1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 32 #define MLOG_MASK_PREFIX ML_JOURNAL 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "dir.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "heartbeat.h" 42 #include "inode.h" 43 #include "journal.h" 44 #include "localalloc.h" 45 #include "slot_map.h" 46 #include "super.h" 47 #include "vote.h" 48 #include "sysfile.h" 49 50 #include "buffer_head_io.h" 51 52 DEFINE_SPINLOCK(trans_inc_lock); 53 54 static int ocfs2_force_read_journal(struct inode *inode); 55 static int ocfs2_recover_node(struct ocfs2_super *osb, 56 int node_num); 57 static int __ocfs2_recovery_thread(void *arg); 58 static int ocfs2_commit_cache(struct ocfs2_super *osb); 59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb); 60 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 61 int dirty); 62 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 63 int slot_num); 64 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 65 int slot); 66 static int ocfs2_commit_thread(void *arg); 67 68 static int ocfs2_commit_cache(struct ocfs2_super *osb) 69 { 70 int status = 0; 71 unsigned int flushed; 72 unsigned long old_id; 73 struct ocfs2_journal *journal = NULL; 74 75 mlog_entry_void(); 76 77 journal = osb->journal; 78 79 /* Flush all pending commits and checkpoint the journal. */ 80 down_write(&journal->j_trans_barrier); 81 82 if (atomic_read(&journal->j_num_trans) == 0) { 83 up_write(&journal->j_trans_barrier); 84 mlog(0, "No transactions for me to flush!\n"); 85 goto finally; 86 } 87 88 journal_lock_updates(journal->j_journal); 89 status = journal_flush(journal->j_journal); 90 journal_unlock_updates(journal->j_journal); 91 if (status < 0) { 92 up_write(&journal->j_trans_barrier); 93 mlog_errno(status); 94 goto finally; 95 } 96 97 old_id = ocfs2_inc_trans_id(journal); 98 99 flushed = atomic_read(&journal->j_num_trans); 100 atomic_set(&journal->j_num_trans, 0); 101 up_write(&journal->j_trans_barrier); 102 103 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n", 104 journal->j_trans_id, flushed); 105 106 ocfs2_kick_vote_thread(osb); 107 wake_up(&journal->j_checkpointed); 108 finally: 109 mlog_exit(status); 110 return status; 111 } 112 113 /* pass it NULL and it will allocate a new handle object for you. If 114 * you pass it a handle however, it may still return error, in which 115 * case it has free'd the passed handle for you. */ 116 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 117 { 118 journal_t *journal = osb->journal->j_journal; 119 handle_t *handle; 120 121 BUG_ON(!osb || !osb->journal->j_journal); 122 123 if (ocfs2_is_hard_readonly(osb)) 124 return ERR_PTR(-EROFS); 125 126 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 127 BUG_ON(max_buffs <= 0); 128 129 /* JBD might support this, but our journalling code doesn't yet. */ 130 if (journal_current_handle()) { 131 mlog(ML_ERROR, "Recursive transaction attempted!\n"); 132 BUG(); 133 } 134 135 down_read(&osb->journal->j_trans_barrier); 136 137 handle = journal_start(journal, max_buffs); 138 if (IS_ERR(handle)) { 139 up_read(&osb->journal->j_trans_barrier); 140 141 mlog_errno(PTR_ERR(handle)); 142 143 if (is_journal_aborted(journal)) { 144 ocfs2_abort(osb->sb, "Detected aborted journal"); 145 handle = ERR_PTR(-EROFS); 146 } 147 } else { 148 if (!ocfs2_mount_local(osb)) 149 atomic_inc(&(osb->journal->j_num_trans)); 150 } 151 152 return handle; 153 } 154 155 int ocfs2_commit_trans(struct ocfs2_super *osb, 156 handle_t *handle) 157 { 158 int ret; 159 struct ocfs2_journal *journal = osb->journal; 160 161 BUG_ON(!handle); 162 163 ret = journal_stop(handle); 164 if (ret < 0) 165 mlog_errno(ret); 166 167 up_read(&journal->j_trans_barrier); 168 169 return ret; 170 } 171 172 /* 173 * 'nblocks' is what you want to add to the current 174 * transaction. extend_trans will either extend the current handle by 175 * nblocks, or commit it and start a new one with nblocks credits. 176 * 177 * WARNING: This will not release any semaphores or disk locks taken 178 * during the transaction, so make sure they were taken *before* 179 * start_trans or we'll have ordering deadlocks. 180 * 181 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 182 * good because transaction ids haven't yet been recorded on the 183 * cluster locks associated with this handle. 184 */ 185 int ocfs2_extend_trans(handle_t *handle, int nblocks) 186 { 187 int status; 188 189 BUG_ON(!handle); 190 BUG_ON(!nblocks); 191 192 mlog_entry_void(); 193 194 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks); 195 196 status = journal_extend(handle, nblocks); 197 if (status < 0) { 198 mlog_errno(status); 199 goto bail; 200 } 201 202 if (status > 0) { 203 mlog(0, "journal_extend failed, trying journal_restart\n"); 204 status = journal_restart(handle, nblocks); 205 if (status < 0) { 206 mlog_errno(status); 207 goto bail; 208 } 209 } 210 211 status = 0; 212 bail: 213 214 mlog_exit(status); 215 return status; 216 } 217 218 int ocfs2_journal_access(handle_t *handle, 219 struct inode *inode, 220 struct buffer_head *bh, 221 int type) 222 { 223 int status; 224 225 BUG_ON(!inode); 226 BUG_ON(!handle); 227 BUG_ON(!bh); 228 229 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n", 230 (unsigned long long)bh->b_blocknr, type, 231 (type == OCFS2_JOURNAL_ACCESS_CREATE) ? 232 "OCFS2_JOURNAL_ACCESS_CREATE" : 233 "OCFS2_JOURNAL_ACCESS_WRITE", 234 bh->b_size); 235 236 /* we can safely remove this assertion after testing. */ 237 if (!buffer_uptodate(bh)) { 238 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 239 mlog(ML_ERROR, "b_blocknr=%llu\n", 240 (unsigned long long)bh->b_blocknr); 241 BUG(); 242 } 243 244 /* Set the current transaction information on the inode so 245 * that the locking code knows whether it can drop it's locks 246 * on this inode or not. We're protected from the commit 247 * thread updating the current transaction id until 248 * ocfs2_commit_trans() because ocfs2_start_trans() took 249 * j_trans_barrier for us. */ 250 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode); 251 252 mutex_lock(&OCFS2_I(inode)->ip_io_mutex); 253 switch (type) { 254 case OCFS2_JOURNAL_ACCESS_CREATE: 255 case OCFS2_JOURNAL_ACCESS_WRITE: 256 status = journal_get_write_access(handle, bh); 257 break; 258 259 case OCFS2_JOURNAL_ACCESS_UNDO: 260 status = journal_get_undo_access(handle, bh); 261 break; 262 263 default: 264 status = -EINVAL; 265 mlog(ML_ERROR, "Uknown access type!\n"); 266 } 267 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex); 268 269 if (status < 0) 270 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 271 status, type); 272 273 mlog_exit(status); 274 return status; 275 } 276 277 int ocfs2_journal_dirty(handle_t *handle, 278 struct buffer_head *bh) 279 { 280 int status; 281 282 mlog_entry("(bh->b_blocknr=%llu)\n", 283 (unsigned long long)bh->b_blocknr); 284 285 status = journal_dirty_metadata(handle, bh); 286 if (status < 0) 287 mlog(ML_ERROR, "Could not dirty metadata buffer. " 288 "(bh->b_blocknr=%llu)\n", 289 (unsigned long long)bh->b_blocknr); 290 291 mlog_exit(status); 292 return status; 293 } 294 295 int ocfs2_journal_dirty_data(handle_t *handle, 296 struct buffer_head *bh) 297 { 298 int err = journal_dirty_data(handle, bh); 299 if (err) 300 mlog_errno(err); 301 /* TODO: When we can handle it, abort the handle and go RO on 302 * error here. */ 303 304 return err; 305 } 306 307 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5) 308 309 void ocfs2_set_journal_params(struct ocfs2_super *osb) 310 { 311 journal_t *journal = osb->journal->j_journal; 312 313 spin_lock(&journal->j_state_lock); 314 journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 315 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 316 journal->j_flags |= JFS_BARRIER; 317 else 318 journal->j_flags &= ~JFS_BARRIER; 319 spin_unlock(&journal->j_state_lock); 320 } 321 322 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 323 { 324 int status = -1; 325 struct inode *inode = NULL; /* the journal inode */ 326 journal_t *j_journal = NULL; 327 struct ocfs2_dinode *di = NULL; 328 struct buffer_head *bh = NULL; 329 struct ocfs2_super *osb; 330 int meta_lock = 0; 331 332 mlog_entry_void(); 333 334 BUG_ON(!journal); 335 336 osb = journal->j_osb; 337 338 /* already have the inode for our journal */ 339 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 340 osb->slot_num); 341 if (inode == NULL) { 342 status = -EACCES; 343 mlog_errno(status); 344 goto done; 345 } 346 if (is_bad_inode(inode)) { 347 mlog(ML_ERROR, "access error (bad inode)\n"); 348 iput(inode); 349 inode = NULL; 350 status = -EACCES; 351 goto done; 352 } 353 354 SET_INODE_JOURNAL(inode); 355 OCFS2_I(inode)->ip_open_count++; 356 357 /* Skip recovery waits here - journal inode metadata never 358 * changes in a live cluster so it can be considered an 359 * exception to the rule. */ 360 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 361 if (status < 0) { 362 if (status != -ERESTARTSYS) 363 mlog(ML_ERROR, "Could not get lock on journal!\n"); 364 goto done; 365 } 366 367 meta_lock = 1; 368 di = (struct ocfs2_dinode *)bh->b_data; 369 370 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) { 371 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 372 inode->i_size); 373 status = -EINVAL; 374 goto done; 375 } 376 377 mlog(0, "inode->i_size = %lld\n", inode->i_size); 378 mlog(0, "inode->i_blocks = %llu\n", 379 (unsigned long long)inode->i_blocks); 380 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters); 381 382 /* call the kernels journal init function now */ 383 j_journal = journal_init_inode(inode); 384 if (j_journal == NULL) { 385 mlog(ML_ERROR, "Linux journal layer error\n"); 386 status = -EINVAL; 387 goto done; 388 } 389 390 mlog(0, "Returned from journal_init_inode\n"); 391 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen); 392 393 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 394 OCFS2_JOURNAL_DIRTY_FL); 395 396 journal->j_journal = j_journal; 397 journal->j_inode = inode; 398 journal->j_bh = bh; 399 400 ocfs2_set_journal_params(osb); 401 402 journal->j_state = OCFS2_JOURNAL_LOADED; 403 404 status = 0; 405 done: 406 if (status < 0) { 407 if (meta_lock) 408 ocfs2_meta_unlock(inode, 1); 409 if (bh != NULL) 410 brelse(bh); 411 if (inode) { 412 OCFS2_I(inode)->ip_open_count--; 413 iput(inode); 414 } 415 } 416 417 mlog_exit(status); 418 return status; 419 } 420 421 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 422 int dirty) 423 { 424 int status; 425 unsigned int flags; 426 struct ocfs2_journal *journal = osb->journal; 427 struct buffer_head *bh = journal->j_bh; 428 struct ocfs2_dinode *fe; 429 430 mlog_entry_void(); 431 432 fe = (struct ocfs2_dinode *)bh->b_data; 433 if (!OCFS2_IS_VALID_DINODE(fe)) { 434 /* This is called from startup/shutdown which will 435 * handle the errors in a specific manner, so no need 436 * to call ocfs2_error() here. */ 437 mlog(ML_ERROR, "Journal dinode %llu has invalid " 438 "signature: %.*s", 439 (unsigned long long)le64_to_cpu(fe->i_blkno), 7, 440 fe->i_signature); 441 status = -EIO; 442 goto out; 443 } 444 445 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 446 if (dirty) 447 flags |= OCFS2_JOURNAL_DIRTY_FL; 448 else 449 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 450 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 451 452 status = ocfs2_write_block(osb, bh, journal->j_inode); 453 if (status < 0) 454 mlog_errno(status); 455 456 out: 457 mlog_exit(status); 458 return status; 459 } 460 461 /* 462 * If the journal has been kmalloc'd it needs to be freed after this 463 * call. 464 */ 465 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 466 { 467 struct ocfs2_journal *journal = NULL; 468 int status = 0; 469 struct inode *inode = NULL; 470 int num_running_trans = 0; 471 472 mlog_entry_void(); 473 474 BUG_ON(!osb); 475 476 journal = osb->journal; 477 if (!journal) 478 goto done; 479 480 inode = journal->j_inode; 481 482 if (journal->j_state != OCFS2_JOURNAL_LOADED) 483 goto done; 484 485 /* need to inc inode use count as journal_destroy will iput. */ 486 if (!igrab(inode)) 487 BUG(); 488 489 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 490 if (num_running_trans > 0) 491 mlog(0, "Shutting down journal: must wait on %d " 492 "running transactions!\n", 493 num_running_trans); 494 495 /* Do a commit_cache here. It will flush our journal, *and* 496 * release any locks that are still held. 497 * set the SHUTDOWN flag and release the trans lock. 498 * the commit thread will take the trans lock for us below. */ 499 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 500 501 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 502 * drop the trans_lock (which we want to hold until we 503 * completely destroy the journal. */ 504 if (osb->commit_task) { 505 /* Wait for the commit thread */ 506 mlog(0, "Waiting for ocfs2commit to exit....\n"); 507 kthread_stop(osb->commit_task); 508 osb->commit_task = NULL; 509 } 510 511 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 512 513 if (ocfs2_mount_local(osb)) { 514 journal_lock_updates(journal->j_journal); 515 status = journal_flush(journal->j_journal); 516 journal_unlock_updates(journal->j_journal); 517 if (status < 0) 518 mlog_errno(status); 519 } 520 521 if (status == 0) { 522 /* 523 * Do not toggle if flush was unsuccessful otherwise 524 * will leave dirty metadata in a "clean" journal 525 */ 526 status = ocfs2_journal_toggle_dirty(osb, 0); 527 if (status < 0) 528 mlog_errno(status); 529 } 530 531 /* Shutdown the kernel journal system */ 532 journal_destroy(journal->j_journal); 533 534 OCFS2_I(inode)->ip_open_count--; 535 536 /* unlock our journal */ 537 ocfs2_meta_unlock(inode, 1); 538 539 brelse(journal->j_bh); 540 journal->j_bh = NULL; 541 542 journal->j_state = OCFS2_JOURNAL_FREE; 543 544 // up_write(&journal->j_trans_barrier); 545 done: 546 if (inode) 547 iput(inode); 548 mlog_exit_void(); 549 } 550 551 static void ocfs2_clear_journal_error(struct super_block *sb, 552 journal_t *journal, 553 int slot) 554 { 555 int olderr; 556 557 olderr = journal_errno(journal); 558 if (olderr) { 559 mlog(ML_ERROR, "File system error %d recorded in " 560 "journal %u.\n", olderr, slot); 561 mlog(ML_ERROR, "File system on device %s needs checking.\n", 562 sb->s_id); 563 564 journal_ack_err(journal); 565 journal_clear_err(journal); 566 } 567 } 568 569 int ocfs2_journal_load(struct ocfs2_journal *journal, int local) 570 { 571 int status = 0; 572 struct ocfs2_super *osb; 573 574 mlog_entry_void(); 575 576 if (!journal) 577 BUG(); 578 579 osb = journal->j_osb; 580 581 status = journal_load(journal->j_journal); 582 if (status < 0) { 583 mlog(ML_ERROR, "Failed to load journal!\n"); 584 goto done; 585 } 586 587 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 588 589 status = ocfs2_journal_toggle_dirty(osb, 1); 590 if (status < 0) { 591 mlog_errno(status); 592 goto done; 593 } 594 595 /* Launch the commit thread */ 596 if (!local) { 597 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 598 "ocfs2cmt"); 599 if (IS_ERR(osb->commit_task)) { 600 status = PTR_ERR(osb->commit_task); 601 osb->commit_task = NULL; 602 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 603 "error=%d", status); 604 goto done; 605 } 606 } else 607 osb->commit_task = NULL; 608 609 done: 610 mlog_exit(status); 611 return status; 612 } 613 614 615 /* 'full' flag tells us whether we clear out all blocks or if we just 616 * mark the journal clean */ 617 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 618 { 619 int status; 620 621 mlog_entry_void(); 622 623 BUG_ON(!journal); 624 625 status = journal_wipe(journal->j_journal, full); 626 if (status < 0) { 627 mlog_errno(status); 628 goto bail; 629 } 630 631 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0); 632 if (status < 0) 633 mlog_errno(status); 634 635 bail: 636 mlog_exit(status); 637 return status; 638 } 639 640 /* 641 * JBD Might read a cached version of another nodes journal file. We 642 * don't want this as this file changes often and we get no 643 * notification on those changes. The only way to be sure that we've 644 * got the most up to date version of those blocks then is to force 645 * read them off disk. Just searching through the buffer cache won't 646 * work as there may be pages backing this file which are still marked 647 * up to date. We know things can't change on this file underneath us 648 * as we have the lock by now :) 649 */ 650 static int ocfs2_force_read_journal(struct inode *inode) 651 { 652 int status = 0; 653 int i; 654 u64 v_blkno, p_blkno, p_blocks, num_blocks; 655 #define CONCURRENT_JOURNAL_FILL 32ULL 656 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 657 658 mlog_entry_void(); 659 660 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 661 662 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size); 663 v_blkno = 0; 664 while (v_blkno < num_blocks) { 665 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 666 &p_blkno, &p_blocks, NULL); 667 if (status < 0) { 668 mlog_errno(status); 669 goto bail; 670 } 671 672 if (p_blocks > CONCURRENT_JOURNAL_FILL) 673 p_blocks = CONCURRENT_JOURNAL_FILL; 674 675 /* We are reading journal data which should not 676 * be put in the uptodate cache */ 677 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb), 678 p_blkno, p_blocks, bhs, 0, 679 NULL); 680 if (status < 0) { 681 mlog_errno(status); 682 goto bail; 683 } 684 685 for(i = 0; i < p_blocks; i++) { 686 brelse(bhs[i]); 687 bhs[i] = NULL; 688 } 689 690 v_blkno += p_blocks; 691 } 692 693 bail: 694 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 695 if (bhs[i]) 696 brelse(bhs[i]); 697 mlog_exit(status); 698 return status; 699 } 700 701 struct ocfs2_la_recovery_item { 702 struct list_head lri_list; 703 int lri_slot; 704 struct ocfs2_dinode *lri_la_dinode; 705 struct ocfs2_dinode *lri_tl_dinode; 706 }; 707 708 /* Does the second half of the recovery process. By this point, the 709 * node is marked clean and can actually be considered recovered, 710 * hence it's no longer in the recovery map, but there's still some 711 * cleanup we can do which shouldn't happen within the recovery thread 712 * as locking in that context becomes very difficult if we are to take 713 * recovering nodes into account. 714 * 715 * NOTE: This function can and will sleep on recovery of other nodes 716 * during cluster locking, just like any other ocfs2 process. 717 */ 718 void ocfs2_complete_recovery(struct work_struct *work) 719 { 720 int ret; 721 struct ocfs2_journal *journal = 722 container_of(work, struct ocfs2_journal, j_recovery_work); 723 struct ocfs2_super *osb = journal->j_osb; 724 struct ocfs2_dinode *la_dinode, *tl_dinode; 725 struct ocfs2_la_recovery_item *item, *n; 726 LIST_HEAD(tmp_la_list); 727 728 mlog_entry_void(); 729 730 mlog(0, "completing recovery from keventd\n"); 731 732 spin_lock(&journal->j_lock); 733 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 734 spin_unlock(&journal->j_lock); 735 736 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 737 list_del_init(&item->lri_list); 738 739 mlog(0, "Complete recovery for slot %d\n", item->lri_slot); 740 741 la_dinode = item->lri_la_dinode; 742 if (la_dinode) { 743 mlog(0, "Clean up local alloc %llu\n", 744 (unsigned long long)le64_to_cpu(la_dinode->i_blkno)); 745 746 ret = ocfs2_complete_local_alloc_recovery(osb, 747 la_dinode); 748 if (ret < 0) 749 mlog_errno(ret); 750 751 kfree(la_dinode); 752 } 753 754 tl_dinode = item->lri_tl_dinode; 755 if (tl_dinode) { 756 mlog(0, "Clean up truncate log %llu\n", 757 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno)); 758 759 ret = ocfs2_complete_truncate_log_recovery(osb, 760 tl_dinode); 761 if (ret < 0) 762 mlog_errno(ret); 763 764 kfree(tl_dinode); 765 } 766 767 ret = ocfs2_recover_orphans(osb, item->lri_slot); 768 if (ret < 0) 769 mlog_errno(ret); 770 771 kfree(item); 772 } 773 774 mlog(0, "Recovery completion\n"); 775 mlog_exit_void(); 776 } 777 778 /* NOTE: This function always eats your references to la_dinode and 779 * tl_dinode, either manually on error, or by passing them to 780 * ocfs2_complete_recovery */ 781 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 782 int slot_num, 783 struct ocfs2_dinode *la_dinode, 784 struct ocfs2_dinode *tl_dinode) 785 { 786 struct ocfs2_la_recovery_item *item; 787 788 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 789 if (!item) { 790 /* Though we wish to avoid it, we are in fact safe in 791 * skipping local alloc cleanup as fsck.ocfs2 is more 792 * than capable of reclaiming unused space. */ 793 if (la_dinode) 794 kfree(la_dinode); 795 796 if (tl_dinode) 797 kfree(tl_dinode); 798 799 mlog_errno(-ENOMEM); 800 return; 801 } 802 803 INIT_LIST_HEAD(&item->lri_list); 804 item->lri_la_dinode = la_dinode; 805 item->lri_slot = slot_num; 806 item->lri_tl_dinode = tl_dinode; 807 808 spin_lock(&journal->j_lock); 809 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 810 queue_work(ocfs2_wq, &journal->j_recovery_work); 811 spin_unlock(&journal->j_lock); 812 } 813 814 /* Called by the mount code to queue recovery the last part of 815 * recovery for it's own slot. */ 816 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 817 { 818 struct ocfs2_journal *journal = osb->journal; 819 820 if (osb->dirty) { 821 /* No need to queue up our truncate_log as regular 822 * cleanup will catch that. */ 823 ocfs2_queue_recovery_completion(journal, 824 osb->slot_num, 825 osb->local_alloc_copy, 826 NULL); 827 ocfs2_schedule_truncate_log_flush(osb, 0); 828 829 osb->local_alloc_copy = NULL; 830 osb->dirty = 0; 831 } 832 } 833 834 static int __ocfs2_recovery_thread(void *arg) 835 { 836 int status, node_num; 837 struct ocfs2_super *osb = arg; 838 839 mlog_entry_void(); 840 841 status = ocfs2_wait_on_mount(osb); 842 if (status < 0) { 843 goto bail; 844 } 845 846 restart: 847 status = ocfs2_super_lock(osb, 1); 848 if (status < 0) { 849 mlog_errno(status); 850 goto bail; 851 } 852 853 while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) { 854 node_num = ocfs2_node_map_first_set_bit(osb, 855 &osb->recovery_map); 856 if (node_num == O2NM_INVALID_NODE_NUM) { 857 mlog(0, "Out of nodes to recover.\n"); 858 break; 859 } 860 861 status = ocfs2_recover_node(osb, node_num); 862 if (status < 0) { 863 mlog(ML_ERROR, 864 "Error %d recovering node %d on device (%u,%u)!\n", 865 status, node_num, 866 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 867 mlog(ML_ERROR, "Volume requires unmount.\n"); 868 continue; 869 } 870 871 ocfs2_recovery_map_clear(osb, node_num); 872 } 873 ocfs2_super_unlock(osb, 1); 874 875 /* We always run recovery on our own orphan dir - the dead 876 * node(s) may have voted "no" on an inode delete earlier. A 877 * revote is therefore required. */ 878 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 879 NULL); 880 881 bail: 882 mutex_lock(&osb->recovery_lock); 883 if (!status && 884 !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) { 885 mutex_unlock(&osb->recovery_lock); 886 goto restart; 887 } 888 889 osb->recovery_thread_task = NULL; 890 mb(); /* sync with ocfs2_recovery_thread_running */ 891 wake_up(&osb->recovery_event); 892 893 mutex_unlock(&osb->recovery_lock); 894 895 mlog_exit(status); 896 /* no one is callint kthread_stop() for us so the kthread() api 897 * requires that we call do_exit(). And it isn't exported, but 898 * complete_and_exit() seems to be a minimal wrapper around it. */ 899 complete_and_exit(NULL, status); 900 return status; 901 } 902 903 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 904 { 905 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 906 node_num, osb->node_num); 907 908 mutex_lock(&osb->recovery_lock); 909 if (osb->disable_recovery) 910 goto out; 911 912 /* People waiting on recovery will wait on 913 * the recovery map to empty. */ 914 if (!ocfs2_recovery_map_set(osb, node_num)) 915 mlog(0, "node %d already be in recovery.\n", node_num); 916 917 mlog(0, "starting recovery thread...\n"); 918 919 if (osb->recovery_thread_task) 920 goto out; 921 922 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 923 "ocfs2rec"); 924 if (IS_ERR(osb->recovery_thread_task)) { 925 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 926 osb->recovery_thread_task = NULL; 927 } 928 929 out: 930 mutex_unlock(&osb->recovery_lock); 931 wake_up(&osb->recovery_event); 932 933 mlog_exit_void(); 934 } 935 936 /* Does the actual journal replay and marks the journal inode as 937 * clean. Will only replay if the journal inode is marked dirty. */ 938 static int ocfs2_replay_journal(struct ocfs2_super *osb, 939 int node_num, 940 int slot_num) 941 { 942 int status; 943 int got_lock = 0; 944 unsigned int flags; 945 struct inode *inode = NULL; 946 struct ocfs2_dinode *fe; 947 journal_t *journal = NULL; 948 struct buffer_head *bh = NULL; 949 950 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 951 slot_num); 952 if (inode == NULL) { 953 status = -EACCES; 954 mlog_errno(status); 955 goto done; 956 } 957 if (is_bad_inode(inode)) { 958 status = -EACCES; 959 iput(inode); 960 inode = NULL; 961 mlog_errno(status); 962 goto done; 963 } 964 SET_INODE_JOURNAL(inode); 965 966 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 967 if (status < 0) { 968 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status); 969 if (status != -ERESTARTSYS) 970 mlog(ML_ERROR, "Could not lock journal!\n"); 971 goto done; 972 } 973 got_lock = 1; 974 975 fe = (struct ocfs2_dinode *) bh->b_data; 976 977 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 978 979 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 980 mlog(0, "No recovery required for node %d\n", node_num); 981 goto done; 982 } 983 984 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n", 985 node_num, slot_num, 986 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 987 988 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 989 990 status = ocfs2_force_read_journal(inode); 991 if (status < 0) { 992 mlog_errno(status); 993 goto done; 994 } 995 996 mlog(0, "calling journal_init_inode\n"); 997 journal = journal_init_inode(inode); 998 if (journal == NULL) { 999 mlog(ML_ERROR, "Linux journal layer error\n"); 1000 status = -EIO; 1001 goto done; 1002 } 1003 1004 status = journal_load(journal); 1005 if (status < 0) { 1006 mlog_errno(status); 1007 if (!igrab(inode)) 1008 BUG(); 1009 journal_destroy(journal); 1010 goto done; 1011 } 1012 1013 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1014 1015 /* wipe the journal */ 1016 mlog(0, "flushing the journal.\n"); 1017 journal_lock_updates(journal); 1018 status = journal_flush(journal); 1019 journal_unlock_updates(journal); 1020 if (status < 0) 1021 mlog_errno(status); 1022 1023 /* This will mark the node clean */ 1024 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1025 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1026 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1027 1028 status = ocfs2_write_block(osb, bh, inode); 1029 if (status < 0) 1030 mlog_errno(status); 1031 1032 if (!igrab(inode)) 1033 BUG(); 1034 1035 journal_destroy(journal); 1036 1037 done: 1038 /* drop the lock on this nodes journal */ 1039 if (got_lock) 1040 ocfs2_meta_unlock(inode, 1); 1041 1042 if (inode) 1043 iput(inode); 1044 1045 if (bh) 1046 brelse(bh); 1047 1048 mlog_exit(status); 1049 return status; 1050 } 1051 1052 /* 1053 * Do the most important parts of node recovery: 1054 * - Replay it's journal 1055 * - Stamp a clean local allocator file 1056 * - Stamp a clean truncate log 1057 * - Mark the node clean 1058 * 1059 * If this function completes without error, a node in OCFS2 can be 1060 * said to have been safely recovered. As a result, failure during the 1061 * second part of a nodes recovery process (local alloc recovery) is 1062 * far less concerning. 1063 */ 1064 static int ocfs2_recover_node(struct ocfs2_super *osb, 1065 int node_num) 1066 { 1067 int status = 0; 1068 int slot_num; 1069 struct ocfs2_slot_info *si = osb->slot_info; 1070 struct ocfs2_dinode *la_copy = NULL; 1071 struct ocfs2_dinode *tl_copy = NULL; 1072 1073 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 1074 node_num, osb->node_num); 1075 1076 mlog(0, "checking node %d\n", node_num); 1077 1078 /* Should not ever be called to recover ourselves -- in that 1079 * case we should've called ocfs2_journal_load instead. */ 1080 BUG_ON(osb->node_num == node_num); 1081 1082 slot_num = ocfs2_node_num_to_slot(si, node_num); 1083 if (slot_num == OCFS2_INVALID_SLOT) { 1084 status = 0; 1085 mlog(0, "no slot for this node, so no recovery required.\n"); 1086 goto done; 1087 } 1088 1089 mlog(0, "node %d was using slot %d\n", node_num, slot_num); 1090 1091 status = ocfs2_replay_journal(osb, node_num, slot_num); 1092 if (status < 0) { 1093 mlog_errno(status); 1094 goto done; 1095 } 1096 1097 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1098 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1099 if (status < 0) { 1100 mlog_errno(status); 1101 goto done; 1102 } 1103 1104 /* An error from begin_truncate_log_recovery is not 1105 * serious enough to warrant halting the rest of 1106 * recovery. */ 1107 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1108 if (status < 0) 1109 mlog_errno(status); 1110 1111 /* Likewise, this would be a strange but ultimately not so 1112 * harmful place to get an error... */ 1113 ocfs2_clear_slot(si, slot_num); 1114 status = ocfs2_update_disk_slots(osb, si); 1115 if (status < 0) 1116 mlog_errno(status); 1117 1118 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1119 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1120 tl_copy); 1121 1122 status = 0; 1123 done: 1124 1125 mlog_exit(status); 1126 return status; 1127 } 1128 1129 /* Test node liveness by trylocking his journal. If we get the lock, 1130 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1131 * still alive (we couldn't get the lock) and < 0 on error. */ 1132 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1133 int slot_num) 1134 { 1135 int status, flags; 1136 struct inode *inode = NULL; 1137 1138 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1139 slot_num); 1140 if (inode == NULL) { 1141 mlog(ML_ERROR, "access error\n"); 1142 status = -EACCES; 1143 goto bail; 1144 } 1145 if (is_bad_inode(inode)) { 1146 mlog(ML_ERROR, "access error (bad inode)\n"); 1147 iput(inode); 1148 inode = NULL; 1149 status = -EACCES; 1150 goto bail; 1151 } 1152 SET_INODE_JOURNAL(inode); 1153 1154 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1155 status = ocfs2_meta_lock_full(inode, NULL, 1, flags); 1156 if (status < 0) { 1157 if (status != -EAGAIN) 1158 mlog_errno(status); 1159 goto bail; 1160 } 1161 1162 ocfs2_meta_unlock(inode, 1); 1163 bail: 1164 if (inode) 1165 iput(inode); 1166 1167 return status; 1168 } 1169 1170 /* Call this underneath ocfs2_super_lock. It also assumes that the 1171 * slot info struct has been updated from disk. */ 1172 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1173 { 1174 int status, i, node_num; 1175 struct ocfs2_slot_info *si = osb->slot_info; 1176 1177 /* This is called with the super block cluster lock, so we 1178 * know that the slot map can't change underneath us. */ 1179 1180 spin_lock(&si->si_lock); 1181 for(i = 0; i < si->si_num_slots; i++) { 1182 if (i == osb->slot_num) 1183 continue; 1184 if (ocfs2_is_empty_slot(si, i)) 1185 continue; 1186 1187 node_num = si->si_global_node_nums[i]; 1188 if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num)) 1189 continue; 1190 spin_unlock(&si->si_lock); 1191 1192 /* Ok, we have a slot occupied by another node which 1193 * is not in the recovery map. We trylock his journal 1194 * file here to test if he's alive. */ 1195 status = ocfs2_trylock_journal(osb, i); 1196 if (!status) { 1197 /* Since we're called from mount, we know that 1198 * the recovery thread can't race us on 1199 * setting / checking the recovery bits. */ 1200 ocfs2_recovery_thread(osb, node_num); 1201 } else if ((status < 0) && (status != -EAGAIN)) { 1202 mlog_errno(status); 1203 goto bail; 1204 } 1205 1206 spin_lock(&si->si_lock); 1207 } 1208 spin_unlock(&si->si_lock); 1209 1210 status = 0; 1211 bail: 1212 mlog_exit(status); 1213 return status; 1214 } 1215 1216 struct ocfs2_orphan_filldir_priv { 1217 struct inode *head; 1218 struct ocfs2_super *osb; 1219 }; 1220 1221 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len, 1222 loff_t pos, u64 ino, unsigned type) 1223 { 1224 struct ocfs2_orphan_filldir_priv *p = priv; 1225 struct inode *iter; 1226 1227 if (name_len == 1 && !strncmp(".", name, 1)) 1228 return 0; 1229 if (name_len == 2 && !strncmp("..", name, 2)) 1230 return 0; 1231 1232 /* Skip bad inodes so that recovery can continue */ 1233 iter = ocfs2_iget(p->osb, ino, 1234 OCFS2_FI_FLAG_ORPHAN_RECOVERY); 1235 if (IS_ERR(iter)) 1236 return 0; 1237 1238 mlog(0, "queue orphan %llu\n", 1239 (unsigned long long)OCFS2_I(iter)->ip_blkno); 1240 /* No locking is required for the next_orphan queue as there 1241 * is only ever a single process doing orphan recovery. */ 1242 OCFS2_I(iter)->ip_next_orphan = p->head; 1243 p->head = iter; 1244 1245 return 0; 1246 } 1247 1248 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 1249 int slot, 1250 struct inode **head) 1251 { 1252 int status; 1253 struct inode *orphan_dir_inode = NULL; 1254 struct ocfs2_orphan_filldir_priv priv; 1255 loff_t pos = 0; 1256 1257 priv.osb = osb; 1258 priv.head = *head; 1259 1260 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 1261 ORPHAN_DIR_SYSTEM_INODE, 1262 slot); 1263 if (!orphan_dir_inode) { 1264 status = -ENOENT; 1265 mlog_errno(status); 1266 return status; 1267 } 1268 1269 mutex_lock(&orphan_dir_inode->i_mutex); 1270 status = ocfs2_meta_lock(orphan_dir_inode, NULL, 0); 1271 if (status < 0) { 1272 mlog_errno(status); 1273 goto out; 1274 } 1275 1276 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv, 1277 ocfs2_orphan_filldir); 1278 if (status) { 1279 mlog_errno(status); 1280 goto out; 1281 } 1282 1283 *head = priv.head; 1284 1285 ocfs2_meta_unlock(orphan_dir_inode, 0); 1286 out: 1287 mutex_unlock(&orphan_dir_inode->i_mutex); 1288 iput(orphan_dir_inode); 1289 return status; 1290 } 1291 1292 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 1293 int slot) 1294 { 1295 int ret; 1296 1297 spin_lock(&osb->osb_lock); 1298 ret = !osb->osb_orphan_wipes[slot]; 1299 spin_unlock(&osb->osb_lock); 1300 return ret; 1301 } 1302 1303 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 1304 int slot) 1305 { 1306 spin_lock(&osb->osb_lock); 1307 /* Mark ourselves such that new processes in delete_inode() 1308 * know to quit early. */ 1309 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1310 while (osb->osb_orphan_wipes[slot]) { 1311 /* If any processes are already in the middle of an 1312 * orphan wipe on this dir, then we need to wait for 1313 * them. */ 1314 spin_unlock(&osb->osb_lock); 1315 wait_event_interruptible(osb->osb_wipe_event, 1316 ocfs2_orphan_recovery_can_continue(osb, slot)); 1317 spin_lock(&osb->osb_lock); 1318 } 1319 spin_unlock(&osb->osb_lock); 1320 } 1321 1322 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 1323 int slot) 1324 { 1325 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1326 } 1327 1328 /* 1329 * Orphan recovery. Each mounted node has it's own orphan dir which we 1330 * must run during recovery. Our strategy here is to build a list of 1331 * the inodes in the orphan dir and iget/iput them. The VFS does 1332 * (most) of the rest of the work. 1333 * 1334 * Orphan recovery can happen at any time, not just mount so we have a 1335 * couple of extra considerations. 1336 * 1337 * - We grab as many inodes as we can under the orphan dir lock - 1338 * doing iget() outside the orphan dir risks getting a reference on 1339 * an invalid inode. 1340 * - We must be sure not to deadlock with other processes on the 1341 * system wanting to run delete_inode(). This can happen when they go 1342 * to lock the orphan dir and the orphan recovery process attempts to 1343 * iget() inside the orphan dir lock. This can be avoided by 1344 * advertising our state to ocfs2_delete_inode(). 1345 */ 1346 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 1347 int slot) 1348 { 1349 int ret = 0; 1350 struct inode *inode = NULL; 1351 struct inode *iter; 1352 struct ocfs2_inode_info *oi; 1353 1354 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot); 1355 1356 ocfs2_mark_recovering_orphan_dir(osb, slot); 1357 ret = ocfs2_queue_orphans(osb, slot, &inode); 1358 ocfs2_clear_recovering_orphan_dir(osb, slot); 1359 1360 /* Error here should be noted, but we want to continue with as 1361 * many queued inodes as we've got. */ 1362 if (ret) 1363 mlog_errno(ret); 1364 1365 while (inode) { 1366 oi = OCFS2_I(inode); 1367 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno); 1368 1369 iter = oi->ip_next_orphan; 1370 1371 spin_lock(&oi->ip_lock); 1372 /* Delete voting may have set these on the assumption 1373 * that the other node would wipe them successfully. 1374 * If they are still in the node's orphan dir, we need 1375 * to reset that state. */ 1376 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); 1377 1378 /* Set the proper information to get us going into 1379 * ocfs2_delete_inode. */ 1380 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 1381 spin_unlock(&oi->ip_lock); 1382 1383 iput(inode); 1384 1385 inode = iter; 1386 } 1387 1388 return ret; 1389 } 1390 1391 static int ocfs2_wait_on_mount(struct ocfs2_super *osb) 1392 { 1393 /* This check is good because ocfs2 will wait on our recovery 1394 * thread before changing it to something other than MOUNTED 1395 * or DISABLED. */ 1396 wait_event(osb->osb_mount_event, 1397 atomic_read(&osb->vol_state) == VOLUME_MOUNTED || 1398 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 1399 1400 /* If there's an error on mount, then we may never get to the 1401 * MOUNTED flag, but this is set right before 1402 * dismount_volume() so we can trust it. */ 1403 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 1404 mlog(0, "mount error, exiting!\n"); 1405 return -EBUSY; 1406 } 1407 1408 return 0; 1409 } 1410 1411 static int ocfs2_commit_thread(void *arg) 1412 { 1413 int status; 1414 struct ocfs2_super *osb = arg; 1415 struct ocfs2_journal *journal = osb->journal; 1416 1417 /* we can trust j_num_trans here because _should_stop() is only set in 1418 * shutdown and nobody other than ourselves should be able to start 1419 * transactions. committing on shutdown might take a few iterations 1420 * as final transactions put deleted inodes on the list */ 1421 while (!(kthread_should_stop() && 1422 atomic_read(&journal->j_num_trans) == 0)) { 1423 1424 wait_event_interruptible(osb->checkpoint_event, 1425 atomic_read(&journal->j_num_trans) 1426 || kthread_should_stop()); 1427 1428 status = ocfs2_commit_cache(osb); 1429 if (status < 0) 1430 mlog_errno(status); 1431 1432 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 1433 mlog(ML_KTHREAD, 1434 "commit_thread: %u transactions pending on " 1435 "shutdown\n", 1436 atomic_read(&journal->j_num_trans)); 1437 } 1438 } 1439 1440 return 0; 1441 } 1442 1443 /* Look for a dirty journal without taking any cluster locks. Used for 1444 * hard readonly access to determine whether the file system journals 1445 * require recovery. */ 1446 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 1447 { 1448 int ret = 0; 1449 unsigned int slot; 1450 struct buffer_head *di_bh; 1451 struct ocfs2_dinode *di; 1452 struct inode *journal = NULL; 1453 1454 for(slot = 0; slot < osb->max_slots; slot++) { 1455 journal = ocfs2_get_system_file_inode(osb, 1456 JOURNAL_SYSTEM_INODE, 1457 slot); 1458 if (!journal || is_bad_inode(journal)) { 1459 ret = -EACCES; 1460 mlog_errno(ret); 1461 goto out; 1462 } 1463 1464 di_bh = NULL; 1465 ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh, 1466 0, journal); 1467 if (ret < 0) { 1468 mlog_errno(ret); 1469 goto out; 1470 } 1471 1472 di = (struct ocfs2_dinode *) di_bh->b_data; 1473 1474 if (le32_to_cpu(di->id1.journal1.ij_flags) & 1475 OCFS2_JOURNAL_DIRTY_FL) 1476 ret = -EROFS; 1477 1478 brelse(di_bh); 1479 if (ret) 1480 break; 1481 } 1482 1483 out: 1484 if (journal) 1485 iput(journal); 1486 1487 return ret; 1488 } 1489