xref: /openbmc/linux/fs/ocfs2/file.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 
41 #include <cluster/masklog.h>
42 
43 #include "ocfs2.h"
44 
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64 
65 #include "buffer_head_io.h"
66 
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 	struct ocfs2_file_private *fp;
70 
71 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 	if (!fp)
73 		return -ENOMEM;
74 
75 	fp->fp_file = file;
76 	mutex_init(&fp->fp_mutex);
77 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 	file->private_data = fp;
79 
80 	return 0;
81 }
82 
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 	struct ocfs2_file_private *fp = file->private_data;
86 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87 
88 	if (fp) {
89 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 		ocfs2_lock_res_free(&fp->fp_flock);
91 		kfree(fp);
92 		file->private_data = NULL;
93 	}
94 }
95 
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 	int status;
99 	int mode = file->f_flags;
100 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
101 
102 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 			      (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 			      file->f_path.dentry->d_name.len,
105 			      file->f_path.dentry->d_name.name, mode);
106 
107 	if (file->f_mode & FMODE_WRITE)
108 		dquot_initialize(inode);
109 
110 	spin_lock(&oi->ip_lock);
111 
112 	/* Check that the inode hasn't been wiped from disk by another
113 	 * node. If it hasn't then we're safe as long as we hold the
114 	 * spin lock until our increment of open count. */
115 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 		spin_unlock(&oi->ip_lock);
117 
118 		status = -ENOENT;
119 		goto leave;
120 	}
121 
122 	if (mode & O_DIRECT)
123 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124 
125 	oi->ip_open_count++;
126 	spin_unlock(&oi->ip_lock);
127 
128 	status = ocfs2_init_file_private(inode, file);
129 	if (status) {
130 		/*
131 		 * We want to set open count back if we're failing the
132 		 * open.
133 		 */
134 		spin_lock(&oi->ip_lock);
135 		oi->ip_open_count--;
136 		spin_unlock(&oi->ip_lock);
137 	}
138 
139 leave:
140 	return status;
141 }
142 
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
146 
147 	spin_lock(&oi->ip_lock);
148 	if (!--oi->ip_open_count)
149 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150 
151 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152 				 oi->ip_blkno,
153 				 file->f_path.dentry->d_name.len,
154 				 file->f_path.dentry->d_name.name,
155 				 oi->ip_open_count);
156 	spin_unlock(&oi->ip_lock);
157 
158 	ocfs2_free_file_private(inode, file);
159 
160 	return 0;
161 }
162 
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165 	return ocfs2_init_file_private(inode, file);
166 }
167 
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170 	ocfs2_free_file_private(inode, file);
171 	return 0;
172 }
173 
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175 			   int datasync)
176 {
177 	int err = 0;
178 	journal_t *journal;
179 	struct inode *inode = file->f_mapping->host;
180 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
181 
182 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
183 			      OCFS2_I(inode)->ip_blkno,
184 			      file->f_path.dentry->d_name.len,
185 			      file->f_path.dentry->d_name.name,
186 			      (unsigned long long)datasync);
187 
188 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
189 	if (err)
190 		return err;
191 
192 	/*
193 	 * Probably don't need the i_mutex at all in here, just putting it here
194 	 * to be consistent with how fsync used to be called, someone more
195 	 * familiar with the fs could possibly remove it.
196 	 */
197 	mutex_lock(&inode->i_mutex);
198 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
199 		/*
200 		 * We still have to flush drive's caches to get data to the
201 		 * platter
202 		 */
203 		if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
204 			blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
205 		goto bail;
206 	}
207 
208 	journal = osb->journal->j_journal;
209 	err = jbd2_journal_force_commit(journal);
210 
211 bail:
212 	if (err)
213 		mlog_errno(err);
214 	mutex_unlock(&inode->i_mutex);
215 
216 	return (err < 0) ? -EIO : 0;
217 }
218 
219 int ocfs2_should_update_atime(struct inode *inode,
220 			      struct vfsmount *vfsmnt)
221 {
222 	struct timespec now;
223 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
224 
225 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
226 		return 0;
227 
228 	if ((inode->i_flags & S_NOATIME) ||
229 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
230 		return 0;
231 
232 	/*
233 	 * We can be called with no vfsmnt structure - NFSD will
234 	 * sometimes do this.
235 	 *
236 	 * Note that our action here is different than touch_atime() -
237 	 * if we can't tell whether this is a noatime mount, then we
238 	 * don't know whether to trust the value of s_atime_quantum.
239 	 */
240 	if (vfsmnt == NULL)
241 		return 0;
242 
243 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
244 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
245 		return 0;
246 
247 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
248 		if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
249 		    (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
250 			return 1;
251 
252 		return 0;
253 	}
254 
255 	now = CURRENT_TIME;
256 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
257 		return 0;
258 	else
259 		return 1;
260 }
261 
262 int ocfs2_update_inode_atime(struct inode *inode,
263 			     struct buffer_head *bh)
264 {
265 	int ret;
266 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
267 	handle_t *handle;
268 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
269 
270 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
271 	if (IS_ERR(handle)) {
272 		ret = PTR_ERR(handle);
273 		mlog_errno(ret);
274 		goto out;
275 	}
276 
277 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
278 				      OCFS2_JOURNAL_ACCESS_WRITE);
279 	if (ret) {
280 		mlog_errno(ret);
281 		goto out_commit;
282 	}
283 
284 	/*
285 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
286 	 * have i_mutex to guard against concurrent changes to other
287 	 * inode fields.
288 	 */
289 	inode->i_atime = CURRENT_TIME;
290 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
291 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
292 	ocfs2_journal_dirty(handle, bh);
293 
294 out_commit:
295 	ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
296 out:
297 	return ret;
298 }
299 
300 static int ocfs2_set_inode_size(handle_t *handle,
301 				struct inode *inode,
302 				struct buffer_head *fe_bh,
303 				u64 new_i_size)
304 {
305 	int status;
306 
307 	i_size_write(inode, new_i_size);
308 	inode->i_blocks = ocfs2_inode_sector_count(inode);
309 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
310 
311 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
312 	if (status < 0) {
313 		mlog_errno(status);
314 		goto bail;
315 	}
316 
317 bail:
318 	return status;
319 }
320 
321 int ocfs2_simple_size_update(struct inode *inode,
322 			     struct buffer_head *di_bh,
323 			     u64 new_i_size)
324 {
325 	int ret;
326 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
327 	handle_t *handle = NULL;
328 
329 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
330 	if (IS_ERR(handle)) {
331 		ret = PTR_ERR(handle);
332 		mlog_errno(ret);
333 		goto out;
334 	}
335 
336 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
337 				   new_i_size);
338 	if (ret < 0)
339 		mlog_errno(ret);
340 
341 	ocfs2_commit_trans(osb, handle);
342 out:
343 	return ret;
344 }
345 
346 static int ocfs2_cow_file_pos(struct inode *inode,
347 			      struct buffer_head *fe_bh,
348 			      u64 offset)
349 {
350 	int status;
351 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
352 	unsigned int num_clusters = 0;
353 	unsigned int ext_flags = 0;
354 
355 	/*
356 	 * If the new offset is aligned to the range of the cluster, there is
357 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
358 	 * CoW either.
359 	 */
360 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
361 		return 0;
362 
363 	status = ocfs2_get_clusters(inode, cpos, &phys,
364 				    &num_clusters, &ext_flags);
365 	if (status) {
366 		mlog_errno(status);
367 		goto out;
368 	}
369 
370 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
371 		goto out;
372 
373 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
374 
375 out:
376 	return status;
377 }
378 
379 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
380 				     struct inode *inode,
381 				     struct buffer_head *fe_bh,
382 				     u64 new_i_size)
383 {
384 	int status;
385 	handle_t *handle;
386 	struct ocfs2_dinode *di;
387 	u64 cluster_bytes;
388 
389 	/*
390 	 * We need to CoW the cluster contains the offset if it is reflinked
391 	 * since we will call ocfs2_zero_range_for_truncate later which will
392 	 * write "0" from offset to the end of the cluster.
393 	 */
394 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
395 	if (status) {
396 		mlog_errno(status);
397 		return status;
398 	}
399 
400 	/* TODO: This needs to actually orphan the inode in this
401 	 * transaction. */
402 
403 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
404 	if (IS_ERR(handle)) {
405 		status = PTR_ERR(handle);
406 		mlog_errno(status);
407 		goto out;
408 	}
409 
410 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
411 					 OCFS2_JOURNAL_ACCESS_WRITE);
412 	if (status < 0) {
413 		mlog_errno(status);
414 		goto out_commit;
415 	}
416 
417 	/*
418 	 * Do this before setting i_size.
419 	 */
420 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
421 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
422 					       cluster_bytes);
423 	if (status) {
424 		mlog_errno(status);
425 		goto out_commit;
426 	}
427 
428 	i_size_write(inode, new_i_size);
429 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
430 
431 	di = (struct ocfs2_dinode *) fe_bh->b_data;
432 	di->i_size = cpu_to_le64(new_i_size);
433 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
434 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
435 
436 	ocfs2_journal_dirty(handle, fe_bh);
437 
438 out_commit:
439 	ocfs2_commit_trans(osb, handle);
440 out:
441 	return status;
442 }
443 
444 static int ocfs2_truncate_file(struct inode *inode,
445 			       struct buffer_head *di_bh,
446 			       u64 new_i_size)
447 {
448 	int status = 0;
449 	struct ocfs2_dinode *fe = NULL;
450 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
451 
452 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
453 	 * already validated it */
454 	fe = (struct ocfs2_dinode *) di_bh->b_data;
455 
456 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457 				  (unsigned long long)le64_to_cpu(fe->i_size),
458 				  (unsigned long long)new_i_size);
459 
460 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461 			"Inode %llu, inode i_size = %lld != di "
462 			"i_size = %llu, i_flags = 0x%x\n",
463 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
464 			i_size_read(inode),
465 			(unsigned long long)le64_to_cpu(fe->i_size),
466 			le32_to_cpu(fe->i_flags));
467 
468 	if (new_i_size > le64_to_cpu(fe->i_size)) {
469 		trace_ocfs2_truncate_file_error(
470 			(unsigned long long)le64_to_cpu(fe->i_size),
471 			(unsigned long long)new_i_size);
472 		status = -EINVAL;
473 		mlog_errno(status);
474 		goto bail;
475 	}
476 
477 	/* lets handle the simple truncate cases before doing any more
478 	 * cluster locking. */
479 	if (new_i_size == le64_to_cpu(fe->i_size))
480 		goto bail;
481 
482 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
483 
484 	ocfs2_resv_discard(&osb->osb_la_resmap,
485 			   &OCFS2_I(inode)->ip_la_data_resv);
486 
487 	/*
488 	 * The inode lock forced other nodes to sync and drop their
489 	 * pages, which (correctly) happens even if we have a truncate
490 	 * without allocation change - ocfs2 cluster sizes can be much
491 	 * greater than page size, so we have to truncate them
492 	 * anyway.
493 	 */
494 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
495 	truncate_inode_pages(inode->i_mapping, new_i_size);
496 
497 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
498 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
499 					       i_size_read(inode), 1);
500 		if (status)
501 			mlog_errno(status);
502 
503 		goto bail_unlock_sem;
504 	}
505 
506 	/* alright, we're going to need to do a full blown alloc size
507 	 * change. Orphan the inode so that recovery can complete the
508 	 * truncate if necessary. This does the task of marking
509 	 * i_size. */
510 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
511 	if (status < 0) {
512 		mlog_errno(status);
513 		goto bail_unlock_sem;
514 	}
515 
516 	status = ocfs2_commit_truncate(osb, inode, di_bh);
517 	if (status < 0) {
518 		mlog_errno(status);
519 		goto bail_unlock_sem;
520 	}
521 
522 	/* TODO: orphan dir cleanup here. */
523 bail_unlock_sem:
524 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
525 
526 bail:
527 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
528 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
529 
530 	return status;
531 }
532 
533 /*
534  * extend file allocation only here.
535  * we'll update all the disk stuff, and oip->alloc_size
536  *
537  * expect stuff to be locked, a transaction started and enough data /
538  * metadata reservations in the contexts.
539  *
540  * Will return -EAGAIN, and a reason if a restart is needed.
541  * If passed in, *reason will always be set, even in error.
542  */
543 int ocfs2_add_inode_data(struct ocfs2_super *osb,
544 			 struct inode *inode,
545 			 u32 *logical_offset,
546 			 u32 clusters_to_add,
547 			 int mark_unwritten,
548 			 struct buffer_head *fe_bh,
549 			 handle_t *handle,
550 			 struct ocfs2_alloc_context *data_ac,
551 			 struct ocfs2_alloc_context *meta_ac,
552 			 enum ocfs2_alloc_restarted *reason_ret)
553 {
554 	int ret;
555 	struct ocfs2_extent_tree et;
556 
557 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
558 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
559 					  clusters_to_add, mark_unwritten,
560 					  data_ac, meta_ac, reason_ret);
561 
562 	return ret;
563 }
564 
565 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
566 				     u32 clusters_to_add, int mark_unwritten)
567 {
568 	int status = 0;
569 	int restart_func = 0;
570 	int credits;
571 	u32 prev_clusters;
572 	struct buffer_head *bh = NULL;
573 	struct ocfs2_dinode *fe = NULL;
574 	handle_t *handle = NULL;
575 	struct ocfs2_alloc_context *data_ac = NULL;
576 	struct ocfs2_alloc_context *meta_ac = NULL;
577 	enum ocfs2_alloc_restarted why;
578 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
579 	struct ocfs2_extent_tree et;
580 	int did_quota = 0;
581 
582 	/*
583 	 * Unwritten extent only exists for file systems which
584 	 * support holes.
585 	 */
586 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
587 
588 	status = ocfs2_read_inode_block(inode, &bh);
589 	if (status < 0) {
590 		mlog_errno(status);
591 		goto leave;
592 	}
593 	fe = (struct ocfs2_dinode *) bh->b_data;
594 
595 restart_all:
596 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
597 
598 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
599 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
600 				       &data_ac, &meta_ac);
601 	if (status) {
602 		mlog_errno(status);
603 		goto leave;
604 	}
605 
606 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
607 	handle = ocfs2_start_trans(osb, credits);
608 	if (IS_ERR(handle)) {
609 		status = PTR_ERR(handle);
610 		handle = NULL;
611 		mlog_errno(status);
612 		goto leave;
613 	}
614 
615 restarted_transaction:
616 	trace_ocfs2_extend_allocation(
617 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
618 		(unsigned long long)i_size_read(inode),
619 		le32_to_cpu(fe->i_clusters), clusters_to_add,
620 		why, restart_func);
621 
622 	status = dquot_alloc_space_nodirty(inode,
623 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
624 	if (status)
625 		goto leave;
626 	did_quota = 1;
627 
628 	/* reserve a write to the file entry early on - that we if we
629 	 * run out of credits in the allocation path, we can still
630 	 * update i_size. */
631 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
632 					 OCFS2_JOURNAL_ACCESS_WRITE);
633 	if (status < 0) {
634 		mlog_errno(status);
635 		goto leave;
636 	}
637 
638 	prev_clusters = OCFS2_I(inode)->ip_clusters;
639 
640 	status = ocfs2_add_inode_data(osb,
641 				      inode,
642 				      &logical_start,
643 				      clusters_to_add,
644 				      mark_unwritten,
645 				      bh,
646 				      handle,
647 				      data_ac,
648 				      meta_ac,
649 				      &why);
650 	if ((status < 0) && (status != -EAGAIN)) {
651 		if (status != -ENOSPC)
652 			mlog_errno(status);
653 		goto leave;
654 	}
655 
656 	ocfs2_journal_dirty(handle, bh);
657 
658 	spin_lock(&OCFS2_I(inode)->ip_lock);
659 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
660 	spin_unlock(&OCFS2_I(inode)->ip_lock);
661 	/* Release unused quota reservation */
662 	dquot_free_space(inode,
663 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
664 	did_quota = 0;
665 
666 	if (why != RESTART_NONE && clusters_to_add) {
667 		if (why == RESTART_META) {
668 			restart_func = 1;
669 			status = 0;
670 		} else {
671 			BUG_ON(why != RESTART_TRANS);
672 
673 			status = ocfs2_allocate_extend_trans(handle, 1);
674 			if (status < 0) {
675 				/* handle still has to be committed at
676 				 * this point. */
677 				status = -ENOMEM;
678 				mlog_errno(status);
679 				goto leave;
680 			}
681 			goto restarted_transaction;
682 		}
683 	}
684 
685 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
686 	     le32_to_cpu(fe->i_clusters),
687 	     (unsigned long long)le64_to_cpu(fe->i_size),
688 	     OCFS2_I(inode)->ip_clusters,
689 	     (unsigned long long)i_size_read(inode));
690 
691 leave:
692 	if (status < 0 && did_quota)
693 		dquot_free_space(inode,
694 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
695 	if (handle) {
696 		ocfs2_commit_trans(osb, handle);
697 		handle = NULL;
698 	}
699 	if (data_ac) {
700 		ocfs2_free_alloc_context(data_ac);
701 		data_ac = NULL;
702 	}
703 	if (meta_ac) {
704 		ocfs2_free_alloc_context(meta_ac);
705 		meta_ac = NULL;
706 	}
707 	if ((!status) && restart_func) {
708 		restart_func = 0;
709 		goto restart_all;
710 	}
711 	brelse(bh);
712 	bh = NULL;
713 
714 	return status;
715 }
716 
717 /*
718  * While a write will already be ordering the data, a truncate will not.
719  * Thus, we need to explicitly order the zeroed pages.
720  */
721 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
722 {
723 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
724 	handle_t *handle = NULL;
725 	int ret = 0;
726 
727 	if (!ocfs2_should_order_data(inode))
728 		goto out;
729 
730 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
731 	if (IS_ERR(handle)) {
732 		ret = -ENOMEM;
733 		mlog_errno(ret);
734 		goto out;
735 	}
736 
737 	ret = ocfs2_jbd2_file_inode(handle, inode);
738 	if (ret < 0)
739 		mlog_errno(ret);
740 
741 out:
742 	if (ret) {
743 		if (!IS_ERR(handle))
744 			ocfs2_commit_trans(osb, handle);
745 		handle = ERR_PTR(ret);
746 	}
747 	return handle;
748 }
749 
750 /* Some parts of this taken from generic_cont_expand, which turned out
751  * to be too fragile to do exactly what we need without us having to
752  * worry about recursive locking in ->write_begin() and ->write_end(). */
753 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
754 				 u64 abs_to)
755 {
756 	struct address_space *mapping = inode->i_mapping;
757 	struct page *page;
758 	unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
759 	handle_t *handle = NULL;
760 	int ret = 0;
761 	unsigned zero_from, zero_to, block_start, block_end;
762 
763 	BUG_ON(abs_from >= abs_to);
764 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
765 	BUG_ON(abs_from & (inode->i_blkbits - 1));
766 
767 	page = find_or_create_page(mapping, index, GFP_NOFS);
768 	if (!page) {
769 		ret = -ENOMEM;
770 		mlog_errno(ret);
771 		goto out;
772 	}
773 
774 	/* Get the offsets within the page that we want to zero */
775 	zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
776 	zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
777 	if (!zero_to)
778 		zero_to = PAGE_CACHE_SIZE;
779 
780 	trace_ocfs2_write_zero_page(
781 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
782 			(unsigned long long)abs_from,
783 			(unsigned long long)abs_to,
784 			index, zero_from, zero_to);
785 
786 	/* We know that zero_from is block aligned */
787 	for (block_start = zero_from; block_start < zero_to;
788 	     block_start = block_end) {
789 		block_end = block_start + (1 << inode->i_blkbits);
790 
791 		/*
792 		 * block_start is block-aligned.  Bump it by one to force
793 		 * __block_write_begin and block_commit_write to zero the
794 		 * whole block.
795 		 */
796 		ret = __block_write_begin(page, block_start + 1, 0,
797 					  ocfs2_get_block);
798 		if (ret < 0) {
799 			mlog_errno(ret);
800 			goto out_unlock;
801 		}
802 
803 		if (!handle) {
804 			handle = ocfs2_zero_start_ordered_transaction(inode);
805 			if (IS_ERR(handle)) {
806 				ret = PTR_ERR(handle);
807 				handle = NULL;
808 				break;
809 			}
810 		}
811 
812 		/* must not update i_size! */
813 		ret = block_commit_write(page, block_start + 1,
814 					 block_start + 1);
815 		if (ret < 0)
816 			mlog_errno(ret);
817 		else
818 			ret = 0;
819 	}
820 
821 	if (handle)
822 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
823 
824 out_unlock:
825 	unlock_page(page);
826 	page_cache_release(page);
827 out:
828 	return ret;
829 }
830 
831 /*
832  * Find the next range to zero.  We do this in terms of bytes because
833  * that's what ocfs2_zero_extend() wants, and it is dealing with the
834  * pagecache.  We may return multiple extents.
835  *
836  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
837  * needs to be zeroed.  range_start and range_end return the next zeroing
838  * range.  A subsequent call should pass the previous range_end as its
839  * zero_start.  If range_end is 0, there's nothing to do.
840  *
841  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
842  */
843 static int ocfs2_zero_extend_get_range(struct inode *inode,
844 				       struct buffer_head *di_bh,
845 				       u64 zero_start, u64 zero_end,
846 				       u64 *range_start, u64 *range_end)
847 {
848 	int rc = 0, needs_cow = 0;
849 	u32 p_cpos, zero_clusters = 0;
850 	u32 zero_cpos =
851 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
852 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
853 	unsigned int num_clusters = 0;
854 	unsigned int ext_flags = 0;
855 
856 	while (zero_cpos < last_cpos) {
857 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
858 					&num_clusters, &ext_flags);
859 		if (rc) {
860 			mlog_errno(rc);
861 			goto out;
862 		}
863 
864 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
865 			zero_clusters = num_clusters;
866 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
867 				needs_cow = 1;
868 			break;
869 		}
870 
871 		zero_cpos += num_clusters;
872 	}
873 	if (!zero_clusters) {
874 		*range_end = 0;
875 		goto out;
876 	}
877 
878 	while ((zero_cpos + zero_clusters) < last_cpos) {
879 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
880 					&p_cpos, &num_clusters,
881 					&ext_flags);
882 		if (rc) {
883 			mlog_errno(rc);
884 			goto out;
885 		}
886 
887 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
888 			break;
889 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
890 			needs_cow = 1;
891 		zero_clusters += num_clusters;
892 	}
893 	if ((zero_cpos + zero_clusters) > last_cpos)
894 		zero_clusters = last_cpos - zero_cpos;
895 
896 	if (needs_cow) {
897 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
898 					zero_clusters, UINT_MAX);
899 		if (rc) {
900 			mlog_errno(rc);
901 			goto out;
902 		}
903 	}
904 
905 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
906 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
907 					     zero_cpos + zero_clusters);
908 
909 out:
910 	return rc;
911 }
912 
913 /*
914  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
915  * has made sure that the entire range needs zeroing.
916  */
917 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
918 				   u64 range_end)
919 {
920 	int rc = 0;
921 	u64 next_pos;
922 	u64 zero_pos = range_start;
923 
924 	trace_ocfs2_zero_extend_range(
925 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
926 			(unsigned long long)range_start,
927 			(unsigned long long)range_end);
928 	BUG_ON(range_start >= range_end);
929 
930 	while (zero_pos < range_end) {
931 		next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
932 		if (next_pos > range_end)
933 			next_pos = range_end;
934 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
935 		if (rc < 0) {
936 			mlog_errno(rc);
937 			break;
938 		}
939 		zero_pos = next_pos;
940 
941 		/*
942 		 * Very large extends have the potential to lock up
943 		 * the cpu for extended periods of time.
944 		 */
945 		cond_resched();
946 	}
947 
948 	return rc;
949 }
950 
951 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
952 		      loff_t zero_to_size)
953 {
954 	int ret = 0;
955 	u64 zero_start, range_start = 0, range_end = 0;
956 	struct super_block *sb = inode->i_sb;
957 
958 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
959 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
960 				(unsigned long long)zero_start,
961 				(unsigned long long)i_size_read(inode));
962 	while (zero_start < zero_to_size) {
963 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
964 						  zero_to_size,
965 						  &range_start,
966 						  &range_end);
967 		if (ret) {
968 			mlog_errno(ret);
969 			break;
970 		}
971 		if (!range_end)
972 			break;
973 		/* Trim the ends */
974 		if (range_start < zero_start)
975 			range_start = zero_start;
976 		if (range_end > zero_to_size)
977 			range_end = zero_to_size;
978 
979 		ret = ocfs2_zero_extend_range(inode, range_start,
980 					      range_end);
981 		if (ret) {
982 			mlog_errno(ret);
983 			break;
984 		}
985 		zero_start = range_end;
986 	}
987 
988 	return ret;
989 }
990 
991 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
992 			  u64 new_i_size, u64 zero_to)
993 {
994 	int ret;
995 	u32 clusters_to_add;
996 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
997 
998 	/*
999 	 * Only quota files call this without a bh, and they can't be
1000 	 * refcounted.
1001 	 */
1002 	BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1003 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1004 
1005 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1006 	if (clusters_to_add < oi->ip_clusters)
1007 		clusters_to_add = 0;
1008 	else
1009 		clusters_to_add -= oi->ip_clusters;
1010 
1011 	if (clusters_to_add) {
1012 		ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1013 						clusters_to_add, 0);
1014 		if (ret) {
1015 			mlog_errno(ret);
1016 			goto out;
1017 		}
1018 	}
1019 
1020 	/*
1021 	 * Call this even if we don't add any clusters to the tree. We
1022 	 * still need to zero the area between the old i_size and the
1023 	 * new i_size.
1024 	 */
1025 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1026 	if (ret < 0)
1027 		mlog_errno(ret);
1028 
1029 out:
1030 	return ret;
1031 }
1032 
1033 static int ocfs2_extend_file(struct inode *inode,
1034 			     struct buffer_head *di_bh,
1035 			     u64 new_i_size)
1036 {
1037 	int ret = 0;
1038 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1039 
1040 	BUG_ON(!di_bh);
1041 
1042 	/* setattr sometimes calls us like this. */
1043 	if (new_i_size == 0)
1044 		goto out;
1045 
1046 	if (i_size_read(inode) == new_i_size)
1047 		goto out;
1048 	BUG_ON(new_i_size < i_size_read(inode));
1049 
1050 	/*
1051 	 * The alloc sem blocks people in read/write from reading our
1052 	 * allocation until we're done changing it. We depend on
1053 	 * i_mutex to block other extend/truncate calls while we're
1054 	 * here.  We even have to hold it for sparse files because there
1055 	 * might be some tail zeroing.
1056 	 */
1057 	down_write(&oi->ip_alloc_sem);
1058 
1059 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1060 		/*
1061 		 * We can optimize small extends by keeping the inodes
1062 		 * inline data.
1063 		 */
1064 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1065 			up_write(&oi->ip_alloc_sem);
1066 			goto out_update_size;
1067 		}
1068 
1069 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1070 		if (ret) {
1071 			up_write(&oi->ip_alloc_sem);
1072 			mlog_errno(ret);
1073 			goto out;
1074 		}
1075 	}
1076 
1077 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1078 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1079 	else
1080 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1081 					    new_i_size);
1082 
1083 	up_write(&oi->ip_alloc_sem);
1084 
1085 	if (ret < 0) {
1086 		mlog_errno(ret);
1087 		goto out;
1088 	}
1089 
1090 out_update_size:
1091 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1092 	if (ret < 0)
1093 		mlog_errno(ret);
1094 
1095 out:
1096 	return ret;
1097 }
1098 
1099 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1100 {
1101 	int status = 0, size_change;
1102 	struct inode *inode = dentry->d_inode;
1103 	struct super_block *sb = inode->i_sb;
1104 	struct ocfs2_super *osb = OCFS2_SB(sb);
1105 	struct buffer_head *bh = NULL;
1106 	handle_t *handle = NULL;
1107 	struct dquot *transfer_to[MAXQUOTAS] = { };
1108 	int qtype;
1109 
1110 	trace_ocfs2_setattr(inode, dentry,
1111 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1112 			    dentry->d_name.len, dentry->d_name.name,
1113 			    attr->ia_valid, attr->ia_mode,
1114 			    from_kuid(&init_user_ns, attr->ia_uid),
1115 			    from_kgid(&init_user_ns, attr->ia_gid));
1116 
1117 	/* ensuring we don't even attempt to truncate a symlink */
1118 	if (S_ISLNK(inode->i_mode))
1119 		attr->ia_valid &= ~ATTR_SIZE;
1120 
1121 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1122 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1123 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1124 		return 0;
1125 
1126 	status = inode_change_ok(inode, attr);
1127 	if (status)
1128 		return status;
1129 
1130 	if (is_quota_modification(inode, attr))
1131 		dquot_initialize(inode);
1132 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1133 	if (size_change) {
1134 		status = ocfs2_rw_lock(inode, 1);
1135 		if (status < 0) {
1136 			mlog_errno(status);
1137 			goto bail;
1138 		}
1139 	}
1140 
1141 	status = ocfs2_inode_lock(inode, &bh, 1);
1142 	if (status < 0) {
1143 		if (status != -ENOENT)
1144 			mlog_errno(status);
1145 		goto bail_unlock_rw;
1146 	}
1147 
1148 	if (size_change && attr->ia_size != i_size_read(inode)) {
1149 		status = inode_newsize_ok(inode, attr->ia_size);
1150 		if (status)
1151 			goto bail_unlock;
1152 
1153 		inode_dio_wait(inode);
1154 
1155 		if (i_size_read(inode) > attr->ia_size) {
1156 			if (ocfs2_should_order_data(inode)) {
1157 				status = ocfs2_begin_ordered_truncate(inode,
1158 								      attr->ia_size);
1159 				if (status)
1160 					goto bail_unlock;
1161 			}
1162 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1163 		} else
1164 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1165 		if (status < 0) {
1166 			if (status != -ENOSPC)
1167 				mlog_errno(status);
1168 			status = -ENOSPC;
1169 			goto bail_unlock;
1170 		}
1171 	}
1172 
1173 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1174 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1175 		/*
1176 		 * Gather pointers to quota structures so that allocation /
1177 		 * freeing of quota structures happens here and not inside
1178 		 * dquot_transfer() where we have problems with lock ordering
1179 		 */
1180 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1181 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1182 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1183 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1184 			if (!transfer_to[USRQUOTA]) {
1185 				status = -ESRCH;
1186 				goto bail_unlock;
1187 			}
1188 		}
1189 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1190 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1191 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1192 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1193 			if (!transfer_to[GRPQUOTA]) {
1194 				status = -ESRCH;
1195 				goto bail_unlock;
1196 			}
1197 		}
1198 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1199 					   2 * ocfs2_quota_trans_credits(sb));
1200 		if (IS_ERR(handle)) {
1201 			status = PTR_ERR(handle);
1202 			mlog_errno(status);
1203 			goto bail_unlock;
1204 		}
1205 		status = __dquot_transfer(inode, transfer_to);
1206 		if (status < 0)
1207 			goto bail_commit;
1208 	} else {
1209 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1210 		if (IS_ERR(handle)) {
1211 			status = PTR_ERR(handle);
1212 			mlog_errno(status);
1213 			goto bail_unlock;
1214 		}
1215 	}
1216 
1217 	setattr_copy(inode, attr);
1218 	mark_inode_dirty(inode);
1219 
1220 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1221 	if (status < 0)
1222 		mlog_errno(status);
1223 
1224 bail_commit:
1225 	ocfs2_commit_trans(osb, handle);
1226 bail_unlock:
1227 	ocfs2_inode_unlock(inode, 1);
1228 bail_unlock_rw:
1229 	if (size_change)
1230 		ocfs2_rw_unlock(inode, 1);
1231 bail:
1232 	brelse(bh);
1233 
1234 	/* Release quota pointers in case we acquired them */
1235 	for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1236 		dqput(transfer_to[qtype]);
1237 
1238 	if (!status && attr->ia_valid & ATTR_MODE) {
1239 		status = ocfs2_acl_chmod(inode);
1240 		if (status < 0)
1241 			mlog_errno(status);
1242 	}
1243 
1244 	return status;
1245 }
1246 
1247 int ocfs2_getattr(struct vfsmount *mnt,
1248 		  struct dentry *dentry,
1249 		  struct kstat *stat)
1250 {
1251 	struct inode *inode = dentry->d_inode;
1252 	struct super_block *sb = dentry->d_inode->i_sb;
1253 	struct ocfs2_super *osb = sb->s_fs_info;
1254 	int err;
1255 
1256 	err = ocfs2_inode_revalidate(dentry);
1257 	if (err) {
1258 		if (err != -ENOENT)
1259 			mlog_errno(err);
1260 		goto bail;
1261 	}
1262 
1263 	generic_fillattr(inode, stat);
1264 
1265 	/* We set the blksize from the cluster size for performance */
1266 	stat->blksize = osb->s_clustersize;
1267 
1268 bail:
1269 	return err;
1270 }
1271 
1272 int ocfs2_permission(struct inode *inode, int mask)
1273 {
1274 	int ret;
1275 
1276 	if (mask & MAY_NOT_BLOCK)
1277 		return -ECHILD;
1278 
1279 	ret = ocfs2_inode_lock(inode, NULL, 0);
1280 	if (ret) {
1281 		if (ret != -ENOENT)
1282 			mlog_errno(ret);
1283 		goto out;
1284 	}
1285 
1286 	ret = generic_permission(inode, mask);
1287 
1288 	ocfs2_inode_unlock(inode, 0);
1289 out:
1290 	return ret;
1291 }
1292 
1293 static int __ocfs2_write_remove_suid(struct inode *inode,
1294 				     struct buffer_head *bh)
1295 {
1296 	int ret;
1297 	handle_t *handle;
1298 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1299 	struct ocfs2_dinode *di;
1300 
1301 	trace_ocfs2_write_remove_suid(
1302 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1303 			inode->i_mode);
1304 
1305 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1306 	if (IS_ERR(handle)) {
1307 		ret = PTR_ERR(handle);
1308 		mlog_errno(ret);
1309 		goto out;
1310 	}
1311 
1312 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1313 				      OCFS2_JOURNAL_ACCESS_WRITE);
1314 	if (ret < 0) {
1315 		mlog_errno(ret);
1316 		goto out_trans;
1317 	}
1318 
1319 	inode->i_mode &= ~S_ISUID;
1320 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1321 		inode->i_mode &= ~S_ISGID;
1322 
1323 	di = (struct ocfs2_dinode *) bh->b_data;
1324 	di->i_mode = cpu_to_le16(inode->i_mode);
1325 
1326 	ocfs2_journal_dirty(handle, bh);
1327 
1328 out_trans:
1329 	ocfs2_commit_trans(osb, handle);
1330 out:
1331 	return ret;
1332 }
1333 
1334 /*
1335  * Will look for holes and unwritten extents in the range starting at
1336  * pos for count bytes (inclusive).
1337  */
1338 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1339 				       size_t count)
1340 {
1341 	int ret = 0;
1342 	unsigned int extent_flags;
1343 	u32 cpos, clusters, extent_len, phys_cpos;
1344 	struct super_block *sb = inode->i_sb;
1345 
1346 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1347 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1348 
1349 	while (clusters) {
1350 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1351 					 &extent_flags);
1352 		if (ret < 0) {
1353 			mlog_errno(ret);
1354 			goto out;
1355 		}
1356 
1357 		if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1358 			ret = 1;
1359 			break;
1360 		}
1361 
1362 		if (extent_len > clusters)
1363 			extent_len = clusters;
1364 
1365 		clusters -= extent_len;
1366 		cpos += extent_len;
1367 	}
1368 out:
1369 	return ret;
1370 }
1371 
1372 static int ocfs2_write_remove_suid(struct inode *inode)
1373 {
1374 	int ret;
1375 	struct buffer_head *bh = NULL;
1376 
1377 	ret = ocfs2_read_inode_block(inode, &bh);
1378 	if (ret < 0) {
1379 		mlog_errno(ret);
1380 		goto out;
1381 	}
1382 
1383 	ret =  __ocfs2_write_remove_suid(inode, bh);
1384 out:
1385 	brelse(bh);
1386 	return ret;
1387 }
1388 
1389 /*
1390  * Allocate enough extents to cover the region starting at byte offset
1391  * start for len bytes. Existing extents are skipped, any extents
1392  * added are marked as "unwritten".
1393  */
1394 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1395 					    u64 start, u64 len)
1396 {
1397 	int ret;
1398 	u32 cpos, phys_cpos, clusters, alloc_size;
1399 	u64 end = start + len;
1400 	struct buffer_head *di_bh = NULL;
1401 
1402 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1403 		ret = ocfs2_read_inode_block(inode, &di_bh);
1404 		if (ret) {
1405 			mlog_errno(ret);
1406 			goto out;
1407 		}
1408 
1409 		/*
1410 		 * Nothing to do if the requested reservation range
1411 		 * fits within the inode.
1412 		 */
1413 		if (ocfs2_size_fits_inline_data(di_bh, end))
1414 			goto out;
1415 
1416 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1417 		if (ret) {
1418 			mlog_errno(ret);
1419 			goto out;
1420 		}
1421 	}
1422 
1423 	/*
1424 	 * We consider both start and len to be inclusive.
1425 	 */
1426 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1427 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1428 	clusters -= cpos;
1429 
1430 	while (clusters) {
1431 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1432 					 &alloc_size, NULL);
1433 		if (ret) {
1434 			mlog_errno(ret);
1435 			goto out;
1436 		}
1437 
1438 		/*
1439 		 * Hole or existing extent len can be arbitrary, so
1440 		 * cap it to our own allocation request.
1441 		 */
1442 		if (alloc_size > clusters)
1443 			alloc_size = clusters;
1444 
1445 		if (phys_cpos) {
1446 			/*
1447 			 * We already have an allocation at this
1448 			 * region so we can safely skip it.
1449 			 */
1450 			goto next;
1451 		}
1452 
1453 		ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1454 		if (ret) {
1455 			if (ret != -ENOSPC)
1456 				mlog_errno(ret);
1457 			goto out;
1458 		}
1459 
1460 next:
1461 		cpos += alloc_size;
1462 		clusters -= alloc_size;
1463 	}
1464 
1465 	ret = 0;
1466 out:
1467 
1468 	brelse(di_bh);
1469 	return ret;
1470 }
1471 
1472 /*
1473  * Truncate a byte range, avoiding pages within partial clusters. This
1474  * preserves those pages for the zeroing code to write to.
1475  */
1476 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1477 					 u64 byte_len)
1478 {
1479 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480 	loff_t start, end;
1481 	struct address_space *mapping = inode->i_mapping;
1482 
1483 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1484 	end = byte_start + byte_len;
1485 	end = end & ~(osb->s_clustersize - 1);
1486 
1487 	if (start < end) {
1488 		unmap_mapping_range(mapping, start, end - start, 0);
1489 		truncate_inode_pages_range(mapping, start, end - 1);
1490 	}
1491 }
1492 
1493 static int ocfs2_zero_partial_clusters(struct inode *inode,
1494 				       u64 start, u64 len)
1495 {
1496 	int ret = 0;
1497 	u64 tmpend, end = start + len;
1498 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1499 	unsigned int csize = osb->s_clustersize;
1500 	handle_t *handle;
1501 
1502 	/*
1503 	 * The "start" and "end" values are NOT necessarily part of
1504 	 * the range whose allocation is being deleted. Rather, this
1505 	 * is what the user passed in with the request. We must zero
1506 	 * partial clusters here. There's no need to worry about
1507 	 * physical allocation - the zeroing code knows to skip holes.
1508 	 */
1509 	trace_ocfs2_zero_partial_clusters(
1510 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1511 		(unsigned long long)start, (unsigned long long)end);
1512 
1513 	/*
1514 	 * If both edges are on a cluster boundary then there's no
1515 	 * zeroing required as the region is part of the allocation to
1516 	 * be truncated.
1517 	 */
1518 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1519 		goto out;
1520 
1521 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1522 	if (IS_ERR(handle)) {
1523 		ret = PTR_ERR(handle);
1524 		mlog_errno(ret);
1525 		goto out;
1526 	}
1527 
1528 	/*
1529 	 * We want to get the byte offset of the end of the 1st cluster.
1530 	 */
1531 	tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1532 	if (tmpend > end)
1533 		tmpend = end;
1534 
1535 	trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1536 						 (unsigned long long)tmpend);
1537 
1538 	ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1539 	if (ret)
1540 		mlog_errno(ret);
1541 
1542 	if (tmpend < end) {
1543 		/*
1544 		 * This may make start and end equal, but the zeroing
1545 		 * code will skip any work in that case so there's no
1546 		 * need to catch it up here.
1547 		 */
1548 		start = end & ~(osb->s_clustersize - 1);
1549 
1550 		trace_ocfs2_zero_partial_clusters_range2(
1551 			(unsigned long long)start, (unsigned long long)end);
1552 
1553 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1554 		if (ret)
1555 			mlog_errno(ret);
1556 	}
1557 
1558 	ocfs2_commit_trans(osb, handle);
1559 out:
1560 	return ret;
1561 }
1562 
1563 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1564 {
1565 	int i;
1566 	struct ocfs2_extent_rec *rec = NULL;
1567 
1568 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1569 
1570 		rec = &el->l_recs[i];
1571 
1572 		if (le32_to_cpu(rec->e_cpos) < pos)
1573 			break;
1574 	}
1575 
1576 	return i;
1577 }
1578 
1579 /*
1580  * Helper to calculate the punching pos and length in one run, we handle the
1581  * following three cases in order:
1582  *
1583  * - remove the entire record
1584  * - remove a partial record
1585  * - no record needs to be removed (hole-punching completed)
1586 */
1587 static void ocfs2_calc_trunc_pos(struct inode *inode,
1588 				 struct ocfs2_extent_list *el,
1589 				 struct ocfs2_extent_rec *rec,
1590 				 u32 trunc_start, u32 *trunc_cpos,
1591 				 u32 *trunc_len, u32 *trunc_end,
1592 				 u64 *blkno, int *done)
1593 {
1594 	int ret = 0;
1595 	u32 coff, range;
1596 
1597 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1598 
1599 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1600 		/*
1601 		 * remove an entire extent record.
1602 		 */
1603 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1604 		/*
1605 		 * Skip holes if any.
1606 		 */
1607 		if (range < *trunc_end)
1608 			*trunc_end = range;
1609 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1610 		*blkno = le64_to_cpu(rec->e_blkno);
1611 		*trunc_end = le32_to_cpu(rec->e_cpos);
1612 	} else if (range > trunc_start) {
1613 		/*
1614 		 * remove a partial extent record, which means we're
1615 		 * removing the last extent record.
1616 		 */
1617 		*trunc_cpos = trunc_start;
1618 		/*
1619 		 * skip hole if any.
1620 		 */
1621 		if (range < *trunc_end)
1622 			*trunc_end = range;
1623 		*trunc_len = *trunc_end - trunc_start;
1624 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1625 		*blkno = le64_to_cpu(rec->e_blkno) +
1626 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1627 		*trunc_end = trunc_start;
1628 	} else {
1629 		/*
1630 		 * It may have two following possibilities:
1631 		 *
1632 		 * - last record has been removed
1633 		 * - trunc_start was within a hole
1634 		 *
1635 		 * both two cases mean the completion of hole punching.
1636 		 */
1637 		ret = 1;
1638 	}
1639 
1640 	*done = ret;
1641 }
1642 
1643 static int ocfs2_remove_inode_range(struct inode *inode,
1644 				    struct buffer_head *di_bh, u64 byte_start,
1645 				    u64 byte_len)
1646 {
1647 	int ret = 0, flags = 0, done = 0, i;
1648 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1649 	u32 cluster_in_el;
1650 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1651 	struct ocfs2_cached_dealloc_ctxt dealloc;
1652 	struct address_space *mapping = inode->i_mapping;
1653 	struct ocfs2_extent_tree et;
1654 	struct ocfs2_path *path = NULL;
1655 	struct ocfs2_extent_list *el = NULL;
1656 	struct ocfs2_extent_rec *rec = NULL;
1657 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1658 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1659 
1660 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1661 	ocfs2_init_dealloc_ctxt(&dealloc);
1662 
1663 	trace_ocfs2_remove_inode_range(
1664 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1665 			(unsigned long long)byte_start,
1666 			(unsigned long long)byte_len);
1667 
1668 	if (byte_len == 0)
1669 		return 0;
1670 
1671 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1672 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1673 					    byte_start + byte_len, 0);
1674 		if (ret) {
1675 			mlog_errno(ret);
1676 			goto out;
1677 		}
1678 		/*
1679 		 * There's no need to get fancy with the page cache
1680 		 * truncate of an inline-data inode. We're talking
1681 		 * about less than a page here, which will be cached
1682 		 * in the dinode buffer anyway.
1683 		 */
1684 		unmap_mapping_range(mapping, 0, 0, 0);
1685 		truncate_inode_pages(mapping, 0);
1686 		goto out;
1687 	}
1688 
1689 	/*
1690 	 * For reflinks, we may need to CoW 2 clusters which might be
1691 	 * partially zero'd later, if hole's start and end offset were
1692 	 * within one cluster(means is not exactly aligned to clustersize).
1693 	 */
1694 
1695 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1696 
1697 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1698 		if (ret) {
1699 			mlog_errno(ret);
1700 			goto out;
1701 		}
1702 
1703 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1704 		if (ret) {
1705 			mlog_errno(ret);
1706 			goto out;
1707 		}
1708 	}
1709 
1710 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1711 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1712 	cluster_in_el = trunc_end;
1713 
1714 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1715 	if (ret) {
1716 		mlog_errno(ret);
1717 		goto out;
1718 	}
1719 
1720 	path = ocfs2_new_path_from_et(&et);
1721 	if (!path) {
1722 		ret = -ENOMEM;
1723 		mlog_errno(ret);
1724 		goto out;
1725 	}
1726 
1727 	while (trunc_end > trunc_start) {
1728 
1729 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1730 				      cluster_in_el);
1731 		if (ret) {
1732 			mlog_errno(ret);
1733 			goto out;
1734 		}
1735 
1736 		el = path_leaf_el(path);
1737 
1738 		i = ocfs2_find_rec(el, trunc_end);
1739 		/*
1740 		 * Need to go to previous extent block.
1741 		 */
1742 		if (i < 0) {
1743 			if (path->p_tree_depth == 0)
1744 				break;
1745 
1746 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1747 							    path,
1748 							    &cluster_in_el);
1749 			if (ret) {
1750 				mlog_errno(ret);
1751 				goto out;
1752 			}
1753 
1754 			/*
1755 			 * We've reached the leftmost extent block,
1756 			 * it's safe to leave.
1757 			 */
1758 			if (cluster_in_el == 0)
1759 				break;
1760 
1761 			/*
1762 			 * The 'pos' searched for previous extent block is
1763 			 * always one cluster less than actual trunc_end.
1764 			 */
1765 			trunc_end = cluster_in_el + 1;
1766 
1767 			ocfs2_reinit_path(path, 1);
1768 
1769 			continue;
1770 
1771 		} else
1772 			rec = &el->l_recs[i];
1773 
1774 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1775 				     &trunc_len, &trunc_end, &blkno, &done);
1776 		if (done)
1777 			break;
1778 
1779 		flags = rec->e_flags;
1780 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1781 
1782 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1783 					       phys_cpos, trunc_len, flags,
1784 					       &dealloc, refcount_loc);
1785 		if (ret < 0) {
1786 			mlog_errno(ret);
1787 			goto out;
1788 		}
1789 
1790 		cluster_in_el = trunc_end;
1791 
1792 		ocfs2_reinit_path(path, 1);
1793 	}
1794 
1795 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1796 
1797 out:
1798 	ocfs2_free_path(path);
1799 	ocfs2_schedule_truncate_log_flush(osb, 1);
1800 	ocfs2_run_deallocs(osb, &dealloc);
1801 
1802 	return ret;
1803 }
1804 
1805 /*
1806  * Parts of this function taken from xfs_change_file_space()
1807  */
1808 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1809 				     loff_t f_pos, unsigned int cmd,
1810 				     struct ocfs2_space_resv *sr,
1811 				     int change_size)
1812 {
1813 	int ret;
1814 	s64 llen;
1815 	loff_t size;
1816 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1817 	struct buffer_head *di_bh = NULL;
1818 	handle_t *handle;
1819 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1820 
1821 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1822 		return -EROFS;
1823 
1824 	mutex_lock(&inode->i_mutex);
1825 
1826 	/*
1827 	 * This prevents concurrent writes on other nodes
1828 	 */
1829 	ret = ocfs2_rw_lock(inode, 1);
1830 	if (ret) {
1831 		mlog_errno(ret);
1832 		goto out;
1833 	}
1834 
1835 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1836 	if (ret) {
1837 		mlog_errno(ret);
1838 		goto out_rw_unlock;
1839 	}
1840 
1841 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1842 		ret = -EPERM;
1843 		goto out_inode_unlock;
1844 	}
1845 
1846 	switch (sr->l_whence) {
1847 	case 0: /*SEEK_SET*/
1848 		break;
1849 	case 1: /*SEEK_CUR*/
1850 		sr->l_start += f_pos;
1851 		break;
1852 	case 2: /*SEEK_END*/
1853 		sr->l_start += i_size_read(inode);
1854 		break;
1855 	default:
1856 		ret = -EINVAL;
1857 		goto out_inode_unlock;
1858 	}
1859 	sr->l_whence = 0;
1860 
1861 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1862 
1863 	if (sr->l_start < 0
1864 	    || sr->l_start > max_off
1865 	    || (sr->l_start + llen) < 0
1866 	    || (sr->l_start + llen) > max_off) {
1867 		ret = -EINVAL;
1868 		goto out_inode_unlock;
1869 	}
1870 	size = sr->l_start + sr->l_len;
1871 
1872 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1873 		if (sr->l_len <= 0) {
1874 			ret = -EINVAL;
1875 			goto out_inode_unlock;
1876 		}
1877 	}
1878 
1879 	if (file && should_remove_suid(file->f_path.dentry)) {
1880 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1881 		if (ret) {
1882 			mlog_errno(ret);
1883 			goto out_inode_unlock;
1884 		}
1885 	}
1886 
1887 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1888 	switch (cmd) {
1889 	case OCFS2_IOC_RESVSP:
1890 	case OCFS2_IOC_RESVSP64:
1891 		/*
1892 		 * This takes unsigned offsets, but the signed ones we
1893 		 * pass have been checked against overflow above.
1894 		 */
1895 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1896 						       sr->l_len);
1897 		break;
1898 	case OCFS2_IOC_UNRESVSP:
1899 	case OCFS2_IOC_UNRESVSP64:
1900 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1901 					       sr->l_len);
1902 		break;
1903 	default:
1904 		ret = -EINVAL;
1905 	}
1906 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1907 	if (ret) {
1908 		mlog_errno(ret);
1909 		goto out_inode_unlock;
1910 	}
1911 
1912 	/*
1913 	 * We update c/mtime for these changes
1914 	 */
1915 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1916 	if (IS_ERR(handle)) {
1917 		ret = PTR_ERR(handle);
1918 		mlog_errno(ret);
1919 		goto out_inode_unlock;
1920 	}
1921 
1922 	if (change_size && i_size_read(inode) < size)
1923 		i_size_write(inode, size);
1924 
1925 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1926 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1927 	if (ret < 0)
1928 		mlog_errno(ret);
1929 
1930 	if (file && (file->f_flags & O_SYNC))
1931 		handle->h_sync = 1;
1932 
1933 	ocfs2_commit_trans(osb, handle);
1934 
1935 out_inode_unlock:
1936 	brelse(di_bh);
1937 	ocfs2_inode_unlock(inode, 1);
1938 out_rw_unlock:
1939 	ocfs2_rw_unlock(inode, 1);
1940 
1941 out:
1942 	mutex_unlock(&inode->i_mutex);
1943 	return ret;
1944 }
1945 
1946 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1947 			    struct ocfs2_space_resv *sr)
1948 {
1949 	struct inode *inode = file_inode(file);
1950 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1951 	int ret;
1952 
1953 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1954 	    !ocfs2_writes_unwritten_extents(osb))
1955 		return -ENOTTY;
1956 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1957 		 !ocfs2_sparse_alloc(osb))
1958 		return -ENOTTY;
1959 
1960 	if (!S_ISREG(inode->i_mode))
1961 		return -EINVAL;
1962 
1963 	if (!(file->f_mode & FMODE_WRITE))
1964 		return -EBADF;
1965 
1966 	ret = mnt_want_write_file(file);
1967 	if (ret)
1968 		return ret;
1969 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1970 	mnt_drop_write_file(file);
1971 	return ret;
1972 }
1973 
1974 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1975 			    loff_t len)
1976 {
1977 	struct inode *inode = file_inode(file);
1978 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1979 	struct ocfs2_space_resv sr;
1980 	int change_size = 1;
1981 	int cmd = OCFS2_IOC_RESVSP64;
1982 
1983 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1984 		return -EOPNOTSUPP;
1985 	if (!ocfs2_writes_unwritten_extents(osb))
1986 		return -EOPNOTSUPP;
1987 
1988 	if (mode & FALLOC_FL_KEEP_SIZE)
1989 		change_size = 0;
1990 
1991 	if (mode & FALLOC_FL_PUNCH_HOLE)
1992 		cmd = OCFS2_IOC_UNRESVSP64;
1993 
1994 	sr.l_whence = 0;
1995 	sr.l_start = (s64)offset;
1996 	sr.l_len = (s64)len;
1997 
1998 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
1999 					 change_size);
2000 }
2001 
2002 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2003 				   size_t count)
2004 {
2005 	int ret = 0;
2006 	unsigned int extent_flags;
2007 	u32 cpos, clusters, extent_len, phys_cpos;
2008 	struct super_block *sb = inode->i_sb;
2009 
2010 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2011 	    !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2012 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2013 		return 0;
2014 
2015 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2016 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2017 
2018 	while (clusters) {
2019 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2020 					 &extent_flags);
2021 		if (ret < 0) {
2022 			mlog_errno(ret);
2023 			goto out;
2024 		}
2025 
2026 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2027 			ret = 1;
2028 			break;
2029 		}
2030 
2031 		if (extent_len > clusters)
2032 			extent_len = clusters;
2033 
2034 		clusters -= extent_len;
2035 		cpos += extent_len;
2036 	}
2037 out:
2038 	return ret;
2039 }
2040 
2041 static void ocfs2_aiodio_wait(struct inode *inode)
2042 {
2043 	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
2044 
2045 	wait_event(*wq, (atomic_read(&OCFS2_I(inode)->ip_unaligned_aio) == 0));
2046 }
2047 
2048 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2049 {
2050 	int blockmask = inode->i_sb->s_blocksize - 1;
2051 	loff_t final_size = pos + count;
2052 
2053 	if ((pos & blockmask) || (final_size & blockmask))
2054 		return 1;
2055 	return 0;
2056 }
2057 
2058 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2059 					    struct file *file,
2060 					    loff_t pos, size_t count,
2061 					    int *meta_level)
2062 {
2063 	int ret;
2064 	struct buffer_head *di_bh = NULL;
2065 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2066 	u32 clusters =
2067 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2068 
2069 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2070 	if (ret) {
2071 		mlog_errno(ret);
2072 		goto out;
2073 	}
2074 
2075 	*meta_level = 1;
2076 
2077 	ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2078 	if (ret)
2079 		mlog_errno(ret);
2080 out:
2081 	brelse(di_bh);
2082 	return ret;
2083 }
2084 
2085 static int ocfs2_prepare_inode_for_write(struct file *file,
2086 					 loff_t *ppos,
2087 					 size_t count,
2088 					 int appending,
2089 					 int *direct_io,
2090 					 int *has_refcount)
2091 {
2092 	int ret = 0, meta_level = 0;
2093 	struct dentry *dentry = file->f_path.dentry;
2094 	struct inode *inode = dentry->d_inode;
2095 	loff_t saved_pos = 0, end;
2096 
2097 	/*
2098 	 * We start with a read level meta lock and only jump to an ex
2099 	 * if we need to make modifications here.
2100 	 */
2101 	for(;;) {
2102 		ret = ocfs2_inode_lock(inode, NULL, meta_level);
2103 		if (ret < 0) {
2104 			meta_level = -1;
2105 			mlog_errno(ret);
2106 			goto out;
2107 		}
2108 
2109 		/* Clear suid / sgid if necessary. We do this here
2110 		 * instead of later in the write path because
2111 		 * remove_suid() calls ->setattr without any hint that
2112 		 * we may have already done our cluster locking. Since
2113 		 * ocfs2_setattr() *must* take cluster locks to
2114 		 * proceed, this will lead us to recursively lock the
2115 		 * inode. There's also the dinode i_size state which
2116 		 * can be lost via setattr during extending writes (we
2117 		 * set inode->i_size at the end of a write. */
2118 		if (should_remove_suid(dentry)) {
2119 			if (meta_level == 0) {
2120 				ocfs2_inode_unlock(inode, meta_level);
2121 				meta_level = 1;
2122 				continue;
2123 			}
2124 
2125 			ret = ocfs2_write_remove_suid(inode);
2126 			if (ret < 0) {
2127 				mlog_errno(ret);
2128 				goto out_unlock;
2129 			}
2130 		}
2131 
2132 		/* work on a copy of ppos until we're sure that we won't have
2133 		 * to recalculate it due to relocking. */
2134 		if (appending)
2135 			saved_pos = i_size_read(inode);
2136 		else
2137 			saved_pos = *ppos;
2138 
2139 		end = saved_pos + count;
2140 
2141 		ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2142 		if (ret == 1) {
2143 			ocfs2_inode_unlock(inode, meta_level);
2144 			meta_level = -1;
2145 
2146 			ret = ocfs2_prepare_inode_for_refcount(inode,
2147 							       file,
2148 							       saved_pos,
2149 							       count,
2150 							       &meta_level);
2151 			if (has_refcount)
2152 				*has_refcount = 1;
2153 			if (direct_io)
2154 				*direct_io = 0;
2155 		}
2156 
2157 		if (ret < 0) {
2158 			mlog_errno(ret);
2159 			goto out_unlock;
2160 		}
2161 
2162 		/*
2163 		 * Skip the O_DIRECT checks if we don't need
2164 		 * them.
2165 		 */
2166 		if (!direct_io || !(*direct_io))
2167 			break;
2168 
2169 		/*
2170 		 * There's no sane way to do direct writes to an inode
2171 		 * with inline data.
2172 		 */
2173 		if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2174 			*direct_io = 0;
2175 			break;
2176 		}
2177 
2178 		/*
2179 		 * Allowing concurrent direct writes means
2180 		 * i_size changes wouldn't be synchronized, so
2181 		 * one node could wind up truncating another
2182 		 * nodes writes.
2183 		 */
2184 		if (end > i_size_read(inode)) {
2185 			*direct_io = 0;
2186 			break;
2187 		}
2188 
2189 		/*
2190 		 * We don't fill holes during direct io, so
2191 		 * check for them here. If any are found, the
2192 		 * caller will have to retake some cluster
2193 		 * locks and initiate the io as buffered.
2194 		 */
2195 		ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2196 		if (ret == 1) {
2197 			*direct_io = 0;
2198 			ret = 0;
2199 		} else if (ret < 0)
2200 			mlog_errno(ret);
2201 		break;
2202 	}
2203 
2204 	if (appending)
2205 		*ppos = saved_pos;
2206 
2207 out_unlock:
2208 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2209 					    saved_pos, appending, count,
2210 					    direct_io, has_refcount);
2211 
2212 	if (meta_level >= 0)
2213 		ocfs2_inode_unlock(inode, meta_level);
2214 
2215 out:
2216 	return ret;
2217 }
2218 
2219 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2220 				    const struct iovec *iov,
2221 				    unsigned long nr_segs,
2222 				    loff_t pos)
2223 {
2224 	int ret, direct_io, appending, rw_level, have_alloc_sem  = 0;
2225 	int can_do_direct, has_refcount = 0;
2226 	ssize_t written = 0;
2227 	size_t ocount;		/* original count */
2228 	size_t count;		/* after file limit checks */
2229 	loff_t old_size, *ppos = &iocb->ki_pos;
2230 	u32 old_clusters;
2231 	struct file *file = iocb->ki_filp;
2232 	struct inode *inode = file_inode(file);
2233 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2234 	int full_coherency = !(osb->s_mount_opt &
2235 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2236 	int unaligned_dio = 0;
2237 
2238 	trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2239 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2240 		file->f_path.dentry->d_name.len,
2241 		file->f_path.dentry->d_name.name,
2242 		(unsigned int)nr_segs);
2243 
2244 	if (iocb->ki_nbytes == 0)
2245 		return 0;
2246 
2247 	appending = file->f_flags & O_APPEND ? 1 : 0;
2248 	direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2249 
2250 	mutex_lock(&inode->i_mutex);
2251 
2252 	ocfs2_iocb_clear_sem_locked(iocb);
2253 
2254 relock:
2255 	/* to match setattr's i_mutex -> rw_lock ordering */
2256 	if (direct_io) {
2257 		have_alloc_sem = 1;
2258 		/* communicate with ocfs2_dio_end_io */
2259 		ocfs2_iocb_set_sem_locked(iocb);
2260 	}
2261 
2262 	/*
2263 	 * Concurrent O_DIRECT writes are allowed with
2264 	 * mount_option "coherency=buffered".
2265 	 */
2266 	rw_level = (!direct_io || full_coherency);
2267 
2268 	ret = ocfs2_rw_lock(inode, rw_level);
2269 	if (ret < 0) {
2270 		mlog_errno(ret);
2271 		goto out_sems;
2272 	}
2273 
2274 	/*
2275 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2276 	 * inode_lock to guarantee coherency.
2277 	 */
2278 	if (direct_io && full_coherency) {
2279 		/*
2280 		 * We need to take and drop the inode lock to force
2281 		 * other nodes to drop their caches.  Buffered I/O
2282 		 * already does this in write_begin().
2283 		 */
2284 		ret = ocfs2_inode_lock(inode, NULL, 1);
2285 		if (ret < 0) {
2286 			mlog_errno(ret);
2287 			goto out;
2288 		}
2289 
2290 		ocfs2_inode_unlock(inode, 1);
2291 	}
2292 
2293 	can_do_direct = direct_io;
2294 	ret = ocfs2_prepare_inode_for_write(file, ppos,
2295 					    iocb->ki_nbytes, appending,
2296 					    &can_do_direct, &has_refcount);
2297 	if (ret < 0) {
2298 		mlog_errno(ret);
2299 		goto out;
2300 	}
2301 
2302 	if (direct_io && !is_sync_kiocb(iocb))
2303 		unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_nbytes,
2304 						      *ppos);
2305 
2306 	/*
2307 	 * We can't complete the direct I/O as requested, fall back to
2308 	 * buffered I/O.
2309 	 */
2310 	if (direct_io && !can_do_direct) {
2311 		ocfs2_rw_unlock(inode, rw_level);
2312 
2313 		have_alloc_sem = 0;
2314 		rw_level = -1;
2315 
2316 		direct_io = 0;
2317 		goto relock;
2318 	}
2319 
2320 	if (unaligned_dio) {
2321 		/*
2322 		 * Wait on previous unaligned aio to complete before
2323 		 * proceeding.
2324 		 */
2325 		ocfs2_aiodio_wait(inode);
2326 
2327 		/* Mark the iocb as needing a decrement in ocfs2_dio_end_io */
2328 		atomic_inc(&OCFS2_I(inode)->ip_unaligned_aio);
2329 		ocfs2_iocb_set_unaligned_aio(iocb);
2330 	}
2331 
2332 	/*
2333 	 * To later detect whether a journal commit for sync writes is
2334 	 * necessary, we sample i_size, and cluster count here.
2335 	 */
2336 	old_size = i_size_read(inode);
2337 	old_clusters = OCFS2_I(inode)->ip_clusters;
2338 
2339 	/* communicate with ocfs2_dio_end_io */
2340 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2341 
2342 	ret = generic_segment_checks(iov, &nr_segs, &ocount,
2343 				     VERIFY_READ);
2344 	if (ret)
2345 		goto out_dio;
2346 
2347 	count = ocount;
2348 	ret = generic_write_checks(file, ppos, &count,
2349 				   S_ISBLK(inode->i_mode));
2350 	if (ret)
2351 		goto out_dio;
2352 
2353 	if (direct_io) {
2354 		written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2355 						    ppos, count, ocount);
2356 		if (written < 0) {
2357 			ret = written;
2358 			goto out_dio;
2359 		}
2360 	} else {
2361 		current->backing_dev_info = file->f_mapping->backing_dev_info;
2362 		written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2363 						      ppos, count, 0);
2364 		current->backing_dev_info = NULL;
2365 	}
2366 
2367 out_dio:
2368 	/* buffered aio wouldn't have proper lock coverage today */
2369 	BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2370 
2371 	if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2372 	    ((file->f_flags & O_DIRECT) && !direct_io)) {
2373 		ret = filemap_fdatawrite_range(file->f_mapping, pos,
2374 					       pos + count - 1);
2375 		if (ret < 0)
2376 			written = ret;
2377 
2378 		if (!ret && ((old_size != i_size_read(inode)) ||
2379 			     (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2380 			     has_refcount)) {
2381 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2382 			if (ret < 0)
2383 				written = ret;
2384 		}
2385 
2386 		if (!ret)
2387 			ret = filemap_fdatawait_range(file->f_mapping, pos,
2388 						      pos + count - 1);
2389 	}
2390 
2391 	/*
2392 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2393 	 * function pointer which is called when o_direct io completes so that
2394 	 * it can unlock our rw lock.
2395 	 * Unfortunately there are error cases which call end_io and others
2396 	 * that don't.  so we don't have to unlock the rw_lock if either an
2397 	 * async dio is going to do it in the future or an end_io after an
2398 	 * error has already done it.
2399 	 */
2400 	if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2401 		rw_level = -1;
2402 		have_alloc_sem = 0;
2403 		unaligned_dio = 0;
2404 	}
2405 
2406 	if (unaligned_dio) {
2407 		ocfs2_iocb_clear_unaligned_aio(iocb);
2408 		atomic_dec(&OCFS2_I(inode)->ip_unaligned_aio);
2409 	}
2410 
2411 out:
2412 	if (rw_level != -1)
2413 		ocfs2_rw_unlock(inode, rw_level);
2414 
2415 out_sems:
2416 	if (have_alloc_sem)
2417 		ocfs2_iocb_clear_sem_locked(iocb);
2418 
2419 	mutex_unlock(&inode->i_mutex);
2420 
2421 	if (written)
2422 		ret = written;
2423 	return ret;
2424 }
2425 
2426 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2427 				struct file *out,
2428 				struct splice_desc *sd)
2429 {
2430 	int ret;
2431 
2432 	ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2433 					    sd->total_len, 0, NULL, NULL);
2434 	if (ret < 0) {
2435 		mlog_errno(ret);
2436 		return ret;
2437 	}
2438 
2439 	return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2440 }
2441 
2442 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2443 				       struct file *out,
2444 				       loff_t *ppos,
2445 				       size_t len,
2446 				       unsigned int flags)
2447 {
2448 	int ret;
2449 	struct address_space *mapping = out->f_mapping;
2450 	struct inode *inode = mapping->host;
2451 	struct splice_desc sd = {
2452 		.total_len = len,
2453 		.flags = flags,
2454 		.pos = *ppos,
2455 		.u.file = out,
2456 	};
2457 
2458 
2459 	trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2460 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2461 			out->f_path.dentry->d_name.len,
2462 			out->f_path.dentry->d_name.name, len);
2463 
2464 	pipe_lock(pipe);
2465 
2466 	splice_from_pipe_begin(&sd);
2467 	do {
2468 		ret = splice_from_pipe_next(pipe, &sd);
2469 		if (ret <= 0)
2470 			break;
2471 
2472 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2473 		ret = ocfs2_rw_lock(inode, 1);
2474 		if (ret < 0)
2475 			mlog_errno(ret);
2476 		else {
2477 			ret = ocfs2_splice_to_file(pipe, out, &sd);
2478 			ocfs2_rw_unlock(inode, 1);
2479 		}
2480 		mutex_unlock(&inode->i_mutex);
2481 	} while (ret > 0);
2482 	splice_from_pipe_end(pipe, &sd);
2483 
2484 	pipe_unlock(pipe);
2485 
2486 	if (sd.num_spliced)
2487 		ret = sd.num_spliced;
2488 
2489 	if (ret > 0) {
2490 		int err;
2491 
2492 		err = generic_write_sync(out, *ppos, ret);
2493 		if (err)
2494 			ret = err;
2495 		else
2496 			*ppos += ret;
2497 
2498 		balance_dirty_pages_ratelimited(mapping);
2499 	}
2500 
2501 	return ret;
2502 }
2503 
2504 static ssize_t ocfs2_file_splice_read(struct file *in,
2505 				      loff_t *ppos,
2506 				      struct pipe_inode_info *pipe,
2507 				      size_t len,
2508 				      unsigned int flags)
2509 {
2510 	int ret = 0, lock_level = 0;
2511 	struct inode *inode = file_inode(in);
2512 
2513 	trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2514 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2515 			in->f_path.dentry->d_name.len,
2516 			in->f_path.dentry->d_name.name, len);
2517 
2518 	/*
2519 	 * See the comment in ocfs2_file_aio_read()
2520 	 */
2521 	ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level);
2522 	if (ret < 0) {
2523 		mlog_errno(ret);
2524 		goto bail;
2525 	}
2526 	ocfs2_inode_unlock(inode, lock_level);
2527 
2528 	ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2529 
2530 bail:
2531 	return ret;
2532 }
2533 
2534 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2535 				   const struct iovec *iov,
2536 				   unsigned long nr_segs,
2537 				   loff_t pos)
2538 {
2539 	int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2540 	struct file *filp = iocb->ki_filp;
2541 	struct inode *inode = file_inode(filp);
2542 
2543 	trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2544 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2545 			filp->f_path.dentry->d_name.len,
2546 			filp->f_path.dentry->d_name.name, nr_segs);
2547 
2548 
2549 	if (!inode) {
2550 		ret = -EINVAL;
2551 		mlog_errno(ret);
2552 		goto bail;
2553 	}
2554 
2555 	ocfs2_iocb_clear_sem_locked(iocb);
2556 
2557 	/*
2558 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2559 	 * need locks to protect pending reads from racing with truncate.
2560 	 */
2561 	if (filp->f_flags & O_DIRECT) {
2562 		have_alloc_sem = 1;
2563 		ocfs2_iocb_set_sem_locked(iocb);
2564 
2565 		ret = ocfs2_rw_lock(inode, 0);
2566 		if (ret < 0) {
2567 			mlog_errno(ret);
2568 			goto bail;
2569 		}
2570 		rw_level = 0;
2571 		/* communicate with ocfs2_dio_end_io */
2572 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2573 	}
2574 
2575 	/*
2576 	 * We're fine letting folks race truncates and extending
2577 	 * writes with read across the cluster, just like they can
2578 	 * locally. Hence no rw_lock during read.
2579 	 *
2580 	 * Take and drop the meta data lock to update inode fields
2581 	 * like i_size. This allows the checks down below
2582 	 * generic_file_aio_read() a chance of actually working.
2583 	 */
2584 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2585 	if (ret < 0) {
2586 		mlog_errno(ret);
2587 		goto bail;
2588 	}
2589 	ocfs2_inode_unlock(inode, lock_level);
2590 
2591 	ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2592 	trace_generic_file_aio_read_ret(ret);
2593 
2594 	/* buffered aio wouldn't have proper lock coverage today */
2595 	BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2596 
2597 	/* see ocfs2_file_aio_write */
2598 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2599 		rw_level = -1;
2600 		have_alloc_sem = 0;
2601 	}
2602 
2603 bail:
2604 	if (have_alloc_sem)
2605 		ocfs2_iocb_clear_sem_locked(iocb);
2606 
2607 	if (rw_level != -1)
2608 		ocfs2_rw_unlock(inode, rw_level);
2609 
2610 	return ret;
2611 }
2612 
2613 /* Refer generic_file_llseek_unlocked() */
2614 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2615 {
2616 	struct inode *inode = file->f_mapping->host;
2617 	int ret = 0;
2618 
2619 	mutex_lock(&inode->i_mutex);
2620 
2621 	switch (whence) {
2622 	case SEEK_SET:
2623 		break;
2624 	case SEEK_END:
2625 		offset += inode->i_size;
2626 		break;
2627 	case SEEK_CUR:
2628 		if (offset == 0) {
2629 			offset = file->f_pos;
2630 			goto out;
2631 		}
2632 		offset += file->f_pos;
2633 		break;
2634 	case SEEK_DATA:
2635 	case SEEK_HOLE:
2636 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2637 		if (ret)
2638 			goto out;
2639 		break;
2640 	default:
2641 		ret = -EINVAL;
2642 		goto out;
2643 	}
2644 
2645 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2646 
2647 out:
2648 	mutex_unlock(&inode->i_mutex);
2649 	if (ret)
2650 		return ret;
2651 	return offset;
2652 }
2653 
2654 const struct inode_operations ocfs2_file_iops = {
2655 	.setattr	= ocfs2_setattr,
2656 	.getattr	= ocfs2_getattr,
2657 	.permission	= ocfs2_permission,
2658 	.setxattr	= generic_setxattr,
2659 	.getxattr	= generic_getxattr,
2660 	.listxattr	= ocfs2_listxattr,
2661 	.removexattr	= generic_removexattr,
2662 	.fiemap		= ocfs2_fiemap,
2663 	.get_acl	= ocfs2_iop_get_acl,
2664 };
2665 
2666 const struct inode_operations ocfs2_special_file_iops = {
2667 	.setattr	= ocfs2_setattr,
2668 	.getattr	= ocfs2_getattr,
2669 	.permission	= ocfs2_permission,
2670 	.get_acl	= ocfs2_iop_get_acl,
2671 };
2672 
2673 /*
2674  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2675  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2676  */
2677 const struct file_operations ocfs2_fops = {
2678 	.llseek		= ocfs2_file_llseek,
2679 	.read		= do_sync_read,
2680 	.write		= do_sync_write,
2681 	.mmap		= ocfs2_mmap,
2682 	.fsync		= ocfs2_sync_file,
2683 	.release	= ocfs2_file_release,
2684 	.open		= ocfs2_file_open,
2685 	.aio_read	= ocfs2_file_aio_read,
2686 	.aio_write	= ocfs2_file_aio_write,
2687 	.unlocked_ioctl	= ocfs2_ioctl,
2688 #ifdef CONFIG_COMPAT
2689 	.compat_ioctl   = ocfs2_compat_ioctl,
2690 #endif
2691 	.lock		= ocfs2_lock,
2692 	.flock		= ocfs2_flock,
2693 	.splice_read	= ocfs2_file_splice_read,
2694 	.splice_write	= ocfs2_file_splice_write,
2695 	.fallocate	= ocfs2_fallocate,
2696 };
2697 
2698 const struct file_operations ocfs2_dops = {
2699 	.llseek		= generic_file_llseek,
2700 	.read		= generic_read_dir,
2701 	.iterate	= ocfs2_readdir,
2702 	.fsync		= ocfs2_sync_file,
2703 	.release	= ocfs2_dir_release,
2704 	.open		= ocfs2_dir_open,
2705 	.unlocked_ioctl	= ocfs2_ioctl,
2706 #ifdef CONFIG_COMPAT
2707 	.compat_ioctl   = ocfs2_compat_ioctl,
2708 #endif
2709 	.lock		= ocfs2_lock,
2710 	.flock		= ocfs2_flock,
2711 };
2712 
2713 /*
2714  * POSIX-lockless variants of our file_operations.
2715  *
2716  * These will be used if the underlying cluster stack does not support
2717  * posix file locking, if the user passes the "localflocks" mount
2718  * option, or if we have a local-only fs.
2719  *
2720  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2721  * so we still want it in the case of no stack support for
2722  * plocks. Internally, it will do the right thing when asked to ignore
2723  * the cluster.
2724  */
2725 const struct file_operations ocfs2_fops_no_plocks = {
2726 	.llseek		= ocfs2_file_llseek,
2727 	.read		= do_sync_read,
2728 	.write		= do_sync_write,
2729 	.mmap		= ocfs2_mmap,
2730 	.fsync		= ocfs2_sync_file,
2731 	.release	= ocfs2_file_release,
2732 	.open		= ocfs2_file_open,
2733 	.aio_read	= ocfs2_file_aio_read,
2734 	.aio_write	= ocfs2_file_aio_write,
2735 	.unlocked_ioctl	= ocfs2_ioctl,
2736 #ifdef CONFIG_COMPAT
2737 	.compat_ioctl   = ocfs2_compat_ioctl,
2738 #endif
2739 	.flock		= ocfs2_flock,
2740 	.splice_read	= ocfs2_file_splice_read,
2741 	.splice_write	= ocfs2_file_splice_write,
2742 	.fallocate	= ocfs2_fallocate,
2743 };
2744 
2745 const struct file_operations ocfs2_dops_no_plocks = {
2746 	.llseek		= generic_file_llseek,
2747 	.read		= generic_read_dir,
2748 	.iterate	= ocfs2_readdir,
2749 	.fsync		= ocfs2_sync_file,
2750 	.release	= ocfs2_dir_release,
2751 	.open		= ocfs2_dir_open,
2752 	.unlocked_ioctl	= ocfs2_ioctl,
2753 #ifdef CONFIG_COMPAT
2754 	.compat_ioctl   = ocfs2_compat_ioctl,
2755 #endif
2756 	.flock		= ocfs2_flock,
2757 };
2758