xref: /openbmc/linux/fs/ocfs2/journal.c (revision 09b06c25)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * journal.c
4  *
5  * Defines functions of journalling api
6  *
7  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 #include <linux/writeback.h>
19 
20 #include <cluster/masklog.h>
21 
22 #include "ocfs2.h"
23 
24 #include "alloc.h"
25 #include "blockcheck.h"
26 #include "dir.h"
27 #include "dlmglue.h"
28 #include "extent_map.h"
29 #include "heartbeat.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "slot_map.h"
34 #include "super.h"
35 #include "sysfile.h"
36 #include "uptodate.h"
37 #include "quota.h"
38 #include "file.h"
39 #include "namei.h"
40 
41 #include "buffer_head_io.h"
42 #include "ocfs2_trace.h"
43 
44 DEFINE_SPINLOCK(trans_inc_lock);
45 
46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
47 
48 static int ocfs2_force_read_journal(struct inode *inode);
49 static int ocfs2_recover_node(struct ocfs2_super *osb,
50 			      int node_num, int slot_num);
51 static int __ocfs2_recovery_thread(void *arg);
52 static int ocfs2_commit_cache(struct ocfs2_super *osb);
53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55 				      int dirty, int replayed);
56 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57 				 int slot_num);
58 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59 				 int slot,
60 				 enum ocfs2_orphan_reco_type orphan_reco_type);
61 static int ocfs2_commit_thread(void *arg);
62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63 					    int slot_num,
64 					    struct ocfs2_dinode *la_dinode,
65 					    struct ocfs2_dinode *tl_dinode,
66 					    struct ocfs2_quota_recovery *qrec,
67 					    enum ocfs2_orphan_reco_type orphan_reco_type);
68 
69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70 {
71 	return __ocfs2_wait_on_mount(osb, 0);
72 }
73 
74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75 {
76 	return __ocfs2_wait_on_mount(osb, 1);
77 }
78 
79 /*
80  * This replay_map is to track online/offline slots, so we could recover
81  * offline slots during recovery and mount
82  */
83 
84 enum ocfs2_replay_state {
85 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
86 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
87 	REPLAY_DONE 		/* Replay was already queued */
88 };
89 
90 struct ocfs2_replay_map {
91 	unsigned int rm_slots;
92 	enum ocfs2_replay_state rm_state;
93 	unsigned char rm_replay_slots[];
94 };
95 
96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
97 {
98 	if (!osb->replay_map)
99 		return;
100 
101 	/* If we've already queued the replay, we don't have any more to do */
102 	if (osb->replay_map->rm_state == REPLAY_DONE)
103 		return;
104 
105 	osb->replay_map->rm_state = state;
106 }
107 
108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
109 {
110 	struct ocfs2_replay_map *replay_map;
111 	int i, node_num;
112 
113 	/* If replay map is already set, we don't do it again */
114 	if (osb->replay_map)
115 		return 0;
116 
117 	replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
118 					 osb->max_slots),
119 			     GFP_KERNEL);
120 	if (!replay_map) {
121 		mlog_errno(-ENOMEM);
122 		return -ENOMEM;
123 	}
124 
125 	spin_lock(&osb->osb_lock);
126 
127 	replay_map->rm_slots = osb->max_slots;
128 	replay_map->rm_state = REPLAY_UNNEEDED;
129 
130 	/* set rm_replay_slots for offline slot(s) */
131 	for (i = 0; i < replay_map->rm_slots; i++) {
132 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133 			replay_map->rm_replay_slots[i] = 1;
134 	}
135 
136 	osb->replay_map = replay_map;
137 	spin_unlock(&osb->osb_lock);
138 	return 0;
139 }
140 
141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142 		enum ocfs2_orphan_reco_type orphan_reco_type)
143 {
144 	struct ocfs2_replay_map *replay_map = osb->replay_map;
145 	int i;
146 
147 	if (!replay_map)
148 		return;
149 
150 	if (replay_map->rm_state != REPLAY_NEEDED)
151 		return;
152 
153 	for (i = 0; i < replay_map->rm_slots; i++)
154 		if (replay_map->rm_replay_slots[i])
155 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156 							NULL, NULL,
157 							orphan_reco_type);
158 	replay_map->rm_state = REPLAY_DONE;
159 }
160 
161 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
162 {
163 	struct ocfs2_replay_map *replay_map = osb->replay_map;
164 
165 	if (!osb->replay_map)
166 		return;
167 
168 	kfree(replay_map);
169 	osb->replay_map = NULL;
170 }
171 
172 int ocfs2_recovery_init(struct ocfs2_super *osb)
173 {
174 	struct ocfs2_recovery_map *rm;
175 
176 	mutex_init(&osb->recovery_lock);
177 	osb->disable_recovery = 0;
178 	osb->recovery_thread_task = NULL;
179 	init_waitqueue_head(&osb->recovery_event);
180 
181 	rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
182 		     GFP_KERNEL);
183 	if (!rm) {
184 		mlog_errno(-ENOMEM);
185 		return -ENOMEM;
186 	}
187 
188 	osb->recovery_map = rm;
189 
190 	return 0;
191 }
192 
193 /* we can't grab the goofy sem lock from inside wait_event, so we use
194  * memory barriers to make sure that we'll see the null task before
195  * being woken up */
196 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
197 {
198 	mb();
199 	return osb->recovery_thread_task != NULL;
200 }
201 
202 void ocfs2_recovery_exit(struct ocfs2_super *osb)
203 {
204 	struct ocfs2_recovery_map *rm;
205 
206 	/* disable any new recovery threads and wait for any currently
207 	 * running ones to exit. Do this before setting the vol_state. */
208 	mutex_lock(&osb->recovery_lock);
209 	osb->disable_recovery = 1;
210 	mutex_unlock(&osb->recovery_lock);
211 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
212 
213 	/* At this point, we know that no more recovery threads can be
214 	 * launched, so wait for any recovery completion work to
215 	 * complete. */
216 	if (osb->ocfs2_wq)
217 		flush_workqueue(osb->ocfs2_wq);
218 
219 	/*
220 	 * Now that recovery is shut down, and the osb is about to be
221 	 * freed,  the osb_lock is not taken here.
222 	 */
223 	rm = osb->recovery_map;
224 	/* XXX: Should we bug if there are dirty entries? */
225 
226 	kfree(rm);
227 }
228 
229 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
230 				     unsigned int node_num)
231 {
232 	int i;
233 	struct ocfs2_recovery_map *rm = osb->recovery_map;
234 
235 	assert_spin_locked(&osb->osb_lock);
236 
237 	for (i = 0; i < rm->rm_used; i++) {
238 		if (rm->rm_entries[i] == node_num)
239 			return 1;
240 	}
241 
242 	return 0;
243 }
244 
245 /* Behaves like test-and-set.  Returns the previous value */
246 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
247 				  unsigned int node_num)
248 {
249 	struct ocfs2_recovery_map *rm = osb->recovery_map;
250 
251 	spin_lock(&osb->osb_lock);
252 	if (__ocfs2_recovery_map_test(osb, node_num)) {
253 		spin_unlock(&osb->osb_lock);
254 		return 1;
255 	}
256 
257 	/* XXX: Can this be exploited? Not from o2dlm... */
258 	BUG_ON(rm->rm_used >= osb->max_slots);
259 
260 	rm->rm_entries[rm->rm_used] = node_num;
261 	rm->rm_used++;
262 	spin_unlock(&osb->osb_lock);
263 
264 	return 0;
265 }
266 
267 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
268 				     unsigned int node_num)
269 {
270 	int i;
271 	struct ocfs2_recovery_map *rm = osb->recovery_map;
272 
273 	spin_lock(&osb->osb_lock);
274 
275 	for (i = 0; i < rm->rm_used; i++) {
276 		if (rm->rm_entries[i] == node_num)
277 			break;
278 	}
279 
280 	if (i < rm->rm_used) {
281 		/* XXX: be careful with the pointer math */
282 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
283 			(rm->rm_used - i - 1) * sizeof(unsigned int));
284 		rm->rm_used--;
285 	}
286 
287 	spin_unlock(&osb->osb_lock);
288 }
289 
290 static int ocfs2_commit_cache(struct ocfs2_super *osb)
291 {
292 	int status = 0;
293 	unsigned int flushed;
294 	struct ocfs2_journal *journal = NULL;
295 
296 	journal = osb->journal;
297 
298 	/* Flush all pending commits and checkpoint the journal. */
299 	down_write(&journal->j_trans_barrier);
300 
301 	flushed = atomic_read(&journal->j_num_trans);
302 	trace_ocfs2_commit_cache_begin(flushed);
303 	if (flushed == 0) {
304 		up_write(&journal->j_trans_barrier);
305 		goto finally;
306 	}
307 
308 	jbd2_journal_lock_updates(journal->j_journal);
309 	status = jbd2_journal_flush(journal->j_journal, 0);
310 	jbd2_journal_unlock_updates(journal->j_journal);
311 	if (status < 0) {
312 		up_write(&journal->j_trans_barrier);
313 		mlog_errno(status);
314 		goto finally;
315 	}
316 
317 	ocfs2_inc_trans_id(journal);
318 
319 	flushed = atomic_read(&journal->j_num_trans);
320 	atomic_set(&journal->j_num_trans, 0);
321 	up_write(&journal->j_trans_barrier);
322 
323 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
324 
325 	ocfs2_wake_downconvert_thread(osb);
326 	wake_up(&journal->j_checkpointed);
327 finally:
328 	return status;
329 }
330 
331 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
332 {
333 	journal_t *journal = osb->journal->j_journal;
334 	handle_t *handle;
335 
336 	BUG_ON(!osb || !osb->journal->j_journal);
337 
338 	if (ocfs2_is_hard_readonly(osb))
339 		return ERR_PTR(-EROFS);
340 
341 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
342 	BUG_ON(max_buffs <= 0);
343 
344 	/* Nested transaction? Just return the handle... */
345 	if (journal_current_handle())
346 		return jbd2_journal_start(journal, max_buffs);
347 
348 	sb_start_intwrite(osb->sb);
349 
350 	down_read(&osb->journal->j_trans_barrier);
351 
352 	handle = jbd2_journal_start(journal, max_buffs);
353 	if (IS_ERR(handle)) {
354 		up_read(&osb->journal->j_trans_barrier);
355 		sb_end_intwrite(osb->sb);
356 
357 		mlog_errno(PTR_ERR(handle));
358 
359 		if (is_journal_aborted(journal)) {
360 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
361 			handle = ERR_PTR(-EROFS);
362 		}
363 	} else {
364 		if (!ocfs2_mount_local(osb))
365 			atomic_inc(&(osb->journal->j_num_trans));
366 	}
367 
368 	return handle;
369 }
370 
371 int ocfs2_commit_trans(struct ocfs2_super *osb,
372 		       handle_t *handle)
373 {
374 	int ret, nested;
375 	struct ocfs2_journal *journal = osb->journal;
376 
377 	BUG_ON(!handle);
378 
379 	nested = handle->h_ref > 1;
380 	ret = jbd2_journal_stop(handle);
381 	if (ret < 0)
382 		mlog_errno(ret);
383 
384 	if (!nested) {
385 		up_read(&journal->j_trans_barrier);
386 		sb_end_intwrite(osb->sb);
387 	}
388 
389 	return ret;
390 }
391 
392 /*
393  * 'nblocks' is what you want to add to the current transaction.
394  *
395  * This might call jbd2_journal_restart() which will commit dirty buffers
396  * and then restart the transaction. Before calling
397  * ocfs2_extend_trans(), any changed blocks should have been
398  * dirtied. After calling it, all blocks which need to be changed must
399  * go through another set of journal_access/journal_dirty calls.
400  *
401  * WARNING: This will not release any semaphores or disk locks taken
402  * during the transaction, so make sure they were taken *before*
403  * start_trans or we'll have ordering deadlocks.
404  *
405  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
406  * good because transaction ids haven't yet been recorded on the
407  * cluster locks associated with this handle.
408  */
409 int ocfs2_extend_trans(handle_t *handle, int nblocks)
410 {
411 	int status, old_nblocks;
412 
413 	BUG_ON(!handle);
414 	BUG_ON(nblocks < 0);
415 
416 	if (!nblocks)
417 		return 0;
418 
419 	old_nblocks = jbd2_handle_buffer_credits(handle);
420 
421 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
422 
423 #ifdef CONFIG_OCFS2_DEBUG_FS
424 	status = 1;
425 #else
426 	status = jbd2_journal_extend(handle, nblocks, 0);
427 	if (status < 0) {
428 		mlog_errno(status);
429 		goto bail;
430 	}
431 #endif
432 
433 	if (status > 0) {
434 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
435 		status = jbd2_journal_restart(handle,
436 					      old_nblocks + nblocks);
437 		if (status < 0) {
438 			mlog_errno(status);
439 			goto bail;
440 		}
441 	}
442 
443 	status = 0;
444 bail:
445 	return status;
446 }
447 
448 /*
449  * Make sure handle has at least 'nblocks' credits available. If it does not
450  * have that many credits available, we will try to extend the handle to have
451  * enough credits. If that fails, we will restart transaction to have enough
452  * credits. Similar notes regarding data consistency and locking implications
453  * as for ocfs2_extend_trans() apply here.
454  */
455 int ocfs2_assure_trans_credits(handle_t *handle, int nblocks)
456 {
457 	int old_nblks = jbd2_handle_buffer_credits(handle);
458 
459 	trace_ocfs2_assure_trans_credits(old_nblks);
460 	if (old_nblks >= nblocks)
461 		return 0;
462 	return ocfs2_extend_trans(handle, nblocks - old_nblks);
463 }
464 
465 /*
466  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467  * If that fails, restart the transaction & regain write access for the
468  * buffer head which is used for metadata modifications.
469  * Taken from Ext4: extend_or_restart_transaction()
470  */
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473 	int status, old_nblks;
474 
475 	BUG_ON(!handle);
476 
477 	old_nblks = jbd2_handle_buffer_credits(handle);
478 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479 
480 	if (old_nblks < thresh)
481 		return 0;
482 
483 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
484 	if (status < 0) {
485 		mlog_errno(status);
486 		goto bail;
487 	}
488 
489 	if (status > 0) {
490 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 		if (status < 0)
492 			mlog_errno(status);
493 	}
494 
495 bail:
496 	return status;
497 }
498 
499 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
500 {
501 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
502 }
503 
504 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
505 				 struct buffer_head *bh,
506 				 void *data, size_t size)
507 {
508 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
509 
510 	/*
511 	 * We aren't guaranteed to have the superblock here, so we
512 	 * must unconditionally compute the ecc data.
513 	 * __ocfs2_journal_access() will only set the triggers if
514 	 * metaecc is enabled.
515 	 */
516 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
517 }
518 
519 /*
520  * Quota blocks have their own trigger because the struct ocfs2_block_check
521  * offset depends on the blocksize.
522  */
523 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
524 				 struct buffer_head *bh,
525 				 void *data, size_t size)
526 {
527 	struct ocfs2_disk_dqtrailer *dqt =
528 		ocfs2_block_dqtrailer(size, data);
529 
530 	/*
531 	 * We aren't guaranteed to have the superblock here, so we
532 	 * must unconditionally compute the ecc data.
533 	 * __ocfs2_journal_access() will only set the triggers if
534 	 * metaecc is enabled.
535 	 */
536 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
537 }
538 
539 /*
540  * Directory blocks also have their own trigger because the
541  * struct ocfs2_block_check offset depends on the blocksize.
542  */
543 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
544 				 struct buffer_head *bh,
545 				 void *data, size_t size)
546 {
547 	struct ocfs2_dir_block_trailer *trailer =
548 		ocfs2_dir_trailer_from_size(size, data);
549 
550 	/*
551 	 * We aren't guaranteed to have the superblock here, so we
552 	 * must unconditionally compute the ecc data.
553 	 * __ocfs2_journal_access() will only set the triggers if
554 	 * metaecc is enabled.
555 	 */
556 	ocfs2_block_check_compute(data, size, &trailer->db_check);
557 }
558 
559 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
560 				struct buffer_head *bh)
561 {
562 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
563 
564 	mlog(ML_ERROR,
565 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
566 	     "bh->b_blocknr = %llu\n",
567 	     (unsigned long)bh,
568 	     (unsigned long long)bh->b_blocknr);
569 
570 	ocfs2_error(ot->sb,
571 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
572 }
573 
574 static void ocfs2_setup_csum_triggers(struct super_block *sb,
575 				      enum ocfs2_journal_trigger_type type,
576 				      struct ocfs2_triggers *ot)
577 {
578 	BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT);
579 
580 	switch (type) {
581 	case OCFS2_JTR_DI:
582 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
583 		ot->ot_offset = offsetof(struct ocfs2_dinode, i_check);
584 		break;
585 	case OCFS2_JTR_EB:
586 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
587 		ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check);
588 		break;
589 	case OCFS2_JTR_RB:
590 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
591 		ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check);
592 		break;
593 	case OCFS2_JTR_GD:
594 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
595 		ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check);
596 		break;
597 	case OCFS2_JTR_DB:
598 		ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger;
599 		break;
600 	case OCFS2_JTR_XB:
601 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
602 		ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check);
603 		break;
604 	case OCFS2_JTR_DQ:
605 		ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger;
606 		break;
607 	case OCFS2_JTR_DR:
608 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
609 		ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check);
610 		break;
611 	case OCFS2_JTR_DL:
612 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
613 		ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check);
614 		break;
615 	case OCFS2_JTR_NONE:
616 		/* To make compiler happy... */
617 		return;
618 	}
619 
620 	ot->ot_triggers.t_abort = ocfs2_abort_trigger;
621 	ot->sb = sb;
622 }
623 
624 void ocfs2_initialize_journal_triggers(struct super_block *sb,
625 				       struct ocfs2_triggers triggers[])
626 {
627 	enum ocfs2_journal_trigger_type type;
628 
629 	for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++)
630 		ocfs2_setup_csum_triggers(sb, type, &triggers[type]);
631 }
632 
633 static int __ocfs2_journal_access(handle_t *handle,
634 				  struct ocfs2_caching_info *ci,
635 				  struct buffer_head *bh,
636 				  struct ocfs2_triggers *triggers,
637 				  int type)
638 {
639 	int status;
640 	struct ocfs2_super *osb =
641 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
642 
643 	BUG_ON(!ci || !ci->ci_ops);
644 	BUG_ON(!handle);
645 	BUG_ON(!bh);
646 
647 	trace_ocfs2_journal_access(
648 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
649 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
650 
651 	/* we can safely remove this assertion after testing. */
652 	if (!buffer_uptodate(bh)) {
653 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
654 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
655 		     (unsigned long long)bh->b_blocknr, bh->b_state);
656 
657 		lock_buffer(bh);
658 		/*
659 		 * A previous transaction with a couple of buffer heads fail
660 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
661 		 * For current transaction, the bh is just among those error
662 		 * bhs which previous transaction handle. We can't just clear
663 		 * its BH_Write_EIO and reuse directly, since other bhs are
664 		 * not written to disk yet and that will cause metadata
665 		 * inconsistency. So we should set fs read-only to avoid
666 		 * further damage.
667 		 */
668 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
669 			unlock_buffer(bh);
670 			return ocfs2_error(osb->sb, "A previous attempt to "
671 					"write this buffer head failed\n");
672 		}
673 		unlock_buffer(bh);
674 	}
675 
676 	/* Set the current transaction information on the ci so
677 	 * that the locking code knows whether it can drop it's locks
678 	 * on this ci or not. We're protected from the commit
679 	 * thread updating the current transaction id until
680 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
681 	 * j_trans_barrier for us. */
682 	ocfs2_set_ci_lock_trans(osb->journal, ci);
683 
684 	ocfs2_metadata_cache_io_lock(ci);
685 	switch (type) {
686 	case OCFS2_JOURNAL_ACCESS_CREATE:
687 	case OCFS2_JOURNAL_ACCESS_WRITE:
688 		status = jbd2_journal_get_write_access(handle, bh);
689 		break;
690 
691 	case OCFS2_JOURNAL_ACCESS_UNDO:
692 		status = jbd2_journal_get_undo_access(handle, bh);
693 		break;
694 
695 	default:
696 		status = -EINVAL;
697 		mlog(ML_ERROR, "Unknown access type!\n");
698 	}
699 	if (!status && ocfs2_meta_ecc(osb) && triggers)
700 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701 	ocfs2_metadata_cache_io_unlock(ci);
702 
703 	if (status < 0)
704 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705 		     status, type);
706 
707 	return status;
708 }
709 
710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711 			    struct buffer_head *bh, int type)
712 {
713 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
714 
715 	return __ocfs2_journal_access(handle, ci, bh,
716 				      &osb->s_journal_triggers[OCFS2_JTR_DI],
717 				      type);
718 }
719 
720 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
721 			    struct buffer_head *bh, int type)
722 {
723 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
724 
725 	return __ocfs2_journal_access(handle, ci, bh,
726 				      &osb->s_journal_triggers[OCFS2_JTR_EB],
727 				      type);
728 }
729 
730 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
731 			    struct buffer_head *bh, int type)
732 {
733 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
734 
735 	return __ocfs2_journal_access(handle, ci, bh,
736 				      &osb->s_journal_triggers[OCFS2_JTR_RB],
737 				      type);
738 }
739 
740 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
741 			    struct buffer_head *bh, int type)
742 {
743 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
744 
745 	return __ocfs2_journal_access(handle, ci, bh,
746 				     &osb->s_journal_triggers[OCFS2_JTR_GD],
747 				     type);
748 }
749 
750 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
751 			    struct buffer_head *bh, int type)
752 {
753 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
754 
755 	return __ocfs2_journal_access(handle, ci, bh,
756 				     &osb->s_journal_triggers[OCFS2_JTR_DB],
757 				     type);
758 }
759 
760 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
761 			    struct buffer_head *bh, int type)
762 {
763 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
764 
765 	return __ocfs2_journal_access(handle, ci, bh,
766 				     &osb->s_journal_triggers[OCFS2_JTR_XB],
767 				     type);
768 }
769 
770 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
771 			    struct buffer_head *bh, int type)
772 {
773 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
774 
775 	return __ocfs2_journal_access(handle, ci, bh,
776 				     &osb->s_journal_triggers[OCFS2_JTR_DQ],
777 				     type);
778 }
779 
780 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
781 			    struct buffer_head *bh, int type)
782 {
783 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
784 
785 	return __ocfs2_journal_access(handle, ci, bh,
786 				     &osb->s_journal_triggers[OCFS2_JTR_DR],
787 				     type);
788 }
789 
790 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
791 			    struct buffer_head *bh, int type)
792 {
793 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
794 
795 	return __ocfs2_journal_access(handle, ci, bh,
796 				     &osb->s_journal_triggers[OCFS2_JTR_DL],
797 				     type);
798 }
799 
800 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
801 			 struct buffer_head *bh, int type)
802 {
803 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
804 }
805 
806 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
807 {
808 	int status;
809 
810 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
811 
812 	status = jbd2_journal_dirty_metadata(handle, bh);
813 	if (status) {
814 		mlog_errno(status);
815 		if (!is_handle_aborted(handle)) {
816 			journal_t *journal = handle->h_transaction->t_journal;
817 
818 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: "
819 			     "handle type %u started at line %u, credits %u/%u "
820 			     "errcode %d. Aborting transaction and journal.\n",
821 			     handle->h_type, handle->h_line_no,
822 			     handle->h_requested_credits,
823 			     jbd2_handle_buffer_credits(handle), status);
824 			handle->h_err = status;
825 			jbd2_journal_abort_handle(handle);
826 			jbd2_journal_abort(journal, status);
827 		}
828 	}
829 }
830 
831 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
832 
833 void ocfs2_set_journal_params(struct ocfs2_super *osb)
834 {
835 	journal_t *journal = osb->journal->j_journal;
836 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
837 
838 	if (osb->osb_commit_interval)
839 		commit_interval = osb->osb_commit_interval;
840 
841 	write_lock(&journal->j_state_lock);
842 	journal->j_commit_interval = commit_interval;
843 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
844 		journal->j_flags |= JBD2_BARRIER;
845 	else
846 		journal->j_flags &= ~JBD2_BARRIER;
847 	write_unlock(&journal->j_state_lock);
848 }
849 
850 /*
851  * alloc & initialize skeleton for journal structure.
852  * ocfs2_journal_init() will make fs have journal ability.
853  */
854 int ocfs2_journal_alloc(struct ocfs2_super *osb)
855 {
856 	int status = 0;
857 	struct ocfs2_journal *journal;
858 
859 	journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
860 	if (!journal) {
861 		mlog(ML_ERROR, "unable to alloc journal\n");
862 		status = -ENOMEM;
863 		goto bail;
864 	}
865 	osb->journal = journal;
866 	journal->j_osb = osb;
867 
868 	atomic_set(&journal->j_num_trans, 0);
869 	init_rwsem(&journal->j_trans_barrier);
870 	init_waitqueue_head(&journal->j_checkpointed);
871 	spin_lock_init(&journal->j_lock);
872 	journal->j_trans_id = 1UL;
873 	INIT_LIST_HEAD(&journal->j_la_cleanups);
874 	INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
875 	journal->j_state = OCFS2_JOURNAL_FREE;
876 
877 bail:
878 	return status;
879 }
880 
881 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
882 {
883 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
884 	struct writeback_control wbc = {
885 		.sync_mode =  WB_SYNC_ALL,
886 		.nr_to_write = mapping->nrpages * 2,
887 		.range_start = jinode->i_dirty_start,
888 		.range_end = jinode->i_dirty_end,
889 	};
890 
891 	return filemap_fdatawrite_wbc(mapping, &wbc);
892 }
893 
894 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
895 {
896 	int status = -1;
897 	struct inode *inode = NULL; /* the journal inode */
898 	journal_t *j_journal = NULL;
899 	struct ocfs2_journal *journal = osb->journal;
900 	struct ocfs2_dinode *di = NULL;
901 	struct buffer_head *bh = NULL;
902 	int inode_lock = 0;
903 
904 	BUG_ON(!journal);
905 	/* already have the inode for our journal */
906 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
907 					    osb->slot_num);
908 	if (inode == NULL) {
909 		status = -EACCES;
910 		mlog_errno(status);
911 		goto done;
912 	}
913 	if (is_bad_inode(inode)) {
914 		mlog(ML_ERROR, "access error (bad inode)\n");
915 		iput(inode);
916 		inode = NULL;
917 		status = -EACCES;
918 		goto done;
919 	}
920 
921 	SET_INODE_JOURNAL(inode);
922 	OCFS2_I(inode)->ip_open_count++;
923 
924 	/* Skip recovery waits here - journal inode metadata never
925 	 * changes in a live cluster so it can be considered an
926 	 * exception to the rule. */
927 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
928 	if (status < 0) {
929 		if (status != -ERESTARTSYS)
930 			mlog(ML_ERROR, "Could not get lock on journal!\n");
931 		goto done;
932 	}
933 
934 	inode_lock = 1;
935 	di = (struct ocfs2_dinode *)bh->b_data;
936 
937 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
938 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
939 		     i_size_read(inode));
940 		status = -EINVAL;
941 		goto done;
942 	}
943 
944 	trace_ocfs2_journal_init(i_size_read(inode),
945 				 (unsigned long long)inode->i_blocks,
946 				 OCFS2_I(inode)->ip_clusters);
947 
948 	/* call the kernels journal init function now */
949 	j_journal = jbd2_journal_init_inode(inode);
950 	if (IS_ERR(j_journal)) {
951 		mlog(ML_ERROR, "Linux journal layer error\n");
952 		status = PTR_ERR(j_journal);
953 		goto done;
954 	}
955 
956 	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
957 
958 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
959 		  OCFS2_JOURNAL_DIRTY_FL);
960 
961 	journal->j_journal = j_journal;
962 	journal->j_journal->j_submit_inode_data_buffers =
963 		ocfs2_journal_submit_inode_data_buffers;
964 	journal->j_journal->j_finish_inode_data_buffers =
965 		jbd2_journal_finish_inode_data_buffers;
966 	journal->j_inode = inode;
967 	journal->j_bh = bh;
968 
969 	ocfs2_set_journal_params(osb);
970 
971 	journal->j_state = OCFS2_JOURNAL_LOADED;
972 
973 	status = 0;
974 done:
975 	if (status < 0) {
976 		if (inode_lock)
977 			ocfs2_inode_unlock(inode, 1);
978 		brelse(bh);
979 		if (inode) {
980 			OCFS2_I(inode)->ip_open_count--;
981 			iput(inode);
982 		}
983 	}
984 
985 	return status;
986 }
987 
988 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
989 {
990 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
991 }
992 
993 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
994 {
995 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
996 }
997 
998 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
999 				      int dirty, int replayed)
1000 {
1001 	int status;
1002 	unsigned int flags;
1003 	struct ocfs2_journal *journal = osb->journal;
1004 	struct buffer_head *bh = journal->j_bh;
1005 	struct ocfs2_dinode *fe;
1006 
1007 	fe = (struct ocfs2_dinode *)bh->b_data;
1008 
1009 	/* The journal bh on the osb always comes from ocfs2_journal_init()
1010 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
1011 	 * code bug if we mess it up. */
1012 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
1013 
1014 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1015 	if (dirty)
1016 		flags |= OCFS2_JOURNAL_DIRTY_FL;
1017 	else
1018 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1019 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1020 
1021 	if (replayed)
1022 		ocfs2_bump_recovery_generation(fe);
1023 
1024 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1025 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
1026 	if (status < 0)
1027 		mlog_errno(status);
1028 
1029 	return status;
1030 }
1031 
1032 /*
1033  * If the journal has been kmalloc'd it needs to be freed after this
1034  * call.
1035  */
1036 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
1037 {
1038 	struct ocfs2_journal *journal = NULL;
1039 	int status = 0;
1040 	struct inode *inode = NULL;
1041 	int num_running_trans = 0;
1042 
1043 	BUG_ON(!osb);
1044 
1045 	journal = osb->journal;
1046 	if (!journal)
1047 		goto done;
1048 
1049 	inode = journal->j_inode;
1050 
1051 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
1052 		goto done;
1053 
1054 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
1055 	if (!igrab(inode))
1056 		BUG();
1057 
1058 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
1059 	trace_ocfs2_journal_shutdown(num_running_trans);
1060 
1061 	/* Do a commit_cache here. It will flush our journal, *and*
1062 	 * release any locks that are still held.
1063 	 * set the SHUTDOWN flag and release the trans lock.
1064 	 * the commit thread will take the trans lock for us below. */
1065 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1066 
1067 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1068 	 * drop the trans_lock (which we want to hold until we
1069 	 * completely destroy the journal. */
1070 	if (osb->commit_task) {
1071 		/* Wait for the commit thread */
1072 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1073 		kthread_stop(osb->commit_task);
1074 		osb->commit_task = NULL;
1075 	}
1076 
1077 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1078 
1079 	if (ocfs2_mount_local(osb)) {
1080 		jbd2_journal_lock_updates(journal->j_journal);
1081 		status = jbd2_journal_flush(journal->j_journal, 0);
1082 		jbd2_journal_unlock_updates(journal->j_journal);
1083 		if (status < 0)
1084 			mlog_errno(status);
1085 	}
1086 
1087 	/* Shutdown the kernel journal system */
1088 	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1089 		/*
1090 		 * Do not toggle if flush was unsuccessful otherwise
1091 		 * will leave dirty metadata in a "clean" journal
1092 		 */
1093 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1094 		if (status < 0)
1095 			mlog_errno(status);
1096 	}
1097 	journal->j_journal = NULL;
1098 
1099 	OCFS2_I(inode)->ip_open_count--;
1100 
1101 	/* unlock our journal */
1102 	ocfs2_inode_unlock(inode, 1);
1103 
1104 	brelse(journal->j_bh);
1105 	journal->j_bh = NULL;
1106 
1107 	journal->j_state = OCFS2_JOURNAL_FREE;
1108 
1109 done:
1110 	iput(inode);
1111 	kfree(journal);
1112 	osb->journal = NULL;
1113 }
1114 
1115 static void ocfs2_clear_journal_error(struct super_block *sb,
1116 				      journal_t *journal,
1117 				      int slot)
1118 {
1119 	int olderr;
1120 
1121 	olderr = jbd2_journal_errno(journal);
1122 	if (olderr) {
1123 		mlog(ML_ERROR, "File system error %d recorded in "
1124 		     "journal %u.\n", olderr, slot);
1125 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1126 		     sb->s_id);
1127 
1128 		jbd2_journal_ack_err(journal);
1129 		jbd2_journal_clear_err(journal);
1130 	}
1131 }
1132 
1133 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1134 {
1135 	int status = 0;
1136 	struct ocfs2_super *osb;
1137 
1138 	BUG_ON(!journal);
1139 
1140 	osb = journal->j_osb;
1141 
1142 	status = jbd2_journal_load(journal->j_journal);
1143 	if (status < 0) {
1144 		mlog(ML_ERROR, "Failed to load journal!\n");
1145 		goto done;
1146 	}
1147 
1148 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1149 
1150 	if (replayed) {
1151 		jbd2_journal_lock_updates(journal->j_journal);
1152 		status = jbd2_journal_flush(journal->j_journal, 0);
1153 		jbd2_journal_unlock_updates(journal->j_journal);
1154 		if (status < 0)
1155 			mlog_errno(status);
1156 	}
1157 
1158 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1159 	if (status < 0) {
1160 		mlog_errno(status);
1161 		goto done;
1162 	}
1163 
1164 	/* Launch the commit thread */
1165 	if (!local) {
1166 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1167 				"ocfs2cmt-%s", osb->uuid_str);
1168 		if (IS_ERR(osb->commit_task)) {
1169 			status = PTR_ERR(osb->commit_task);
1170 			osb->commit_task = NULL;
1171 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1172 			     "error=%d", status);
1173 			goto done;
1174 		}
1175 	} else
1176 		osb->commit_task = NULL;
1177 
1178 done:
1179 	return status;
1180 }
1181 
1182 
1183 /* 'full' flag tells us whether we clear out all blocks or if we just
1184  * mark the journal clean */
1185 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1186 {
1187 	int status;
1188 
1189 	BUG_ON(!journal);
1190 
1191 	status = jbd2_journal_wipe(journal->j_journal, full);
1192 	if (status < 0) {
1193 		mlog_errno(status);
1194 		goto bail;
1195 	}
1196 
1197 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1198 	if (status < 0)
1199 		mlog_errno(status);
1200 
1201 bail:
1202 	return status;
1203 }
1204 
1205 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1206 {
1207 	int empty;
1208 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1209 
1210 	spin_lock(&osb->osb_lock);
1211 	empty = (rm->rm_used == 0);
1212 	spin_unlock(&osb->osb_lock);
1213 
1214 	return empty;
1215 }
1216 
1217 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1218 {
1219 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1220 }
1221 
1222 /*
1223  * JBD Might read a cached version of another nodes journal file. We
1224  * don't want this as this file changes often and we get no
1225  * notification on those changes. The only way to be sure that we've
1226  * got the most up to date version of those blocks then is to force
1227  * read them off disk. Just searching through the buffer cache won't
1228  * work as there may be pages backing this file which are still marked
1229  * up to date. We know things can't change on this file underneath us
1230  * as we have the lock by now :)
1231  */
1232 static int ocfs2_force_read_journal(struct inode *inode)
1233 {
1234 	int status = 0;
1235 	int i;
1236 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1237 	struct buffer_head *bh = NULL;
1238 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1239 
1240 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1241 	v_blkno = 0;
1242 	while (v_blkno < num_blocks) {
1243 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1244 						     &p_blkno, &p_blocks, NULL);
1245 		if (status < 0) {
1246 			mlog_errno(status);
1247 			goto bail;
1248 		}
1249 
1250 		for (i = 0; i < p_blocks; i++, p_blkno++) {
1251 			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1252 					osb->sb->s_blocksize);
1253 			/* block not cached. */
1254 			if (!bh)
1255 				continue;
1256 
1257 			brelse(bh);
1258 			bh = NULL;
1259 			/* We are reading journal data which should not
1260 			 * be put in the uptodate cache.
1261 			 */
1262 			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1263 			if (status < 0) {
1264 				mlog_errno(status);
1265 				goto bail;
1266 			}
1267 
1268 			brelse(bh);
1269 			bh = NULL;
1270 		}
1271 
1272 		v_blkno += p_blocks;
1273 	}
1274 
1275 bail:
1276 	return status;
1277 }
1278 
1279 struct ocfs2_la_recovery_item {
1280 	struct list_head	lri_list;
1281 	int			lri_slot;
1282 	struct ocfs2_dinode	*lri_la_dinode;
1283 	struct ocfs2_dinode	*lri_tl_dinode;
1284 	struct ocfs2_quota_recovery *lri_qrec;
1285 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1286 };
1287 
1288 /* Does the second half of the recovery process. By this point, the
1289  * node is marked clean and can actually be considered recovered,
1290  * hence it's no longer in the recovery map, but there's still some
1291  * cleanup we can do which shouldn't happen within the recovery thread
1292  * as locking in that context becomes very difficult if we are to take
1293  * recovering nodes into account.
1294  *
1295  * NOTE: This function can and will sleep on recovery of other nodes
1296  * during cluster locking, just like any other ocfs2 process.
1297  */
1298 void ocfs2_complete_recovery(struct work_struct *work)
1299 {
1300 	int ret = 0;
1301 	struct ocfs2_journal *journal =
1302 		container_of(work, struct ocfs2_journal, j_recovery_work);
1303 	struct ocfs2_super *osb = journal->j_osb;
1304 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1305 	struct ocfs2_la_recovery_item *item, *n;
1306 	struct ocfs2_quota_recovery *qrec;
1307 	enum ocfs2_orphan_reco_type orphan_reco_type;
1308 	LIST_HEAD(tmp_la_list);
1309 
1310 	trace_ocfs2_complete_recovery(
1311 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1312 
1313 	spin_lock(&journal->j_lock);
1314 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1315 	spin_unlock(&journal->j_lock);
1316 
1317 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1318 		list_del_init(&item->lri_list);
1319 
1320 		ocfs2_wait_on_quotas(osb);
1321 
1322 		la_dinode = item->lri_la_dinode;
1323 		tl_dinode = item->lri_tl_dinode;
1324 		qrec = item->lri_qrec;
1325 		orphan_reco_type = item->lri_orphan_reco_type;
1326 
1327 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1328 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1329 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1330 			qrec);
1331 
1332 		if (la_dinode) {
1333 			ret = ocfs2_complete_local_alloc_recovery(osb,
1334 								  la_dinode);
1335 			if (ret < 0)
1336 				mlog_errno(ret);
1337 
1338 			kfree(la_dinode);
1339 		}
1340 
1341 		if (tl_dinode) {
1342 			ret = ocfs2_complete_truncate_log_recovery(osb,
1343 								   tl_dinode);
1344 			if (ret < 0)
1345 				mlog_errno(ret);
1346 
1347 			kfree(tl_dinode);
1348 		}
1349 
1350 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1351 				orphan_reco_type);
1352 		if (ret < 0)
1353 			mlog_errno(ret);
1354 
1355 		if (qrec) {
1356 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1357 							  item->lri_slot);
1358 			if (ret < 0)
1359 				mlog_errno(ret);
1360 			/* Recovery info is already freed now */
1361 		}
1362 
1363 		kfree(item);
1364 	}
1365 
1366 	trace_ocfs2_complete_recovery_end(ret);
1367 }
1368 
1369 /* NOTE: This function always eats your references to la_dinode and
1370  * tl_dinode, either manually on error, or by passing them to
1371  * ocfs2_complete_recovery */
1372 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1373 					    int slot_num,
1374 					    struct ocfs2_dinode *la_dinode,
1375 					    struct ocfs2_dinode *tl_dinode,
1376 					    struct ocfs2_quota_recovery *qrec,
1377 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1378 {
1379 	struct ocfs2_la_recovery_item *item;
1380 
1381 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1382 	if (!item) {
1383 		/* Though we wish to avoid it, we are in fact safe in
1384 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1385 		 * than capable of reclaiming unused space. */
1386 		kfree(la_dinode);
1387 		kfree(tl_dinode);
1388 
1389 		if (qrec)
1390 			ocfs2_free_quota_recovery(qrec);
1391 
1392 		mlog_errno(-ENOMEM);
1393 		return;
1394 	}
1395 
1396 	INIT_LIST_HEAD(&item->lri_list);
1397 	item->lri_la_dinode = la_dinode;
1398 	item->lri_slot = slot_num;
1399 	item->lri_tl_dinode = tl_dinode;
1400 	item->lri_qrec = qrec;
1401 	item->lri_orphan_reco_type = orphan_reco_type;
1402 
1403 	spin_lock(&journal->j_lock);
1404 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1405 	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1406 	spin_unlock(&journal->j_lock);
1407 }
1408 
1409 /* Called by the mount code to queue recovery the last part of
1410  * recovery for it's own and offline slot(s). */
1411 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1412 {
1413 	struct ocfs2_journal *journal = osb->journal;
1414 
1415 	if (ocfs2_is_hard_readonly(osb))
1416 		return;
1417 
1418 	/* No need to queue up our truncate_log as regular cleanup will catch
1419 	 * that */
1420 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1421 					osb->local_alloc_copy, NULL, NULL,
1422 					ORPHAN_NEED_TRUNCATE);
1423 	ocfs2_schedule_truncate_log_flush(osb, 0);
1424 
1425 	osb->local_alloc_copy = NULL;
1426 
1427 	/* queue to recover orphan slots for all offline slots */
1428 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1429 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1430 	ocfs2_free_replay_slots(osb);
1431 }
1432 
1433 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1434 {
1435 	if (osb->quota_rec) {
1436 		ocfs2_queue_recovery_completion(osb->journal,
1437 						osb->slot_num,
1438 						NULL,
1439 						NULL,
1440 						osb->quota_rec,
1441 						ORPHAN_NEED_TRUNCATE);
1442 		osb->quota_rec = NULL;
1443 	}
1444 }
1445 
1446 static int __ocfs2_recovery_thread(void *arg)
1447 {
1448 	int status, node_num, slot_num;
1449 	struct ocfs2_super *osb = arg;
1450 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1451 	int *rm_quota = NULL;
1452 	int rm_quota_used = 0, i;
1453 	struct ocfs2_quota_recovery *qrec;
1454 
1455 	/* Whether the quota supported. */
1456 	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1457 			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1458 		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1459 			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1460 
1461 	status = ocfs2_wait_on_mount(osb);
1462 	if (status < 0) {
1463 		goto bail;
1464 	}
1465 
1466 	if (quota_enabled) {
1467 		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1468 		if (!rm_quota) {
1469 			status = -ENOMEM;
1470 			goto bail;
1471 		}
1472 	}
1473 restart:
1474 	status = ocfs2_super_lock(osb, 1);
1475 	if (status < 0) {
1476 		mlog_errno(status);
1477 		goto bail;
1478 	}
1479 
1480 	status = ocfs2_compute_replay_slots(osb);
1481 	if (status < 0)
1482 		mlog_errno(status);
1483 
1484 	/* queue recovery for our own slot */
1485 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1486 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1487 
1488 	spin_lock(&osb->osb_lock);
1489 	while (rm->rm_used) {
1490 		/* It's always safe to remove entry zero, as we won't
1491 		 * clear it until ocfs2_recover_node() has succeeded. */
1492 		node_num = rm->rm_entries[0];
1493 		spin_unlock(&osb->osb_lock);
1494 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1495 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1496 		if (slot_num == -ENOENT) {
1497 			status = 0;
1498 			goto skip_recovery;
1499 		}
1500 
1501 		/* It is a bit subtle with quota recovery. We cannot do it
1502 		 * immediately because we have to obtain cluster locks from
1503 		 * quota files and we also don't want to just skip it because
1504 		 * then quota usage would be out of sync until some node takes
1505 		 * the slot. So we remember which nodes need quota recovery
1506 		 * and when everything else is done, we recover quotas. */
1507 		if (quota_enabled) {
1508 			for (i = 0; i < rm_quota_used
1509 					&& rm_quota[i] != slot_num; i++)
1510 				;
1511 
1512 			if (i == rm_quota_used)
1513 				rm_quota[rm_quota_used++] = slot_num;
1514 		}
1515 
1516 		status = ocfs2_recover_node(osb, node_num, slot_num);
1517 skip_recovery:
1518 		if (!status) {
1519 			ocfs2_recovery_map_clear(osb, node_num);
1520 		} else {
1521 			mlog(ML_ERROR,
1522 			     "Error %d recovering node %d on device (%u,%u)!\n",
1523 			     status, node_num,
1524 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1525 			mlog(ML_ERROR, "Volume requires unmount.\n");
1526 		}
1527 
1528 		spin_lock(&osb->osb_lock);
1529 	}
1530 	spin_unlock(&osb->osb_lock);
1531 	trace_ocfs2_recovery_thread_end(status);
1532 
1533 	/* Refresh all journal recovery generations from disk */
1534 	status = ocfs2_check_journals_nolocks(osb);
1535 	status = (status == -EROFS) ? 0 : status;
1536 	if (status < 0)
1537 		mlog_errno(status);
1538 
1539 	/* Now it is right time to recover quotas... We have to do this under
1540 	 * superblock lock so that no one can start using the slot (and crash)
1541 	 * before we recover it */
1542 	if (quota_enabled) {
1543 		for (i = 0; i < rm_quota_used; i++) {
1544 			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1545 			if (IS_ERR(qrec)) {
1546 				status = PTR_ERR(qrec);
1547 				mlog_errno(status);
1548 				continue;
1549 			}
1550 			ocfs2_queue_recovery_completion(osb->journal,
1551 					rm_quota[i],
1552 					NULL, NULL, qrec,
1553 					ORPHAN_NEED_TRUNCATE);
1554 		}
1555 	}
1556 
1557 	ocfs2_super_unlock(osb, 1);
1558 
1559 	/* queue recovery for offline slots */
1560 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1561 
1562 bail:
1563 	mutex_lock(&osb->recovery_lock);
1564 	if (!status && !ocfs2_recovery_completed(osb)) {
1565 		mutex_unlock(&osb->recovery_lock);
1566 		goto restart;
1567 	}
1568 
1569 	ocfs2_free_replay_slots(osb);
1570 	osb->recovery_thread_task = NULL;
1571 	mb(); /* sync with ocfs2_recovery_thread_running */
1572 	wake_up(&osb->recovery_event);
1573 
1574 	mutex_unlock(&osb->recovery_lock);
1575 
1576 	if (quota_enabled)
1577 		kfree(rm_quota);
1578 
1579 	return status;
1580 }
1581 
1582 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1583 {
1584 	mutex_lock(&osb->recovery_lock);
1585 
1586 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1587 		osb->disable_recovery, osb->recovery_thread_task,
1588 		osb->disable_recovery ?
1589 		-1 : ocfs2_recovery_map_set(osb, node_num));
1590 
1591 	if (osb->disable_recovery)
1592 		goto out;
1593 
1594 	if (osb->recovery_thread_task)
1595 		goto out;
1596 
1597 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1598 			"ocfs2rec-%s", osb->uuid_str);
1599 	if (IS_ERR(osb->recovery_thread_task)) {
1600 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1601 		osb->recovery_thread_task = NULL;
1602 	}
1603 
1604 out:
1605 	mutex_unlock(&osb->recovery_lock);
1606 	wake_up(&osb->recovery_event);
1607 }
1608 
1609 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1610 				    int slot_num,
1611 				    struct buffer_head **bh,
1612 				    struct inode **ret_inode)
1613 {
1614 	int status = -EACCES;
1615 	struct inode *inode = NULL;
1616 
1617 	BUG_ON(slot_num >= osb->max_slots);
1618 
1619 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1620 					    slot_num);
1621 	if (!inode || is_bad_inode(inode)) {
1622 		mlog_errno(status);
1623 		goto bail;
1624 	}
1625 	SET_INODE_JOURNAL(inode);
1626 
1627 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1628 	if (status < 0) {
1629 		mlog_errno(status);
1630 		goto bail;
1631 	}
1632 
1633 	status = 0;
1634 
1635 bail:
1636 	if (inode) {
1637 		if (status || !ret_inode)
1638 			iput(inode);
1639 		else
1640 			*ret_inode = inode;
1641 	}
1642 	return status;
1643 }
1644 
1645 /* Does the actual journal replay and marks the journal inode as
1646  * clean. Will only replay if the journal inode is marked dirty. */
1647 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1648 				int node_num,
1649 				int slot_num)
1650 {
1651 	int status;
1652 	int got_lock = 0;
1653 	unsigned int flags;
1654 	struct inode *inode = NULL;
1655 	struct ocfs2_dinode *fe;
1656 	journal_t *journal = NULL;
1657 	struct buffer_head *bh = NULL;
1658 	u32 slot_reco_gen;
1659 
1660 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1661 	if (status) {
1662 		mlog_errno(status);
1663 		goto done;
1664 	}
1665 
1666 	fe = (struct ocfs2_dinode *)bh->b_data;
1667 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1668 	brelse(bh);
1669 	bh = NULL;
1670 
1671 	/*
1672 	 * As the fs recovery is asynchronous, there is a small chance that
1673 	 * another node mounted (and recovered) the slot before the recovery
1674 	 * thread could get the lock. To handle that, we dirty read the journal
1675 	 * inode for that slot to get the recovery generation. If it is
1676 	 * different than what we expected, the slot has been recovered.
1677 	 * If not, it needs recovery.
1678 	 */
1679 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1680 		trace_ocfs2_replay_journal_recovered(slot_num,
1681 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1682 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1683 		status = -EBUSY;
1684 		goto done;
1685 	}
1686 
1687 	/* Continue with recovery as the journal has not yet been recovered */
1688 
1689 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1690 	if (status < 0) {
1691 		trace_ocfs2_replay_journal_lock_err(status);
1692 		if (status != -ERESTARTSYS)
1693 			mlog(ML_ERROR, "Could not lock journal!\n");
1694 		goto done;
1695 	}
1696 	got_lock = 1;
1697 
1698 	fe = (struct ocfs2_dinode *) bh->b_data;
1699 
1700 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1701 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1702 
1703 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1704 		trace_ocfs2_replay_journal_skip(node_num);
1705 		/* Refresh recovery generation for the slot */
1706 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1707 		goto done;
1708 	}
1709 
1710 	/* we need to run complete recovery for offline orphan slots */
1711 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1712 
1713 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1714 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1715 	       MINOR(osb->sb->s_dev));
1716 
1717 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1718 
1719 	status = ocfs2_force_read_journal(inode);
1720 	if (status < 0) {
1721 		mlog_errno(status);
1722 		goto done;
1723 	}
1724 
1725 	journal = jbd2_journal_init_inode(inode);
1726 	if (IS_ERR(journal)) {
1727 		mlog(ML_ERROR, "Linux journal layer error\n");
1728 		status = PTR_ERR(journal);
1729 		goto done;
1730 	}
1731 
1732 	status = jbd2_journal_load(journal);
1733 	if (status < 0) {
1734 		mlog_errno(status);
1735 		BUG_ON(!igrab(inode));
1736 		jbd2_journal_destroy(journal);
1737 		goto done;
1738 	}
1739 
1740 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1741 
1742 	/* wipe the journal */
1743 	jbd2_journal_lock_updates(journal);
1744 	status = jbd2_journal_flush(journal, 0);
1745 	jbd2_journal_unlock_updates(journal);
1746 	if (status < 0)
1747 		mlog_errno(status);
1748 
1749 	/* This will mark the node clean */
1750 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1751 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1752 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1753 
1754 	/* Increment recovery generation to indicate successful recovery */
1755 	ocfs2_bump_recovery_generation(fe);
1756 	osb->slot_recovery_generations[slot_num] =
1757 					ocfs2_get_recovery_generation(fe);
1758 
1759 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1760 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1761 	if (status < 0)
1762 		mlog_errno(status);
1763 
1764 	BUG_ON(!igrab(inode));
1765 
1766 	jbd2_journal_destroy(journal);
1767 
1768 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1769 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1770 	       MINOR(osb->sb->s_dev));
1771 done:
1772 	/* drop the lock on this nodes journal */
1773 	if (got_lock)
1774 		ocfs2_inode_unlock(inode, 1);
1775 
1776 	iput(inode);
1777 	brelse(bh);
1778 
1779 	return status;
1780 }
1781 
1782 /*
1783  * Do the most important parts of node recovery:
1784  *  - Replay it's journal
1785  *  - Stamp a clean local allocator file
1786  *  - Stamp a clean truncate log
1787  *  - Mark the node clean
1788  *
1789  * If this function completes without error, a node in OCFS2 can be
1790  * said to have been safely recovered. As a result, failure during the
1791  * second part of a nodes recovery process (local alloc recovery) is
1792  * far less concerning.
1793  */
1794 static int ocfs2_recover_node(struct ocfs2_super *osb,
1795 			      int node_num, int slot_num)
1796 {
1797 	int status = 0;
1798 	struct ocfs2_dinode *la_copy = NULL;
1799 	struct ocfs2_dinode *tl_copy = NULL;
1800 
1801 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1802 
1803 	/* Should not ever be called to recover ourselves -- in that
1804 	 * case we should've called ocfs2_journal_load instead. */
1805 	BUG_ON(osb->node_num == node_num);
1806 
1807 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1808 	if (status < 0) {
1809 		if (status == -EBUSY) {
1810 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1811 			status = 0;
1812 			goto done;
1813 		}
1814 		mlog_errno(status);
1815 		goto done;
1816 	}
1817 
1818 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1819 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1820 	if (status < 0) {
1821 		mlog_errno(status);
1822 		goto done;
1823 	}
1824 
1825 	/* An error from begin_truncate_log_recovery is not
1826 	 * serious enough to warrant halting the rest of
1827 	 * recovery. */
1828 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1829 	if (status < 0)
1830 		mlog_errno(status);
1831 
1832 	/* Likewise, this would be a strange but ultimately not so
1833 	 * harmful place to get an error... */
1834 	status = ocfs2_clear_slot(osb, slot_num);
1835 	if (status < 0)
1836 		mlog_errno(status);
1837 
1838 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1839 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1840 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1841 
1842 	status = 0;
1843 done:
1844 
1845 	return status;
1846 }
1847 
1848 /* Test node liveness by trylocking his journal. If we get the lock,
1849  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1850  * still alive (we couldn't get the lock) and < 0 on error. */
1851 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1852 				 int slot_num)
1853 {
1854 	int status, flags;
1855 	struct inode *inode = NULL;
1856 
1857 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1858 					    slot_num);
1859 	if (inode == NULL) {
1860 		mlog(ML_ERROR, "access error\n");
1861 		status = -EACCES;
1862 		goto bail;
1863 	}
1864 	if (is_bad_inode(inode)) {
1865 		mlog(ML_ERROR, "access error (bad inode)\n");
1866 		iput(inode);
1867 		inode = NULL;
1868 		status = -EACCES;
1869 		goto bail;
1870 	}
1871 	SET_INODE_JOURNAL(inode);
1872 
1873 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1874 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1875 	if (status < 0) {
1876 		if (status != -EAGAIN)
1877 			mlog_errno(status);
1878 		goto bail;
1879 	}
1880 
1881 	ocfs2_inode_unlock(inode, 1);
1882 bail:
1883 	iput(inode);
1884 
1885 	return status;
1886 }
1887 
1888 /* Call this underneath ocfs2_super_lock. It also assumes that the
1889  * slot info struct has been updated from disk. */
1890 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1891 {
1892 	unsigned int node_num;
1893 	int status, i;
1894 	u32 gen;
1895 	struct buffer_head *bh = NULL;
1896 	struct ocfs2_dinode *di;
1897 
1898 	/* This is called with the super block cluster lock, so we
1899 	 * know that the slot map can't change underneath us. */
1900 
1901 	for (i = 0; i < osb->max_slots; i++) {
1902 		/* Read journal inode to get the recovery generation */
1903 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1904 		if (status) {
1905 			mlog_errno(status);
1906 			goto bail;
1907 		}
1908 		di = (struct ocfs2_dinode *)bh->b_data;
1909 		gen = ocfs2_get_recovery_generation(di);
1910 		brelse(bh);
1911 		bh = NULL;
1912 
1913 		spin_lock(&osb->osb_lock);
1914 		osb->slot_recovery_generations[i] = gen;
1915 
1916 		trace_ocfs2_mark_dead_nodes(i,
1917 					    osb->slot_recovery_generations[i]);
1918 
1919 		if (i == osb->slot_num) {
1920 			spin_unlock(&osb->osb_lock);
1921 			continue;
1922 		}
1923 
1924 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1925 		if (status == -ENOENT) {
1926 			spin_unlock(&osb->osb_lock);
1927 			continue;
1928 		}
1929 
1930 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1931 			spin_unlock(&osb->osb_lock);
1932 			continue;
1933 		}
1934 		spin_unlock(&osb->osb_lock);
1935 
1936 		/* Ok, we have a slot occupied by another node which
1937 		 * is not in the recovery map. We trylock his journal
1938 		 * file here to test if he's alive. */
1939 		status = ocfs2_trylock_journal(osb, i);
1940 		if (!status) {
1941 			/* Since we're called from mount, we know that
1942 			 * the recovery thread can't race us on
1943 			 * setting / checking the recovery bits. */
1944 			ocfs2_recovery_thread(osb, node_num);
1945 		} else if ((status < 0) && (status != -EAGAIN)) {
1946 			mlog_errno(status);
1947 			goto bail;
1948 		}
1949 	}
1950 
1951 	status = 0;
1952 bail:
1953 	return status;
1954 }
1955 
1956 /*
1957  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1958  * randomness to the timeout to minimize multple nodes firing the timer at the
1959  * same time.
1960  */
1961 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1962 {
1963 	unsigned long time;
1964 
1965 	get_random_bytes(&time, sizeof(time));
1966 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1967 	return msecs_to_jiffies(time);
1968 }
1969 
1970 /*
1971  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1972  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1973  * is done to catch any orphans that are left over in orphan directories.
1974  *
1975  * It scans all slots, even ones that are in use. It does so to handle the
1976  * case described below:
1977  *
1978  *   Node 1 has an inode it was using. The dentry went away due to memory
1979  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1980  *   has the open lock.
1981  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1982  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1983  *   open lock, sees that another node has a PR, and does nothing.
1984  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1985  *   open lock, sees the PR still, and does nothing.
1986  *   Basically, we have to trigger an orphan iput on node 1. The only way
1987  *   for this to happen is if node 1 runs node 2's orphan dir.
1988  *
1989  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1990  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1991  * stored in LVB. If the sequence number has changed, it means some other
1992  * node has done the scan.  This node skips the scan and tracks the
1993  * sequence number.  If the sequence number didn't change, it means a scan
1994  * hasn't happened.  The node queues a scan and increments the
1995  * sequence number in the LVB.
1996  */
1997 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1998 {
1999 	struct ocfs2_orphan_scan *os;
2000 	int status, i;
2001 	u32 seqno = 0;
2002 
2003 	os = &osb->osb_orphan_scan;
2004 
2005 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2006 		goto out;
2007 
2008 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
2009 					    atomic_read(&os->os_state));
2010 
2011 	status = ocfs2_orphan_scan_lock(osb, &seqno);
2012 	if (status < 0) {
2013 		if (status != -EAGAIN)
2014 			mlog_errno(status);
2015 		goto out;
2016 	}
2017 
2018 	/* Do no queue the tasks if the volume is being umounted */
2019 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2020 		goto unlock;
2021 
2022 	if (os->os_seqno != seqno) {
2023 		os->os_seqno = seqno;
2024 		goto unlock;
2025 	}
2026 
2027 	for (i = 0; i < osb->max_slots; i++)
2028 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
2029 						NULL, ORPHAN_NO_NEED_TRUNCATE);
2030 	/*
2031 	 * We queued a recovery on orphan slots, increment the sequence
2032 	 * number and update LVB so other node will skip the scan for a while
2033 	 */
2034 	seqno++;
2035 	os->os_count++;
2036 	os->os_scantime = ktime_get_seconds();
2037 unlock:
2038 	ocfs2_orphan_scan_unlock(osb, seqno);
2039 out:
2040 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2041 					  atomic_read(&os->os_state));
2042 	return;
2043 }
2044 
2045 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
2046 static void ocfs2_orphan_scan_work(struct work_struct *work)
2047 {
2048 	struct ocfs2_orphan_scan *os;
2049 	struct ocfs2_super *osb;
2050 
2051 	os = container_of(work, struct ocfs2_orphan_scan,
2052 			  os_orphan_scan_work.work);
2053 	osb = os->os_osb;
2054 
2055 	mutex_lock(&os->os_lock);
2056 	ocfs2_queue_orphan_scan(osb);
2057 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2058 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2059 				      ocfs2_orphan_scan_timeout());
2060 	mutex_unlock(&os->os_lock);
2061 }
2062 
2063 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2064 {
2065 	struct ocfs2_orphan_scan *os;
2066 
2067 	os = &osb->osb_orphan_scan;
2068 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2069 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2070 		mutex_lock(&os->os_lock);
2071 		cancel_delayed_work(&os->os_orphan_scan_work);
2072 		mutex_unlock(&os->os_lock);
2073 	}
2074 }
2075 
2076 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2077 {
2078 	struct ocfs2_orphan_scan *os;
2079 
2080 	os = &osb->osb_orphan_scan;
2081 	os->os_osb = osb;
2082 	os->os_count = 0;
2083 	os->os_seqno = 0;
2084 	mutex_init(&os->os_lock);
2085 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2086 }
2087 
2088 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2089 {
2090 	struct ocfs2_orphan_scan *os;
2091 
2092 	os = &osb->osb_orphan_scan;
2093 	os->os_scantime = ktime_get_seconds();
2094 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2095 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2096 	else {
2097 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2098 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2099 				   ocfs2_orphan_scan_timeout());
2100 	}
2101 }
2102 
2103 struct ocfs2_orphan_filldir_priv {
2104 	struct dir_context	ctx;
2105 	struct inode		*head;
2106 	struct ocfs2_super	*osb;
2107 	enum ocfs2_orphan_reco_type orphan_reco_type;
2108 };
2109 
2110 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2111 				int name_len, loff_t pos, u64 ino,
2112 				unsigned type)
2113 {
2114 	struct ocfs2_orphan_filldir_priv *p =
2115 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2116 	struct inode *iter;
2117 
2118 	if (name_len == 1 && !strncmp(".", name, 1))
2119 		return true;
2120 	if (name_len == 2 && !strncmp("..", name, 2))
2121 		return true;
2122 
2123 	/* do not include dio entry in case of orphan scan */
2124 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2125 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2126 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2127 		return true;
2128 
2129 	/* Skip bad inodes so that recovery can continue */
2130 	iter = ocfs2_iget(p->osb, ino,
2131 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2132 	if (IS_ERR(iter))
2133 		return true;
2134 
2135 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2136 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2137 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2138 
2139 	/* Skip inodes which are already added to recover list, since dio may
2140 	 * happen concurrently with unlink/rename */
2141 	if (OCFS2_I(iter)->ip_next_orphan) {
2142 		iput(iter);
2143 		return true;
2144 	}
2145 
2146 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2147 	/* No locking is required for the next_orphan queue as there
2148 	 * is only ever a single process doing orphan recovery. */
2149 	OCFS2_I(iter)->ip_next_orphan = p->head;
2150 	p->head = iter;
2151 
2152 	return true;
2153 }
2154 
2155 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2156 			       int slot,
2157 			       struct inode **head,
2158 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2159 {
2160 	int status;
2161 	struct inode *orphan_dir_inode = NULL;
2162 	struct ocfs2_orphan_filldir_priv priv = {
2163 		.ctx.actor = ocfs2_orphan_filldir,
2164 		.osb = osb,
2165 		.head = *head,
2166 		.orphan_reco_type = orphan_reco_type
2167 	};
2168 
2169 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2170 						       ORPHAN_DIR_SYSTEM_INODE,
2171 						       slot);
2172 	if  (!orphan_dir_inode) {
2173 		status = -ENOENT;
2174 		mlog_errno(status);
2175 		return status;
2176 	}
2177 
2178 	inode_lock(orphan_dir_inode);
2179 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2180 	if (status < 0) {
2181 		mlog_errno(status);
2182 		goto out;
2183 	}
2184 
2185 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2186 	if (status) {
2187 		mlog_errno(status);
2188 		goto out_cluster;
2189 	}
2190 
2191 	*head = priv.head;
2192 
2193 out_cluster:
2194 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2195 out:
2196 	inode_unlock(orphan_dir_inode);
2197 	iput(orphan_dir_inode);
2198 	return status;
2199 }
2200 
2201 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2202 					      int slot)
2203 {
2204 	int ret;
2205 
2206 	spin_lock(&osb->osb_lock);
2207 	ret = !osb->osb_orphan_wipes[slot];
2208 	spin_unlock(&osb->osb_lock);
2209 	return ret;
2210 }
2211 
2212 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2213 					     int slot)
2214 {
2215 	spin_lock(&osb->osb_lock);
2216 	/* Mark ourselves such that new processes in delete_inode()
2217 	 * know to quit early. */
2218 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2219 	while (osb->osb_orphan_wipes[slot]) {
2220 		/* If any processes are already in the middle of an
2221 		 * orphan wipe on this dir, then we need to wait for
2222 		 * them. */
2223 		spin_unlock(&osb->osb_lock);
2224 		wait_event_interruptible(osb->osb_wipe_event,
2225 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2226 		spin_lock(&osb->osb_lock);
2227 	}
2228 	spin_unlock(&osb->osb_lock);
2229 }
2230 
2231 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2232 					      int slot)
2233 {
2234 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2235 }
2236 
2237 /*
2238  * Orphan recovery. Each mounted node has it's own orphan dir which we
2239  * must run during recovery. Our strategy here is to build a list of
2240  * the inodes in the orphan dir and iget/iput them. The VFS does
2241  * (most) of the rest of the work.
2242  *
2243  * Orphan recovery can happen at any time, not just mount so we have a
2244  * couple of extra considerations.
2245  *
2246  * - We grab as many inodes as we can under the orphan dir lock -
2247  *   doing iget() outside the orphan dir risks getting a reference on
2248  *   an invalid inode.
2249  * - We must be sure not to deadlock with other processes on the
2250  *   system wanting to run delete_inode(). This can happen when they go
2251  *   to lock the orphan dir and the orphan recovery process attempts to
2252  *   iget() inside the orphan dir lock. This can be avoided by
2253  *   advertising our state to ocfs2_delete_inode().
2254  */
2255 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2256 				 int slot,
2257 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2258 {
2259 	int ret = 0;
2260 	struct inode *inode = NULL;
2261 	struct inode *iter;
2262 	struct ocfs2_inode_info *oi;
2263 	struct buffer_head *di_bh = NULL;
2264 	struct ocfs2_dinode *di = NULL;
2265 
2266 	trace_ocfs2_recover_orphans(slot);
2267 
2268 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2269 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2270 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2271 
2272 	/* Error here should be noted, but we want to continue with as
2273 	 * many queued inodes as we've got. */
2274 	if (ret)
2275 		mlog_errno(ret);
2276 
2277 	while (inode) {
2278 		oi = OCFS2_I(inode);
2279 		trace_ocfs2_recover_orphans_iput(
2280 					(unsigned long long)oi->ip_blkno);
2281 
2282 		iter = oi->ip_next_orphan;
2283 		oi->ip_next_orphan = NULL;
2284 
2285 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2286 			inode_lock(inode);
2287 			ret = ocfs2_rw_lock(inode, 1);
2288 			if (ret < 0) {
2289 				mlog_errno(ret);
2290 				goto unlock_mutex;
2291 			}
2292 			/*
2293 			 * We need to take and drop the inode lock to
2294 			 * force read inode from disk.
2295 			 */
2296 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2297 			if (ret) {
2298 				mlog_errno(ret);
2299 				goto unlock_rw;
2300 			}
2301 
2302 			di = (struct ocfs2_dinode *)di_bh->b_data;
2303 
2304 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2305 				ret = ocfs2_truncate_file(inode, di_bh,
2306 						i_size_read(inode));
2307 				if (ret < 0) {
2308 					if (ret != -ENOSPC)
2309 						mlog_errno(ret);
2310 					goto unlock_inode;
2311 				}
2312 
2313 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2314 						di_bh, 0, 0);
2315 				if (ret)
2316 					mlog_errno(ret);
2317 			}
2318 unlock_inode:
2319 			ocfs2_inode_unlock(inode, 1);
2320 			brelse(di_bh);
2321 			di_bh = NULL;
2322 unlock_rw:
2323 			ocfs2_rw_unlock(inode, 1);
2324 unlock_mutex:
2325 			inode_unlock(inode);
2326 
2327 			/* clear dio flag in ocfs2_inode_info */
2328 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2329 		} else {
2330 			spin_lock(&oi->ip_lock);
2331 			/* Set the proper information to get us going into
2332 			 * ocfs2_delete_inode. */
2333 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2334 			spin_unlock(&oi->ip_lock);
2335 		}
2336 
2337 		iput(inode);
2338 		inode = iter;
2339 	}
2340 
2341 	return ret;
2342 }
2343 
2344 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2345 {
2346 	/* This check is good because ocfs2 will wait on our recovery
2347 	 * thread before changing it to something other than MOUNTED
2348 	 * or DISABLED. */
2349 	wait_event(osb->osb_mount_event,
2350 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2351 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2352 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2353 
2354 	/* If there's an error on mount, then we may never get to the
2355 	 * MOUNTED flag, but this is set right before
2356 	 * dismount_volume() so we can trust it. */
2357 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2358 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2359 		mlog(0, "mount error, exiting!\n");
2360 		return -EBUSY;
2361 	}
2362 
2363 	return 0;
2364 }
2365 
2366 static int ocfs2_commit_thread(void *arg)
2367 {
2368 	int status;
2369 	struct ocfs2_super *osb = arg;
2370 	struct ocfs2_journal *journal = osb->journal;
2371 
2372 	/* we can trust j_num_trans here because _should_stop() is only set in
2373 	 * shutdown and nobody other than ourselves should be able to start
2374 	 * transactions.  committing on shutdown might take a few iterations
2375 	 * as final transactions put deleted inodes on the list */
2376 	while (!(kthread_should_stop() &&
2377 		 atomic_read(&journal->j_num_trans) == 0)) {
2378 
2379 		wait_event_interruptible(osb->checkpoint_event,
2380 					 atomic_read(&journal->j_num_trans)
2381 					 || kthread_should_stop());
2382 
2383 		status = ocfs2_commit_cache(osb);
2384 		if (status < 0) {
2385 			static unsigned long abort_warn_time;
2386 
2387 			/* Warn about this once per minute */
2388 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2389 				mlog(ML_ERROR, "status = %d, journal is "
2390 						"already aborted.\n", status);
2391 			/*
2392 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2393 			 * non-zero value.  Sleep here to avoid a busy-wait
2394 			 * loop.
2395 			 */
2396 			msleep_interruptible(1000);
2397 		}
2398 
2399 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2400 			mlog(ML_KTHREAD,
2401 			     "commit_thread: %u transactions pending on "
2402 			     "shutdown\n",
2403 			     atomic_read(&journal->j_num_trans));
2404 		}
2405 	}
2406 
2407 	return 0;
2408 }
2409 
2410 /* Reads all the journal inodes without taking any cluster locks. Used
2411  * for hard readonly access to determine whether any journal requires
2412  * recovery. Also used to refresh the recovery generation numbers after
2413  * a journal has been recovered by another node.
2414  */
2415 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2416 {
2417 	int ret = 0;
2418 	unsigned int slot;
2419 	struct buffer_head *di_bh = NULL;
2420 	struct ocfs2_dinode *di;
2421 	int journal_dirty = 0;
2422 
2423 	for(slot = 0; slot < osb->max_slots; slot++) {
2424 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2425 		if (ret) {
2426 			mlog_errno(ret);
2427 			goto out;
2428 		}
2429 
2430 		di = (struct ocfs2_dinode *) di_bh->b_data;
2431 
2432 		osb->slot_recovery_generations[slot] =
2433 					ocfs2_get_recovery_generation(di);
2434 
2435 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2436 		    OCFS2_JOURNAL_DIRTY_FL)
2437 			journal_dirty = 1;
2438 
2439 		brelse(di_bh);
2440 		di_bh = NULL;
2441 	}
2442 
2443 out:
2444 	if (journal_dirty)
2445 		ret = -EROFS;
2446 	return ret;
2447 }
2448