xref: /openbmc/linux/fs/ocfs2/journal.c (revision 1fc58146)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "heartbeat.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "namei.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "vote.h"
48 #include "sysfile.h"
49 
50 #include "buffer_head_io.h"
51 
52 DEFINE_SPINLOCK(trans_inc_lock);
53 
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 			      int node_num);
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
61 				       struct ocfs2_journal_handle *handle);
62 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle);
63 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
64 				      int dirty);
65 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
66 				 int slot_num);
67 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
68 				 int slot);
69 static int ocfs2_commit_thread(void *arg);
70 
71 static int ocfs2_commit_cache(struct ocfs2_super *osb)
72 {
73 	int status = 0;
74 	unsigned int flushed;
75 	unsigned long old_id;
76 	struct ocfs2_journal *journal = NULL;
77 
78 	mlog_entry_void();
79 
80 	journal = osb->journal;
81 
82 	/* Flush all pending commits and checkpoint the journal. */
83 	down_write(&journal->j_trans_barrier);
84 
85 	if (atomic_read(&journal->j_num_trans) == 0) {
86 		up_write(&journal->j_trans_barrier);
87 		mlog(0, "No transactions for me to flush!\n");
88 		goto finally;
89 	}
90 
91 	journal_lock_updates(journal->j_journal);
92 	status = journal_flush(journal->j_journal);
93 	journal_unlock_updates(journal->j_journal);
94 	if (status < 0) {
95 		up_write(&journal->j_trans_barrier);
96 		mlog_errno(status);
97 		goto finally;
98 	}
99 
100 	old_id = ocfs2_inc_trans_id(journal);
101 
102 	flushed = atomic_read(&journal->j_num_trans);
103 	atomic_set(&journal->j_num_trans, 0);
104 	up_write(&journal->j_trans_barrier);
105 
106 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
107 	     journal->j_trans_id, flushed);
108 
109 	ocfs2_kick_vote_thread(osb);
110 	wake_up(&journal->j_checkpointed);
111 finally:
112 	mlog_exit(status);
113 	return status;
114 }
115 
116 struct ocfs2_journal_handle *ocfs2_alloc_handle(struct ocfs2_super *osb)
117 {
118 	struct ocfs2_journal_handle *retval = NULL;
119 
120 	retval = kcalloc(1, sizeof(*retval), GFP_NOFS);
121 	if (!retval) {
122 		mlog(ML_ERROR, "Failed to allocate memory for journal "
123 		     "handle!\n");
124 		return NULL;
125 	}
126 
127 	retval->num_locks = 0;
128 	retval->k_handle = NULL;
129 
130 	INIT_LIST_HEAD(&retval->locks);
131 	INIT_LIST_HEAD(&retval->inode_list);
132 	retval->journal = osb->journal;
133 
134 	return retval;
135 }
136 
137 /* pass it NULL and it will allocate a new handle object for you.  If
138  * you pass it a handle however, it may still return error, in which
139  * case it has free'd the passed handle for you. */
140 struct ocfs2_journal_handle *ocfs2_start_trans(struct ocfs2_super *osb,
141 					       struct ocfs2_journal_handle *handle,
142 					       int max_buffs)
143 {
144 	int ret;
145 	journal_t *journal = osb->journal->j_journal;
146 
147 	mlog_entry("(max_buffs = %d)\n", max_buffs);
148 
149 	BUG_ON(!osb || !osb->journal->j_journal);
150 
151 	if (ocfs2_is_hard_readonly(osb)) {
152 		ret = -EROFS;
153 		goto done_free;
154 	}
155 
156 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
157 	BUG_ON(max_buffs <= 0);
158 
159 	/* JBD might support this, but our journalling code doesn't yet. */
160 	if (journal_current_handle()) {
161 		mlog(ML_ERROR, "Recursive transaction attempted!\n");
162 		BUG();
163 	}
164 
165 	if (!handle)
166 		handle = ocfs2_alloc_handle(osb);
167 	if (!handle) {
168 		ret = -ENOMEM;
169 		mlog(ML_ERROR, "Failed to allocate memory for journal "
170 		     "handle!\n");
171 		goto done_free;
172 	}
173 
174 	down_read(&osb->journal->j_trans_barrier);
175 
176 	/* actually start the transaction now */
177 	handle->k_handle = journal_start(journal, max_buffs);
178 	if (IS_ERR(handle->k_handle)) {
179 		up_read(&osb->journal->j_trans_barrier);
180 
181 		ret = PTR_ERR(handle->k_handle);
182 		handle->k_handle = NULL;
183 		mlog_errno(ret);
184 
185 		if (is_journal_aborted(journal)) {
186 			ocfs2_abort(osb->sb, "Detected aborted journal");
187 			ret = -EROFS;
188 		}
189 		goto done_free;
190 	}
191 
192 	atomic_inc(&(osb->journal->j_num_trans));
193 	handle->flags |= OCFS2_HANDLE_STARTED;
194 
195 	mlog_exit_ptr(handle);
196 	return handle;
197 
198 done_free:
199 	if (handle)
200 		ocfs2_commit_unstarted_handle(handle); /* will kfree handle */
201 
202 	mlog_exit(ret);
203 	return ERR_PTR(ret);
204 }
205 
206 void ocfs2_handle_add_inode(struct ocfs2_journal_handle *handle,
207 			    struct inode *inode)
208 {
209 	BUG_ON(!handle);
210 	BUG_ON(!inode);
211 
212 	atomic_inc(&inode->i_count);
213 
214 	/* we're obviously changing it... */
215 	mutex_lock(&inode->i_mutex);
216 
217 	/* sanity check */
218 	BUG_ON(OCFS2_I(inode)->ip_handle);
219 	BUG_ON(!list_empty(&OCFS2_I(inode)->ip_handle_list));
220 
221 	OCFS2_I(inode)->ip_handle = handle;
222 	list_move_tail(&(OCFS2_I(inode)->ip_handle_list), &(handle->inode_list));
223 }
224 
225 static void ocfs2_handle_unlock_inodes(struct ocfs2_journal_handle *handle)
226 {
227 	struct list_head *p, *n;
228 	struct inode *inode;
229 	struct ocfs2_inode_info *oi;
230 
231 	list_for_each_safe(p, n, &handle->inode_list) {
232 		oi = list_entry(p, struct ocfs2_inode_info,
233 				ip_handle_list);
234 		inode = &oi->vfs_inode;
235 
236 		OCFS2_I(inode)->ip_handle = NULL;
237 		list_del_init(&OCFS2_I(inode)->ip_handle_list);
238 
239 		mutex_unlock(&inode->i_mutex);
240 		iput(inode);
241 	}
242 }
243 
244 /* This is trivial so we do it out of the main commit
245  * paths. Beware, it can be called from start_trans too! */
246 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle)
247 {
248 	mlog_entry_void();
249 
250 	BUG_ON(handle->flags & OCFS2_HANDLE_STARTED);
251 
252 	ocfs2_handle_unlock_inodes(handle);
253 	/* You are allowed to add journal locks before the transaction
254 	 * has started. */
255 	ocfs2_handle_cleanup_locks(handle->journal, handle);
256 
257 	kfree(handle);
258 
259 	mlog_exit_void();
260 }
261 
262 void ocfs2_commit_trans(struct ocfs2_journal_handle *handle)
263 {
264 	handle_t *jbd_handle;
265 	int retval;
266 	struct ocfs2_journal *journal = handle->journal;
267 
268 	mlog_entry_void();
269 
270 	BUG_ON(!handle);
271 
272 	if (!(handle->flags & OCFS2_HANDLE_STARTED)) {
273 		ocfs2_commit_unstarted_handle(handle);
274 		mlog_exit_void();
275 		return;
276 	}
277 
278 	/* release inode semaphores we took during this transaction */
279 	ocfs2_handle_unlock_inodes(handle);
280 
281 	/* ocfs2_extend_trans may have had to call journal_restart
282 	 * which will always commit the transaction, but may return
283 	 * error for any number of reasons. If this is the case, we
284 	 * clear k_handle as it's not valid any more. */
285 	if (handle->k_handle) {
286 		jbd_handle = handle->k_handle;
287 
288 		if (handle->flags & OCFS2_HANDLE_SYNC)
289 			jbd_handle->h_sync = 1;
290 		else
291 			jbd_handle->h_sync = 0;
292 
293 		/* actually stop the transaction. if we've set h_sync,
294 		 * it'll have been committed when we return */
295 		retval = journal_stop(jbd_handle);
296 		if (retval < 0) {
297 			mlog_errno(retval);
298 			mlog(ML_ERROR, "Could not commit transaction\n");
299 			BUG();
300 		}
301 
302 		handle->k_handle = NULL; /* it's been free'd in journal_stop */
303 	}
304 
305 	ocfs2_handle_cleanup_locks(journal, handle);
306 
307 	up_read(&journal->j_trans_barrier);
308 
309 	kfree(handle);
310 	mlog_exit_void();
311 }
312 
313 /*
314  * 'nblocks' is what you want to add to the current
315  * transaction. extend_trans will either extend the current handle by
316  * nblocks, or commit it and start a new one with nblocks credits.
317  *
318  * WARNING: This will not release any semaphores or disk locks taken
319  * during the transaction, so make sure they were taken *before*
320  * start_trans or we'll have ordering deadlocks.
321  *
322  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
323  * good because transaction ids haven't yet been recorded on the
324  * cluster locks associated with this handle.
325  */
326 int ocfs2_extend_trans(handle_t *handle, int nblocks)
327 {
328 	int status;
329 
330 	BUG_ON(!handle);
331 	BUG_ON(!nblocks);
332 
333 	mlog_entry_void();
334 
335 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
336 
337 	status = journal_extend(handle, nblocks);
338 	if (status < 0) {
339 		mlog_errno(status);
340 		goto bail;
341 	}
342 
343 	if (status > 0) {
344 		mlog(0, "journal_extend failed, trying journal_restart\n");
345 		status = journal_restart(handle, nblocks);
346 		if (status < 0) {
347 			mlog_errno(status);
348 			goto bail;
349 		}
350 	}
351 
352 	status = 0;
353 bail:
354 
355 	mlog_exit(status);
356 	return status;
357 }
358 
359 int ocfs2_journal_access(struct ocfs2_journal_handle *handle,
360 			 struct inode *inode,
361 			 struct buffer_head *bh,
362 			 int type)
363 {
364 	int status;
365 
366 	BUG_ON(!inode);
367 	BUG_ON(!handle);
368 	BUG_ON(!bh);
369 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
370 
371 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
372 		   (unsigned long long)bh->b_blocknr, type,
373 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
374 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
375 		   "OCFS2_JOURNAL_ACCESS_WRITE",
376 		   bh->b_size);
377 
378 	/* we can safely remove this assertion after testing. */
379 	if (!buffer_uptodate(bh)) {
380 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
381 		mlog(ML_ERROR, "b_blocknr=%llu\n",
382 		     (unsigned long long)bh->b_blocknr);
383 		BUG();
384 	}
385 
386 	/* Set the current transaction information on the inode so
387 	 * that the locking code knows whether it can drop it's locks
388 	 * on this inode or not. We're protected from the commit
389 	 * thread updating the current transaction id until
390 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
391 	 * j_trans_barrier for us. */
392 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
393 
394 	mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
395 	switch (type) {
396 	case OCFS2_JOURNAL_ACCESS_CREATE:
397 	case OCFS2_JOURNAL_ACCESS_WRITE:
398 		status = journal_get_write_access(handle->k_handle, bh);
399 		break;
400 
401 	case OCFS2_JOURNAL_ACCESS_UNDO:
402 		status = journal_get_undo_access(handle->k_handle, bh);
403 		break;
404 
405 	default:
406 		status = -EINVAL;
407 		mlog(ML_ERROR, "Uknown access type!\n");
408 	}
409 	mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
410 
411 	if (status < 0)
412 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
413 		     status, type);
414 
415 	mlog_exit(status);
416 	return status;
417 }
418 
419 int ocfs2_journal_dirty(struct ocfs2_journal_handle *handle,
420 			struct buffer_head *bh)
421 {
422 	int status;
423 
424 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
425 
426 	mlog_entry("(bh->b_blocknr=%llu)\n",
427 		   (unsigned long long)bh->b_blocknr);
428 
429 	status = journal_dirty_metadata(handle->k_handle, bh);
430 	if (status < 0)
431 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
432 		     "(bh->b_blocknr=%llu)\n",
433 		     (unsigned long long)bh->b_blocknr);
434 
435 	mlog_exit(status);
436 	return status;
437 }
438 
439 int ocfs2_journal_dirty_data(handle_t *handle,
440 			     struct buffer_head *bh)
441 {
442 	int err = journal_dirty_data(handle, bh);
443 	if (err)
444 		mlog_errno(err);
445 	/* TODO: When we can handle it, abort the handle and go RO on
446 	 * error here. */
447 
448 	return err;
449 }
450 
451 /* We always assume you're adding a metadata lock at level 'ex' */
452 int ocfs2_handle_add_lock(struct ocfs2_journal_handle *handle,
453 			  struct inode *inode)
454 {
455 	int status;
456 	struct ocfs2_journal_lock *lock;
457 
458 	BUG_ON(!inode);
459 
460 	lock = kmem_cache_alloc(ocfs2_lock_cache, GFP_NOFS);
461 	if (!lock) {
462 		status = -ENOMEM;
463 		mlog_errno(-ENOMEM);
464 		goto bail;
465 	}
466 
467 	if (!igrab(inode))
468 		BUG();
469 	lock->jl_inode = inode;
470 
471 	list_add_tail(&(lock->jl_lock_list), &(handle->locks));
472 	handle->num_locks++;
473 
474 	status = 0;
475 bail:
476 	mlog_exit(status);
477 	return status;
478 }
479 
480 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
481 				       struct ocfs2_journal_handle *handle)
482 {
483 	struct list_head *p, *n;
484 	struct ocfs2_journal_lock *lock;
485 	struct inode *inode;
486 
487 	list_for_each_safe(p, n, &(handle->locks)) {
488 		lock = list_entry(p, struct ocfs2_journal_lock,
489 				  jl_lock_list);
490 		list_del(&lock->jl_lock_list);
491 		handle->num_locks--;
492 
493 		inode = lock->jl_inode;
494 		ocfs2_meta_unlock(inode, 1);
495 		if (atomic_read(&inode->i_count) == 1)
496 			mlog(ML_ERROR,
497 			     "Inode %llu, I'm doing a last iput for!",
498 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
499 		iput(inode);
500 		kmem_cache_free(ocfs2_lock_cache, lock);
501 	}
502 }
503 
504 #define OCFS2_DEFAULT_COMMIT_INTERVAL 	(HZ * 5)
505 
506 void ocfs2_set_journal_params(struct ocfs2_super *osb)
507 {
508 	journal_t *journal = osb->journal->j_journal;
509 
510 	spin_lock(&journal->j_state_lock);
511 	journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
512 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
513 		journal->j_flags |= JFS_BARRIER;
514 	else
515 		journal->j_flags &= ~JFS_BARRIER;
516 	spin_unlock(&journal->j_state_lock);
517 }
518 
519 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
520 {
521 	int status = -1;
522 	struct inode *inode = NULL; /* the journal inode */
523 	journal_t *j_journal = NULL;
524 	struct ocfs2_dinode *di = NULL;
525 	struct buffer_head *bh = NULL;
526 	struct ocfs2_super *osb;
527 	int meta_lock = 0;
528 
529 	mlog_entry_void();
530 
531 	BUG_ON(!journal);
532 
533 	osb = journal->j_osb;
534 
535 	/* already have the inode for our journal */
536 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
537 					    osb->slot_num);
538 	if (inode == NULL) {
539 		status = -EACCES;
540 		mlog_errno(status);
541 		goto done;
542 	}
543 	if (is_bad_inode(inode)) {
544 		mlog(ML_ERROR, "access error (bad inode)\n");
545 		iput(inode);
546 		inode = NULL;
547 		status = -EACCES;
548 		goto done;
549 	}
550 
551 	SET_INODE_JOURNAL(inode);
552 	OCFS2_I(inode)->ip_open_count++;
553 
554 	/* Skip recovery waits here - journal inode metadata never
555 	 * changes in a live cluster so it can be considered an
556 	 * exception to the rule. */
557 	status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
558 				      OCFS2_META_LOCK_RECOVERY);
559 	if (status < 0) {
560 		if (status != -ERESTARTSYS)
561 			mlog(ML_ERROR, "Could not get lock on journal!\n");
562 		goto done;
563 	}
564 
565 	meta_lock = 1;
566 	di = (struct ocfs2_dinode *)bh->b_data;
567 
568 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
569 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
570 		     inode->i_size);
571 		status = -EINVAL;
572 		goto done;
573 	}
574 
575 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
576 	mlog(0, "inode->i_blocks = %llu\n",
577 			(unsigned long long)inode->i_blocks);
578 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
579 
580 	/* call the kernels journal init function now */
581 	j_journal = journal_init_inode(inode);
582 	if (j_journal == NULL) {
583 		mlog(ML_ERROR, "Linux journal layer error\n");
584 		status = -EINVAL;
585 		goto done;
586 	}
587 
588 	mlog(0, "Returned from journal_init_inode\n");
589 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
590 
591 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
592 		  OCFS2_JOURNAL_DIRTY_FL);
593 
594 	journal->j_journal = j_journal;
595 	journal->j_inode = inode;
596 	journal->j_bh = bh;
597 
598 	ocfs2_set_journal_params(osb);
599 
600 	journal->j_state = OCFS2_JOURNAL_LOADED;
601 
602 	status = 0;
603 done:
604 	if (status < 0) {
605 		if (meta_lock)
606 			ocfs2_meta_unlock(inode, 1);
607 		if (bh != NULL)
608 			brelse(bh);
609 		if (inode) {
610 			OCFS2_I(inode)->ip_open_count--;
611 			iput(inode);
612 		}
613 	}
614 
615 	mlog_exit(status);
616 	return status;
617 }
618 
619 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
620 				      int dirty)
621 {
622 	int status;
623 	unsigned int flags;
624 	struct ocfs2_journal *journal = osb->journal;
625 	struct buffer_head *bh = journal->j_bh;
626 	struct ocfs2_dinode *fe;
627 
628 	mlog_entry_void();
629 
630 	fe = (struct ocfs2_dinode *)bh->b_data;
631 	if (!OCFS2_IS_VALID_DINODE(fe)) {
632 		/* This is called from startup/shutdown which will
633 		 * handle the errors in a specific manner, so no need
634 		 * to call ocfs2_error() here. */
635 		mlog(ML_ERROR, "Journal dinode %llu  has invalid "
636 		     "signature: %.*s", (unsigned long long)fe->i_blkno, 7,
637 		     fe->i_signature);
638 		status = -EIO;
639 		goto out;
640 	}
641 
642 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
643 	if (dirty)
644 		flags |= OCFS2_JOURNAL_DIRTY_FL;
645 	else
646 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
647 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
648 
649 	status = ocfs2_write_block(osb, bh, journal->j_inode);
650 	if (status < 0)
651 		mlog_errno(status);
652 
653 out:
654 	mlog_exit(status);
655 	return status;
656 }
657 
658 /*
659  * If the journal has been kmalloc'd it needs to be freed after this
660  * call.
661  */
662 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
663 {
664 	struct ocfs2_journal *journal = NULL;
665 	int status = 0;
666 	struct inode *inode = NULL;
667 	int num_running_trans = 0;
668 
669 	mlog_entry_void();
670 
671 	BUG_ON(!osb);
672 
673 	journal = osb->journal;
674 	if (!journal)
675 		goto done;
676 
677 	inode = journal->j_inode;
678 
679 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
680 		goto done;
681 
682 	/* need to inc inode use count as journal_destroy will iput. */
683 	if (!igrab(inode))
684 		BUG();
685 
686 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
687 	if (num_running_trans > 0)
688 		mlog(0, "Shutting down journal: must wait on %d "
689 		     "running transactions!\n",
690 		     num_running_trans);
691 
692 	/* Do a commit_cache here. It will flush our journal, *and*
693 	 * release any locks that are still held.
694 	 * set the SHUTDOWN flag and release the trans lock.
695 	 * the commit thread will take the trans lock for us below. */
696 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
697 
698 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
699 	 * drop the trans_lock (which we want to hold until we
700 	 * completely destroy the journal. */
701 	if (osb->commit_task) {
702 		/* Wait for the commit thread */
703 		mlog(0, "Waiting for ocfs2commit to exit....\n");
704 		kthread_stop(osb->commit_task);
705 		osb->commit_task = NULL;
706 	}
707 
708 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
709 
710 	status = ocfs2_journal_toggle_dirty(osb, 0);
711 	if (status < 0)
712 		mlog_errno(status);
713 
714 	/* Shutdown the kernel journal system */
715 	journal_destroy(journal->j_journal);
716 
717 	OCFS2_I(inode)->ip_open_count--;
718 
719 	/* unlock our journal */
720 	ocfs2_meta_unlock(inode, 1);
721 
722 	brelse(journal->j_bh);
723 	journal->j_bh = NULL;
724 
725 	journal->j_state = OCFS2_JOURNAL_FREE;
726 
727 //	up_write(&journal->j_trans_barrier);
728 done:
729 	if (inode)
730 		iput(inode);
731 	mlog_exit_void();
732 }
733 
734 static void ocfs2_clear_journal_error(struct super_block *sb,
735 				      journal_t *journal,
736 				      int slot)
737 {
738 	int olderr;
739 
740 	olderr = journal_errno(journal);
741 	if (olderr) {
742 		mlog(ML_ERROR, "File system error %d recorded in "
743 		     "journal %u.\n", olderr, slot);
744 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
745 		     sb->s_id);
746 
747 		journal_ack_err(journal);
748 		journal_clear_err(journal);
749 	}
750 }
751 
752 int ocfs2_journal_load(struct ocfs2_journal *journal)
753 {
754 	int status = 0;
755 	struct ocfs2_super *osb;
756 
757 	mlog_entry_void();
758 
759 	if (!journal)
760 		BUG();
761 
762 	osb = journal->j_osb;
763 
764 	status = journal_load(journal->j_journal);
765 	if (status < 0) {
766 		mlog(ML_ERROR, "Failed to load journal!\n");
767 		goto done;
768 	}
769 
770 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
771 
772 	status = ocfs2_journal_toggle_dirty(osb, 1);
773 	if (status < 0) {
774 		mlog_errno(status);
775 		goto done;
776 	}
777 
778 	/* Launch the commit thread */
779 	osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt");
780 	if (IS_ERR(osb->commit_task)) {
781 		status = PTR_ERR(osb->commit_task);
782 		osb->commit_task = NULL;
783 		mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
784 		     status);
785 		goto done;
786 	}
787 
788 done:
789 	mlog_exit(status);
790 	return status;
791 }
792 
793 
794 /* 'full' flag tells us whether we clear out all blocks or if we just
795  * mark the journal clean */
796 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
797 {
798 	int status;
799 
800 	mlog_entry_void();
801 
802 	BUG_ON(!journal);
803 
804 	status = journal_wipe(journal->j_journal, full);
805 	if (status < 0) {
806 		mlog_errno(status);
807 		goto bail;
808 	}
809 
810 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
811 	if (status < 0)
812 		mlog_errno(status);
813 
814 bail:
815 	mlog_exit(status);
816 	return status;
817 }
818 
819 /*
820  * JBD Might read a cached version of another nodes journal file. We
821  * don't want this as this file changes often and we get no
822  * notification on those changes. The only way to be sure that we've
823  * got the most up to date version of those blocks then is to force
824  * read them off disk. Just searching through the buffer cache won't
825  * work as there may be pages backing this file which are still marked
826  * up to date. We know things can't change on this file underneath us
827  * as we have the lock by now :)
828  */
829 static int ocfs2_force_read_journal(struct inode *inode)
830 {
831 	int status = 0;
832 	int i, p_blocks;
833 	u64 v_blkno, p_blkno;
834 #define CONCURRENT_JOURNAL_FILL 32
835 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
836 
837 	mlog_entry_void();
838 
839 	BUG_ON(inode->i_blocks !=
840 		     ocfs2_align_bytes_to_sectors(i_size_read(inode)));
841 
842 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
843 
844 	mlog(0, "Force reading %llu blocks\n",
845 		(unsigned long long)(inode->i_blocks >>
846 			(inode->i_sb->s_blocksize_bits - 9)));
847 
848 	v_blkno = 0;
849 	while (v_blkno <
850 	       (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
851 
852 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
853 						     1, &p_blkno,
854 						     &p_blocks);
855 		if (status < 0) {
856 			mlog_errno(status);
857 			goto bail;
858 		}
859 
860 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
861 			p_blocks = CONCURRENT_JOURNAL_FILL;
862 
863 		/* We are reading journal data which should not
864 		 * be put in the uptodate cache */
865 		status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
866 					   p_blkno, p_blocks, bhs, 0,
867 					   NULL);
868 		if (status < 0) {
869 			mlog_errno(status);
870 			goto bail;
871 		}
872 
873 		for(i = 0; i < p_blocks; i++) {
874 			brelse(bhs[i]);
875 			bhs[i] = NULL;
876 		}
877 
878 		v_blkno += p_blocks;
879 	}
880 
881 bail:
882 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
883 		if (bhs[i])
884 			brelse(bhs[i]);
885 	mlog_exit(status);
886 	return status;
887 }
888 
889 struct ocfs2_la_recovery_item {
890 	struct list_head	lri_list;
891 	int			lri_slot;
892 	struct ocfs2_dinode	*lri_la_dinode;
893 	struct ocfs2_dinode	*lri_tl_dinode;
894 };
895 
896 /* Does the second half of the recovery process. By this point, the
897  * node is marked clean and can actually be considered recovered,
898  * hence it's no longer in the recovery map, but there's still some
899  * cleanup we can do which shouldn't happen within the recovery thread
900  * as locking in that context becomes very difficult if we are to take
901  * recovering nodes into account.
902  *
903  * NOTE: This function can and will sleep on recovery of other nodes
904  * during cluster locking, just like any other ocfs2 process.
905  */
906 void ocfs2_complete_recovery(void *data)
907 {
908 	int ret;
909 	struct ocfs2_super *osb = data;
910 	struct ocfs2_journal *journal = osb->journal;
911 	struct ocfs2_dinode *la_dinode, *tl_dinode;
912 	struct ocfs2_la_recovery_item *item;
913 	struct list_head *p, *n;
914 	LIST_HEAD(tmp_la_list);
915 
916 	mlog_entry_void();
917 
918 	mlog(0, "completing recovery from keventd\n");
919 
920 	spin_lock(&journal->j_lock);
921 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
922 	spin_unlock(&journal->j_lock);
923 
924 	list_for_each_safe(p, n, &tmp_la_list) {
925 		item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
926 		list_del_init(&item->lri_list);
927 
928 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
929 
930 		la_dinode = item->lri_la_dinode;
931 		if (la_dinode) {
932 			mlog(0, "Clean up local alloc %llu\n",
933 			     (unsigned long long)la_dinode->i_blkno);
934 
935 			ret = ocfs2_complete_local_alloc_recovery(osb,
936 								  la_dinode);
937 			if (ret < 0)
938 				mlog_errno(ret);
939 
940 			kfree(la_dinode);
941 		}
942 
943 		tl_dinode = item->lri_tl_dinode;
944 		if (tl_dinode) {
945 			mlog(0, "Clean up truncate log %llu\n",
946 			     (unsigned long long)tl_dinode->i_blkno);
947 
948 			ret = ocfs2_complete_truncate_log_recovery(osb,
949 								   tl_dinode);
950 			if (ret < 0)
951 				mlog_errno(ret);
952 
953 			kfree(tl_dinode);
954 		}
955 
956 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
957 		if (ret < 0)
958 			mlog_errno(ret);
959 
960 		kfree(item);
961 	}
962 
963 	mlog(0, "Recovery completion\n");
964 	mlog_exit_void();
965 }
966 
967 /* NOTE: This function always eats your references to la_dinode and
968  * tl_dinode, either manually on error, or by passing them to
969  * ocfs2_complete_recovery */
970 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
971 					    int slot_num,
972 					    struct ocfs2_dinode *la_dinode,
973 					    struct ocfs2_dinode *tl_dinode)
974 {
975 	struct ocfs2_la_recovery_item *item;
976 
977 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
978 	if (!item) {
979 		/* Though we wish to avoid it, we are in fact safe in
980 		 * skipping local alloc cleanup as fsck.ocfs2 is more
981 		 * than capable of reclaiming unused space. */
982 		if (la_dinode)
983 			kfree(la_dinode);
984 
985 		if (tl_dinode)
986 			kfree(tl_dinode);
987 
988 		mlog_errno(-ENOMEM);
989 		return;
990 	}
991 
992 	INIT_LIST_HEAD(&item->lri_list);
993 	item->lri_la_dinode = la_dinode;
994 	item->lri_slot = slot_num;
995 	item->lri_tl_dinode = tl_dinode;
996 
997 	spin_lock(&journal->j_lock);
998 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
999 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1000 	spin_unlock(&journal->j_lock);
1001 }
1002 
1003 /* Called by the mount code to queue recovery the last part of
1004  * recovery for it's own slot. */
1005 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1006 {
1007 	struct ocfs2_journal *journal = osb->journal;
1008 
1009 	if (osb->dirty) {
1010 		/* No need to queue up our truncate_log as regular
1011 		 * cleanup will catch that. */
1012 		ocfs2_queue_recovery_completion(journal,
1013 						osb->slot_num,
1014 						osb->local_alloc_copy,
1015 						NULL);
1016 		ocfs2_schedule_truncate_log_flush(osb, 0);
1017 
1018 		osb->local_alloc_copy = NULL;
1019 		osb->dirty = 0;
1020 	}
1021 }
1022 
1023 static int __ocfs2_recovery_thread(void *arg)
1024 {
1025 	int status, node_num;
1026 	struct ocfs2_super *osb = arg;
1027 
1028 	mlog_entry_void();
1029 
1030 	status = ocfs2_wait_on_mount(osb);
1031 	if (status < 0) {
1032 		goto bail;
1033 	}
1034 
1035 restart:
1036 	status = ocfs2_super_lock(osb, 1);
1037 	if (status < 0) {
1038 		mlog_errno(status);
1039 		goto bail;
1040 	}
1041 
1042 	while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1043 		node_num = ocfs2_node_map_first_set_bit(osb,
1044 							&osb->recovery_map);
1045 		if (node_num == O2NM_INVALID_NODE_NUM) {
1046 			mlog(0, "Out of nodes to recover.\n");
1047 			break;
1048 		}
1049 
1050 		status = ocfs2_recover_node(osb, node_num);
1051 		if (status < 0) {
1052 			mlog(ML_ERROR,
1053 			     "Error %d recovering node %d on device (%u,%u)!\n",
1054 			     status, node_num,
1055 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1056 			mlog(ML_ERROR, "Volume requires unmount.\n");
1057 			continue;
1058 		}
1059 
1060 		ocfs2_recovery_map_clear(osb, node_num);
1061 	}
1062 	ocfs2_super_unlock(osb, 1);
1063 
1064 	/* We always run recovery on our own orphan dir - the dead
1065 	 * node(s) may have voted "no" on an inode delete earlier. A
1066 	 * revote is therefore required. */
1067 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1068 					NULL);
1069 
1070 bail:
1071 	mutex_lock(&osb->recovery_lock);
1072 	if (!status &&
1073 	    !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1074 		mutex_unlock(&osb->recovery_lock);
1075 		goto restart;
1076 	}
1077 
1078 	osb->recovery_thread_task = NULL;
1079 	mb(); /* sync with ocfs2_recovery_thread_running */
1080 	wake_up(&osb->recovery_event);
1081 
1082 	mutex_unlock(&osb->recovery_lock);
1083 
1084 	mlog_exit(status);
1085 	/* no one is callint kthread_stop() for us so the kthread() api
1086 	 * requires that we call do_exit().  And it isn't exported, but
1087 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1088 	complete_and_exit(NULL, status);
1089 	return status;
1090 }
1091 
1092 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1093 {
1094 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1095 		   node_num, osb->node_num);
1096 
1097 	mutex_lock(&osb->recovery_lock);
1098 	if (osb->disable_recovery)
1099 		goto out;
1100 
1101 	/* People waiting on recovery will wait on
1102 	 * the recovery map to empty. */
1103 	if (!ocfs2_recovery_map_set(osb, node_num))
1104 		mlog(0, "node %d already be in recovery.\n", node_num);
1105 
1106 	mlog(0, "starting recovery thread...\n");
1107 
1108 	if (osb->recovery_thread_task)
1109 		goto out;
1110 
1111 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1112 						 "ocfs2rec");
1113 	if (IS_ERR(osb->recovery_thread_task)) {
1114 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1115 		osb->recovery_thread_task = NULL;
1116 	}
1117 
1118 out:
1119 	mutex_unlock(&osb->recovery_lock);
1120 	wake_up(&osb->recovery_event);
1121 
1122 	mlog_exit_void();
1123 }
1124 
1125 /* Does the actual journal replay and marks the journal inode as
1126  * clean. Will only replay if the journal inode is marked dirty. */
1127 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1128 				int node_num,
1129 				int slot_num)
1130 {
1131 	int status;
1132 	int got_lock = 0;
1133 	unsigned int flags;
1134 	struct inode *inode = NULL;
1135 	struct ocfs2_dinode *fe;
1136 	journal_t *journal = NULL;
1137 	struct buffer_head *bh = NULL;
1138 
1139 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1140 					    slot_num);
1141 	if (inode == NULL) {
1142 		status = -EACCES;
1143 		mlog_errno(status);
1144 		goto done;
1145 	}
1146 	if (is_bad_inode(inode)) {
1147 		status = -EACCES;
1148 		iput(inode);
1149 		inode = NULL;
1150 		mlog_errno(status);
1151 		goto done;
1152 	}
1153 	SET_INODE_JOURNAL(inode);
1154 
1155 	status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
1156 				      OCFS2_META_LOCK_RECOVERY);
1157 	if (status < 0) {
1158 		mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
1159 		if (status != -ERESTARTSYS)
1160 			mlog(ML_ERROR, "Could not lock journal!\n");
1161 		goto done;
1162 	}
1163 	got_lock = 1;
1164 
1165 	fe = (struct ocfs2_dinode *) bh->b_data;
1166 
1167 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1168 
1169 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1170 		mlog(0, "No recovery required for node %d\n", node_num);
1171 		goto done;
1172 	}
1173 
1174 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1175 	     node_num, slot_num,
1176 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1177 
1178 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1179 
1180 	status = ocfs2_force_read_journal(inode);
1181 	if (status < 0) {
1182 		mlog_errno(status);
1183 		goto done;
1184 	}
1185 
1186 	mlog(0, "calling journal_init_inode\n");
1187 	journal = journal_init_inode(inode);
1188 	if (journal == NULL) {
1189 		mlog(ML_ERROR, "Linux journal layer error\n");
1190 		status = -EIO;
1191 		goto done;
1192 	}
1193 
1194 	status = journal_load(journal);
1195 	if (status < 0) {
1196 		mlog_errno(status);
1197 		if (!igrab(inode))
1198 			BUG();
1199 		journal_destroy(journal);
1200 		goto done;
1201 	}
1202 
1203 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1204 
1205 	/* wipe the journal */
1206 	mlog(0, "flushing the journal.\n");
1207 	journal_lock_updates(journal);
1208 	status = journal_flush(journal);
1209 	journal_unlock_updates(journal);
1210 	if (status < 0)
1211 		mlog_errno(status);
1212 
1213 	/* This will mark the node clean */
1214 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1215 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1216 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1217 
1218 	status = ocfs2_write_block(osb, bh, inode);
1219 	if (status < 0)
1220 		mlog_errno(status);
1221 
1222 	if (!igrab(inode))
1223 		BUG();
1224 
1225 	journal_destroy(journal);
1226 
1227 done:
1228 	/* drop the lock on this nodes journal */
1229 	if (got_lock)
1230 		ocfs2_meta_unlock(inode, 1);
1231 
1232 	if (inode)
1233 		iput(inode);
1234 
1235 	if (bh)
1236 		brelse(bh);
1237 
1238 	mlog_exit(status);
1239 	return status;
1240 }
1241 
1242 /*
1243  * Do the most important parts of node recovery:
1244  *  - Replay it's journal
1245  *  - Stamp a clean local allocator file
1246  *  - Stamp a clean truncate log
1247  *  - Mark the node clean
1248  *
1249  * If this function completes without error, a node in OCFS2 can be
1250  * said to have been safely recovered. As a result, failure during the
1251  * second part of a nodes recovery process (local alloc recovery) is
1252  * far less concerning.
1253  */
1254 static int ocfs2_recover_node(struct ocfs2_super *osb,
1255 			      int node_num)
1256 {
1257 	int status = 0;
1258 	int slot_num;
1259 	struct ocfs2_slot_info *si = osb->slot_info;
1260 	struct ocfs2_dinode *la_copy = NULL;
1261 	struct ocfs2_dinode *tl_copy = NULL;
1262 
1263 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1264 		   node_num, osb->node_num);
1265 
1266 	mlog(0, "checking node %d\n", node_num);
1267 
1268 	/* Should not ever be called to recover ourselves -- in that
1269 	 * case we should've called ocfs2_journal_load instead. */
1270 	BUG_ON(osb->node_num == node_num);
1271 
1272 	slot_num = ocfs2_node_num_to_slot(si, node_num);
1273 	if (slot_num == OCFS2_INVALID_SLOT) {
1274 		status = 0;
1275 		mlog(0, "no slot for this node, so no recovery required.\n");
1276 		goto done;
1277 	}
1278 
1279 	mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1280 
1281 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1282 	if (status < 0) {
1283 		mlog_errno(status);
1284 		goto done;
1285 	}
1286 
1287 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1288 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1289 	if (status < 0) {
1290 		mlog_errno(status);
1291 		goto done;
1292 	}
1293 
1294 	/* An error from begin_truncate_log_recovery is not
1295 	 * serious enough to warrant halting the rest of
1296 	 * recovery. */
1297 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1298 	if (status < 0)
1299 		mlog_errno(status);
1300 
1301 	/* Likewise, this would be a strange but ultimately not so
1302 	 * harmful place to get an error... */
1303 	ocfs2_clear_slot(si, slot_num);
1304 	status = ocfs2_update_disk_slots(osb, si);
1305 	if (status < 0)
1306 		mlog_errno(status);
1307 
1308 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1309 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1310 					tl_copy);
1311 
1312 	status = 0;
1313 done:
1314 
1315 	mlog_exit(status);
1316 	return status;
1317 }
1318 
1319 /* Test node liveness by trylocking his journal. If we get the lock,
1320  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1321  * still alive (we couldn't get the lock) and < 0 on error. */
1322 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1323 				 int slot_num)
1324 {
1325 	int status, flags;
1326 	struct inode *inode = NULL;
1327 
1328 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1329 					    slot_num);
1330 	if (inode == NULL) {
1331 		mlog(ML_ERROR, "access error\n");
1332 		status = -EACCES;
1333 		goto bail;
1334 	}
1335 	if (is_bad_inode(inode)) {
1336 		mlog(ML_ERROR, "access error (bad inode)\n");
1337 		iput(inode);
1338 		inode = NULL;
1339 		status = -EACCES;
1340 		goto bail;
1341 	}
1342 	SET_INODE_JOURNAL(inode);
1343 
1344 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1345 	status = ocfs2_meta_lock_full(inode, NULL, NULL, 1, flags);
1346 	if (status < 0) {
1347 		if (status != -EAGAIN)
1348 			mlog_errno(status);
1349 		goto bail;
1350 	}
1351 
1352 	ocfs2_meta_unlock(inode, 1);
1353 bail:
1354 	if (inode)
1355 		iput(inode);
1356 
1357 	return status;
1358 }
1359 
1360 /* Call this underneath ocfs2_super_lock. It also assumes that the
1361  * slot info struct has been updated from disk. */
1362 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1363 {
1364 	int status, i, node_num;
1365 	struct ocfs2_slot_info *si = osb->slot_info;
1366 
1367 	/* This is called with the super block cluster lock, so we
1368 	 * know that the slot map can't change underneath us. */
1369 
1370 	spin_lock(&si->si_lock);
1371 	for(i = 0; i < si->si_num_slots; i++) {
1372 		if (i == osb->slot_num)
1373 			continue;
1374 		if (ocfs2_is_empty_slot(si, i))
1375 			continue;
1376 
1377 		node_num = si->si_global_node_nums[i];
1378 		if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1379 			continue;
1380 		spin_unlock(&si->si_lock);
1381 
1382 		/* Ok, we have a slot occupied by another node which
1383 		 * is not in the recovery map. We trylock his journal
1384 		 * file here to test if he's alive. */
1385 		status = ocfs2_trylock_journal(osb, i);
1386 		if (!status) {
1387 			/* Since we're called from mount, we know that
1388 			 * the recovery thread can't race us on
1389 			 * setting / checking the recovery bits. */
1390 			ocfs2_recovery_thread(osb, node_num);
1391 		} else if ((status < 0) && (status != -EAGAIN)) {
1392 			mlog_errno(status);
1393 			goto bail;
1394 		}
1395 
1396 		spin_lock(&si->si_lock);
1397 	}
1398 	spin_unlock(&si->si_lock);
1399 
1400 	status = 0;
1401 bail:
1402 	mlog_exit(status);
1403 	return status;
1404 }
1405 
1406 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1407 			       int slot,
1408 			       struct inode **head)
1409 {
1410 	int status;
1411 	struct inode *orphan_dir_inode = NULL;
1412 	struct inode *iter;
1413 	unsigned long offset, blk, local;
1414 	struct buffer_head *bh = NULL;
1415 	struct ocfs2_dir_entry *de;
1416 	struct super_block *sb = osb->sb;
1417 
1418 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1419 						       ORPHAN_DIR_SYSTEM_INODE,
1420 						       slot);
1421 	if  (!orphan_dir_inode) {
1422 		status = -ENOENT;
1423 		mlog_errno(status);
1424 		return status;
1425 	}
1426 
1427 	mutex_lock(&orphan_dir_inode->i_mutex);
1428 	status = ocfs2_meta_lock(orphan_dir_inode, NULL, NULL, 0);
1429 	if (status < 0) {
1430 		mlog_errno(status);
1431 		goto out;
1432 	}
1433 
1434 	offset = 0;
1435 	iter = NULL;
1436 	while(offset < i_size_read(orphan_dir_inode)) {
1437 		blk = offset >> sb->s_blocksize_bits;
1438 
1439 		bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1440 		if (!bh)
1441 			status = -EINVAL;
1442 		if (status < 0) {
1443 			if (bh)
1444 				brelse(bh);
1445 			mlog_errno(status);
1446 			goto out_unlock;
1447 		}
1448 
1449 		local = 0;
1450 		while(offset < i_size_read(orphan_dir_inode)
1451 		      && local < sb->s_blocksize) {
1452 			de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1453 
1454 			if (!ocfs2_check_dir_entry(orphan_dir_inode,
1455 						  de, bh, local)) {
1456 				status = -EINVAL;
1457 				mlog_errno(status);
1458 				brelse(bh);
1459 				goto out_unlock;
1460 			}
1461 
1462 			local += le16_to_cpu(de->rec_len);
1463 			offset += le16_to_cpu(de->rec_len);
1464 
1465 			/* I guess we silently fail on no inode? */
1466 			if (!le64_to_cpu(de->inode))
1467 				continue;
1468 			if (de->file_type > OCFS2_FT_MAX) {
1469 				mlog(ML_ERROR,
1470 				     "block %llu contains invalid de: "
1471 				     "inode = %llu, rec_len = %u, "
1472 				     "name_len = %u, file_type = %u, "
1473 				     "name='%.*s'\n",
1474 				     (unsigned long long)bh->b_blocknr,
1475 				     (unsigned long long)le64_to_cpu(de->inode),
1476 				     le16_to_cpu(de->rec_len),
1477 				     de->name_len,
1478 				     de->file_type,
1479 				     de->name_len,
1480 				     de->name);
1481 				continue;
1482 			}
1483 			if (de->name_len == 1 && !strncmp(".", de->name, 1))
1484 				continue;
1485 			if (de->name_len == 2 && !strncmp("..", de->name, 2))
1486 				continue;
1487 
1488 			iter = ocfs2_iget(osb, le64_to_cpu(de->inode),
1489 					  OCFS2_FI_FLAG_NOLOCK);
1490 			if (IS_ERR(iter))
1491 				continue;
1492 
1493 			mlog(0, "queue orphan %llu\n",
1494 			     (unsigned long long)OCFS2_I(iter)->ip_blkno);
1495 			/* No locking is required for the next_orphan
1496 			 * queue as there is only ever a single
1497 			 * process doing orphan recovery. */
1498 			OCFS2_I(iter)->ip_next_orphan = *head;
1499 			*head = iter;
1500 		}
1501 		brelse(bh);
1502 	}
1503 
1504 out_unlock:
1505 	ocfs2_meta_unlock(orphan_dir_inode, 0);
1506 out:
1507 	mutex_unlock(&orphan_dir_inode->i_mutex);
1508 	iput(orphan_dir_inode);
1509 	return status;
1510 }
1511 
1512 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1513 					      int slot)
1514 {
1515 	int ret;
1516 
1517 	spin_lock(&osb->osb_lock);
1518 	ret = !osb->osb_orphan_wipes[slot];
1519 	spin_unlock(&osb->osb_lock);
1520 	return ret;
1521 }
1522 
1523 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1524 					     int slot)
1525 {
1526 	spin_lock(&osb->osb_lock);
1527 	/* Mark ourselves such that new processes in delete_inode()
1528 	 * know to quit early. */
1529 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1530 	while (osb->osb_orphan_wipes[slot]) {
1531 		/* If any processes are already in the middle of an
1532 		 * orphan wipe on this dir, then we need to wait for
1533 		 * them. */
1534 		spin_unlock(&osb->osb_lock);
1535 		wait_event_interruptible(osb->osb_wipe_event,
1536 					 ocfs2_orphan_recovery_can_continue(osb, slot));
1537 		spin_lock(&osb->osb_lock);
1538 	}
1539 	spin_unlock(&osb->osb_lock);
1540 }
1541 
1542 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1543 					      int slot)
1544 {
1545 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1546 }
1547 
1548 /*
1549  * Orphan recovery. Each mounted node has it's own orphan dir which we
1550  * must run during recovery. Our strategy here is to build a list of
1551  * the inodes in the orphan dir and iget/iput them. The VFS does
1552  * (most) of the rest of the work.
1553  *
1554  * Orphan recovery can happen at any time, not just mount so we have a
1555  * couple of extra considerations.
1556  *
1557  * - We grab as many inodes as we can under the orphan dir lock -
1558  *   doing iget() outside the orphan dir risks getting a reference on
1559  *   an invalid inode.
1560  * - We must be sure not to deadlock with other processes on the
1561  *   system wanting to run delete_inode(). This can happen when they go
1562  *   to lock the orphan dir and the orphan recovery process attempts to
1563  *   iget() inside the orphan dir lock. This can be avoided by
1564  *   advertising our state to ocfs2_delete_inode().
1565  */
1566 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1567 				 int slot)
1568 {
1569 	int ret = 0;
1570 	struct inode *inode = NULL;
1571 	struct inode *iter;
1572 	struct ocfs2_inode_info *oi;
1573 
1574 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1575 
1576 	ocfs2_mark_recovering_orphan_dir(osb, slot);
1577 	ret = ocfs2_queue_orphans(osb, slot, &inode);
1578 	ocfs2_clear_recovering_orphan_dir(osb, slot);
1579 
1580 	/* Error here should be noted, but we want to continue with as
1581 	 * many queued inodes as we've got. */
1582 	if (ret)
1583 		mlog_errno(ret);
1584 
1585 	while (inode) {
1586 		oi = OCFS2_I(inode);
1587 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1588 
1589 		iter = oi->ip_next_orphan;
1590 
1591 		spin_lock(&oi->ip_lock);
1592 		/* Delete voting may have set these on the assumption
1593 		 * that the other node would wipe them successfully.
1594 		 * If they are still in the node's orphan dir, we need
1595 		 * to reset that state. */
1596 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1597 
1598 		/* Set the proper information to get us going into
1599 		 * ocfs2_delete_inode. */
1600 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1601 		oi->ip_orphaned_slot = slot;
1602 		spin_unlock(&oi->ip_lock);
1603 
1604 		iput(inode);
1605 
1606 		inode = iter;
1607 	}
1608 
1609 	return ret;
1610 }
1611 
1612 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1613 {
1614 	/* This check is good because ocfs2 will wait on our recovery
1615 	 * thread before changing it to something other than MOUNTED
1616 	 * or DISABLED. */
1617 	wait_event(osb->osb_mount_event,
1618 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1619 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1620 
1621 	/* If there's an error on mount, then we may never get to the
1622 	 * MOUNTED flag, but this is set right before
1623 	 * dismount_volume() so we can trust it. */
1624 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1625 		mlog(0, "mount error, exiting!\n");
1626 		return -EBUSY;
1627 	}
1628 
1629 	return 0;
1630 }
1631 
1632 static int ocfs2_commit_thread(void *arg)
1633 {
1634 	int status;
1635 	struct ocfs2_super *osb = arg;
1636 	struct ocfs2_journal *journal = osb->journal;
1637 
1638 	/* we can trust j_num_trans here because _should_stop() is only set in
1639 	 * shutdown and nobody other than ourselves should be able to start
1640 	 * transactions.  committing on shutdown might take a few iterations
1641 	 * as final transactions put deleted inodes on the list */
1642 	while (!(kthread_should_stop() &&
1643 		 atomic_read(&journal->j_num_trans) == 0)) {
1644 
1645 		wait_event_interruptible(osb->checkpoint_event,
1646 					 atomic_read(&journal->j_num_trans)
1647 					 || kthread_should_stop());
1648 
1649 		status = ocfs2_commit_cache(osb);
1650 		if (status < 0)
1651 			mlog_errno(status);
1652 
1653 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1654 			mlog(ML_KTHREAD,
1655 			     "commit_thread: %u transactions pending on "
1656 			     "shutdown\n",
1657 			     atomic_read(&journal->j_num_trans));
1658 		}
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 /* Look for a dirty journal without taking any cluster locks. Used for
1665  * hard readonly access to determine whether the file system journals
1666  * require recovery. */
1667 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1668 {
1669 	int ret = 0;
1670 	unsigned int slot;
1671 	struct buffer_head *di_bh;
1672 	struct ocfs2_dinode *di;
1673 	struct inode *journal = NULL;
1674 
1675 	for(slot = 0; slot < osb->max_slots; slot++) {
1676 		journal = ocfs2_get_system_file_inode(osb,
1677 						      JOURNAL_SYSTEM_INODE,
1678 						      slot);
1679 		if (!journal || is_bad_inode(journal)) {
1680 			ret = -EACCES;
1681 			mlog_errno(ret);
1682 			goto out;
1683 		}
1684 
1685 		di_bh = NULL;
1686 		ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1687 				       0, journal);
1688 		if (ret < 0) {
1689 			mlog_errno(ret);
1690 			goto out;
1691 		}
1692 
1693 		di = (struct ocfs2_dinode *) di_bh->b_data;
1694 
1695 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
1696 		    OCFS2_JOURNAL_DIRTY_FL)
1697 			ret = -EROFS;
1698 
1699 		brelse(di_bh);
1700 		if (ret)
1701 			break;
1702 	}
1703 
1704 out:
1705 	if (journal)
1706 		iput(journal);
1707 
1708 	return ret;
1709 }
1710