xref: /openbmc/linux/fs/ocfs2/journal.c (revision 1fa6ac37)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 
54 #include "buffer_head_io.h"
55 
56 DEFINE_SPINLOCK(trans_inc_lock);
57 
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59 
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62 			      int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 				      int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 				 int slot_num);
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 				 int slot);
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 					    int slot_num,
75 					    struct ocfs2_dinode *la_dinode,
76 					    struct ocfs2_dinode *tl_dinode,
77 					    struct ocfs2_quota_recovery *qrec);
78 
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80 {
81 	return __ocfs2_wait_on_mount(osb, 0);
82 }
83 
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85 {
86 	return __ocfs2_wait_on_mount(osb, 1);
87 }
88 
89 /*
90  * This replay_map is to track online/offline slots, so we could recover
91  * offline slots during recovery and mount
92  */
93 
94 enum ocfs2_replay_state {
95 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
96 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
97 	REPLAY_DONE 		/* Replay was already queued */
98 };
99 
100 struct ocfs2_replay_map {
101 	unsigned int rm_slots;
102 	enum ocfs2_replay_state rm_state;
103 	unsigned char rm_replay_slots[0];
104 };
105 
106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107 {
108 	if (!osb->replay_map)
109 		return;
110 
111 	/* If we've already queued the replay, we don't have any more to do */
112 	if (osb->replay_map->rm_state == REPLAY_DONE)
113 		return;
114 
115 	osb->replay_map->rm_state = state;
116 }
117 
118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119 {
120 	struct ocfs2_replay_map *replay_map;
121 	int i, node_num;
122 
123 	/* If replay map is already set, we don't do it again */
124 	if (osb->replay_map)
125 		return 0;
126 
127 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
129 
130 	if (!replay_map) {
131 		mlog_errno(-ENOMEM);
132 		return -ENOMEM;
133 	}
134 
135 	spin_lock(&osb->osb_lock);
136 
137 	replay_map->rm_slots = osb->max_slots;
138 	replay_map->rm_state = REPLAY_UNNEEDED;
139 
140 	/* set rm_replay_slots for offline slot(s) */
141 	for (i = 0; i < replay_map->rm_slots; i++) {
142 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 			replay_map->rm_replay_slots[i] = 1;
144 	}
145 
146 	osb->replay_map = replay_map;
147 	spin_unlock(&osb->osb_lock);
148 	return 0;
149 }
150 
151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152 {
153 	struct ocfs2_replay_map *replay_map = osb->replay_map;
154 	int i;
155 
156 	if (!replay_map)
157 		return;
158 
159 	if (replay_map->rm_state != REPLAY_NEEDED)
160 		return;
161 
162 	for (i = 0; i < replay_map->rm_slots; i++)
163 		if (replay_map->rm_replay_slots[i])
164 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 							NULL, NULL);
166 	replay_map->rm_state = REPLAY_DONE;
167 }
168 
169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170 {
171 	struct ocfs2_replay_map *replay_map = osb->replay_map;
172 
173 	if (!osb->replay_map)
174 		return;
175 
176 	kfree(replay_map);
177 	osb->replay_map = NULL;
178 }
179 
180 int ocfs2_recovery_init(struct ocfs2_super *osb)
181 {
182 	struct ocfs2_recovery_map *rm;
183 
184 	mutex_init(&osb->recovery_lock);
185 	osb->disable_recovery = 0;
186 	osb->recovery_thread_task = NULL;
187 	init_waitqueue_head(&osb->recovery_event);
188 
189 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 		     osb->max_slots * sizeof(unsigned int),
191 		     GFP_KERNEL);
192 	if (!rm) {
193 		mlog_errno(-ENOMEM);
194 		return -ENOMEM;
195 	}
196 
197 	rm->rm_entries = (unsigned int *)((char *)rm +
198 					  sizeof(struct ocfs2_recovery_map));
199 	osb->recovery_map = rm;
200 
201 	return 0;
202 }
203 
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205  * memory barriers to make sure that we'll see the null task before
206  * being woken up */
207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208 {
209 	mb();
210 	return osb->recovery_thread_task != NULL;
211 }
212 
213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
214 {
215 	struct ocfs2_recovery_map *rm;
216 
217 	/* disable any new recovery threads and wait for any currently
218 	 * running ones to exit. Do this before setting the vol_state. */
219 	mutex_lock(&osb->recovery_lock);
220 	osb->disable_recovery = 1;
221 	mutex_unlock(&osb->recovery_lock);
222 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223 
224 	/* At this point, we know that no more recovery threads can be
225 	 * launched, so wait for any recovery completion work to
226 	 * complete. */
227 	flush_workqueue(ocfs2_wq);
228 
229 	/*
230 	 * Now that recovery is shut down, and the osb is about to be
231 	 * freed,  the osb_lock is not taken here.
232 	 */
233 	rm = osb->recovery_map;
234 	/* XXX: Should we bug if there are dirty entries? */
235 
236 	kfree(rm);
237 }
238 
239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 				     unsigned int node_num)
241 {
242 	int i;
243 	struct ocfs2_recovery_map *rm = osb->recovery_map;
244 
245 	assert_spin_locked(&osb->osb_lock);
246 
247 	for (i = 0; i < rm->rm_used; i++) {
248 		if (rm->rm_entries[i] == node_num)
249 			return 1;
250 	}
251 
252 	return 0;
253 }
254 
255 /* Behaves like test-and-set.  Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 				  unsigned int node_num)
258 {
259 	struct ocfs2_recovery_map *rm = osb->recovery_map;
260 
261 	spin_lock(&osb->osb_lock);
262 	if (__ocfs2_recovery_map_test(osb, node_num)) {
263 		spin_unlock(&osb->osb_lock);
264 		return 1;
265 	}
266 
267 	/* XXX: Can this be exploited? Not from o2dlm... */
268 	BUG_ON(rm->rm_used >= osb->max_slots);
269 
270 	rm->rm_entries[rm->rm_used] = node_num;
271 	rm->rm_used++;
272 	spin_unlock(&osb->osb_lock);
273 
274 	return 0;
275 }
276 
277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 				     unsigned int node_num)
279 {
280 	int i;
281 	struct ocfs2_recovery_map *rm = osb->recovery_map;
282 
283 	spin_lock(&osb->osb_lock);
284 
285 	for (i = 0; i < rm->rm_used; i++) {
286 		if (rm->rm_entries[i] == node_num)
287 			break;
288 	}
289 
290 	if (i < rm->rm_used) {
291 		/* XXX: be careful with the pointer math */
292 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 			(rm->rm_used - i - 1) * sizeof(unsigned int));
294 		rm->rm_used--;
295 	}
296 
297 	spin_unlock(&osb->osb_lock);
298 }
299 
300 static int ocfs2_commit_cache(struct ocfs2_super *osb)
301 {
302 	int status = 0;
303 	unsigned int flushed;
304 	unsigned long old_id;
305 	struct ocfs2_journal *journal = NULL;
306 
307 	mlog_entry_void();
308 
309 	journal = osb->journal;
310 
311 	/* Flush all pending commits and checkpoint the journal. */
312 	down_write(&journal->j_trans_barrier);
313 
314 	if (atomic_read(&journal->j_num_trans) == 0) {
315 		up_write(&journal->j_trans_barrier);
316 		mlog(0, "No transactions for me to flush!\n");
317 		goto finally;
318 	}
319 
320 	jbd2_journal_lock_updates(journal->j_journal);
321 	status = jbd2_journal_flush(journal->j_journal);
322 	jbd2_journal_unlock_updates(journal->j_journal);
323 	if (status < 0) {
324 		up_write(&journal->j_trans_barrier);
325 		mlog_errno(status);
326 		goto finally;
327 	}
328 
329 	old_id = ocfs2_inc_trans_id(journal);
330 
331 	flushed = atomic_read(&journal->j_num_trans);
332 	atomic_set(&journal->j_num_trans, 0);
333 	up_write(&journal->j_trans_barrier);
334 
335 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
336 	     journal->j_trans_id, flushed);
337 
338 	ocfs2_wake_downconvert_thread(osb);
339 	wake_up(&journal->j_checkpointed);
340 finally:
341 	mlog_exit(status);
342 	return status;
343 }
344 
345 /* pass it NULL and it will allocate a new handle object for you.  If
346  * you pass it a handle however, it may still return error, in which
347  * case it has free'd the passed handle for you. */
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350 	journal_t *journal = osb->journal->j_journal;
351 	handle_t *handle;
352 
353 	BUG_ON(!osb || !osb->journal->j_journal);
354 
355 	if (ocfs2_is_hard_readonly(osb))
356 		return ERR_PTR(-EROFS);
357 
358 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 	BUG_ON(max_buffs <= 0);
360 
361 	/* Nested transaction? Just return the handle... */
362 	if (journal_current_handle())
363 		return jbd2_journal_start(journal, max_buffs);
364 
365 	down_read(&osb->journal->j_trans_barrier);
366 
367 	handle = jbd2_journal_start(journal, max_buffs);
368 	if (IS_ERR(handle)) {
369 		up_read(&osb->journal->j_trans_barrier);
370 
371 		mlog_errno(PTR_ERR(handle));
372 
373 		if (is_journal_aborted(journal)) {
374 			ocfs2_abort(osb->sb, "Detected aborted journal");
375 			handle = ERR_PTR(-EROFS);
376 		}
377 	} else {
378 		if (!ocfs2_mount_local(osb))
379 			atomic_inc(&(osb->journal->j_num_trans));
380 	}
381 
382 	return handle;
383 }
384 
385 int ocfs2_commit_trans(struct ocfs2_super *osb,
386 		       handle_t *handle)
387 {
388 	int ret, nested;
389 	struct ocfs2_journal *journal = osb->journal;
390 
391 	BUG_ON(!handle);
392 
393 	nested = handle->h_ref > 1;
394 	ret = jbd2_journal_stop(handle);
395 	if (ret < 0)
396 		mlog_errno(ret);
397 
398 	if (!nested)
399 		up_read(&journal->j_trans_barrier);
400 
401 	return ret;
402 }
403 
404 /*
405  * 'nblocks' is what you want to add to the current transaction.
406  *
407  * This might call jbd2_journal_restart() which will commit dirty buffers
408  * and then restart the transaction. Before calling
409  * ocfs2_extend_trans(), any changed blocks should have been
410  * dirtied. After calling it, all blocks which need to be changed must
411  * go through another set of journal_access/journal_dirty calls.
412  *
413  * WARNING: This will not release any semaphores or disk locks taken
414  * during the transaction, so make sure they were taken *before*
415  * start_trans or we'll have ordering deadlocks.
416  *
417  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
418  * good because transaction ids haven't yet been recorded on the
419  * cluster locks associated with this handle.
420  */
421 int ocfs2_extend_trans(handle_t *handle, int nblocks)
422 {
423 	int status, old_nblocks;
424 
425 	BUG_ON(!handle);
426 	BUG_ON(nblocks < 0);
427 
428 	if (!nblocks)
429 		return 0;
430 
431 	old_nblocks = handle->h_buffer_credits;
432 	mlog_entry_void();
433 
434 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
435 
436 #ifdef CONFIG_OCFS2_DEBUG_FS
437 	status = 1;
438 #else
439 	status = jbd2_journal_extend(handle, nblocks);
440 	if (status < 0) {
441 		mlog_errno(status);
442 		goto bail;
443 	}
444 #endif
445 
446 	if (status > 0) {
447 		mlog(0,
448 		     "jbd2_journal_extend failed, trying "
449 		     "jbd2_journal_restart\n");
450 		status = jbd2_journal_restart(handle,
451 					      old_nblocks + nblocks);
452 		if (status < 0) {
453 			mlog_errno(status);
454 			goto bail;
455 		}
456 	}
457 
458 	status = 0;
459 bail:
460 
461 	mlog_exit(status);
462 	return status;
463 }
464 
465 struct ocfs2_triggers {
466 	struct jbd2_buffer_trigger_type	ot_triggers;
467 	int				ot_offset;
468 };
469 
470 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
471 {
472 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
473 }
474 
475 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
476 				 struct buffer_head *bh,
477 				 void *data, size_t size)
478 {
479 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
480 
481 	/*
482 	 * We aren't guaranteed to have the superblock here, so we
483 	 * must unconditionally compute the ecc data.
484 	 * __ocfs2_journal_access() will only set the triggers if
485 	 * metaecc is enabled.
486 	 */
487 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
488 }
489 
490 /*
491  * Quota blocks have their own trigger because the struct ocfs2_block_check
492  * offset depends on the blocksize.
493  */
494 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
495 				 struct buffer_head *bh,
496 				 void *data, size_t size)
497 {
498 	struct ocfs2_disk_dqtrailer *dqt =
499 		ocfs2_block_dqtrailer(size, data);
500 
501 	/*
502 	 * We aren't guaranteed to have the superblock here, so we
503 	 * must unconditionally compute the ecc data.
504 	 * __ocfs2_journal_access() will only set the triggers if
505 	 * metaecc is enabled.
506 	 */
507 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
508 }
509 
510 /*
511  * Directory blocks also have their own trigger because the
512  * struct ocfs2_block_check offset depends on the blocksize.
513  */
514 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
515 				 struct buffer_head *bh,
516 				 void *data, size_t size)
517 {
518 	struct ocfs2_dir_block_trailer *trailer =
519 		ocfs2_dir_trailer_from_size(size, data);
520 
521 	/*
522 	 * We aren't guaranteed to have the superblock here, so we
523 	 * must unconditionally compute the ecc data.
524 	 * __ocfs2_journal_access() will only set the triggers if
525 	 * metaecc is enabled.
526 	 */
527 	ocfs2_block_check_compute(data, size, &trailer->db_check);
528 }
529 
530 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
531 				struct buffer_head *bh)
532 {
533 	mlog(ML_ERROR,
534 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
535 	     "bh->b_blocknr = %llu\n",
536 	     (unsigned long)bh,
537 	     (unsigned long long)bh->b_blocknr);
538 
539 	/* We aren't guaranteed to have the superblock here - but if we
540 	 * don't, it'll just crash. */
541 	ocfs2_error(bh->b_assoc_map->host->i_sb,
542 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
543 }
544 
545 static struct ocfs2_triggers di_triggers = {
546 	.ot_triggers = {
547 		.t_commit = ocfs2_commit_trigger,
548 		.t_abort = ocfs2_abort_trigger,
549 	},
550 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
551 };
552 
553 static struct ocfs2_triggers eb_triggers = {
554 	.ot_triggers = {
555 		.t_commit = ocfs2_commit_trigger,
556 		.t_abort = ocfs2_abort_trigger,
557 	},
558 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
559 };
560 
561 static struct ocfs2_triggers rb_triggers = {
562 	.ot_triggers = {
563 		.t_commit = ocfs2_commit_trigger,
564 		.t_abort = ocfs2_abort_trigger,
565 	},
566 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
567 };
568 
569 static struct ocfs2_triggers gd_triggers = {
570 	.ot_triggers = {
571 		.t_commit = ocfs2_commit_trigger,
572 		.t_abort = ocfs2_abort_trigger,
573 	},
574 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
575 };
576 
577 static struct ocfs2_triggers db_triggers = {
578 	.ot_triggers = {
579 		.t_commit = ocfs2_db_commit_trigger,
580 		.t_abort = ocfs2_abort_trigger,
581 	},
582 };
583 
584 static struct ocfs2_triggers xb_triggers = {
585 	.ot_triggers = {
586 		.t_commit = ocfs2_commit_trigger,
587 		.t_abort = ocfs2_abort_trigger,
588 	},
589 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
590 };
591 
592 static struct ocfs2_triggers dq_triggers = {
593 	.ot_triggers = {
594 		.t_commit = ocfs2_dq_commit_trigger,
595 		.t_abort = ocfs2_abort_trigger,
596 	},
597 };
598 
599 static struct ocfs2_triggers dr_triggers = {
600 	.ot_triggers = {
601 		.t_commit = ocfs2_commit_trigger,
602 		.t_abort = ocfs2_abort_trigger,
603 	},
604 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
605 };
606 
607 static struct ocfs2_triggers dl_triggers = {
608 	.ot_triggers = {
609 		.t_commit = ocfs2_commit_trigger,
610 		.t_abort = ocfs2_abort_trigger,
611 	},
612 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
613 };
614 
615 static int __ocfs2_journal_access(handle_t *handle,
616 				  struct ocfs2_caching_info *ci,
617 				  struct buffer_head *bh,
618 				  struct ocfs2_triggers *triggers,
619 				  int type)
620 {
621 	int status;
622 	struct ocfs2_super *osb =
623 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
624 
625 	BUG_ON(!ci || !ci->ci_ops);
626 	BUG_ON(!handle);
627 	BUG_ON(!bh);
628 
629 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
630 		   (unsigned long long)bh->b_blocknr, type,
631 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
632 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
633 		   "OCFS2_JOURNAL_ACCESS_WRITE",
634 		   bh->b_size);
635 
636 	/* we can safely remove this assertion after testing. */
637 	if (!buffer_uptodate(bh)) {
638 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
639 		mlog(ML_ERROR, "b_blocknr=%llu\n",
640 		     (unsigned long long)bh->b_blocknr);
641 		BUG();
642 	}
643 
644 	/* Set the current transaction information on the ci so
645 	 * that the locking code knows whether it can drop it's locks
646 	 * on this ci or not. We're protected from the commit
647 	 * thread updating the current transaction id until
648 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
649 	 * j_trans_barrier for us. */
650 	ocfs2_set_ci_lock_trans(osb->journal, ci);
651 
652 	ocfs2_metadata_cache_io_lock(ci);
653 	switch (type) {
654 	case OCFS2_JOURNAL_ACCESS_CREATE:
655 	case OCFS2_JOURNAL_ACCESS_WRITE:
656 		status = jbd2_journal_get_write_access(handle, bh);
657 		break;
658 
659 	case OCFS2_JOURNAL_ACCESS_UNDO:
660 		status = jbd2_journal_get_undo_access(handle, bh);
661 		break;
662 
663 	default:
664 		status = -EINVAL;
665 		mlog(ML_ERROR, "Unknown access type!\n");
666 	}
667 	if (!status && ocfs2_meta_ecc(osb) && triggers)
668 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
669 	ocfs2_metadata_cache_io_unlock(ci);
670 
671 	if (status < 0)
672 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
673 		     status, type);
674 
675 	mlog_exit(status);
676 	return status;
677 }
678 
679 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
680 			    struct buffer_head *bh, int type)
681 {
682 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
683 }
684 
685 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
686 			    struct buffer_head *bh, int type)
687 {
688 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
689 }
690 
691 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
692 			    struct buffer_head *bh, int type)
693 {
694 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
695 				      type);
696 }
697 
698 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
699 			    struct buffer_head *bh, int type)
700 {
701 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
702 }
703 
704 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
705 			    struct buffer_head *bh, int type)
706 {
707 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
708 }
709 
710 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
711 			    struct buffer_head *bh, int type)
712 {
713 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
714 }
715 
716 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
717 			    struct buffer_head *bh, int type)
718 {
719 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
720 }
721 
722 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
723 			    struct buffer_head *bh, int type)
724 {
725 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
726 }
727 
728 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
729 			    struct buffer_head *bh, int type)
730 {
731 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
732 }
733 
734 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
735 			 struct buffer_head *bh, int type)
736 {
737 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
738 }
739 
740 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
741 {
742 	int status;
743 
744 	mlog_entry("(bh->b_blocknr=%llu)\n",
745 		   (unsigned long long)bh->b_blocknr);
746 
747 	status = jbd2_journal_dirty_metadata(handle, bh);
748 	BUG_ON(status);
749 
750 	mlog_exit_void();
751 }
752 
753 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
754 
755 void ocfs2_set_journal_params(struct ocfs2_super *osb)
756 {
757 	journal_t *journal = osb->journal->j_journal;
758 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
759 
760 	if (osb->osb_commit_interval)
761 		commit_interval = osb->osb_commit_interval;
762 
763 	spin_lock(&journal->j_state_lock);
764 	journal->j_commit_interval = commit_interval;
765 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
766 		journal->j_flags |= JBD2_BARRIER;
767 	else
768 		journal->j_flags &= ~JBD2_BARRIER;
769 	spin_unlock(&journal->j_state_lock);
770 }
771 
772 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
773 {
774 	int status = -1;
775 	struct inode *inode = NULL; /* the journal inode */
776 	journal_t *j_journal = NULL;
777 	struct ocfs2_dinode *di = NULL;
778 	struct buffer_head *bh = NULL;
779 	struct ocfs2_super *osb;
780 	int inode_lock = 0;
781 
782 	mlog_entry_void();
783 
784 	BUG_ON(!journal);
785 
786 	osb = journal->j_osb;
787 
788 	/* already have the inode for our journal */
789 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
790 					    osb->slot_num);
791 	if (inode == NULL) {
792 		status = -EACCES;
793 		mlog_errno(status);
794 		goto done;
795 	}
796 	if (is_bad_inode(inode)) {
797 		mlog(ML_ERROR, "access error (bad inode)\n");
798 		iput(inode);
799 		inode = NULL;
800 		status = -EACCES;
801 		goto done;
802 	}
803 
804 	SET_INODE_JOURNAL(inode);
805 	OCFS2_I(inode)->ip_open_count++;
806 
807 	/* Skip recovery waits here - journal inode metadata never
808 	 * changes in a live cluster so it can be considered an
809 	 * exception to the rule. */
810 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
811 	if (status < 0) {
812 		if (status != -ERESTARTSYS)
813 			mlog(ML_ERROR, "Could not get lock on journal!\n");
814 		goto done;
815 	}
816 
817 	inode_lock = 1;
818 	di = (struct ocfs2_dinode *)bh->b_data;
819 
820 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
821 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
822 		     inode->i_size);
823 		status = -EINVAL;
824 		goto done;
825 	}
826 
827 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
828 	mlog(0, "inode->i_blocks = %llu\n",
829 			(unsigned long long)inode->i_blocks);
830 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
831 
832 	/* call the kernels journal init function now */
833 	j_journal = jbd2_journal_init_inode(inode);
834 	if (j_journal == NULL) {
835 		mlog(ML_ERROR, "Linux journal layer error\n");
836 		status = -EINVAL;
837 		goto done;
838 	}
839 
840 	mlog(0, "Returned from jbd2_journal_init_inode\n");
841 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
842 
843 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
844 		  OCFS2_JOURNAL_DIRTY_FL);
845 
846 	journal->j_journal = j_journal;
847 	journal->j_inode = inode;
848 	journal->j_bh = bh;
849 
850 	ocfs2_set_journal_params(osb);
851 
852 	journal->j_state = OCFS2_JOURNAL_LOADED;
853 
854 	status = 0;
855 done:
856 	if (status < 0) {
857 		if (inode_lock)
858 			ocfs2_inode_unlock(inode, 1);
859 		brelse(bh);
860 		if (inode) {
861 			OCFS2_I(inode)->ip_open_count--;
862 			iput(inode);
863 		}
864 	}
865 
866 	mlog_exit(status);
867 	return status;
868 }
869 
870 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
871 {
872 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
873 }
874 
875 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
876 {
877 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
878 }
879 
880 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
881 				      int dirty, int replayed)
882 {
883 	int status;
884 	unsigned int flags;
885 	struct ocfs2_journal *journal = osb->journal;
886 	struct buffer_head *bh = journal->j_bh;
887 	struct ocfs2_dinode *fe;
888 
889 	mlog_entry_void();
890 
891 	fe = (struct ocfs2_dinode *)bh->b_data;
892 
893 	/* The journal bh on the osb always comes from ocfs2_journal_init()
894 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
895 	 * code bug if we mess it up. */
896 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
897 
898 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
899 	if (dirty)
900 		flags |= OCFS2_JOURNAL_DIRTY_FL;
901 	else
902 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
903 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
904 
905 	if (replayed)
906 		ocfs2_bump_recovery_generation(fe);
907 
908 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
909 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
910 	if (status < 0)
911 		mlog_errno(status);
912 
913 	mlog_exit(status);
914 	return status;
915 }
916 
917 /*
918  * If the journal has been kmalloc'd it needs to be freed after this
919  * call.
920  */
921 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
922 {
923 	struct ocfs2_journal *journal = NULL;
924 	int status = 0;
925 	struct inode *inode = NULL;
926 	int num_running_trans = 0;
927 
928 	mlog_entry_void();
929 
930 	BUG_ON(!osb);
931 
932 	journal = osb->journal;
933 	if (!journal)
934 		goto done;
935 
936 	inode = journal->j_inode;
937 
938 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
939 		goto done;
940 
941 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
942 	if (!igrab(inode))
943 		BUG();
944 
945 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
946 	if (num_running_trans > 0)
947 		mlog(0, "Shutting down journal: must wait on %d "
948 		     "running transactions!\n",
949 		     num_running_trans);
950 
951 	/* Do a commit_cache here. It will flush our journal, *and*
952 	 * release any locks that are still held.
953 	 * set the SHUTDOWN flag and release the trans lock.
954 	 * the commit thread will take the trans lock for us below. */
955 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
956 
957 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
958 	 * drop the trans_lock (which we want to hold until we
959 	 * completely destroy the journal. */
960 	if (osb->commit_task) {
961 		/* Wait for the commit thread */
962 		mlog(0, "Waiting for ocfs2commit to exit....\n");
963 		kthread_stop(osb->commit_task);
964 		osb->commit_task = NULL;
965 	}
966 
967 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
968 
969 	if (ocfs2_mount_local(osb)) {
970 		jbd2_journal_lock_updates(journal->j_journal);
971 		status = jbd2_journal_flush(journal->j_journal);
972 		jbd2_journal_unlock_updates(journal->j_journal);
973 		if (status < 0)
974 			mlog_errno(status);
975 	}
976 
977 	if (status == 0) {
978 		/*
979 		 * Do not toggle if flush was unsuccessful otherwise
980 		 * will leave dirty metadata in a "clean" journal
981 		 */
982 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
983 		if (status < 0)
984 			mlog_errno(status);
985 	}
986 
987 	/* Shutdown the kernel journal system */
988 	jbd2_journal_destroy(journal->j_journal);
989 	journal->j_journal = NULL;
990 
991 	OCFS2_I(inode)->ip_open_count--;
992 
993 	/* unlock our journal */
994 	ocfs2_inode_unlock(inode, 1);
995 
996 	brelse(journal->j_bh);
997 	journal->j_bh = NULL;
998 
999 	journal->j_state = OCFS2_JOURNAL_FREE;
1000 
1001 //	up_write(&journal->j_trans_barrier);
1002 done:
1003 	if (inode)
1004 		iput(inode);
1005 	mlog_exit_void();
1006 }
1007 
1008 static void ocfs2_clear_journal_error(struct super_block *sb,
1009 				      journal_t *journal,
1010 				      int slot)
1011 {
1012 	int olderr;
1013 
1014 	olderr = jbd2_journal_errno(journal);
1015 	if (olderr) {
1016 		mlog(ML_ERROR, "File system error %d recorded in "
1017 		     "journal %u.\n", olderr, slot);
1018 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1019 		     sb->s_id);
1020 
1021 		jbd2_journal_ack_err(journal);
1022 		jbd2_journal_clear_err(journal);
1023 	}
1024 }
1025 
1026 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1027 {
1028 	int status = 0;
1029 	struct ocfs2_super *osb;
1030 
1031 	mlog_entry_void();
1032 
1033 	BUG_ON(!journal);
1034 
1035 	osb = journal->j_osb;
1036 
1037 	status = jbd2_journal_load(journal->j_journal);
1038 	if (status < 0) {
1039 		mlog(ML_ERROR, "Failed to load journal!\n");
1040 		goto done;
1041 	}
1042 
1043 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1044 
1045 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1046 	if (status < 0) {
1047 		mlog_errno(status);
1048 		goto done;
1049 	}
1050 
1051 	/* Launch the commit thread */
1052 	if (!local) {
1053 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1054 					       "ocfs2cmt");
1055 		if (IS_ERR(osb->commit_task)) {
1056 			status = PTR_ERR(osb->commit_task);
1057 			osb->commit_task = NULL;
1058 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1059 			     "error=%d", status);
1060 			goto done;
1061 		}
1062 	} else
1063 		osb->commit_task = NULL;
1064 
1065 done:
1066 	mlog_exit(status);
1067 	return status;
1068 }
1069 
1070 
1071 /* 'full' flag tells us whether we clear out all blocks or if we just
1072  * mark the journal clean */
1073 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1074 {
1075 	int status;
1076 
1077 	mlog_entry_void();
1078 
1079 	BUG_ON(!journal);
1080 
1081 	status = jbd2_journal_wipe(journal->j_journal, full);
1082 	if (status < 0) {
1083 		mlog_errno(status);
1084 		goto bail;
1085 	}
1086 
1087 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1088 	if (status < 0)
1089 		mlog_errno(status);
1090 
1091 bail:
1092 	mlog_exit(status);
1093 	return status;
1094 }
1095 
1096 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1097 {
1098 	int empty;
1099 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1100 
1101 	spin_lock(&osb->osb_lock);
1102 	empty = (rm->rm_used == 0);
1103 	spin_unlock(&osb->osb_lock);
1104 
1105 	return empty;
1106 }
1107 
1108 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1109 {
1110 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1111 }
1112 
1113 /*
1114  * JBD Might read a cached version of another nodes journal file. We
1115  * don't want this as this file changes often and we get no
1116  * notification on those changes. The only way to be sure that we've
1117  * got the most up to date version of those blocks then is to force
1118  * read them off disk. Just searching through the buffer cache won't
1119  * work as there may be pages backing this file which are still marked
1120  * up to date. We know things can't change on this file underneath us
1121  * as we have the lock by now :)
1122  */
1123 static int ocfs2_force_read_journal(struct inode *inode)
1124 {
1125 	int status = 0;
1126 	int i;
1127 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1128 #define CONCURRENT_JOURNAL_FILL 32ULL
1129 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1130 
1131 	mlog_entry_void();
1132 
1133 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1134 
1135 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1136 	v_blkno = 0;
1137 	while (v_blkno < num_blocks) {
1138 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1139 						     &p_blkno, &p_blocks, NULL);
1140 		if (status < 0) {
1141 			mlog_errno(status);
1142 			goto bail;
1143 		}
1144 
1145 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1146 			p_blocks = CONCURRENT_JOURNAL_FILL;
1147 
1148 		/* We are reading journal data which should not
1149 		 * be put in the uptodate cache */
1150 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1151 						p_blkno, p_blocks, bhs);
1152 		if (status < 0) {
1153 			mlog_errno(status);
1154 			goto bail;
1155 		}
1156 
1157 		for(i = 0; i < p_blocks; i++) {
1158 			brelse(bhs[i]);
1159 			bhs[i] = NULL;
1160 		}
1161 
1162 		v_blkno += p_blocks;
1163 	}
1164 
1165 bail:
1166 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1167 		brelse(bhs[i]);
1168 	mlog_exit(status);
1169 	return status;
1170 }
1171 
1172 struct ocfs2_la_recovery_item {
1173 	struct list_head	lri_list;
1174 	int			lri_slot;
1175 	struct ocfs2_dinode	*lri_la_dinode;
1176 	struct ocfs2_dinode	*lri_tl_dinode;
1177 	struct ocfs2_quota_recovery *lri_qrec;
1178 };
1179 
1180 /* Does the second half of the recovery process. By this point, the
1181  * node is marked clean and can actually be considered recovered,
1182  * hence it's no longer in the recovery map, but there's still some
1183  * cleanup we can do which shouldn't happen within the recovery thread
1184  * as locking in that context becomes very difficult if we are to take
1185  * recovering nodes into account.
1186  *
1187  * NOTE: This function can and will sleep on recovery of other nodes
1188  * during cluster locking, just like any other ocfs2 process.
1189  */
1190 void ocfs2_complete_recovery(struct work_struct *work)
1191 {
1192 	int ret;
1193 	struct ocfs2_journal *journal =
1194 		container_of(work, struct ocfs2_journal, j_recovery_work);
1195 	struct ocfs2_super *osb = journal->j_osb;
1196 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1197 	struct ocfs2_la_recovery_item *item, *n;
1198 	struct ocfs2_quota_recovery *qrec;
1199 	LIST_HEAD(tmp_la_list);
1200 
1201 	mlog_entry_void();
1202 
1203 	mlog(0, "completing recovery from keventd\n");
1204 
1205 	spin_lock(&journal->j_lock);
1206 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1207 	spin_unlock(&journal->j_lock);
1208 
1209 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1210 		list_del_init(&item->lri_list);
1211 
1212 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1213 
1214 		ocfs2_wait_on_quotas(osb);
1215 
1216 		la_dinode = item->lri_la_dinode;
1217 		if (la_dinode) {
1218 			mlog(0, "Clean up local alloc %llu\n",
1219 			     (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1220 
1221 			ret = ocfs2_complete_local_alloc_recovery(osb,
1222 								  la_dinode);
1223 			if (ret < 0)
1224 				mlog_errno(ret);
1225 
1226 			kfree(la_dinode);
1227 		}
1228 
1229 		tl_dinode = item->lri_tl_dinode;
1230 		if (tl_dinode) {
1231 			mlog(0, "Clean up truncate log %llu\n",
1232 			     (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1233 
1234 			ret = ocfs2_complete_truncate_log_recovery(osb,
1235 								   tl_dinode);
1236 			if (ret < 0)
1237 				mlog_errno(ret);
1238 
1239 			kfree(tl_dinode);
1240 		}
1241 
1242 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
1243 		if (ret < 0)
1244 			mlog_errno(ret);
1245 
1246 		qrec = item->lri_qrec;
1247 		if (qrec) {
1248 			mlog(0, "Recovering quota files");
1249 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1250 							  item->lri_slot);
1251 			if (ret < 0)
1252 				mlog_errno(ret);
1253 			/* Recovery info is already freed now */
1254 		}
1255 
1256 		kfree(item);
1257 	}
1258 
1259 	mlog(0, "Recovery completion\n");
1260 	mlog_exit_void();
1261 }
1262 
1263 /* NOTE: This function always eats your references to la_dinode and
1264  * tl_dinode, either manually on error, or by passing them to
1265  * ocfs2_complete_recovery */
1266 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1267 					    int slot_num,
1268 					    struct ocfs2_dinode *la_dinode,
1269 					    struct ocfs2_dinode *tl_dinode,
1270 					    struct ocfs2_quota_recovery *qrec)
1271 {
1272 	struct ocfs2_la_recovery_item *item;
1273 
1274 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1275 	if (!item) {
1276 		/* Though we wish to avoid it, we are in fact safe in
1277 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1278 		 * than capable of reclaiming unused space. */
1279 		if (la_dinode)
1280 			kfree(la_dinode);
1281 
1282 		if (tl_dinode)
1283 			kfree(tl_dinode);
1284 
1285 		if (qrec)
1286 			ocfs2_free_quota_recovery(qrec);
1287 
1288 		mlog_errno(-ENOMEM);
1289 		return;
1290 	}
1291 
1292 	INIT_LIST_HEAD(&item->lri_list);
1293 	item->lri_la_dinode = la_dinode;
1294 	item->lri_slot = slot_num;
1295 	item->lri_tl_dinode = tl_dinode;
1296 	item->lri_qrec = qrec;
1297 
1298 	spin_lock(&journal->j_lock);
1299 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1300 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1301 	spin_unlock(&journal->j_lock);
1302 }
1303 
1304 /* Called by the mount code to queue recovery the last part of
1305  * recovery for it's own and offline slot(s). */
1306 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1307 {
1308 	struct ocfs2_journal *journal = osb->journal;
1309 
1310 	/* No need to queue up our truncate_log as regular cleanup will catch
1311 	 * that */
1312 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1313 					osb->local_alloc_copy, NULL, NULL);
1314 	ocfs2_schedule_truncate_log_flush(osb, 0);
1315 
1316 	osb->local_alloc_copy = NULL;
1317 	osb->dirty = 0;
1318 
1319 	/* queue to recover orphan slots for all offline slots */
1320 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1321 	ocfs2_queue_replay_slots(osb);
1322 	ocfs2_free_replay_slots(osb);
1323 }
1324 
1325 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1326 {
1327 	if (osb->quota_rec) {
1328 		ocfs2_queue_recovery_completion(osb->journal,
1329 						osb->slot_num,
1330 						NULL,
1331 						NULL,
1332 						osb->quota_rec);
1333 		osb->quota_rec = NULL;
1334 	}
1335 }
1336 
1337 static int __ocfs2_recovery_thread(void *arg)
1338 {
1339 	int status, node_num, slot_num;
1340 	struct ocfs2_super *osb = arg;
1341 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1342 	int *rm_quota = NULL;
1343 	int rm_quota_used = 0, i;
1344 	struct ocfs2_quota_recovery *qrec;
1345 
1346 	mlog_entry_void();
1347 
1348 	status = ocfs2_wait_on_mount(osb);
1349 	if (status < 0) {
1350 		goto bail;
1351 	}
1352 
1353 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1354 	if (!rm_quota) {
1355 		status = -ENOMEM;
1356 		goto bail;
1357 	}
1358 restart:
1359 	status = ocfs2_super_lock(osb, 1);
1360 	if (status < 0) {
1361 		mlog_errno(status);
1362 		goto bail;
1363 	}
1364 
1365 	status = ocfs2_compute_replay_slots(osb);
1366 	if (status < 0)
1367 		mlog_errno(status);
1368 
1369 	/* queue recovery for our own slot */
1370 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1371 					NULL, NULL);
1372 
1373 	spin_lock(&osb->osb_lock);
1374 	while (rm->rm_used) {
1375 		/* It's always safe to remove entry zero, as we won't
1376 		 * clear it until ocfs2_recover_node() has succeeded. */
1377 		node_num = rm->rm_entries[0];
1378 		spin_unlock(&osb->osb_lock);
1379 		mlog(0, "checking node %d\n", node_num);
1380 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1381 		if (slot_num == -ENOENT) {
1382 			status = 0;
1383 			mlog(0, "no slot for this node, so no recovery"
1384 			     "required.\n");
1385 			goto skip_recovery;
1386 		}
1387 		mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1388 
1389 		/* It is a bit subtle with quota recovery. We cannot do it
1390 		 * immediately because we have to obtain cluster locks from
1391 		 * quota files and we also don't want to just skip it because
1392 		 * then quota usage would be out of sync until some node takes
1393 		 * the slot. So we remember which nodes need quota recovery
1394 		 * and when everything else is done, we recover quotas. */
1395 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1396 		if (i == rm_quota_used)
1397 			rm_quota[rm_quota_used++] = slot_num;
1398 
1399 		status = ocfs2_recover_node(osb, node_num, slot_num);
1400 skip_recovery:
1401 		if (!status) {
1402 			ocfs2_recovery_map_clear(osb, node_num);
1403 		} else {
1404 			mlog(ML_ERROR,
1405 			     "Error %d recovering node %d on device (%u,%u)!\n",
1406 			     status, node_num,
1407 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1408 			mlog(ML_ERROR, "Volume requires unmount.\n");
1409 		}
1410 
1411 		spin_lock(&osb->osb_lock);
1412 	}
1413 	spin_unlock(&osb->osb_lock);
1414 	mlog(0, "All nodes recovered\n");
1415 
1416 	/* Refresh all journal recovery generations from disk */
1417 	status = ocfs2_check_journals_nolocks(osb);
1418 	status = (status == -EROFS) ? 0 : status;
1419 	if (status < 0)
1420 		mlog_errno(status);
1421 
1422 	/* Now it is right time to recover quotas... We have to do this under
1423 	 * superblock lock so that noone can start using the slot (and crash)
1424 	 * before we recover it */
1425 	for (i = 0; i < rm_quota_used; i++) {
1426 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1427 		if (IS_ERR(qrec)) {
1428 			status = PTR_ERR(qrec);
1429 			mlog_errno(status);
1430 			continue;
1431 		}
1432 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1433 						NULL, NULL, qrec);
1434 	}
1435 
1436 	ocfs2_super_unlock(osb, 1);
1437 
1438 	/* queue recovery for offline slots */
1439 	ocfs2_queue_replay_slots(osb);
1440 
1441 bail:
1442 	mutex_lock(&osb->recovery_lock);
1443 	if (!status && !ocfs2_recovery_completed(osb)) {
1444 		mutex_unlock(&osb->recovery_lock);
1445 		goto restart;
1446 	}
1447 
1448 	ocfs2_free_replay_slots(osb);
1449 	osb->recovery_thread_task = NULL;
1450 	mb(); /* sync with ocfs2_recovery_thread_running */
1451 	wake_up(&osb->recovery_event);
1452 
1453 	mutex_unlock(&osb->recovery_lock);
1454 
1455 	if (rm_quota)
1456 		kfree(rm_quota);
1457 
1458 	mlog_exit(status);
1459 	/* no one is callint kthread_stop() for us so the kthread() api
1460 	 * requires that we call do_exit().  And it isn't exported, but
1461 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1462 	complete_and_exit(NULL, status);
1463 	return status;
1464 }
1465 
1466 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1467 {
1468 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1469 		   node_num, osb->node_num);
1470 
1471 	mutex_lock(&osb->recovery_lock);
1472 	if (osb->disable_recovery)
1473 		goto out;
1474 
1475 	/* People waiting on recovery will wait on
1476 	 * the recovery map to empty. */
1477 	if (ocfs2_recovery_map_set(osb, node_num))
1478 		mlog(0, "node %d already in recovery map.\n", node_num);
1479 
1480 	mlog(0, "starting recovery thread...\n");
1481 
1482 	if (osb->recovery_thread_task)
1483 		goto out;
1484 
1485 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1486 						 "ocfs2rec");
1487 	if (IS_ERR(osb->recovery_thread_task)) {
1488 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1489 		osb->recovery_thread_task = NULL;
1490 	}
1491 
1492 out:
1493 	mutex_unlock(&osb->recovery_lock);
1494 	wake_up(&osb->recovery_event);
1495 
1496 	mlog_exit_void();
1497 }
1498 
1499 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1500 				    int slot_num,
1501 				    struct buffer_head **bh,
1502 				    struct inode **ret_inode)
1503 {
1504 	int status = -EACCES;
1505 	struct inode *inode = NULL;
1506 
1507 	BUG_ON(slot_num >= osb->max_slots);
1508 
1509 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1510 					    slot_num);
1511 	if (!inode || is_bad_inode(inode)) {
1512 		mlog_errno(status);
1513 		goto bail;
1514 	}
1515 	SET_INODE_JOURNAL(inode);
1516 
1517 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1518 	if (status < 0) {
1519 		mlog_errno(status);
1520 		goto bail;
1521 	}
1522 
1523 	status = 0;
1524 
1525 bail:
1526 	if (inode) {
1527 		if (status || !ret_inode)
1528 			iput(inode);
1529 		else
1530 			*ret_inode = inode;
1531 	}
1532 	return status;
1533 }
1534 
1535 /* Does the actual journal replay and marks the journal inode as
1536  * clean. Will only replay if the journal inode is marked dirty. */
1537 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1538 				int node_num,
1539 				int slot_num)
1540 {
1541 	int status;
1542 	int got_lock = 0;
1543 	unsigned int flags;
1544 	struct inode *inode = NULL;
1545 	struct ocfs2_dinode *fe;
1546 	journal_t *journal = NULL;
1547 	struct buffer_head *bh = NULL;
1548 	u32 slot_reco_gen;
1549 
1550 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1551 	if (status) {
1552 		mlog_errno(status);
1553 		goto done;
1554 	}
1555 
1556 	fe = (struct ocfs2_dinode *)bh->b_data;
1557 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1558 	brelse(bh);
1559 	bh = NULL;
1560 
1561 	/*
1562 	 * As the fs recovery is asynchronous, there is a small chance that
1563 	 * another node mounted (and recovered) the slot before the recovery
1564 	 * thread could get the lock. To handle that, we dirty read the journal
1565 	 * inode for that slot to get the recovery generation. If it is
1566 	 * different than what we expected, the slot has been recovered.
1567 	 * If not, it needs recovery.
1568 	 */
1569 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1570 		mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1571 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1572 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1573 		status = -EBUSY;
1574 		goto done;
1575 	}
1576 
1577 	/* Continue with recovery as the journal has not yet been recovered */
1578 
1579 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1580 	if (status < 0) {
1581 		mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1582 		if (status != -ERESTARTSYS)
1583 			mlog(ML_ERROR, "Could not lock journal!\n");
1584 		goto done;
1585 	}
1586 	got_lock = 1;
1587 
1588 	fe = (struct ocfs2_dinode *) bh->b_data;
1589 
1590 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1591 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1592 
1593 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1594 		mlog(0, "No recovery required for node %d\n", node_num);
1595 		/* Refresh recovery generation for the slot */
1596 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1597 		goto done;
1598 	}
1599 
1600 	/* we need to run complete recovery for offline orphan slots */
1601 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1602 
1603 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1604 	     node_num, slot_num,
1605 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1606 
1607 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1608 
1609 	status = ocfs2_force_read_journal(inode);
1610 	if (status < 0) {
1611 		mlog_errno(status);
1612 		goto done;
1613 	}
1614 
1615 	mlog(0, "calling journal_init_inode\n");
1616 	journal = jbd2_journal_init_inode(inode);
1617 	if (journal == NULL) {
1618 		mlog(ML_ERROR, "Linux journal layer error\n");
1619 		status = -EIO;
1620 		goto done;
1621 	}
1622 
1623 	status = jbd2_journal_load(journal);
1624 	if (status < 0) {
1625 		mlog_errno(status);
1626 		if (!igrab(inode))
1627 			BUG();
1628 		jbd2_journal_destroy(journal);
1629 		goto done;
1630 	}
1631 
1632 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1633 
1634 	/* wipe the journal */
1635 	mlog(0, "flushing the journal.\n");
1636 	jbd2_journal_lock_updates(journal);
1637 	status = jbd2_journal_flush(journal);
1638 	jbd2_journal_unlock_updates(journal);
1639 	if (status < 0)
1640 		mlog_errno(status);
1641 
1642 	/* This will mark the node clean */
1643 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1644 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1645 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1646 
1647 	/* Increment recovery generation to indicate successful recovery */
1648 	ocfs2_bump_recovery_generation(fe);
1649 	osb->slot_recovery_generations[slot_num] =
1650 					ocfs2_get_recovery_generation(fe);
1651 
1652 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1653 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1654 	if (status < 0)
1655 		mlog_errno(status);
1656 
1657 	if (!igrab(inode))
1658 		BUG();
1659 
1660 	jbd2_journal_destroy(journal);
1661 
1662 done:
1663 	/* drop the lock on this nodes journal */
1664 	if (got_lock)
1665 		ocfs2_inode_unlock(inode, 1);
1666 
1667 	if (inode)
1668 		iput(inode);
1669 
1670 	brelse(bh);
1671 
1672 	mlog_exit(status);
1673 	return status;
1674 }
1675 
1676 /*
1677  * Do the most important parts of node recovery:
1678  *  - Replay it's journal
1679  *  - Stamp a clean local allocator file
1680  *  - Stamp a clean truncate log
1681  *  - Mark the node clean
1682  *
1683  * If this function completes without error, a node in OCFS2 can be
1684  * said to have been safely recovered. As a result, failure during the
1685  * second part of a nodes recovery process (local alloc recovery) is
1686  * far less concerning.
1687  */
1688 static int ocfs2_recover_node(struct ocfs2_super *osb,
1689 			      int node_num, int slot_num)
1690 {
1691 	int status = 0;
1692 	struct ocfs2_dinode *la_copy = NULL;
1693 	struct ocfs2_dinode *tl_copy = NULL;
1694 
1695 	mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1696 		   node_num, slot_num, osb->node_num);
1697 
1698 	/* Should not ever be called to recover ourselves -- in that
1699 	 * case we should've called ocfs2_journal_load instead. */
1700 	BUG_ON(osb->node_num == node_num);
1701 
1702 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1703 	if (status < 0) {
1704 		if (status == -EBUSY) {
1705 			mlog(0, "Skipping recovery for slot %u (node %u) "
1706 			     "as another node has recovered it\n", slot_num,
1707 			     node_num);
1708 			status = 0;
1709 			goto done;
1710 		}
1711 		mlog_errno(status);
1712 		goto done;
1713 	}
1714 
1715 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1716 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1717 	if (status < 0) {
1718 		mlog_errno(status);
1719 		goto done;
1720 	}
1721 
1722 	/* An error from begin_truncate_log_recovery is not
1723 	 * serious enough to warrant halting the rest of
1724 	 * recovery. */
1725 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1726 	if (status < 0)
1727 		mlog_errno(status);
1728 
1729 	/* Likewise, this would be a strange but ultimately not so
1730 	 * harmful place to get an error... */
1731 	status = ocfs2_clear_slot(osb, slot_num);
1732 	if (status < 0)
1733 		mlog_errno(status);
1734 
1735 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1736 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1737 					tl_copy, NULL);
1738 
1739 	status = 0;
1740 done:
1741 
1742 	mlog_exit(status);
1743 	return status;
1744 }
1745 
1746 /* Test node liveness by trylocking his journal. If we get the lock,
1747  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1748  * still alive (we couldn't get the lock) and < 0 on error. */
1749 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1750 				 int slot_num)
1751 {
1752 	int status, flags;
1753 	struct inode *inode = NULL;
1754 
1755 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1756 					    slot_num);
1757 	if (inode == NULL) {
1758 		mlog(ML_ERROR, "access error\n");
1759 		status = -EACCES;
1760 		goto bail;
1761 	}
1762 	if (is_bad_inode(inode)) {
1763 		mlog(ML_ERROR, "access error (bad inode)\n");
1764 		iput(inode);
1765 		inode = NULL;
1766 		status = -EACCES;
1767 		goto bail;
1768 	}
1769 	SET_INODE_JOURNAL(inode);
1770 
1771 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1772 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1773 	if (status < 0) {
1774 		if (status != -EAGAIN)
1775 			mlog_errno(status);
1776 		goto bail;
1777 	}
1778 
1779 	ocfs2_inode_unlock(inode, 1);
1780 bail:
1781 	if (inode)
1782 		iput(inode);
1783 
1784 	return status;
1785 }
1786 
1787 /* Call this underneath ocfs2_super_lock. It also assumes that the
1788  * slot info struct has been updated from disk. */
1789 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1790 {
1791 	unsigned int node_num;
1792 	int status, i;
1793 	u32 gen;
1794 	struct buffer_head *bh = NULL;
1795 	struct ocfs2_dinode *di;
1796 
1797 	/* This is called with the super block cluster lock, so we
1798 	 * know that the slot map can't change underneath us. */
1799 
1800 	for (i = 0; i < osb->max_slots; i++) {
1801 		/* Read journal inode to get the recovery generation */
1802 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1803 		if (status) {
1804 			mlog_errno(status);
1805 			goto bail;
1806 		}
1807 		di = (struct ocfs2_dinode *)bh->b_data;
1808 		gen = ocfs2_get_recovery_generation(di);
1809 		brelse(bh);
1810 		bh = NULL;
1811 
1812 		spin_lock(&osb->osb_lock);
1813 		osb->slot_recovery_generations[i] = gen;
1814 
1815 		mlog(0, "Slot %u recovery generation is %u\n", i,
1816 		     osb->slot_recovery_generations[i]);
1817 
1818 		if (i == osb->slot_num) {
1819 			spin_unlock(&osb->osb_lock);
1820 			continue;
1821 		}
1822 
1823 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1824 		if (status == -ENOENT) {
1825 			spin_unlock(&osb->osb_lock);
1826 			continue;
1827 		}
1828 
1829 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1830 			spin_unlock(&osb->osb_lock);
1831 			continue;
1832 		}
1833 		spin_unlock(&osb->osb_lock);
1834 
1835 		/* Ok, we have a slot occupied by another node which
1836 		 * is not in the recovery map. We trylock his journal
1837 		 * file here to test if he's alive. */
1838 		status = ocfs2_trylock_journal(osb, i);
1839 		if (!status) {
1840 			/* Since we're called from mount, we know that
1841 			 * the recovery thread can't race us on
1842 			 * setting / checking the recovery bits. */
1843 			ocfs2_recovery_thread(osb, node_num);
1844 		} else if ((status < 0) && (status != -EAGAIN)) {
1845 			mlog_errno(status);
1846 			goto bail;
1847 		}
1848 	}
1849 
1850 	status = 0;
1851 bail:
1852 	mlog_exit(status);
1853 	return status;
1854 }
1855 
1856 /*
1857  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1858  * randomness to the timeout to minimize multple nodes firing the timer at the
1859  * same time.
1860  */
1861 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1862 {
1863 	unsigned long time;
1864 
1865 	get_random_bytes(&time, sizeof(time));
1866 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1867 	return msecs_to_jiffies(time);
1868 }
1869 
1870 /*
1871  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1872  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1873  * is done to catch any orphans that are left over in orphan directories.
1874  *
1875  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1876  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1877  * stored in LVB. If the sequence number has changed, it means some other
1878  * node has done the scan.  This node skips the scan and tracks the
1879  * sequence number.  If the sequence number didn't change, it means a scan
1880  * hasn't happened.  The node queues a scan and increments the
1881  * sequence number in the LVB.
1882  */
1883 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1884 {
1885 	struct ocfs2_orphan_scan *os;
1886 	int status, i;
1887 	u32 seqno = 0;
1888 
1889 	os = &osb->osb_orphan_scan;
1890 
1891 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1892 		goto out;
1893 
1894 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1895 	if (status < 0) {
1896 		if (status != -EAGAIN)
1897 			mlog_errno(status);
1898 		goto out;
1899 	}
1900 
1901 	/* Do no queue the tasks if the volume is being umounted */
1902 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1903 		goto unlock;
1904 
1905 	if (os->os_seqno != seqno) {
1906 		os->os_seqno = seqno;
1907 		goto unlock;
1908 	}
1909 
1910 	for (i = 0; i < osb->max_slots; i++)
1911 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1912 						NULL);
1913 	/*
1914 	 * We queued a recovery on orphan slots, increment the sequence
1915 	 * number and update LVB so other node will skip the scan for a while
1916 	 */
1917 	seqno++;
1918 	os->os_count++;
1919 	os->os_scantime = CURRENT_TIME;
1920 unlock:
1921 	ocfs2_orphan_scan_unlock(osb, seqno);
1922 out:
1923 	return;
1924 }
1925 
1926 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1927 void ocfs2_orphan_scan_work(struct work_struct *work)
1928 {
1929 	struct ocfs2_orphan_scan *os;
1930 	struct ocfs2_super *osb;
1931 
1932 	os = container_of(work, struct ocfs2_orphan_scan,
1933 			  os_orphan_scan_work.work);
1934 	osb = os->os_osb;
1935 
1936 	mutex_lock(&os->os_lock);
1937 	ocfs2_queue_orphan_scan(osb);
1938 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1939 		schedule_delayed_work(&os->os_orphan_scan_work,
1940 				      ocfs2_orphan_scan_timeout());
1941 	mutex_unlock(&os->os_lock);
1942 }
1943 
1944 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1945 {
1946 	struct ocfs2_orphan_scan *os;
1947 
1948 	os = &osb->osb_orphan_scan;
1949 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1950 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1951 		mutex_lock(&os->os_lock);
1952 		cancel_delayed_work(&os->os_orphan_scan_work);
1953 		mutex_unlock(&os->os_lock);
1954 	}
1955 }
1956 
1957 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1958 {
1959 	struct ocfs2_orphan_scan *os;
1960 
1961 	os = &osb->osb_orphan_scan;
1962 	os->os_osb = osb;
1963 	os->os_count = 0;
1964 	os->os_seqno = 0;
1965 	mutex_init(&os->os_lock);
1966 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1967 }
1968 
1969 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1970 {
1971 	struct ocfs2_orphan_scan *os;
1972 
1973 	os = &osb->osb_orphan_scan;
1974 	os->os_scantime = CURRENT_TIME;
1975 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1976 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1977 	else {
1978 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1979 		schedule_delayed_work(&os->os_orphan_scan_work,
1980 				      ocfs2_orphan_scan_timeout());
1981 	}
1982 }
1983 
1984 struct ocfs2_orphan_filldir_priv {
1985 	struct inode		*head;
1986 	struct ocfs2_super	*osb;
1987 };
1988 
1989 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1990 				loff_t pos, u64 ino, unsigned type)
1991 {
1992 	struct ocfs2_orphan_filldir_priv *p = priv;
1993 	struct inode *iter;
1994 
1995 	if (name_len == 1 && !strncmp(".", name, 1))
1996 		return 0;
1997 	if (name_len == 2 && !strncmp("..", name, 2))
1998 		return 0;
1999 
2000 	/* Skip bad inodes so that recovery can continue */
2001 	iter = ocfs2_iget(p->osb, ino,
2002 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2003 	if (IS_ERR(iter))
2004 		return 0;
2005 
2006 	mlog(0, "queue orphan %llu\n",
2007 	     (unsigned long long)OCFS2_I(iter)->ip_blkno);
2008 	/* No locking is required for the next_orphan queue as there
2009 	 * is only ever a single process doing orphan recovery. */
2010 	OCFS2_I(iter)->ip_next_orphan = p->head;
2011 	p->head = iter;
2012 
2013 	return 0;
2014 }
2015 
2016 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2017 			       int slot,
2018 			       struct inode **head)
2019 {
2020 	int status;
2021 	struct inode *orphan_dir_inode = NULL;
2022 	struct ocfs2_orphan_filldir_priv priv;
2023 	loff_t pos = 0;
2024 
2025 	priv.osb = osb;
2026 	priv.head = *head;
2027 
2028 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2029 						       ORPHAN_DIR_SYSTEM_INODE,
2030 						       slot);
2031 	if  (!orphan_dir_inode) {
2032 		status = -ENOENT;
2033 		mlog_errno(status);
2034 		return status;
2035 	}
2036 
2037 	mutex_lock(&orphan_dir_inode->i_mutex);
2038 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2039 	if (status < 0) {
2040 		mlog_errno(status);
2041 		goto out;
2042 	}
2043 
2044 	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2045 				   ocfs2_orphan_filldir);
2046 	if (status) {
2047 		mlog_errno(status);
2048 		goto out_cluster;
2049 	}
2050 
2051 	*head = priv.head;
2052 
2053 out_cluster:
2054 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2055 out:
2056 	mutex_unlock(&orphan_dir_inode->i_mutex);
2057 	iput(orphan_dir_inode);
2058 	return status;
2059 }
2060 
2061 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2062 					      int slot)
2063 {
2064 	int ret;
2065 
2066 	spin_lock(&osb->osb_lock);
2067 	ret = !osb->osb_orphan_wipes[slot];
2068 	spin_unlock(&osb->osb_lock);
2069 	return ret;
2070 }
2071 
2072 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2073 					     int slot)
2074 {
2075 	spin_lock(&osb->osb_lock);
2076 	/* Mark ourselves such that new processes in delete_inode()
2077 	 * know to quit early. */
2078 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2079 	while (osb->osb_orphan_wipes[slot]) {
2080 		/* If any processes are already in the middle of an
2081 		 * orphan wipe on this dir, then we need to wait for
2082 		 * them. */
2083 		spin_unlock(&osb->osb_lock);
2084 		wait_event_interruptible(osb->osb_wipe_event,
2085 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2086 		spin_lock(&osb->osb_lock);
2087 	}
2088 	spin_unlock(&osb->osb_lock);
2089 }
2090 
2091 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2092 					      int slot)
2093 {
2094 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2095 }
2096 
2097 /*
2098  * Orphan recovery. Each mounted node has it's own orphan dir which we
2099  * must run during recovery. Our strategy here is to build a list of
2100  * the inodes in the orphan dir and iget/iput them. The VFS does
2101  * (most) of the rest of the work.
2102  *
2103  * Orphan recovery can happen at any time, not just mount so we have a
2104  * couple of extra considerations.
2105  *
2106  * - We grab as many inodes as we can under the orphan dir lock -
2107  *   doing iget() outside the orphan dir risks getting a reference on
2108  *   an invalid inode.
2109  * - We must be sure not to deadlock with other processes on the
2110  *   system wanting to run delete_inode(). This can happen when they go
2111  *   to lock the orphan dir and the orphan recovery process attempts to
2112  *   iget() inside the orphan dir lock. This can be avoided by
2113  *   advertising our state to ocfs2_delete_inode().
2114  */
2115 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2116 				 int slot)
2117 {
2118 	int ret = 0;
2119 	struct inode *inode = NULL;
2120 	struct inode *iter;
2121 	struct ocfs2_inode_info *oi;
2122 
2123 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2124 
2125 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2126 	ret = ocfs2_queue_orphans(osb, slot, &inode);
2127 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2128 
2129 	/* Error here should be noted, but we want to continue with as
2130 	 * many queued inodes as we've got. */
2131 	if (ret)
2132 		mlog_errno(ret);
2133 
2134 	while (inode) {
2135 		oi = OCFS2_I(inode);
2136 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
2137 
2138 		iter = oi->ip_next_orphan;
2139 
2140 		spin_lock(&oi->ip_lock);
2141 		/* The remote delete code may have set these on the
2142 		 * assumption that the other node would wipe them
2143 		 * successfully.  If they are still in the node's
2144 		 * orphan dir, we need to reset that state. */
2145 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2146 
2147 		/* Set the proper information to get us going into
2148 		 * ocfs2_delete_inode. */
2149 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2150 		spin_unlock(&oi->ip_lock);
2151 
2152 		iput(inode);
2153 
2154 		inode = iter;
2155 	}
2156 
2157 	return ret;
2158 }
2159 
2160 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2161 {
2162 	/* This check is good because ocfs2 will wait on our recovery
2163 	 * thread before changing it to something other than MOUNTED
2164 	 * or DISABLED. */
2165 	wait_event(osb->osb_mount_event,
2166 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2167 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2168 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2169 
2170 	/* If there's an error on mount, then we may never get to the
2171 	 * MOUNTED flag, but this is set right before
2172 	 * dismount_volume() so we can trust it. */
2173 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2174 		mlog(0, "mount error, exiting!\n");
2175 		return -EBUSY;
2176 	}
2177 
2178 	return 0;
2179 }
2180 
2181 static int ocfs2_commit_thread(void *arg)
2182 {
2183 	int status;
2184 	struct ocfs2_super *osb = arg;
2185 	struct ocfs2_journal *journal = osb->journal;
2186 
2187 	/* we can trust j_num_trans here because _should_stop() is only set in
2188 	 * shutdown and nobody other than ourselves should be able to start
2189 	 * transactions.  committing on shutdown might take a few iterations
2190 	 * as final transactions put deleted inodes on the list */
2191 	while (!(kthread_should_stop() &&
2192 		 atomic_read(&journal->j_num_trans) == 0)) {
2193 
2194 		wait_event_interruptible(osb->checkpoint_event,
2195 					 atomic_read(&journal->j_num_trans)
2196 					 || kthread_should_stop());
2197 
2198 		status = ocfs2_commit_cache(osb);
2199 		if (status < 0)
2200 			mlog_errno(status);
2201 
2202 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2203 			mlog(ML_KTHREAD,
2204 			     "commit_thread: %u transactions pending on "
2205 			     "shutdown\n",
2206 			     atomic_read(&journal->j_num_trans));
2207 		}
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 /* Reads all the journal inodes without taking any cluster locks. Used
2214  * for hard readonly access to determine whether any journal requires
2215  * recovery. Also used to refresh the recovery generation numbers after
2216  * a journal has been recovered by another node.
2217  */
2218 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2219 {
2220 	int ret = 0;
2221 	unsigned int slot;
2222 	struct buffer_head *di_bh = NULL;
2223 	struct ocfs2_dinode *di;
2224 	int journal_dirty = 0;
2225 
2226 	for(slot = 0; slot < osb->max_slots; slot++) {
2227 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2228 		if (ret) {
2229 			mlog_errno(ret);
2230 			goto out;
2231 		}
2232 
2233 		di = (struct ocfs2_dinode *) di_bh->b_data;
2234 
2235 		osb->slot_recovery_generations[slot] =
2236 					ocfs2_get_recovery_generation(di);
2237 
2238 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2239 		    OCFS2_JOURNAL_DIRTY_FL)
2240 			journal_dirty = 1;
2241 
2242 		brelse(di_bh);
2243 		di_bh = NULL;
2244 	}
2245 
2246 out:
2247 	if (journal_dirty)
2248 		ret = -EROFS;
2249 	return ret;
2250 }
2251