xref: /openbmc/linux/fs/ocfs2/journal.c (revision 04c71976)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "dir.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "heartbeat.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "localalloc.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "vote.h"
48 #include "sysfile.h"
49 
50 #include "buffer_head_io.h"
51 
52 DEFINE_SPINLOCK(trans_inc_lock);
53 
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 			      int node_num);
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
61 				      int dirty);
62 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
63 				 int slot_num);
64 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
65 				 int slot);
66 static int ocfs2_commit_thread(void *arg);
67 
68 static int ocfs2_commit_cache(struct ocfs2_super *osb)
69 {
70 	int status = 0;
71 	unsigned int flushed;
72 	unsigned long old_id;
73 	struct ocfs2_journal *journal = NULL;
74 
75 	mlog_entry_void();
76 
77 	journal = osb->journal;
78 
79 	/* Flush all pending commits and checkpoint the journal. */
80 	down_write(&journal->j_trans_barrier);
81 
82 	if (atomic_read(&journal->j_num_trans) == 0) {
83 		up_write(&journal->j_trans_barrier);
84 		mlog(0, "No transactions for me to flush!\n");
85 		goto finally;
86 	}
87 
88 	journal_lock_updates(journal->j_journal);
89 	status = journal_flush(journal->j_journal);
90 	journal_unlock_updates(journal->j_journal);
91 	if (status < 0) {
92 		up_write(&journal->j_trans_barrier);
93 		mlog_errno(status);
94 		goto finally;
95 	}
96 
97 	old_id = ocfs2_inc_trans_id(journal);
98 
99 	flushed = atomic_read(&journal->j_num_trans);
100 	atomic_set(&journal->j_num_trans, 0);
101 	up_write(&journal->j_trans_barrier);
102 
103 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
104 	     journal->j_trans_id, flushed);
105 
106 	ocfs2_kick_vote_thread(osb);
107 	wake_up(&journal->j_checkpointed);
108 finally:
109 	mlog_exit(status);
110 	return status;
111 }
112 
113 /* pass it NULL and it will allocate a new handle object for you.  If
114  * you pass it a handle however, it may still return error, in which
115  * case it has free'd the passed handle for you. */
116 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
117 {
118 	journal_t *journal = osb->journal->j_journal;
119 	handle_t *handle;
120 
121 	BUG_ON(!osb || !osb->journal->j_journal);
122 
123 	if (ocfs2_is_hard_readonly(osb))
124 		return ERR_PTR(-EROFS);
125 
126 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
127 	BUG_ON(max_buffs <= 0);
128 
129 	/* JBD might support this, but our journalling code doesn't yet. */
130 	if (journal_current_handle()) {
131 		mlog(ML_ERROR, "Recursive transaction attempted!\n");
132 		BUG();
133 	}
134 
135 	down_read(&osb->journal->j_trans_barrier);
136 
137 	handle = journal_start(journal, max_buffs);
138 	if (IS_ERR(handle)) {
139 		up_read(&osb->journal->j_trans_barrier);
140 
141 		mlog_errno(PTR_ERR(handle));
142 
143 		if (is_journal_aborted(journal)) {
144 			ocfs2_abort(osb->sb, "Detected aborted journal");
145 			handle = ERR_PTR(-EROFS);
146 		}
147 	} else {
148 		if (!ocfs2_mount_local(osb))
149 			atomic_inc(&(osb->journal->j_num_trans));
150 	}
151 
152 	return handle;
153 }
154 
155 int ocfs2_commit_trans(struct ocfs2_super *osb,
156 		       handle_t *handle)
157 {
158 	int ret;
159 	struct ocfs2_journal *journal = osb->journal;
160 
161 	BUG_ON(!handle);
162 
163 	ret = journal_stop(handle);
164 	if (ret < 0)
165 		mlog_errno(ret);
166 
167 	up_read(&journal->j_trans_barrier);
168 
169 	return ret;
170 }
171 
172 /*
173  * 'nblocks' is what you want to add to the current
174  * transaction. extend_trans will either extend the current handle by
175  * nblocks, or commit it and start a new one with nblocks credits.
176  *
177  * WARNING: This will not release any semaphores or disk locks taken
178  * during the transaction, so make sure they were taken *before*
179  * start_trans or we'll have ordering deadlocks.
180  *
181  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
182  * good because transaction ids haven't yet been recorded on the
183  * cluster locks associated with this handle.
184  */
185 int ocfs2_extend_trans(handle_t *handle, int nblocks)
186 {
187 	int status;
188 
189 	BUG_ON(!handle);
190 	BUG_ON(!nblocks);
191 
192 	mlog_entry_void();
193 
194 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
195 
196 	status = journal_extend(handle, nblocks);
197 	if (status < 0) {
198 		mlog_errno(status);
199 		goto bail;
200 	}
201 
202 	if (status > 0) {
203 		mlog(0, "journal_extend failed, trying journal_restart\n");
204 		status = journal_restart(handle, nblocks);
205 		if (status < 0) {
206 			mlog_errno(status);
207 			goto bail;
208 		}
209 	}
210 
211 	status = 0;
212 bail:
213 
214 	mlog_exit(status);
215 	return status;
216 }
217 
218 int ocfs2_journal_access(handle_t *handle,
219 			 struct inode *inode,
220 			 struct buffer_head *bh,
221 			 int type)
222 {
223 	int status;
224 
225 	BUG_ON(!inode);
226 	BUG_ON(!handle);
227 	BUG_ON(!bh);
228 
229 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
230 		   (unsigned long long)bh->b_blocknr, type,
231 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
232 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
233 		   "OCFS2_JOURNAL_ACCESS_WRITE",
234 		   bh->b_size);
235 
236 	/* we can safely remove this assertion after testing. */
237 	if (!buffer_uptodate(bh)) {
238 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
239 		mlog(ML_ERROR, "b_blocknr=%llu\n",
240 		     (unsigned long long)bh->b_blocknr);
241 		BUG();
242 	}
243 
244 	/* Set the current transaction information on the inode so
245 	 * that the locking code knows whether it can drop it's locks
246 	 * on this inode or not. We're protected from the commit
247 	 * thread updating the current transaction id until
248 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
249 	 * j_trans_barrier for us. */
250 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
251 
252 	mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
253 	switch (type) {
254 	case OCFS2_JOURNAL_ACCESS_CREATE:
255 	case OCFS2_JOURNAL_ACCESS_WRITE:
256 		status = journal_get_write_access(handle, bh);
257 		break;
258 
259 	case OCFS2_JOURNAL_ACCESS_UNDO:
260 		status = journal_get_undo_access(handle, bh);
261 		break;
262 
263 	default:
264 		status = -EINVAL;
265 		mlog(ML_ERROR, "Uknown access type!\n");
266 	}
267 	mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
268 
269 	if (status < 0)
270 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
271 		     status, type);
272 
273 	mlog_exit(status);
274 	return status;
275 }
276 
277 int ocfs2_journal_dirty(handle_t *handle,
278 			struct buffer_head *bh)
279 {
280 	int status;
281 
282 	mlog_entry("(bh->b_blocknr=%llu)\n",
283 		   (unsigned long long)bh->b_blocknr);
284 
285 	status = journal_dirty_metadata(handle, bh);
286 	if (status < 0)
287 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
288 		     "(bh->b_blocknr=%llu)\n",
289 		     (unsigned long long)bh->b_blocknr);
290 
291 	mlog_exit(status);
292 	return status;
293 }
294 
295 int ocfs2_journal_dirty_data(handle_t *handle,
296 			     struct buffer_head *bh)
297 {
298 	int err = journal_dirty_data(handle, bh);
299 	if (err)
300 		mlog_errno(err);
301 	/* TODO: When we can handle it, abort the handle and go RO on
302 	 * error here. */
303 
304 	return err;
305 }
306 
307 #define OCFS2_DEFAULT_COMMIT_INTERVAL 	(HZ * 5)
308 
309 void ocfs2_set_journal_params(struct ocfs2_super *osb)
310 {
311 	journal_t *journal = osb->journal->j_journal;
312 
313 	spin_lock(&journal->j_state_lock);
314 	journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
315 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
316 		journal->j_flags |= JFS_BARRIER;
317 	else
318 		journal->j_flags &= ~JFS_BARRIER;
319 	spin_unlock(&journal->j_state_lock);
320 }
321 
322 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
323 {
324 	int status = -1;
325 	struct inode *inode = NULL; /* the journal inode */
326 	journal_t *j_journal = NULL;
327 	struct ocfs2_dinode *di = NULL;
328 	struct buffer_head *bh = NULL;
329 	struct ocfs2_super *osb;
330 	int meta_lock = 0;
331 
332 	mlog_entry_void();
333 
334 	BUG_ON(!journal);
335 
336 	osb = journal->j_osb;
337 
338 	/* already have the inode for our journal */
339 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
340 					    osb->slot_num);
341 	if (inode == NULL) {
342 		status = -EACCES;
343 		mlog_errno(status);
344 		goto done;
345 	}
346 	if (is_bad_inode(inode)) {
347 		mlog(ML_ERROR, "access error (bad inode)\n");
348 		iput(inode);
349 		inode = NULL;
350 		status = -EACCES;
351 		goto done;
352 	}
353 
354 	SET_INODE_JOURNAL(inode);
355 	OCFS2_I(inode)->ip_open_count++;
356 
357 	/* Skip recovery waits here - journal inode metadata never
358 	 * changes in a live cluster so it can be considered an
359 	 * exception to the rule. */
360 	status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
361 	if (status < 0) {
362 		if (status != -ERESTARTSYS)
363 			mlog(ML_ERROR, "Could not get lock on journal!\n");
364 		goto done;
365 	}
366 
367 	meta_lock = 1;
368 	di = (struct ocfs2_dinode *)bh->b_data;
369 
370 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
371 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
372 		     inode->i_size);
373 		status = -EINVAL;
374 		goto done;
375 	}
376 
377 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
378 	mlog(0, "inode->i_blocks = %llu\n",
379 			(unsigned long long)inode->i_blocks);
380 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
381 
382 	/* call the kernels journal init function now */
383 	j_journal = journal_init_inode(inode);
384 	if (j_journal == NULL) {
385 		mlog(ML_ERROR, "Linux journal layer error\n");
386 		status = -EINVAL;
387 		goto done;
388 	}
389 
390 	mlog(0, "Returned from journal_init_inode\n");
391 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
392 
393 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
394 		  OCFS2_JOURNAL_DIRTY_FL);
395 
396 	journal->j_journal = j_journal;
397 	journal->j_inode = inode;
398 	journal->j_bh = bh;
399 
400 	ocfs2_set_journal_params(osb);
401 
402 	journal->j_state = OCFS2_JOURNAL_LOADED;
403 
404 	status = 0;
405 done:
406 	if (status < 0) {
407 		if (meta_lock)
408 			ocfs2_meta_unlock(inode, 1);
409 		if (bh != NULL)
410 			brelse(bh);
411 		if (inode) {
412 			OCFS2_I(inode)->ip_open_count--;
413 			iput(inode);
414 		}
415 	}
416 
417 	mlog_exit(status);
418 	return status;
419 }
420 
421 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
422 				      int dirty)
423 {
424 	int status;
425 	unsigned int flags;
426 	struct ocfs2_journal *journal = osb->journal;
427 	struct buffer_head *bh = journal->j_bh;
428 	struct ocfs2_dinode *fe;
429 
430 	mlog_entry_void();
431 
432 	fe = (struct ocfs2_dinode *)bh->b_data;
433 	if (!OCFS2_IS_VALID_DINODE(fe)) {
434 		/* This is called from startup/shutdown which will
435 		 * handle the errors in a specific manner, so no need
436 		 * to call ocfs2_error() here. */
437 		mlog(ML_ERROR, "Journal dinode %llu  has invalid "
438 		     "signature: %.*s",
439 		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
440 		     fe->i_signature);
441 		status = -EIO;
442 		goto out;
443 	}
444 
445 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
446 	if (dirty)
447 		flags |= OCFS2_JOURNAL_DIRTY_FL;
448 	else
449 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
450 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
451 
452 	status = ocfs2_write_block(osb, bh, journal->j_inode);
453 	if (status < 0)
454 		mlog_errno(status);
455 
456 out:
457 	mlog_exit(status);
458 	return status;
459 }
460 
461 /*
462  * If the journal has been kmalloc'd it needs to be freed after this
463  * call.
464  */
465 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
466 {
467 	struct ocfs2_journal *journal = NULL;
468 	int status = 0;
469 	struct inode *inode = NULL;
470 	int num_running_trans = 0;
471 
472 	mlog_entry_void();
473 
474 	BUG_ON(!osb);
475 
476 	journal = osb->journal;
477 	if (!journal)
478 		goto done;
479 
480 	inode = journal->j_inode;
481 
482 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
483 		goto done;
484 
485 	/* need to inc inode use count as journal_destroy will iput. */
486 	if (!igrab(inode))
487 		BUG();
488 
489 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
490 	if (num_running_trans > 0)
491 		mlog(0, "Shutting down journal: must wait on %d "
492 		     "running transactions!\n",
493 		     num_running_trans);
494 
495 	/* Do a commit_cache here. It will flush our journal, *and*
496 	 * release any locks that are still held.
497 	 * set the SHUTDOWN flag and release the trans lock.
498 	 * the commit thread will take the trans lock for us below. */
499 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
500 
501 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
502 	 * drop the trans_lock (which we want to hold until we
503 	 * completely destroy the journal. */
504 	if (osb->commit_task) {
505 		/* Wait for the commit thread */
506 		mlog(0, "Waiting for ocfs2commit to exit....\n");
507 		kthread_stop(osb->commit_task);
508 		osb->commit_task = NULL;
509 	}
510 
511 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
512 
513 	if (ocfs2_mount_local(osb)) {
514 		journal_lock_updates(journal->j_journal);
515 		status = journal_flush(journal->j_journal);
516 		journal_unlock_updates(journal->j_journal);
517 		if (status < 0)
518 			mlog_errno(status);
519 	}
520 
521 	if (status == 0) {
522 		/*
523 		 * Do not toggle if flush was unsuccessful otherwise
524 		 * will leave dirty metadata in a "clean" journal
525 		 */
526 		status = ocfs2_journal_toggle_dirty(osb, 0);
527 		if (status < 0)
528 			mlog_errno(status);
529 	}
530 
531 	/* Shutdown the kernel journal system */
532 	journal_destroy(journal->j_journal);
533 
534 	OCFS2_I(inode)->ip_open_count--;
535 
536 	/* unlock our journal */
537 	ocfs2_meta_unlock(inode, 1);
538 
539 	brelse(journal->j_bh);
540 	journal->j_bh = NULL;
541 
542 	journal->j_state = OCFS2_JOURNAL_FREE;
543 
544 //	up_write(&journal->j_trans_barrier);
545 done:
546 	if (inode)
547 		iput(inode);
548 	mlog_exit_void();
549 }
550 
551 static void ocfs2_clear_journal_error(struct super_block *sb,
552 				      journal_t *journal,
553 				      int slot)
554 {
555 	int olderr;
556 
557 	olderr = journal_errno(journal);
558 	if (olderr) {
559 		mlog(ML_ERROR, "File system error %d recorded in "
560 		     "journal %u.\n", olderr, slot);
561 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
562 		     sb->s_id);
563 
564 		journal_ack_err(journal);
565 		journal_clear_err(journal);
566 	}
567 }
568 
569 int ocfs2_journal_load(struct ocfs2_journal *journal, int local)
570 {
571 	int status = 0;
572 	struct ocfs2_super *osb;
573 
574 	mlog_entry_void();
575 
576 	if (!journal)
577 		BUG();
578 
579 	osb = journal->j_osb;
580 
581 	status = journal_load(journal->j_journal);
582 	if (status < 0) {
583 		mlog(ML_ERROR, "Failed to load journal!\n");
584 		goto done;
585 	}
586 
587 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
588 
589 	status = ocfs2_journal_toggle_dirty(osb, 1);
590 	if (status < 0) {
591 		mlog_errno(status);
592 		goto done;
593 	}
594 
595 	/* Launch the commit thread */
596 	if (!local) {
597 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
598 					       "ocfs2cmt");
599 		if (IS_ERR(osb->commit_task)) {
600 			status = PTR_ERR(osb->commit_task);
601 			osb->commit_task = NULL;
602 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
603 			     "error=%d", status);
604 			goto done;
605 		}
606 	} else
607 		osb->commit_task = NULL;
608 
609 done:
610 	mlog_exit(status);
611 	return status;
612 }
613 
614 
615 /* 'full' flag tells us whether we clear out all blocks or if we just
616  * mark the journal clean */
617 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
618 {
619 	int status;
620 
621 	mlog_entry_void();
622 
623 	BUG_ON(!journal);
624 
625 	status = journal_wipe(journal->j_journal, full);
626 	if (status < 0) {
627 		mlog_errno(status);
628 		goto bail;
629 	}
630 
631 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
632 	if (status < 0)
633 		mlog_errno(status);
634 
635 bail:
636 	mlog_exit(status);
637 	return status;
638 }
639 
640 /*
641  * JBD Might read a cached version of another nodes journal file. We
642  * don't want this as this file changes often and we get no
643  * notification on those changes. The only way to be sure that we've
644  * got the most up to date version of those blocks then is to force
645  * read them off disk. Just searching through the buffer cache won't
646  * work as there may be pages backing this file which are still marked
647  * up to date. We know things can't change on this file underneath us
648  * as we have the lock by now :)
649  */
650 static int ocfs2_force_read_journal(struct inode *inode)
651 {
652 	int status = 0;
653 	int i;
654 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
655 #define CONCURRENT_JOURNAL_FILL 32ULL
656 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
657 
658 	mlog_entry_void();
659 
660 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
661 
662 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
663 	v_blkno = 0;
664 	while (v_blkno < num_blocks) {
665 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
666 						     &p_blkno, &p_blocks, NULL);
667 		if (status < 0) {
668 			mlog_errno(status);
669 			goto bail;
670 		}
671 
672 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
673 			p_blocks = CONCURRENT_JOURNAL_FILL;
674 
675 		/* We are reading journal data which should not
676 		 * be put in the uptodate cache */
677 		status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
678 					   p_blkno, p_blocks, bhs, 0,
679 					   NULL);
680 		if (status < 0) {
681 			mlog_errno(status);
682 			goto bail;
683 		}
684 
685 		for(i = 0; i < p_blocks; i++) {
686 			brelse(bhs[i]);
687 			bhs[i] = NULL;
688 		}
689 
690 		v_blkno += p_blocks;
691 	}
692 
693 bail:
694 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
695 		if (bhs[i])
696 			brelse(bhs[i]);
697 	mlog_exit(status);
698 	return status;
699 }
700 
701 struct ocfs2_la_recovery_item {
702 	struct list_head	lri_list;
703 	int			lri_slot;
704 	struct ocfs2_dinode	*lri_la_dinode;
705 	struct ocfs2_dinode	*lri_tl_dinode;
706 };
707 
708 /* Does the second half of the recovery process. By this point, the
709  * node is marked clean and can actually be considered recovered,
710  * hence it's no longer in the recovery map, but there's still some
711  * cleanup we can do which shouldn't happen within the recovery thread
712  * as locking in that context becomes very difficult if we are to take
713  * recovering nodes into account.
714  *
715  * NOTE: This function can and will sleep on recovery of other nodes
716  * during cluster locking, just like any other ocfs2 process.
717  */
718 void ocfs2_complete_recovery(struct work_struct *work)
719 {
720 	int ret;
721 	struct ocfs2_journal *journal =
722 		container_of(work, struct ocfs2_journal, j_recovery_work);
723 	struct ocfs2_super *osb = journal->j_osb;
724 	struct ocfs2_dinode *la_dinode, *tl_dinode;
725 	struct ocfs2_la_recovery_item *item, *n;
726 	LIST_HEAD(tmp_la_list);
727 
728 	mlog_entry_void();
729 
730 	mlog(0, "completing recovery from keventd\n");
731 
732 	spin_lock(&journal->j_lock);
733 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
734 	spin_unlock(&journal->j_lock);
735 
736 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
737 		list_del_init(&item->lri_list);
738 
739 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
740 
741 		la_dinode = item->lri_la_dinode;
742 		if (la_dinode) {
743 			mlog(0, "Clean up local alloc %llu\n",
744 			     (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
745 
746 			ret = ocfs2_complete_local_alloc_recovery(osb,
747 								  la_dinode);
748 			if (ret < 0)
749 				mlog_errno(ret);
750 
751 			kfree(la_dinode);
752 		}
753 
754 		tl_dinode = item->lri_tl_dinode;
755 		if (tl_dinode) {
756 			mlog(0, "Clean up truncate log %llu\n",
757 			     (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
758 
759 			ret = ocfs2_complete_truncate_log_recovery(osb,
760 								   tl_dinode);
761 			if (ret < 0)
762 				mlog_errno(ret);
763 
764 			kfree(tl_dinode);
765 		}
766 
767 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
768 		if (ret < 0)
769 			mlog_errno(ret);
770 
771 		kfree(item);
772 	}
773 
774 	mlog(0, "Recovery completion\n");
775 	mlog_exit_void();
776 }
777 
778 /* NOTE: This function always eats your references to la_dinode and
779  * tl_dinode, either manually on error, or by passing them to
780  * ocfs2_complete_recovery */
781 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
782 					    int slot_num,
783 					    struct ocfs2_dinode *la_dinode,
784 					    struct ocfs2_dinode *tl_dinode)
785 {
786 	struct ocfs2_la_recovery_item *item;
787 
788 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
789 	if (!item) {
790 		/* Though we wish to avoid it, we are in fact safe in
791 		 * skipping local alloc cleanup as fsck.ocfs2 is more
792 		 * than capable of reclaiming unused space. */
793 		if (la_dinode)
794 			kfree(la_dinode);
795 
796 		if (tl_dinode)
797 			kfree(tl_dinode);
798 
799 		mlog_errno(-ENOMEM);
800 		return;
801 	}
802 
803 	INIT_LIST_HEAD(&item->lri_list);
804 	item->lri_la_dinode = la_dinode;
805 	item->lri_slot = slot_num;
806 	item->lri_tl_dinode = tl_dinode;
807 
808 	spin_lock(&journal->j_lock);
809 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
810 	queue_work(ocfs2_wq, &journal->j_recovery_work);
811 	spin_unlock(&journal->j_lock);
812 }
813 
814 /* Called by the mount code to queue recovery the last part of
815  * recovery for it's own slot. */
816 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
817 {
818 	struct ocfs2_journal *journal = osb->journal;
819 
820 	if (osb->dirty) {
821 		/* No need to queue up our truncate_log as regular
822 		 * cleanup will catch that. */
823 		ocfs2_queue_recovery_completion(journal,
824 						osb->slot_num,
825 						osb->local_alloc_copy,
826 						NULL);
827 		ocfs2_schedule_truncate_log_flush(osb, 0);
828 
829 		osb->local_alloc_copy = NULL;
830 		osb->dirty = 0;
831 	}
832 }
833 
834 static int __ocfs2_recovery_thread(void *arg)
835 {
836 	int status, node_num;
837 	struct ocfs2_super *osb = arg;
838 
839 	mlog_entry_void();
840 
841 	status = ocfs2_wait_on_mount(osb);
842 	if (status < 0) {
843 		goto bail;
844 	}
845 
846 restart:
847 	status = ocfs2_super_lock(osb, 1);
848 	if (status < 0) {
849 		mlog_errno(status);
850 		goto bail;
851 	}
852 
853 	while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
854 		node_num = ocfs2_node_map_first_set_bit(osb,
855 							&osb->recovery_map);
856 		if (node_num == O2NM_INVALID_NODE_NUM) {
857 			mlog(0, "Out of nodes to recover.\n");
858 			break;
859 		}
860 
861 		status = ocfs2_recover_node(osb, node_num);
862 		if (status < 0) {
863 			mlog(ML_ERROR,
864 			     "Error %d recovering node %d on device (%u,%u)!\n",
865 			     status, node_num,
866 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
867 			mlog(ML_ERROR, "Volume requires unmount.\n");
868 			continue;
869 		}
870 
871 		ocfs2_recovery_map_clear(osb, node_num);
872 	}
873 	ocfs2_super_unlock(osb, 1);
874 
875 	/* We always run recovery on our own orphan dir - the dead
876 	 * node(s) may have voted "no" on an inode delete earlier. A
877 	 * revote is therefore required. */
878 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
879 					NULL);
880 
881 bail:
882 	mutex_lock(&osb->recovery_lock);
883 	if (!status &&
884 	    !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
885 		mutex_unlock(&osb->recovery_lock);
886 		goto restart;
887 	}
888 
889 	osb->recovery_thread_task = NULL;
890 	mb(); /* sync with ocfs2_recovery_thread_running */
891 	wake_up(&osb->recovery_event);
892 
893 	mutex_unlock(&osb->recovery_lock);
894 
895 	mlog_exit(status);
896 	/* no one is callint kthread_stop() for us so the kthread() api
897 	 * requires that we call do_exit().  And it isn't exported, but
898 	 * complete_and_exit() seems to be a minimal wrapper around it. */
899 	complete_and_exit(NULL, status);
900 	return status;
901 }
902 
903 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
904 {
905 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
906 		   node_num, osb->node_num);
907 
908 	mutex_lock(&osb->recovery_lock);
909 	if (osb->disable_recovery)
910 		goto out;
911 
912 	/* People waiting on recovery will wait on
913 	 * the recovery map to empty. */
914 	if (!ocfs2_recovery_map_set(osb, node_num))
915 		mlog(0, "node %d already be in recovery.\n", node_num);
916 
917 	mlog(0, "starting recovery thread...\n");
918 
919 	if (osb->recovery_thread_task)
920 		goto out;
921 
922 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
923 						 "ocfs2rec");
924 	if (IS_ERR(osb->recovery_thread_task)) {
925 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
926 		osb->recovery_thread_task = NULL;
927 	}
928 
929 out:
930 	mutex_unlock(&osb->recovery_lock);
931 	wake_up(&osb->recovery_event);
932 
933 	mlog_exit_void();
934 }
935 
936 /* Does the actual journal replay and marks the journal inode as
937  * clean. Will only replay if the journal inode is marked dirty. */
938 static int ocfs2_replay_journal(struct ocfs2_super *osb,
939 				int node_num,
940 				int slot_num)
941 {
942 	int status;
943 	int got_lock = 0;
944 	unsigned int flags;
945 	struct inode *inode = NULL;
946 	struct ocfs2_dinode *fe;
947 	journal_t *journal = NULL;
948 	struct buffer_head *bh = NULL;
949 
950 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
951 					    slot_num);
952 	if (inode == NULL) {
953 		status = -EACCES;
954 		mlog_errno(status);
955 		goto done;
956 	}
957 	if (is_bad_inode(inode)) {
958 		status = -EACCES;
959 		iput(inode);
960 		inode = NULL;
961 		mlog_errno(status);
962 		goto done;
963 	}
964 	SET_INODE_JOURNAL(inode);
965 
966 	status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
967 	if (status < 0) {
968 		mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
969 		if (status != -ERESTARTSYS)
970 			mlog(ML_ERROR, "Could not lock journal!\n");
971 		goto done;
972 	}
973 	got_lock = 1;
974 
975 	fe = (struct ocfs2_dinode *) bh->b_data;
976 
977 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
978 
979 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
980 		mlog(0, "No recovery required for node %d\n", node_num);
981 		goto done;
982 	}
983 
984 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
985 	     node_num, slot_num,
986 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
987 
988 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
989 
990 	status = ocfs2_force_read_journal(inode);
991 	if (status < 0) {
992 		mlog_errno(status);
993 		goto done;
994 	}
995 
996 	mlog(0, "calling journal_init_inode\n");
997 	journal = journal_init_inode(inode);
998 	if (journal == NULL) {
999 		mlog(ML_ERROR, "Linux journal layer error\n");
1000 		status = -EIO;
1001 		goto done;
1002 	}
1003 
1004 	status = journal_load(journal);
1005 	if (status < 0) {
1006 		mlog_errno(status);
1007 		if (!igrab(inode))
1008 			BUG();
1009 		journal_destroy(journal);
1010 		goto done;
1011 	}
1012 
1013 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1014 
1015 	/* wipe the journal */
1016 	mlog(0, "flushing the journal.\n");
1017 	journal_lock_updates(journal);
1018 	status = journal_flush(journal);
1019 	journal_unlock_updates(journal);
1020 	if (status < 0)
1021 		mlog_errno(status);
1022 
1023 	/* This will mark the node clean */
1024 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1025 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1026 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1027 
1028 	status = ocfs2_write_block(osb, bh, inode);
1029 	if (status < 0)
1030 		mlog_errno(status);
1031 
1032 	if (!igrab(inode))
1033 		BUG();
1034 
1035 	journal_destroy(journal);
1036 
1037 done:
1038 	/* drop the lock on this nodes journal */
1039 	if (got_lock)
1040 		ocfs2_meta_unlock(inode, 1);
1041 
1042 	if (inode)
1043 		iput(inode);
1044 
1045 	if (bh)
1046 		brelse(bh);
1047 
1048 	mlog_exit(status);
1049 	return status;
1050 }
1051 
1052 /*
1053  * Do the most important parts of node recovery:
1054  *  - Replay it's journal
1055  *  - Stamp a clean local allocator file
1056  *  - Stamp a clean truncate log
1057  *  - Mark the node clean
1058  *
1059  * If this function completes without error, a node in OCFS2 can be
1060  * said to have been safely recovered. As a result, failure during the
1061  * second part of a nodes recovery process (local alloc recovery) is
1062  * far less concerning.
1063  */
1064 static int ocfs2_recover_node(struct ocfs2_super *osb,
1065 			      int node_num)
1066 {
1067 	int status = 0;
1068 	int slot_num;
1069 	struct ocfs2_slot_info *si = osb->slot_info;
1070 	struct ocfs2_dinode *la_copy = NULL;
1071 	struct ocfs2_dinode *tl_copy = NULL;
1072 
1073 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1074 		   node_num, osb->node_num);
1075 
1076 	mlog(0, "checking node %d\n", node_num);
1077 
1078 	/* Should not ever be called to recover ourselves -- in that
1079 	 * case we should've called ocfs2_journal_load instead. */
1080 	BUG_ON(osb->node_num == node_num);
1081 
1082 	slot_num = ocfs2_node_num_to_slot(si, node_num);
1083 	if (slot_num == OCFS2_INVALID_SLOT) {
1084 		status = 0;
1085 		mlog(0, "no slot for this node, so no recovery required.\n");
1086 		goto done;
1087 	}
1088 
1089 	mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1090 
1091 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1092 	if (status < 0) {
1093 		mlog_errno(status);
1094 		goto done;
1095 	}
1096 
1097 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1098 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1099 	if (status < 0) {
1100 		mlog_errno(status);
1101 		goto done;
1102 	}
1103 
1104 	/* An error from begin_truncate_log_recovery is not
1105 	 * serious enough to warrant halting the rest of
1106 	 * recovery. */
1107 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1108 	if (status < 0)
1109 		mlog_errno(status);
1110 
1111 	/* Likewise, this would be a strange but ultimately not so
1112 	 * harmful place to get an error... */
1113 	ocfs2_clear_slot(si, slot_num);
1114 	status = ocfs2_update_disk_slots(osb, si);
1115 	if (status < 0)
1116 		mlog_errno(status);
1117 
1118 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1119 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1120 					tl_copy);
1121 
1122 	status = 0;
1123 done:
1124 
1125 	mlog_exit(status);
1126 	return status;
1127 }
1128 
1129 /* Test node liveness by trylocking his journal. If we get the lock,
1130  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1131  * still alive (we couldn't get the lock) and < 0 on error. */
1132 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1133 				 int slot_num)
1134 {
1135 	int status, flags;
1136 	struct inode *inode = NULL;
1137 
1138 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1139 					    slot_num);
1140 	if (inode == NULL) {
1141 		mlog(ML_ERROR, "access error\n");
1142 		status = -EACCES;
1143 		goto bail;
1144 	}
1145 	if (is_bad_inode(inode)) {
1146 		mlog(ML_ERROR, "access error (bad inode)\n");
1147 		iput(inode);
1148 		inode = NULL;
1149 		status = -EACCES;
1150 		goto bail;
1151 	}
1152 	SET_INODE_JOURNAL(inode);
1153 
1154 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1155 	status = ocfs2_meta_lock_full(inode, NULL, 1, flags);
1156 	if (status < 0) {
1157 		if (status != -EAGAIN)
1158 			mlog_errno(status);
1159 		goto bail;
1160 	}
1161 
1162 	ocfs2_meta_unlock(inode, 1);
1163 bail:
1164 	if (inode)
1165 		iput(inode);
1166 
1167 	return status;
1168 }
1169 
1170 /* Call this underneath ocfs2_super_lock. It also assumes that the
1171  * slot info struct has been updated from disk. */
1172 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1173 {
1174 	int status, i, node_num;
1175 	struct ocfs2_slot_info *si = osb->slot_info;
1176 
1177 	/* This is called with the super block cluster lock, so we
1178 	 * know that the slot map can't change underneath us. */
1179 
1180 	spin_lock(&si->si_lock);
1181 	for(i = 0; i < si->si_num_slots; i++) {
1182 		if (i == osb->slot_num)
1183 			continue;
1184 		if (ocfs2_is_empty_slot(si, i))
1185 			continue;
1186 
1187 		node_num = si->si_global_node_nums[i];
1188 		if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1189 			continue;
1190 		spin_unlock(&si->si_lock);
1191 
1192 		/* Ok, we have a slot occupied by another node which
1193 		 * is not in the recovery map. We trylock his journal
1194 		 * file here to test if he's alive. */
1195 		status = ocfs2_trylock_journal(osb, i);
1196 		if (!status) {
1197 			/* Since we're called from mount, we know that
1198 			 * the recovery thread can't race us on
1199 			 * setting / checking the recovery bits. */
1200 			ocfs2_recovery_thread(osb, node_num);
1201 		} else if ((status < 0) && (status != -EAGAIN)) {
1202 			mlog_errno(status);
1203 			goto bail;
1204 		}
1205 
1206 		spin_lock(&si->si_lock);
1207 	}
1208 	spin_unlock(&si->si_lock);
1209 
1210 	status = 0;
1211 bail:
1212 	mlog_exit(status);
1213 	return status;
1214 }
1215 
1216 struct ocfs2_orphan_filldir_priv {
1217 	struct inode		*head;
1218 	struct ocfs2_super	*osb;
1219 };
1220 
1221 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1222 				loff_t pos, u64 ino, unsigned type)
1223 {
1224 	struct ocfs2_orphan_filldir_priv *p = priv;
1225 	struct inode *iter;
1226 
1227 	if (name_len == 1 && !strncmp(".", name, 1))
1228 		return 0;
1229 	if (name_len == 2 && !strncmp("..", name, 2))
1230 		return 0;
1231 
1232 	/* Skip bad inodes so that recovery can continue */
1233 	iter = ocfs2_iget(p->osb, ino,
1234 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY);
1235 	if (IS_ERR(iter))
1236 		return 0;
1237 
1238 	mlog(0, "queue orphan %llu\n",
1239 	     (unsigned long long)OCFS2_I(iter)->ip_blkno);
1240 	/* No locking is required for the next_orphan queue as there
1241 	 * is only ever a single process doing orphan recovery. */
1242 	OCFS2_I(iter)->ip_next_orphan = p->head;
1243 	p->head = iter;
1244 
1245 	return 0;
1246 }
1247 
1248 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1249 			       int slot,
1250 			       struct inode **head)
1251 {
1252 	int status;
1253 	struct inode *orphan_dir_inode = NULL;
1254 	struct ocfs2_orphan_filldir_priv priv;
1255 	loff_t pos = 0;
1256 
1257 	priv.osb = osb;
1258 	priv.head = *head;
1259 
1260 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1261 						       ORPHAN_DIR_SYSTEM_INODE,
1262 						       slot);
1263 	if  (!orphan_dir_inode) {
1264 		status = -ENOENT;
1265 		mlog_errno(status);
1266 		return status;
1267 	}
1268 
1269 	mutex_lock(&orphan_dir_inode->i_mutex);
1270 	status = ocfs2_meta_lock(orphan_dir_inode, NULL, 0);
1271 	if (status < 0) {
1272 		mlog_errno(status);
1273 		goto out;
1274 	}
1275 
1276 	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1277 				   ocfs2_orphan_filldir);
1278 	if (status) {
1279 		mlog_errno(status);
1280 		goto out;
1281 	}
1282 
1283 	*head = priv.head;
1284 
1285 	ocfs2_meta_unlock(orphan_dir_inode, 0);
1286 out:
1287 	mutex_unlock(&orphan_dir_inode->i_mutex);
1288 	iput(orphan_dir_inode);
1289 	return status;
1290 }
1291 
1292 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1293 					      int slot)
1294 {
1295 	int ret;
1296 
1297 	spin_lock(&osb->osb_lock);
1298 	ret = !osb->osb_orphan_wipes[slot];
1299 	spin_unlock(&osb->osb_lock);
1300 	return ret;
1301 }
1302 
1303 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1304 					     int slot)
1305 {
1306 	spin_lock(&osb->osb_lock);
1307 	/* Mark ourselves such that new processes in delete_inode()
1308 	 * know to quit early. */
1309 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1310 	while (osb->osb_orphan_wipes[slot]) {
1311 		/* If any processes are already in the middle of an
1312 		 * orphan wipe on this dir, then we need to wait for
1313 		 * them. */
1314 		spin_unlock(&osb->osb_lock);
1315 		wait_event_interruptible(osb->osb_wipe_event,
1316 					 ocfs2_orphan_recovery_can_continue(osb, slot));
1317 		spin_lock(&osb->osb_lock);
1318 	}
1319 	spin_unlock(&osb->osb_lock);
1320 }
1321 
1322 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1323 					      int slot)
1324 {
1325 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1326 }
1327 
1328 /*
1329  * Orphan recovery. Each mounted node has it's own orphan dir which we
1330  * must run during recovery. Our strategy here is to build a list of
1331  * the inodes in the orphan dir and iget/iput them. The VFS does
1332  * (most) of the rest of the work.
1333  *
1334  * Orphan recovery can happen at any time, not just mount so we have a
1335  * couple of extra considerations.
1336  *
1337  * - We grab as many inodes as we can under the orphan dir lock -
1338  *   doing iget() outside the orphan dir risks getting a reference on
1339  *   an invalid inode.
1340  * - We must be sure not to deadlock with other processes on the
1341  *   system wanting to run delete_inode(). This can happen when they go
1342  *   to lock the orphan dir and the orphan recovery process attempts to
1343  *   iget() inside the orphan dir lock. This can be avoided by
1344  *   advertising our state to ocfs2_delete_inode().
1345  */
1346 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1347 				 int slot)
1348 {
1349 	int ret = 0;
1350 	struct inode *inode = NULL;
1351 	struct inode *iter;
1352 	struct ocfs2_inode_info *oi;
1353 
1354 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1355 
1356 	ocfs2_mark_recovering_orphan_dir(osb, slot);
1357 	ret = ocfs2_queue_orphans(osb, slot, &inode);
1358 	ocfs2_clear_recovering_orphan_dir(osb, slot);
1359 
1360 	/* Error here should be noted, but we want to continue with as
1361 	 * many queued inodes as we've got. */
1362 	if (ret)
1363 		mlog_errno(ret);
1364 
1365 	while (inode) {
1366 		oi = OCFS2_I(inode);
1367 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1368 
1369 		iter = oi->ip_next_orphan;
1370 
1371 		spin_lock(&oi->ip_lock);
1372 		/* Delete voting may have set these on the assumption
1373 		 * that the other node would wipe them successfully.
1374 		 * If they are still in the node's orphan dir, we need
1375 		 * to reset that state. */
1376 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1377 
1378 		/* Set the proper information to get us going into
1379 		 * ocfs2_delete_inode. */
1380 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1381 		spin_unlock(&oi->ip_lock);
1382 
1383 		iput(inode);
1384 
1385 		inode = iter;
1386 	}
1387 
1388 	return ret;
1389 }
1390 
1391 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1392 {
1393 	/* This check is good because ocfs2 will wait on our recovery
1394 	 * thread before changing it to something other than MOUNTED
1395 	 * or DISABLED. */
1396 	wait_event(osb->osb_mount_event,
1397 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1398 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1399 
1400 	/* If there's an error on mount, then we may never get to the
1401 	 * MOUNTED flag, but this is set right before
1402 	 * dismount_volume() so we can trust it. */
1403 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1404 		mlog(0, "mount error, exiting!\n");
1405 		return -EBUSY;
1406 	}
1407 
1408 	return 0;
1409 }
1410 
1411 static int ocfs2_commit_thread(void *arg)
1412 {
1413 	int status;
1414 	struct ocfs2_super *osb = arg;
1415 	struct ocfs2_journal *journal = osb->journal;
1416 
1417 	/* we can trust j_num_trans here because _should_stop() is only set in
1418 	 * shutdown and nobody other than ourselves should be able to start
1419 	 * transactions.  committing on shutdown might take a few iterations
1420 	 * as final transactions put deleted inodes on the list */
1421 	while (!(kthread_should_stop() &&
1422 		 atomic_read(&journal->j_num_trans) == 0)) {
1423 
1424 		wait_event_interruptible(osb->checkpoint_event,
1425 					 atomic_read(&journal->j_num_trans)
1426 					 || kthread_should_stop());
1427 
1428 		status = ocfs2_commit_cache(osb);
1429 		if (status < 0)
1430 			mlog_errno(status);
1431 
1432 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1433 			mlog(ML_KTHREAD,
1434 			     "commit_thread: %u transactions pending on "
1435 			     "shutdown\n",
1436 			     atomic_read(&journal->j_num_trans));
1437 		}
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 /* Look for a dirty journal without taking any cluster locks. Used for
1444  * hard readonly access to determine whether the file system journals
1445  * require recovery. */
1446 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1447 {
1448 	int ret = 0;
1449 	unsigned int slot;
1450 	struct buffer_head *di_bh;
1451 	struct ocfs2_dinode *di;
1452 	struct inode *journal = NULL;
1453 
1454 	for(slot = 0; slot < osb->max_slots; slot++) {
1455 		journal = ocfs2_get_system_file_inode(osb,
1456 						      JOURNAL_SYSTEM_INODE,
1457 						      slot);
1458 		if (!journal || is_bad_inode(journal)) {
1459 			ret = -EACCES;
1460 			mlog_errno(ret);
1461 			goto out;
1462 		}
1463 
1464 		di_bh = NULL;
1465 		ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1466 				       0, journal);
1467 		if (ret < 0) {
1468 			mlog_errno(ret);
1469 			goto out;
1470 		}
1471 
1472 		di = (struct ocfs2_dinode *) di_bh->b_data;
1473 
1474 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
1475 		    OCFS2_JOURNAL_DIRTY_FL)
1476 			ret = -EROFS;
1477 
1478 		brelse(di_bh);
1479 		if (ret)
1480 			break;
1481 	}
1482 
1483 out:
1484 	if (journal)
1485 		iput(journal);
1486 
1487 	return ret;
1488 }
1489