 558 } 559 } 560 561 mlog_exit(status); 562 return status; 563 } 564 565 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 566 int dirty) 567 { 568 int status; 569 unsigned int flags; 570 struct ocfs2_journal *journal = osb->journal; 571 struct buffer_head *bh = journal->j_bh; 572 struct ocfs2_dinode *fe; 573 574 mlog_entry_void(); 575 576 fe = (struct ocfs2_dinode *)bh->b_data; 577 if (!OCFS2_IS_VALID_DINODE(fe)) { 578 /* This is called from startup/shutdown which will 579 * handle the errors in a specific manner, so no need 580 * to call ocfs2_error() here. */ 581 mlog(ML_ERROR, "Journal dinode %llu has invalid " 582 "signature: %.*s", 583 (unsigned long long)le64_to_cpu(fe->i_blkno), 7, 584 fe->i_signature); 585 status = -EIO; 586 goto out; 587 } 588 589 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 590 if (dirty) 591 flags |= OCFS2_JOURNAL_DIRTY_FL; 592 else 593 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 594 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 595 596 status = ocfs2_write_block(osb, bh, journal->j_inode); 597 if (status < 0) 598 mlog_errno(status); 599 600 out: 601 mlog_exit(status); 602 return status; 603 } 604 605 /* 606 * If the journal has been kmalloc'd it needs to be freed after this 607 * call. 608 */ 609 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 610 { 611 struct ocfs2_journal *journal = NULL; 612 int status = 0; 613 struct inode *inode = NULL; 614 int num_running_trans = 0; 615 616 mlog_entry_void(); 617 618 BUG_ON(!osb); 619 620 journal = osb->journal; 621 if (!journal) 622 goto done; 623 624 inode = journal->j_inode; 625 626 if (journal->j_state != OCFS2_JOURNAL_LOADED) 627 goto done; 628 629 /* need to inc inode use count as journal_destroy will iput. */ 630 if (!igrab(inode)) 631 BUG(); 632 633 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 634 if (num_running_trans > 0) 635 mlog(0, "Shutting down journal: must wait on %d " 636 "running transactions!\n", 637 num_running_trans); 638 639 /* Do a commit_cache here. It will flush our journal, *and* 640 * release any locks that are still held. 641 * set the SHUTDOWN flag and release the trans lock. 642 * the commit thread will take the trans lock for us below. */ 643 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 644 645 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 646 * drop the trans_lock (which we want to hold until we 647 * completely destroy the journal. */ 648 if (osb->commit_task) { 649 /* Wait for the commit thread */ 650 mlog(0, "Waiting for ocfs2commit to exit....\n"); 651 kthread_stop(osb->commit_task); 652 osb->commit_task = NULL; 653 } 654 655 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 656 657 if (ocfs2_mount_local(osb)) { 658 journal_lock_updates(journal->j_journal); 659 status = journal_flush(journal->j_journal); 660 journal_unlock_updates(journal->j_journal); 661 if (status < 0) 662 mlog_errno(status); 663 } 664 665 if (status == 0) { 666 /* 667 * Do not toggle if flush was unsuccessful otherwise 668 * will leave dirty metadata in a "clean" journal 669 */ 670 status = ocfs2_journal_toggle_dirty(osb, 0); 671 if (status < 0) 672 mlog_errno(status); 673 } 674 675 /* Shutdown the kernel journal system */ 676 journal_destroy(journal->j_journal); 677 678 OCFS2_I(inode)->ip_open_count--; 679 680 /* unlock our journal */ 681 ocfs2_inode_unlock(inode, 1); 682 683 brelse(journal->j_bh); 684 journal->j_bh = NULL; 685 686 journal->j_state = OCFS2_JOURNAL_FREE; 687 688 // up_write(&journal->j_trans_barrier); 689 done: 690 if (inode) 691 iput(inode); 692 mlog_exit_void(); 693 } 694 695 static void ocfs2_clear_journal_error(struct super_block *sb, 696 journal_t *journal, 697 int slot) 698 { 699 int olderr; 700 701 olderr = journal_errno(journal); 702 if (olderr) { 703 mlog(ML_ERROR, "File system error %d recorded in " 704 "journal %u.\n", olderr, slot); 705 mlog(ML_ERROR, "File system on device %s needs checking.\n", 706 sb->s_id); 707 708 journal_ack_err(journal); 709 journal_clear_err(journal); 710 } 711 } 712 713 int ocfs2_journal_load(struct ocfs2_journal *journal, int local) 714 { 715 int status = 0; 716 struct ocfs2_super *osb; 717 718 mlog_entry_void(); 719 720 BUG_ON(!journal); 721 722 osb = journal->j_osb; 723 724 status = journal_load(journal->j_journal); 725 if (status < 0) { 726 mlog(ML_ERROR, "Failed to load journal!\n"); 727 goto done; 728 } 729 730 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 731 732 status = ocfs2_journal_toggle_dirty(osb, 1); 733 if (status < 0) { 734 mlog_errno(status); 735 goto done; 736 } 737 738 /* Launch the commit thread */ 739 if (!local) { 740 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 741 "ocfs2cmt"); 742 if (IS_ERR(osb->commit_task)) { 743 status = PTR_ERR(osb->commit_task); 744 osb->commit_task = NULL; 745 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 746 "error=%d", status); 747 goto done; 748 } 749 } else 750 osb->commit_task = NULL; 751 752 done: 753 mlog_exit(status); 754 return status; 755 } 756 757 758 /* 'full' flag tells us whether we clear out all blocks or if we just 759 * mark the journal clean */ 760 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 761 { 762 int status; 763 764 mlog_entry_void(); 765 766 BUG_ON(!journal); 767 768 status = journal_wipe(journal->j_journal, full); 769 if (status < 0) { 770 mlog_errno(status); 771 goto bail; 772 } 773 774 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0); 775 if (status < 0) 776 mlog_errno(status); 777 778 bail: 779 mlog_exit(status); 780 return status; 781 } 782 783 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 784 { 785 int empty; 786 struct ocfs2_recovery_map *rm = osb->recovery_map; 787 788 spin_lock(&osb->osb_lock); 789 empty = (rm->rm_used == 0); 790 spin_unlock(&osb->osb_lock); 791 792 return empty; 793 } 794 795 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 796 { 797 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 798 } 799 800 /* 801 * JBD Might read a cached version of another nodes journal file. We 802 * don't want this as this file changes often and we get no 803 * notification on those changes. The only way to be sure that we've 804 * got the most up to date version of those blocks then is to force 805 * read them off disk. Just searching through the buffer cache won't 806 * work as there may be pages backing this file which are still marked 807 * up to date. We know things can't change on this file underneath us 808 * as we have the lock by now :) 809 */ 810 static int ocfs2_force_read_journal(struct inode *inode) 811 { 812 int status = 0; 813 int i; 814 u64 v_blkno, p_blkno, p_blocks, num_blocks; 815 #define CONCURRENT_JOURNAL_FILL 32ULL 816 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 817 818 mlog_entry_void(); 819 820 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 821 822 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size); 823 v_blkno = 0; 824 while (v_blkno < num_blocks) { 825 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 826 &p_blkno, &p_blocks, NULL); 827 if (status < 0) { 828 mlog_errno(status); 829 goto bail; 830 } 831 832 if (p_blocks > CONCURRENT_JOURNAL_FILL) 833 p_blocks = CONCURRENT_JOURNAL_FILL; 834 835 /* We are reading journal data which should not 836 * be put in the uptodate cache */ 837 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb), 838 p_blkno, p_blocks, bhs, 0, 839 NULL); 840 if (status < 0) { 841 mlog_errno(status); 842 goto bail; 843 } 844 845 for(i = 0; i < p_blocks; i++) { 846 brelse(bhs[i]); 847 bhs[i] = NULL; 848 } 849 850 v_blkno += p_blocks; 851 } 852 853 bail: 854 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 855 if (bhs[i]) 856 brelse(bhs[i]); 857 mlog_exit(status); 858 return status; 859 } 860 861 struct ocfs2_la_recovery_item { 862 struct list_head lri_list; 863 int lri_slot; 864 struct ocfs2_dinode *lri_la_dinode; 865 struct ocfs2_dinode *lri_tl_dinode; 866 }; 867 868 /* Does the second half of the recovery process. By this point, the 869 * node is marked clean and can actually be considered recovered, 870 * hence it's no longer in the recovery map, but there's still some 871 * cleanup we can do which shouldn't happen within the recovery thread 872 * as locking in that context becomes very difficult if we are to take 873 * recovering nodes into account. 874 * 875 * NOTE: This function can and will sleep on recovery of other nodes 876 * during cluster locking, just like any other ocfs2 process. 877 */ 878 void ocfs2_complete_recovery(struct work_struct *work) 879 { 880 int ret; 881 struct ocfs2_journal *journal = 882 container_of(work, struct ocfs2_journal, j_recovery_work); 883 struct ocfs2_super *osb = journal->j_osb; 884 struct ocfs2_dinode *la_dinode, *tl_dinode; 885 struct ocfs2_la_recovery_item *item, *n; 886 LIST_HEAD(tmp_la_list); 887 888 mlog_entry_void(); 889 890 mlog(0, "completing recovery from keventd\n"); 891 892 spin_lock(&journal->j_lock); 893 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 894 spin_unlock(&journal->j_lock); 895 896 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 897 list_del_init(&item->lri_list); 898 899 mlog(0, "Complete recovery for slot %d\n", item->lri_slot); 900 901 la_dinode = item->lri_la_dinode; 902 if (la_dinode) { 903 mlog(0, "Clean up local alloc %llu\n", 904 (unsigned long long)le64_to_cpu(la_dinode->i_blkno)); 905 906 ret = ocfs2_complete_local_alloc_recovery(osb, 907 la_dinode); 908 if (ret < 0) 909 mlog_errno(ret); 910 911 kfree(la_dinode); 912 } 913 914 tl_dinode = item->lri_tl_dinode; 915 if (tl_dinode) { 916 mlog(0, "Clean up truncate log %llu\n", 917 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno)); 918 919 ret = ocfs2_complete_truncate_log_recovery(osb, 920 tl_dinode); 921 if (ret < 0) 922 mlog_errno(ret); 923 924 kfree(tl_dinode); 925 } 926 927 ret = ocfs2_recover_orphans(osb, item->lri_slot); 928 if (ret < 0) 929 mlog_errno(ret); 930 931 kfree(item); 932 } 933 934 mlog(0, "Recovery completion\n"); 935 mlog_exit_void(); 936 } 937 938 /* NOTE: This function always eats your references to la_dinode and 939 * tl_dinode, either manually on error, or by passing them to 940 * ocfs2_complete_recovery */ 941 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 942 int slot_num, 943 struct ocfs2_dinode *la_dinode, 944 struct ocfs2_dinode *tl_dinode) 945 { 946 struct ocfs2_la_recovery_item *item; 947 948 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 949 if (!item) { 950 /* Though we wish to avoid it, we are in fact safe in 951 * skipping local alloc cleanup as fsck.ocfs2 is more 952 * than capable of reclaiming unused space. */ 953 if (la_dinode) 954 kfree(la_dinode); 955 956 if (tl_dinode) 957 kfree(tl_dinode); 958 959 mlog_errno(-ENOMEM); 960 return; 961 } 962 963 INIT_LIST_HEAD(&item->lri_list); 964 item->lri_la_dinode = la_dinode; 965 item->lri_slot = slot_num; 966 item->lri_tl_dinode = tl_dinode; 967 968 spin_lock(&journal->j_lock); 969 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 970 queue_work(ocfs2_wq, &journal->j_recovery_work); 971 spin_unlock(&journal->j_lock); 972 } 973 974 /* Called by the mount code to queue recovery the last part of 975 * recovery for it's own slot. */ 976 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 977 { 978 struct ocfs2_journal *journal = osb->journal; 979 980 if (osb->dirty) { 981 /* No need to queue up our truncate_log as regular 982 * cleanup will catch that. */ 983 ocfs2_queue_recovery_completion(journal, 984 osb->slot_num, 985 osb->local_alloc_copy, 986 NULL); 987 ocfs2_schedule_truncate_log_flush(osb, 0); 988 989 osb->local_alloc_copy = NULL; 990 osb->dirty = 0; 991 } 992 } 993 994 static int __ocfs2_recovery_thread(void *arg) 995 { 996 int status, node_num; 997 struct ocfs2_super *osb = arg; 998 struct ocfs2_recovery_map *rm = osb->recovery_map; 999 1000 mlog_entry_void(); 1001 1002 status = ocfs2_wait_on_mount(osb); 1003 if (status < 0) { 1004 goto bail; 1005 } 1006 1007 restart: 1008 status = ocfs2_super_lock(osb, 1); 1009 if (status < 0) { 1010 mlog_errno(status); 1011 goto bail; 1012 } 1013 1014 spin_lock(&osb->osb_lock); 1015 while (rm->rm_used) { 1016 /* It's always safe to remove entry zero, as we won't 1017 * clear it until ocfs2_recover_node() has succeeded. */ 1018 node_num = rm->rm_entries[0]; 1019 spin_unlock(&osb->osb_lock); 1020 1021 status = ocfs2_recover_node(osb, node_num); 1022 if (!status) { 1023 ocfs2_recovery_map_clear(osb, node_num); 1024 } else { 1025 mlog(ML_ERROR, 1026 "Error %d recovering node %d on device (%u,%u)!\n", 1027 status, node_num, 1028 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1029 mlog(ML_ERROR, "Volume requires unmount.\n"); 1030 } 1031 1032 spin_lock(&osb->osb_lock); 1033 } 1034 spin_unlock(&osb->osb_lock); 1035 mlog(0, "All nodes recovered\n"); 1036 1037 ocfs2_super_unlock(osb, 1); 1038 1039 /* We always run recovery on our own orphan dir - the dead 1040 * node(s) may have disallowd a previos inode delete. Re-processing 1041 * is therefore required. */ 1042 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1043 NULL); 1044 1045 bail: 1046 mutex_lock(&osb->recovery_lock); 1047 if (!status && !ocfs2_recovery_completed(osb)) { 1048 mutex_unlock(&osb->recovery_lock); 1049 goto restart; 1050 } 1051 1052 osb->recovery_thread_task = NULL; 1053 mb(); /* sync with ocfs2_recovery_thread_running */ 1054 wake_up(&osb->recovery_event); 1055 1056 mutex_unlock(&osb->recovery_lock); 1057 1058 mlog_exit(status); 1059 /* no one is callint kthread_stop() for us so the kthread() api 1060 * requires that we call do_exit(). And it isn't exported, but 1061 * complete_and_exit() seems to be a minimal wrapper around it. */ 1062 complete_and_exit(NULL, status); 1063 return status; 1064 } 1065 1066 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1067 { 1068 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 1069 node_num, osb->node_num); 1070 1071 mutex_lock(&osb->recovery_lock); 1072 if (osb->disable_recovery) 1073 goto out; 1074 1075 /* People waiting on recovery will wait on 1076 * the recovery map to empty. */ 1077 if (ocfs2_recovery_map_set(osb, node_num)) 1078 mlog(0, "node %d already in recovery map.\n", node_num); 1079 1080 mlog(0, "starting recovery thread...\n"); 1081 1082 if (osb->recovery_thread_task) 1083 goto out; 1084 1085 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1086 "ocfs2rec"); 1087 if (IS_ERR(osb->recovery_thread_task)) { 1088 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1089 osb->recovery_thread_task = NULL; 1090 } 1091 1092 out: 1093 mutex_unlock(&osb->recovery_lock); 1094 wake_up(&osb->recovery_event); 1095 1096 mlog_exit_void(); 1097 } 1098 1099 /* Does the actual journal replay and marks the journal inode as 1100 * clean. Will only replay if the journal inode is marked dirty. */ 1101 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1102 int node_num, 1103 int slot_num) 1104 { 1105 int status; 1106 int got_lock = 0; 1107 unsigned int flags; 1108 struct inode *inode = NULL; 1109 struct ocfs2_dinode *fe; 1110 journal_t *journal = NULL; 1111 struct buffer_head *bh = NULL; 1112 1113 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1114 slot_num); 1115 if (inode == NULL) { 1116 status = -EACCES; 1117 mlog_errno(status); 1118 goto done; 1119 } 1120 if (is_bad_inode(inode)) { 1121 status = -EACCES; 1122 iput(inode); 1123 inode = NULL; 1124 mlog_errno(status); 1125 goto done; 1126 } 1127 SET_INODE_JOURNAL(inode); 1128 1129 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1130 if (status < 0) { 1131 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status); 1132 if (status != -ERESTARTSYS) 1133 mlog(ML_ERROR, "Could not lock journal!\n"); 1134 goto done; 1135 } 1136 got_lock = 1; 1137 1138 fe = (struct ocfs2_dinode *) bh->b_data; 1139 1140 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1141 1142 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1143 mlog(0, "No recovery required for node %d\n", node_num); 1144 goto done; 1145 } 1146 1147 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n", 1148 node_num, slot_num, 1149 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1150 1151 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1152 1153 status = ocfs2_force_read_journal(inode); 1154 if (status < 0) { 1155 mlog_errno(status); 1156 goto done; 1157 } 1158 1159 mlog(0, "calling journal_init_inode\n"); 1160 journal = journal_init_inode(inode); 1161 if (journal == NULL) { 1162 mlog(ML_ERROR, "Linux journal layer error\n"); 1163 status = -EIO; 1164 goto done; 1165 } 1166 1167 status = journal_load(journal); 1168 if (status < 0) { 1169 mlog_errno(status); 1170 if (!igrab(inode)) 1171 BUG(); 1172 journal_destroy(journal); 1173 goto done; 1174 } 1175 1176 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1177 1178 /* wipe the journal */ 1179 mlog(0, "flushing the journal.\n"); 1180 journal_lock_updates(journal); 1181 status = journal_flush(journal); 1182 journal_unlock_updates(journal); 1183 if (status < 0) 1184 mlog_errno(status); 1185 1186 /* This will mark the node clean */ 1187 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1188 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1189 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1190 1191 status = ocfs2_write_block(osb, bh, inode); 1192 if (status < 0) 1193 mlog_errno(status); 1194 1195 if (!igrab(inode)) 1196 BUG(); 1197 1198 journal_destroy(journal); 1199 1200 done: 1201 /* drop the lock on this nodes journal */ 1202 if (got_lock) 1203 ocfs2_inode_unlock(inode, 1); 1204 1205 if (inode) 1206 iput(inode); 1207 1208 if (bh) 1209 brelse(bh); 1210 1211 mlog_exit(status); 1212 return status; 1213 } 1214 1215 /* 1216 * Do the most important parts of node recovery: 1217 * - Replay it's journal 1218 * - Stamp a clean local allocator file 1219 * - Stamp a clean truncate log 1220 * - Mark the node clean 1221 * 1222 * If this function completes without error, a node in OCFS2 can be 1223 * said to have been safely recovered. As a result, failure during the 1224 * second part of a nodes recovery process (local alloc recovery) is 1225 * far less concerning. 1226 */ 1227 static int ocfs2_recover_node(struct ocfs2_super *osb, 1228 int node_num) 1229 { 1230 int status = 0; 1231 int slot_num; 1232 struct ocfs2_dinode *la_copy = NULL; 1233 struct ocfs2_dinode *tl_copy = NULL; 1234 1235 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 1236 node_num, osb->node_num); 1237 1238 mlog(0, "checking node %d\n", node_num); 1239 1240 /* Should not ever be called to recover ourselves -- in that 1241 * case we should've called ocfs2_journal_load instead. */ 1242 BUG_ON(osb->node_num == node_num); 1243 1244 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1245 if (slot_num == -ENOENT) { 1246 status = 0; 1247 mlog(0, "no slot for this node, so no recovery required.\n"); 1248 goto done; 1249 } 1250 1251 mlog(0, "node %d was using slot %d\n", node_num, slot_num); 1252 1253 status = ocfs2_replay_journal(osb, node_num, slot_num); 1254 if (status < 0) { 1255 mlog_errno(status); 1256 goto done; 1257 } 1258 1259 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1260 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1261 if (status < 0) { 1262 mlog_errno(status); 1263 goto done; 1264 } 1265 1266 /* An error from begin_truncate_log_recovery is not 1267 * serious enough to warrant halting the rest of 1268 * recovery. */ 1269 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1270 if (status < 0) 1271 mlog_errno(status); 1272 1273 /* Likewise, this would be a strange but ultimately not so 1274 * harmful place to get an error... */ 1275 status = ocfs2_clear_slot(osb, slot_num); 1276 if (status < 0) 1277 mlog_errno(status); 1278 1279 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1280 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1281 tl_copy); 1282 1283 status = 0; 1284 done: 1285 1286 mlog_exit(status); 1287 return status; 1288 } 1289 1290 /* Test node liveness by trylocking his journal. If we get the lock, 1291 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1292 * still alive (we couldn't get the lock) and < 0 on error. */ 1293 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1294 int slot_num) 1295 { 1296 int status, flags; 1297 struct inode *inode = NULL; 1298 1299 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1300 slot_num); 1301 if (inode == NULL) { 1302 mlog(ML_ERROR, "access error\n"); 1303 status = -EACCES; 1304 goto bail; 1305 } 1306 if (is_bad_inode(inode)) { 1307 mlog(ML_ERROR, "access error (bad inode)\n"); 1308 iput(inode); 1309 inode = NULL; 1310 status = -EACCES; 1311 goto bail; 1312 } 1313 SET_INODE_JOURNAL(inode); 1314 1315 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1316 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1317 if (status < 0) { 1318 if (status != -EAGAIN) 1319 mlog_errno(status); 1320 goto bail; 1321 } 1322 1323 ocfs2_inode_unlock(inode, 1); 1324 bail: 1325 if (inode) 1326 iput(inode); 1327 1328 return status; 1329 } 1330 1331 /* Call this underneath ocfs2_super_lock. It also assumes that the 1332 * slot info struct has been updated from disk. */ 1333 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1334 { 1335 unsigned int node_num; 1336 int status, i; 1337 1338 /* This is called with the super block cluster lock, so we 1339 * know that the slot map can't change underneath us. */ 1340 1341 spin_lock(&osb->osb_lock); 1342 for (i = 0; i < osb->max_slots; i++) { 1343 if (i == osb->slot_num) 1344 continue; 1345 1346 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1347 if (status == -ENOENT) 1348 continue; 1349 1350 if (__ocfs2_recovery_map_test(osb, node_num)) 1351 continue; 1352 spin_unlock(&osb->osb_lock); 1353 1354 /* Ok, we have a slot occupied by another node which 1355 * is not in the recovery map. We trylock his journal 1356 * file here to test if he's alive. */ 1357 status = ocfs2_trylock_journal(osb, i); 1358 if (!status) { 1359 /* Since we're called from mount, we know that 1360 * the recovery thread can't race us on 1361 * setting / checking the recovery bits. */ 1362 ocfs2_recovery_thread(osb, node_num); 1363 } else if ((status < 0) && (status != -EAGAIN)) { 1364 mlog_errno(status); 1365 goto bail; 1366 } 1367 1368 spin_lock(&osb->osb_lock); 1369 } 1370 spin_unlock(&osb->osb_lock); 1371 1372 status = 0; 1373 bail: 1374 mlog_exit(status); 1375 return status; 1376 } 1377 1378 struct ocfs2_orphan_filldir_priv { 1379 struct inode *head; 1380 struct ocfs2_super *osb; 1381 }; 1382 1383 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len, 1384 loff_t pos, u64 ino, unsigned type) 1385 { 1386 struct ocfs2_orphan_filldir_priv *p = priv; 1387 struct inode *iter; 1388 1389 if (name_len == 1 && !strncmp(".", name, 1)) 1390 return 0; 1391 if (name_len == 2 && !strncmp("..", name, 2)) 1392 return 0; 1393 1394 /* Skip bad inodes so that recovery can continue */ 1395 iter = ocfs2_iget(p->osb, ino, 1396 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 1397 if (IS_ERR(iter)) 1398 return 0; 1399 1400 mlog(0, "queue orphan %llu\n", 1401 (unsigned long long)OCFS2_I(iter)->ip_blkno); 1402 /* No locking is required for the next_orphan queue as there 1403 * is only ever a single process doing orphan recovery. */ 1404 OCFS2_I(iter)->ip_next_orphan = p->head; 1405 p->head = iter; 1406 1407 return 0; 1408 } 1409 1410 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 1411 int slot, 1412 struct inode **head) 1413 { 1414 int status; 1415 struct inode *orphan_dir_inode = NULL; 1416 struct ocfs2_orphan_filldir_priv priv; 1417 loff_t pos = 0; 1418 1419 priv.osb = osb; 1420 priv.head = *head; 1421 1422 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 1423 ORPHAN_DIR_SYSTEM_INODE, 1424 slot); 1425 if (!orphan_dir_inode) { 1426 status = -ENOENT; 1427 mlog_errno(status); 1428 return status; 1429 } 1430 1431 mutex_lock(&orphan_dir_inode->i_mutex); 1432 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 1433 if (status < 0) { 1434 mlog_errno(status); 1435 goto out; 1436 } 1437 1438 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv, 1439 ocfs2_orphan_filldir); 1440 if (status) { 1441 mlog_errno(status); 1442 goto out_cluster; 1443 } 1444 1445 *head = priv.head; 1446 1447 out_cluster: 1448 ocfs2_inode_unlock(orphan_dir_inode, 0); 1449 out: 1450 mutex_unlock(&orphan_dir_inode->i_mutex); 1451 iput(orphan_dir_inode); 1452 return status; 1453 } 1454 1455 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 1456 int slot) 1457 { 1458 int ret; 1459 1460 spin_lock(&osb->osb_lock); 1461 ret = !osb->osb_orphan_wipes[slot]; 1462 spin_unlock(&osb->osb_lock); 1463 return ret; 1464 } 1465 1466 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 1467 int slot) 1468 { 1469 spin_lock(&osb->osb_lock); 1470 /* Mark ourselves such that new processes in delete_inode() 1471 * know to quit early. */ 1472 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1473 while (osb->osb_orphan_wipes[slot]) { 1474 /* If any processes are already in the middle of an 1475 * orphan wipe on this dir, then we need to wait for 1476 * them. */ 1477 spin_unlock(&osb->osb_lock); 1478 wait_event_interruptible(osb->osb_wipe_event, 1479 ocfs2_orphan_recovery_can_continue(osb, slot)); 1480 spin_lock(&osb->osb_lock); 1481 } 1482 spin_unlock(&osb->osb_lock); 1483 } 1484 1485 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 1486 int slot) 1487 { 1488 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1489 } 1490 1491 /* 1492 * Orphan recovery. Each mounted node has it's own orphan dir which we 1493 * must run during recovery. Our strategy here is to build a list of 1494 * the inodes in the orphan dir and iget/iput them. The VFS does 1495 * (most) of the rest of the work. 1496 * 1497 * Orphan recovery can happen at any time, not just mount so we have a 1498 * couple of extra considerations. 1499 * 1500 * - We grab as many inodes as we can under the orphan dir lock - 1501 * doing iget() outside the orphan dir risks getting a reference on 1502 * an invalid inode. 1503 * - We must be sure not to deadlock with other processes on the 1504 * system wanting to run delete_inode(). This can happen when they go 1505 * to lock the orphan dir and the orphan recovery process attempts to 1506 * iget() inside the orphan dir lock. This can be avoided by 1507 * advertising our state to ocfs2_delete_inode(). 1508 */ 1509 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 1510 int slot) 1511 { 1512 int ret = 0; 1513 struct inode *inode = NULL; 1514 struct inode *iter; 1515 struct ocfs2_inode_info *oi; 1516 1517 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot); 1518 1519 ocfs2_mark_recovering_orphan_dir(osb, slot); 1520 ret = ocfs2_queue_orphans(osb, slot, &inode); 1521 ocfs2_clear_recovering_orphan_dir(osb, slot); 1522 1523 /* Error here should be noted, but we want to continue with as 1524 * many queued inodes as we've got. */ 1525 if (ret) 1526 mlog_errno(ret); 1527 1528 while (inode) { 1529 oi = OCFS2_I(inode); 1530 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno); 1531 1532 iter = oi->ip_next_orphan; 1533 1534 spin_lock(&oi->ip_lock); 1535 /* The remote delete code may have set these on the 1536 * assumption that the other node would wipe them 1537 * successfully. If they are still in the node's 1538 * orphan dir, we need to reset that state. */ 1539 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); 1540 1541 /* Set the proper information to get us going into 1542 * ocfs2_delete_inode. */ 1543 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 1544 spin_unlock(&oi->ip_lock); 1545 1546 iput(inode); 1547 1548 inode = iter; 1549 } 1550 1551 return ret; 1552 } 1553 1554 static int ocfs2_wait_on_mount(struct ocfs2_super *osb) 1555 { 1556 /* This check is good because ocfs2 will wait on our recovery 1557 * thread before changing it to something other than MOUNTED 1558 * or DISABLED. */ 1559 wait_event(osb->osb_mount_event, 1560 atomic_read(&osb->vol_state) == VOLUME_MOUNTED || 1561 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 1562 1563 /* If there's an error on mount, then we may never get to the 1564 * MOUNTED flag, but this is set right before 1565 * dismount_volume() so we can trust it. */ 1566 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 1567 mlog(0, "mount error, exiting!\n"); 1568 return -EBUSY; 1569 } 1570 1571 return 0; 1572 } 1573 1574 static int ocfs2_commit_thread(void *arg) 1575 { 1576 int status; 1577 struct ocfs2_super *osb = arg; 1578 struct ocfs2_journal *journal = osb->journal; 1579 1580 /* we can trust j_num_trans here because _should_stop() is only set in 1581 * shutdown and nobody other than ourselves should be able to start 1582 * transactions. committing on shutdown might take a few iterations 1583 * as final transactions put deleted inodes on the list */ 1584 while (!(kthread_should_stop() && 1585 atomic_read(&journal->j_num_trans) == 0)) { 1586 1587 wait_event_interruptible(osb->checkpoint_event, 1588 atomic_read(&journal->j_num_trans) 1589 || kthread_should_stop()); 1590 1591 status = ocfs2_commit_cache(osb); 1592 if (status < 0) 1593 mlog_errno(status); 1594 1595 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 1596 mlog(ML_KTHREAD, 1597 "commit_thread: %u transactions pending on " 1598 "shutdown\n", 1599 atomic_read(&journal->j_num_trans)); 1600 } 1601 } 1602 1603 return 0; 1604 } 1605 1606 /* Look for a dirty journal without taking any cluster locks. Used for 1607 * hard readonly access to determine whether the file system journals 1608 * require recovery. */ 1609 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 1610 { 1611 int ret = 0; 1612 unsigned int slot; 1613 struct buffer_head *di_bh; 1614 struct ocfs2_dinode *di; 1615 struct inode *journal = NULL; 1616 1617 for(slot = 0; slot < osb->max_slots; slot++) { 1618 journal = ocfs2_get_system_file_inode(osb, 1619 JOURNAL_SYSTEM_INODE, 1620 slot); 1621 if (!journal || is_bad_inode(journal)) { 1622 ret = -EACCES; 1623 mlog_errno(ret); 1624 goto out; 1625 } 1626 1627 di_bh = NULL; 1628 ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh, 1629 0, journal); 1630 if (ret < 0) { 1631 mlog_errno(ret); 1632 goto out; 1633 } 1634 1635 di = (struct ocfs2_dinode *) di_bh->b_data; 1636 1637 if (le32_to_cpu(di->id1.journal1.ij_flags) & 1638 OCFS2_JOURNAL_DIRTY_FL) 1639 ret = -EROFS; 1640 1641 brelse(di_bh); 1642 if (ret) 1643 break; 1644 } 1645 1646 out: 1647 if (journal) 1648 iput(journal); 1649 1650 return ret; 1651 } 1652