1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * file.c 5 * 6 * File open, close, extend, truncate 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/capability.h> 27 #include <linux/fs.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/highmem.h> 31 #include <linux/pagemap.h> 32 #include <linux/uio.h> 33 #include <linux/sched.h> 34 #include <linux/splice.h> 35 #include <linux/mount.h> 36 #include <linux/writeback.h> 37 #include <linux/falloc.h> 38 #include <linux/quotaops.h> 39 #include <linux/blkdev.h> 40 41 #include <cluster/masklog.h> 42 43 #include "ocfs2.h" 44 45 #include "alloc.h" 46 #include "aops.h" 47 #include "dir.h" 48 #include "dlmglue.h" 49 #include "extent_map.h" 50 #include "file.h" 51 #include "sysfile.h" 52 #include "inode.h" 53 #include "ioctl.h" 54 #include "journal.h" 55 #include "locks.h" 56 #include "mmap.h" 57 #include "suballoc.h" 58 #include "super.h" 59 #include "xattr.h" 60 #include "acl.h" 61 #include "quota.h" 62 #include "refcounttree.h" 63 #include "ocfs2_trace.h" 64 65 #include "buffer_head_io.h" 66 67 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 68 { 69 struct ocfs2_file_private *fp; 70 71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 72 if (!fp) 73 return -ENOMEM; 74 75 fp->fp_file = file; 76 mutex_init(&fp->fp_mutex); 77 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 78 file->private_data = fp; 79 80 return 0; 81 } 82 83 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 84 { 85 struct ocfs2_file_private *fp = file->private_data; 86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 87 88 if (fp) { 89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 90 ocfs2_lock_res_free(&fp->fp_flock); 91 kfree(fp); 92 file->private_data = NULL; 93 } 94 } 95 96 static int ocfs2_file_open(struct inode *inode, struct file *file) 97 { 98 int status; 99 int mode = file->f_flags; 100 struct ocfs2_inode_info *oi = OCFS2_I(inode); 101 102 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 103 (unsigned long long)OCFS2_I(inode)->ip_blkno, 104 file->f_path.dentry->d_name.len, 105 file->f_path.dentry->d_name.name, mode); 106 107 if (file->f_mode & FMODE_WRITE) 108 dquot_initialize(inode); 109 110 spin_lock(&oi->ip_lock); 111 112 /* Check that the inode hasn't been wiped from disk by another 113 * node. If it hasn't then we're safe as long as we hold the 114 * spin lock until our increment of open count. */ 115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { 116 spin_unlock(&oi->ip_lock); 117 118 status = -ENOENT; 119 goto leave; 120 } 121 122 if (mode & O_DIRECT) 123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 124 125 oi->ip_open_count++; 126 spin_unlock(&oi->ip_lock); 127 128 status = ocfs2_init_file_private(inode, file); 129 if (status) { 130 /* 131 * We want to set open count back if we're failing the 132 * open. 133 */ 134 spin_lock(&oi->ip_lock); 135 oi->ip_open_count--; 136 spin_unlock(&oi->ip_lock); 137 } 138 139 leave: 140 return status; 141 } 142 143 static int ocfs2_file_release(struct inode *inode, struct file *file) 144 { 145 struct ocfs2_inode_info *oi = OCFS2_I(inode); 146 147 spin_lock(&oi->ip_lock); 148 if (!--oi->ip_open_count) 149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 150 151 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 152 oi->ip_blkno, 153 file->f_path.dentry->d_name.len, 154 file->f_path.dentry->d_name.name, 155 oi->ip_open_count); 156 spin_unlock(&oi->ip_lock); 157 158 ocfs2_free_file_private(inode, file); 159 160 return 0; 161 } 162 163 static int ocfs2_dir_open(struct inode *inode, struct file *file) 164 { 165 return ocfs2_init_file_private(inode, file); 166 } 167 168 static int ocfs2_dir_release(struct inode *inode, struct file *file) 169 { 170 ocfs2_free_file_private(inode, file); 171 return 0; 172 } 173 174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 175 int datasync) 176 { 177 int err = 0; 178 journal_t *journal; 179 struct inode *inode = file->f_mapping->host; 180 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 181 182 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 183 OCFS2_I(inode)->ip_blkno, 184 file->f_path.dentry->d_name.len, 185 file->f_path.dentry->d_name.name, 186 (unsigned long long)datasync); 187 188 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 189 return -EROFS; 190 191 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 192 if (err) 193 return err; 194 195 /* 196 * Probably don't need the i_mutex at all in here, just putting it here 197 * to be consistent with how fsync used to be called, someone more 198 * familiar with the fs could possibly remove it. 199 */ 200 mutex_lock(&inode->i_mutex); 201 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) { 202 /* 203 * We still have to flush drive's caches to get data to the 204 * platter 205 */ 206 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 207 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 208 goto bail; 209 } 210 211 journal = osb->journal->j_journal; 212 err = jbd2_journal_force_commit(journal); 213 214 bail: 215 if (err) 216 mlog_errno(err); 217 mutex_unlock(&inode->i_mutex); 218 219 return (err < 0) ? -EIO : 0; 220 } 221 222 int ocfs2_should_update_atime(struct inode *inode, 223 struct vfsmount *vfsmnt) 224 { 225 struct timespec now; 226 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 227 228 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 229 return 0; 230 231 if ((inode->i_flags & S_NOATIME) || 232 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) 233 return 0; 234 235 /* 236 * We can be called with no vfsmnt structure - NFSD will 237 * sometimes do this. 238 * 239 * Note that our action here is different than touch_atime() - 240 * if we can't tell whether this is a noatime mount, then we 241 * don't know whether to trust the value of s_atime_quantum. 242 */ 243 if (vfsmnt == NULL) 244 return 0; 245 246 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 247 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 248 return 0; 249 250 if (vfsmnt->mnt_flags & MNT_RELATIME) { 251 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 252 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 253 return 1; 254 255 return 0; 256 } 257 258 now = CURRENT_TIME; 259 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 260 return 0; 261 else 262 return 1; 263 } 264 265 int ocfs2_update_inode_atime(struct inode *inode, 266 struct buffer_head *bh) 267 { 268 int ret; 269 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 270 handle_t *handle; 271 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 272 273 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 274 if (IS_ERR(handle)) { 275 ret = PTR_ERR(handle); 276 mlog_errno(ret); 277 goto out; 278 } 279 280 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 281 OCFS2_JOURNAL_ACCESS_WRITE); 282 if (ret) { 283 mlog_errno(ret); 284 goto out_commit; 285 } 286 287 /* 288 * Don't use ocfs2_mark_inode_dirty() here as we don't always 289 * have i_mutex to guard against concurrent changes to other 290 * inode fields. 291 */ 292 inode->i_atime = CURRENT_TIME; 293 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 294 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 295 ocfs2_journal_dirty(handle, bh); 296 297 out_commit: 298 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 299 out: 300 return ret; 301 } 302 303 static int ocfs2_set_inode_size(handle_t *handle, 304 struct inode *inode, 305 struct buffer_head *fe_bh, 306 u64 new_i_size) 307 { 308 int status; 309 310 i_size_write(inode, new_i_size); 311 inode->i_blocks = ocfs2_inode_sector_count(inode); 312 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 313 314 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 315 if (status < 0) { 316 mlog_errno(status); 317 goto bail; 318 } 319 320 bail: 321 return status; 322 } 323 324 int ocfs2_simple_size_update(struct inode *inode, 325 struct buffer_head *di_bh, 326 u64 new_i_size) 327 { 328 int ret; 329 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 330 handle_t *handle = NULL; 331 332 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 333 if (IS_ERR(handle)) { 334 ret = PTR_ERR(handle); 335 mlog_errno(ret); 336 goto out; 337 } 338 339 ret = ocfs2_set_inode_size(handle, inode, di_bh, 340 new_i_size); 341 if (ret < 0) 342 mlog_errno(ret); 343 344 ocfs2_commit_trans(osb, handle); 345 out: 346 return ret; 347 } 348 349 static int ocfs2_cow_file_pos(struct inode *inode, 350 struct buffer_head *fe_bh, 351 u64 offset) 352 { 353 int status; 354 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 355 unsigned int num_clusters = 0; 356 unsigned int ext_flags = 0; 357 358 /* 359 * If the new offset is aligned to the range of the cluster, there is 360 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 361 * CoW either. 362 */ 363 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 364 return 0; 365 366 status = ocfs2_get_clusters(inode, cpos, &phys, 367 &num_clusters, &ext_flags); 368 if (status) { 369 mlog_errno(status); 370 goto out; 371 } 372 373 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 374 goto out; 375 376 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 377 378 out: 379 return status; 380 } 381 382 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 383 struct inode *inode, 384 struct buffer_head *fe_bh, 385 u64 new_i_size) 386 { 387 int status; 388 handle_t *handle; 389 struct ocfs2_dinode *di; 390 u64 cluster_bytes; 391 392 /* 393 * We need to CoW the cluster contains the offset if it is reflinked 394 * since we will call ocfs2_zero_range_for_truncate later which will 395 * write "0" from offset to the end of the cluster. 396 */ 397 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 398 if (status) { 399 mlog_errno(status); 400 return status; 401 } 402 403 /* TODO: This needs to actually orphan the inode in this 404 * transaction. */ 405 406 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 407 if (IS_ERR(handle)) { 408 status = PTR_ERR(handle); 409 mlog_errno(status); 410 goto out; 411 } 412 413 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 414 OCFS2_JOURNAL_ACCESS_WRITE); 415 if (status < 0) { 416 mlog_errno(status); 417 goto out_commit; 418 } 419 420 /* 421 * Do this before setting i_size. 422 */ 423 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 424 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 425 cluster_bytes); 426 if (status) { 427 mlog_errno(status); 428 goto out_commit; 429 } 430 431 i_size_write(inode, new_i_size); 432 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 433 434 di = (struct ocfs2_dinode *) fe_bh->b_data; 435 di->i_size = cpu_to_le64(new_i_size); 436 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 437 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 438 439 ocfs2_journal_dirty(handle, fe_bh); 440 441 out_commit: 442 ocfs2_commit_trans(osb, handle); 443 out: 444 return status; 445 } 446 447 static int ocfs2_truncate_file(struct inode *inode, 448 struct buffer_head *di_bh, 449 u64 new_i_size) 450 { 451 int status = 0; 452 struct ocfs2_dinode *fe = NULL; 453 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 454 455 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 456 * already validated it */ 457 fe = (struct ocfs2_dinode *) di_bh->b_data; 458 459 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 460 (unsigned long long)le64_to_cpu(fe->i_size), 461 (unsigned long long)new_i_size); 462 463 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 464 "Inode %llu, inode i_size = %lld != di " 465 "i_size = %llu, i_flags = 0x%x\n", 466 (unsigned long long)OCFS2_I(inode)->ip_blkno, 467 i_size_read(inode), 468 (unsigned long long)le64_to_cpu(fe->i_size), 469 le32_to_cpu(fe->i_flags)); 470 471 if (new_i_size > le64_to_cpu(fe->i_size)) { 472 trace_ocfs2_truncate_file_error( 473 (unsigned long long)le64_to_cpu(fe->i_size), 474 (unsigned long long)new_i_size); 475 status = -EINVAL; 476 mlog_errno(status); 477 goto bail; 478 } 479 480 down_write(&OCFS2_I(inode)->ip_alloc_sem); 481 482 ocfs2_resv_discard(&osb->osb_la_resmap, 483 &OCFS2_I(inode)->ip_la_data_resv); 484 485 /* 486 * The inode lock forced other nodes to sync and drop their 487 * pages, which (correctly) happens even if we have a truncate 488 * without allocation change - ocfs2 cluster sizes can be much 489 * greater than page size, so we have to truncate them 490 * anyway. 491 */ 492 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 493 truncate_inode_pages(inode->i_mapping, new_i_size); 494 495 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 496 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 497 i_size_read(inode), 1); 498 if (status) 499 mlog_errno(status); 500 501 goto bail_unlock_sem; 502 } 503 504 /* alright, we're going to need to do a full blown alloc size 505 * change. Orphan the inode so that recovery can complete the 506 * truncate if necessary. This does the task of marking 507 * i_size. */ 508 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 509 if (status < 0) { 510 mlog_errno(status); 511 goto bail_unlock_sem; 512 } 513 514 status = ocfs2_commit_truncate(osb, inode, di_bh); 515 if (status < 0) { 516 mlog_errno(status); 517 goto bail_unlock_sem; 518 } 519 520 /* TODO: orphan dir cleanup here. */ 521 bail_unlock_sem: 522 up_write(&OCFS2_I(inode)->ip_alloc_sem); 523 524 bail: 525 if (!status && OCFS2_I(inode)->ip_clusters == 0) 526 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 527 528 return status; 529 } 530 531 /* 532 * extend file allocation only here. 533 * we'll update all the disk stuff, and oip->alloc_size 534 * 535 * expect stuff to be locked, a transaction started and enough data / 536 * metadata reservations in the contexts. 537 * 538 * Will return -EAGAIN, and a reason if a restart is needed. 539 * If passed in, *reason will always be set, even in error. 540 */ 541 int ocfs2_add_inode_data(struct ocfs2_super *osb, 542 struct inode *inode, 543 u32 *logical_offset, 544 u32 clusters_to_add, 545 int mark_unwritten, 546 struct buffer_head *fe_bh, 547 handle_t *handle, 548 struct ocfs2_alloc_context *data_ac, 549 struct ocfs2_alloc_context *meta_ac, 550 enum ocfs2_alloc_restarted *reason_ret) 551 { 552 int ret; 553 struct ocfs2_extent_tree et; 554 555 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 556 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 557 clusters_to_add, mark_unwritten, 558 data_ac, meta_ac, reason_ret); 559 560 return ret; 561 } 562 563 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 564 u32 clusters_to_add, int mark_unwritten) 565 { 566 int status = 0; 567 int restart_func = 0; 568 int credits; 569 u32 prev_clusters; 570 struct buffer_head *bh = NULL; 571 struct ocfs2_dinode *fe = NULL; 572 handle_t *handle = NULL; 573 struct ocfs2_alloc_context *data_ac = NULL; 574 struct ocfs2_alloc_context *meta_ac = NULL; 575 enum ocfs2_alloc_restarted why; 576 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 577 struct ocfs2_extent_tree et; 578 int did_quota = 0; 579 580 /* 581 * Unwritten extent only exists for file systems which 582 * support holes. 583 */ 584 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 585 586 status = ocfs2_read_inode_block(inode, &bh); 587 if (status < 0) { 588 mlog_errno(status); 589 goto leave; 590 } 591 fe = (struct ocfs2_dinode *) bh->b_data; 592 593 restart_all: 594 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 595 596 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 597 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 598 &data_ac, &meta_ac); 599 if (status) { 600 mlog_errno(status); 601 goto leave; 602 } 603 604 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 605 handle = ocfs2_start_trans(osb, credits); 606 if (IS_ERR(handle)) { 607 status = PTR_ERR(handle); 608 handle = NULL; 609 mlog_errno(status); 610 goto leave; 611 } 612 613 restarted_transaction: 614 trace_ocfs2_extend_allocation( 615 (unsigned long long)OCFS2_I(inode)->ip_blkno, 616 (unsigned long long)i_size_read(inode), 617 le32_to_cpu(fe->i_clusters), clusters_to_add, 618 why, restart_func); 619 620 status = dquot_alloc_space_nodirty(inode, 621 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 622 if (status) 623 goto leave; 624 did_quota = 1; 625 626 /* reserve a write to the file entry early on - that we if we 627 * run out of credits in the allocation path, we can still 628 * update i_size. */ 629 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 630 OCFS2_JOURNAL_ACCESS_WRITE); 631 if (status < 0) { 632 mlog_errno(status); 633 goto leave; 634 } 635 636 prev_clusters = OCFS2_I(inode)->ip_clusters; 637 638 status = ocfs2_add_inode_data(osb, 639 inode, 640 &logical_start, 641 clusters_to_add, 642 mark_unwritten, 643 bh, 644 handle, 645 data_ac, 646 meta_ac, 647 &why); 648 if ((status < 0) && (status != -EAGAIN)) { 649 if (status != -ENOSPC) 650 mlog_errno(status); 651 goto leave; 652 } 653 654 ocfs2_journal_dirty(handle, bh); 655 656 spin_lock(&OCFS2_I(inode)->ip_lock); 657 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 658 spin_unlock(&OCFS2_I(inode)->ip_lock); 659 /* Release unused quota reservation */ 660 dquot_free_space(inode, 661 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 662 did_quota = 0; 663 664 if (why != RESTART_NONE && clusters_to_add) { 665 if (why == RESTART_META) { 666 restart_func = 1; 667 status = 0; 668 } else { 669 BUG_ON(why != RESTART_TRANS); 670 671 status = ocfs2_allocate_extend_trans(handle, 1); 672 if (status < 0) { 673 /* handle still has to be committed at 674 * this point. */ 675 status = -ENOMEM; 676 mlog_errno(status); 677 goto leave; 678 } 679 goto restarted_transaction; 680 } 681 } 682 683 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 684 le32_to_cpu(fe->i_clusters), 685 (unsigned long long)le64_to_cpu(fe->i_size), 686 OCFS2_I(inode)->ip_clusters, 687 (unsigned long long)i_size_read(inode)); 688 689 leave: 690 if (status < 0 && did_quota) 691 dquot_free_space(inode, 692 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 693 if (handle) { 694 ocfs2_commit_trans(osb, handle); 695 handle = NULL; 696 } 697 if (data_ac) { 698 ocfs2_free_alloc_context(data_ac); 699 data_ac = NULL; 700 } 701 if (meta_ac) { 702 ocfs2_free_alloc_context(meta_ac); 703 meta_ac = NULL; 704 } 705 if ((!status) && restart_func) { 706 restart_func = 0; 707 goto restart_all; 708 } 709 brelse(bh); 710 bh = NULL; 711 712 return status; 713 } 714 715 /* 716 * While a write will already be ordering the data, a truncate will not. 717 * Thus, we need to explicitly order the zeroed pages. 718 */ 719 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 720 struct buffer_head *di_bh) 721 { 722 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 723 handle_t *handle = NULL; 724 int ret = 0; 725 726 if (!ocfs2_should_order_data(inode)) 727 goto out; 728 729 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 730 if (IS_ERR(handle)) { 731 ret = -ENOMEM; 732 mlog_errno(ret); 733 goto out; 734 } 735 736 ret = ocfs2_jbd2_file_inode(handle, inode); 737 if (ret < 0) { 738 mlog_errno(ret); 739 goto out; 740 } 741 742 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 743 OCFS2_JOURNAL_ACCESS_WRITE); 744 if (ret) 745 mlog_errno(ret); 746 747 out: 748 if (ret) { 749 if (!IS_ERR(handle)) 750 ocfs2_commit_trans(osb, handle); 751 handle = ERR_PTR(ret); 752 } 753 return handle; 754 } 755 756 /* Some parts of this taken from generic_cont_expand, which turned out 757 * to be too fragile to do exactly what we need without us having to 758 * worry about recursive locking in ->write_begin() and ->write_end(). */ 759 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 760 u64 abs_to, struct buffer_head *di_bh) 761 { 762 struct address_space *mapping = inode->i_mapping; 763 struct page *page; 764 unsigned long index = abs_from >> PAGE_CACHE_SHIFT; 765 handle_t *handle = NULL; 766 int ret = 0; 767 unsigned zero_from, zero_to, block_start, block_end; 768 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 769 770 BUG_ON(abs_from >= abs_to); 771 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT)); 772 BUG_ON(abs_from & (inode->i_blkbits - 1)); 773 774 page = find_or_create_page(mapping, index, GFP_NOFS); 775 if (!page) { 776 ret = -ENOMEM; 777 mlog_errno(ret); 778 goto out; 779 } 780 781 /* Get the offsets within the page that we want to zero */ 782 zero_from = abs_from & (PAGE_CACHE_SIZE - 1); 783 zero_to = abs_to & (PAGE_CACHE_SIZE - 1); 784 if (!zero_to) 785 zero_to = PAGE_CACHE_SIZE; 786 787 trace_ocfs2_write_zero_page( 788 (unsigned long long)OCFS2_I(inode)->ip_blkno, 789 (unsigned long long)abs_from, 790 (unsigned long long)abs_to, 791 index, zero_from, zero_to); 792 793 /* We know that zero_from is block aligned */ 794 for (block_start = zero_from; block_start < zero_to; 795 block_start = block_end) { 796 block_end = block_start + (1 << inode->i_blkbits); 797 798 /* 799 * block_start is block-aligned. Bump it by one to force 800 * __block_write_begin and block_commit_write to zero the 801 * whole block. 802 */ 803 ret = __block_write_begin(page, block_start + 1, 0, 804 ocfs2_get_block); 805 if (ret < 0) { 806 mlog_errno(ret); 807 goto out_unlock; 808 } 809 810 if (!handle) { 811 handle = ocfs2_zero_start_ordered_transaction(inode, 812 di_bh); 813 if (IS_ERR(handle)) { 814 ret = PTR_ERR(handle); 815 handle = NULL; 816 break; 817 } 818 } 819 820 /* must not update i_size! */ 821 ret = block_commit_write(page, block_start + 1, 822 block_start + 1); 823 if (ret < 0) 824 mlog_errno(ret); 825 else 826 ret = 0; 827 } 828 829 if (handle) { 830 /* 831 * fs-writeback will release the dirty pages without page lock 832 * whose offset are over inode size, the release happens at 833 * block_write_full_page_endio(). 834 */ 835 i_size_write(inode, abs_to); 836 inode->i_blocks = ocfs2_inode_sector_count(inode); 837 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 838 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 839 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 840 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 841 di->i_mtime_nsec = di->i_ctime_nsec; 842 ocfs2_journal_dirty(handle, di_bh); 843 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 844 } 845 846 out_unlock: 847 unlock_page(page); 848 page_cache_release(page); 849 out: 850 return ret; 851 } 852 853 /* 854 * Find the next range to zero. We do this in terms of bytes because 855 * that's what ocfs2_zero_extend() wants, and it is dealing with the 856 * pagecache. We may return multiple extents. 857 * 858 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 859 * needs to be zeroed. range_start and range_end return the next zeroing 860 * range. A subsequent call should pass the previous range_end as its 861 * zero_start. If range_end is 0, there's nothing to do. 862 * 863 * Unwritten extents are skipped over. Refcounted extents are CoWd. 864 */ 865 static int ocfs2_zero_extend_get_range(struct inode *inode, 866 struct buffer_head *di_bh, 867 u64 zero_start, u64 zero_end, 868 u64 *range_start, u64 *range_end) 869 { 870 int rc = 0, needs_cow = 0; 871 u32 p_cpos, zero_clusters = 0; 872 u32 zero_cpos = 873 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 874 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 875 unsigned int num_clusters = 0; 876 unsigned int ext_flags = 0; 877 878 while (zero_cpos < last_cpos) { 879 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 880 &num_clusters, &ext_flags); 881 if (rc) { 882 mlog_errno(rc); 883 goto out; 884 } 885 886 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 887 zero_clusters = num_clusters; 888 if (ext_flags & OCFS2_EXT_REFCOUNTED) 889 needs_cow = 1; 890 break; 891 } 892 893 zero_cpos += num_clusters; 894 } 895 if (!zero_clusters) { 896 *range_end = 0; 897 goto out; 898 } 899 900 while ((zero_cpos + zero_clusters) < last_cpos) { 901 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 902 &p_cpos, &num_clusters, 903 &ext_flags); 904 if (rc) { 905 mlog_errno(rc); 906 goto out; 907 } 908 909 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 910 break; 911 if (ext_flags & OCFS2_EXT_REFCOUNTED) 912 needs_cow = 1; 913 zero_clusters += num_clusters; 914 } 915 if ((zero_cpos + zero_clusters) > last_cpos) 916 zero_clusters = last_cpos - zero_cpos; 917 918 if (needs_cow) { 919 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 920 zero_clusters, UINT_MAX); 921 if (rc) { 922 mlog_errno(rc); 923 goto out; 924 } 925 } 926 927 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 928 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 929 zero_cpos + zero_clusters); 930 931 out: 932 return rc; 933 } 934 935 /* 936 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 937 * has made sure that the entire range needs zeroing. 938 */ 939 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 940 u64 range_end, struct buffer_head *di_bh) 941 { 942 int rc = 0; 943 u64 next_pos; 944 u64 zero_pos = range_start; 945 946 trace_ocfs2_zero_extend_range( 947 (unsigned long long)OCFS2_I(inode)->ip_blkno, 948 (unsigned long long)range_start, 949 (unsigned long long)range_end); 950 BUG_ON(range_start >= range_end); 951 952 while (zero_pos < range_end) { 953 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE; 954 if (next_pos > range_end) 955 next_pos = range_end; 956 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 957 if (rc < 0) { 958 mlog_errno(rc); 959 break; 960 } 961 zero_pos = next_pos; 962 963 /* 964 * Very large extends have the potential to lock up 965 * the cpu for extended periods of time. 966 */ 967 cond_resched(); 968 } 969 970 return rc; 971 } 972 973 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 974 loff_t zero_to_size) 975 { 976 int ret = 0; 977 u64 zero_start, range_start = 0, range_end = 0; 978 struct super_block *sb = inode->i_sb; 979 980 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 981 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 982 (unsigned long long)zero_start, 983 (unsigned long long)i_size_read(inode)); 984 while (zero_start < zero_to_size) { 985 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 986 zero_to_size, 987 &range_start, 988 &range_end); 989 if (ret) { 990 mlog_errno(ret); 991 break; 992 } 993 if (!range_end) 994 break; 995 /* Trim the ends */ 996 if (range_start < zero_start) 997 range_start = zero_start; 998 if (range_end > zero_to_size) 999 range_end = zero_to_size; 1000 1001 ret = ocfs2_zero_extend_range(inode, range_start, 1002 range_end, di_bh); 1003 if (ret) { 1004 mlog_errno(ret); 1005 break; 1006 } 1007 zero_start = range_end; 1008 } 1009 1010 return ret; 1011 } 1012 1013 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1014 u64 new_i_size, u64 zero_to) 1015 { 1016 int ret; 1017 u32 clusters_to_add; 1018 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1019 1020 /* 1021 * Only quota files call this without a bh, and they can't be 1022 * refcounted. 1023 */ 1024 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL)); 1025 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1026 1027 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1028 if (clusters_to_add < oi->ip_clusters) 1029 clusters_to_add = 0; 1030 else 1031 clusters_to_add -= oi->ip_clusters; 1032 1033 if (clusters_to_add) { 1034 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters, 1035 clusters_to_add, 0); 1036 if (ret) { 1037 mlog_errno(ret); 1038 goto out; 1039 } 1040 } 1041 1042 /* 1043 * Call this even if we don't add any clusters to the tree. We 1044 * still need to zero the area between the old i_size and the 1045 * new i_size. 1046 */ 1047 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1048 if (ret < 0) 1049 mlog_errno(ret); 1050 1051 out: 1052 return ret; 1053 } 1054 1055 static int ocfs2_extend_file(struct inode *inode, 1056 struct buffer_head *di_bh, 1057 u64 new_i_size) 1058 { 1059 int ret = 0; 1060 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1061 1062 BUG_ON(!di_bh); 1063 1064 /* setattr sometimes calls us like this. */ 1065 if (new_i_size == 0) 1066 goto out; 1067 1068 if (i_size_read(inode) == new_i_size) 1069 goto out; 1070 BUG_ON(new_i_size < i_size_read(inode)); 1071 1072 /* 1073 * The alloc sem blocks people in read/write from reading our 1074 * allocation until we're done changing it. We depend on 1075 * i_mutex to block other extend/truncate calls while we're 1076 * here. We even have to hold it for sparse files because there 1077 * might be some tail zeroing. 1078 */ 1079 down_write(&oi->ip_alloc_sem); 1080 1081 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1082 /* 1083 * We can optimize small extends by keeping the inodes 1084 * inline data. 1085 */ 1086 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1087 up_write(&oi->ip_alloc_sem); 1088 goto out_update_size; 1089 } 1090 1091 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1092 if (ret) { 1093 up_write(&oi->ip_alloc_sem); 1094 mlog_errno(ret); 1095 goto out; 1096 } 1097 } 1098 1099 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1100 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1101 else 1102 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1103 new_i_size); 1104 1105 up_write(&oi->ip_alloc_sem); 1106 1107 if (ret < 0) { 1108 mlog_errno(ret); 1109 goto out; 1110 } 1111 1112 out_update_size: 1113 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1114 if (ret < 0) 1115 mlog_errno(ret); 1116 1117 out: 1118 return ret; 1119 } 1120 1121 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) 1122 { 1123 int status = 0, size_change; 1124 struct inode *inode = dentry->d_inode; 1125 struct super_block *sb = inode->i_sb; 1126 struct ocfs2_super *osb = OCFS2_SB(sb); 1127 struct buffer_head *bh = NULL; 1128 handle_t *handle = NULL; 1129 struct dquot *transfer_to[MAXQUOTAS] = { }; 1130 int qtype; 1131 1132 trace_ocfs2_setattr(inode, dentry, 1133 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1134 dentry->d_name.len, dentry->d_name.name, 1135 attr->ia_valid, attr->ia_mode, 1136 from_kuid(&init_user_ns, attr->ia_uid), 1137 from_kgid(&init_user_ns, attr->ia_gid)); 1138 1139 /* ensuring we don't even attempt to truncate a symlink */ 1140 if (S_ISLNK(inode->i_mode)) 1141 attr->ia_valid &= ~ATTR_SIZE; 1142 1143 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1144 | ATTR_GID | ATTR_UID | ATTR_MODE) 1145 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1146 return 0; 1147 1148 status = inode_change_ok(inode, attr); 1149 if (status) 1150 return status; 1151 1152 if (is_quota_modification(inode, attr)) 1153 dquot_initialize(inode); 1154 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1155 if (size_change) { 1156 status = ocfs2_rw_lock(inode, 1); 1157 if (status < 0) { 1158 mlog_errno(status); 1159 goto bail; 1160 } 1161 } 1162 1163 status = ocfs2_inode_lock(inode, &bh, 1); 1164 if (status < 0) { 1165 if (status != -ENOENT) 1166 mlog_errno(status); 1167 goto bail_unlock_rw; 1168 } 1169 1170 if (size_change) { 1171 status = inode_newsize_ok(inode, attr->ia_size); 1172 if (status) 1173 goto bail_unlock; 1174 1175 inode_dio_wait(inode); 1176 1177 if (i_size_read(inode) >= attr->ia_size) { 1178 if (ocfs2_should_order_data(inode)) { 1179 status = ocfs2_begin_ordered_truncate(inode, 1180 attr->ia_size); 1181 if (status) 1182 goto bail_unlock; 1183 } 1184 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1185 } else 1186 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1187 if (status < 0) { 1188 if (status != -ENOSPC) 1189 mlog_errno(status); 1190 status = -ENOSPC; 1191 goto bail_unlock; 1192 } 1193 } 1194 1195 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1196 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1197 /* 1198 * Gather pointers to quota structures so that allocation / 1199 * freeing of quota structures happens here and not inside 1200 * dquot_transfer() where we have problems with lock ordering 1201 */ 1202 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1203 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1204 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1205 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1206 if (!transfer_to[USRQUOTA]) { 1207 status = -ESRCH; 1208 goto bail_unlock; 1209 } 1210 } 1211 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1212 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1213 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1214 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1215 if (!transfer_to[GRPQUOTA]) { 1216 status = -ESRCH; 1217 goto bail_unlock; 1218 } 1219 } 1220 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1221 2 * ocfs2_quota_trans_credits(sb)); 1222 if (IS_ERR(handle)) { 1223 status = PTR_ERR(handle); 1224 mlog_errno(status); 1225 goto bail_unlock; 1226 } 1227 status = __dquot_transfer(inode, transfer_to); 1228 if (status < 0) 1229 goto bail_commit; 1230 } else { 1231 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1232 if (IS_ERR(handle)) { 1233 status = PTR_ERR(handle); 1234 mlog_errno(status); 1235 goto bail_unlock; 1236 } 1237 } 1238 1239 setattr_copy(inode, attr); 1240 mark_inode_dirty(inode); 1241 1242 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1243 if (status < 0) 1244 mlog_errno(status); 1245 1246 bail_commit: 1247 ocfs2_commit_trans(osb, handle); 1248 bail_unlock: 1249 ocfs2_inode_unlock(inode, 1); 1250 bail_unlock_rw: 1251 if (size_change) 1252 ocfs2_rw_unlock(inode, 1); 1253 bail: 1254 brelse(bh); 1255 1256 /* Release quota pointers in case we acquired them */ 1257 for (qtype = 0; qtype < MAXQUOTAS; qtype++) 1258 dqput(transfer_to[qtype]); 1259 1260 if (!status && attr->ia_valid & ATTR_MODE) { 1261 status = posix_acl_chmod(inode, inode->i_mode); 1262 if (status < 0) 1263 mlog_errno(status); 1264 } 1265 1266 return status; 1267 } 1268 1269 int ocfs2_getattr(struct vfsmount *mnt, 1270 struct dentry *dentry, 1271 struct kstat *stat) 1272 { 1273 struct inode *inode = dentry->d_inode; 1274 struct super_block *sb = dentry->d_inode->i_sb; 1275 struct ocfs2_super *osb = sb->s_fs_info; 1276 int err; 1277 1278 err = ocfs2_inode_revalidate(dentry); 1279 if (err) { 1280 if (err != -ENOENT) 1281 mlog_errno(err); 1282 goto bail; 1283 } 1284 1285 generic_fillattr(inode, stat); 1286 1287 /* We set the blksize from the cluster size for performance */ 1288 stat->blksize = osb->s_clustersize; 1289 1290 bail: 1291 return err; 1292 } 1293 1294 int ocfs2_permission(struct inode *inode, int mask) 1295 { 1296 int ret; 1297 1298 if (mask & MAY_NOT_BLOCK) 1299 return -ECHILD; 1300 1301 ret = ocfs2_inode_lock(inode, NULL, 0); 1302 if (ret) { 1303 if (ret != -ENOENT) 1304 mlog_errno(ret); 1305 goto out; 1306 } 1307 1308 ret = generic_permission(inode, mask); 1309 1310 ocfs2_inode_unlock(inode, 0); 1311 out: 1312 return ret; 1313 } 1314 1315 static int __ocfs2_write_remove_suid(struct inode *inode, 1316 struct buffer_head *bh) 1317 { 1318 int ret; 1319 handle_t *handle; 1320 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1321 struct ocfs2_dinode *di; 1322 1323 trace_ocfs2_write_remove_suid( 1324 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1325 inode->i_mode); 1326 1327 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1328 if (IS_ERR(handle)) { 1329 ret = PTR_ERR(handle); 1330 mlog_errno(ret); 1331 goto out; 1332 } 1333 1334 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1335 OCFS2_JOURNAL_ACCESS_WRITE); 1336 if (ret < 0) { 1337 mlog_errno(ret); 1338 goto out_trans; 1339 } 1340 1341 inode->i_mode &= ~S_ISUID; 1342 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1343 inode->i_mode &= ~S_ISGID; 1344 1345 di = (struct ocfs2_dinode *) bh->b_data; 1346 di->i_mode = cpu_to_le16(inode->i_mode); 1347 1348 ocfs2_journal_dirty(handle, bh); 1349 1350 out_trans: 1351 ocfs2_commit_trans(osb, handle); 1352 out: 1353 return ret; 1354 } 1355 1356 /* 1357 * Will look for holes and unwritten extents in the range starting at 1358 * pos for count bytes (inclusive). 1359 */ 1360 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos, 1361 size_t count) 1362 { 1363 int ret = 0; 1364 unsigned int extent_flags; 1365 u32 cpos, clusters, extent_len, phys_cpos; 1366 struct super_block *sb = inode->i_sb; 1367 1368 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 1369 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 1370 1371 while (clusters) { 1372 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 1373 &extent_flags); 1374 if (ret < 0) { 1375 mlog_errno(ret); 1376 goto out; 1377 } 1378 1379 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) { 1380 ret = 1; 1381 break; 1382 } 1383 1384 if (extent_len > clusters) 1385 extent_len = clusters; 1386 1387 clusters -= extent_len; 1388 cpos += extent_len; 1389 } 1390 out: 1391 return ret; 1392 } 1393 1394 static int ocfs2_write_remove_suid(struct inode *inode) 1395 { 1396 int ret; 1397 struct buffer_head *bh = NULL; 1398 1399 ret = ocfs2_read_inode_block(inode, &bh); 1400 if (ret < 0) { 1401 mlog_errno(ret); 1402 goto out; 1403 } 1404 1405 ret = __ocfs2_write_remove_suid(inode, bh); 1406 out: 1407 brelse(bh); 1408 return ret; 1409 } 1410 1411 /* 1412 * Allocate enough extents to cover the region starting at byte offset 1413 * start for len bytes. Existing extents are skipped, any extents 1414 * added are marked as "unwritten". 1415 */ 1416 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1417 u64 start, u64 len) 1418 { 1419 int ret; 1420 u32 cpos, phys_cpos, clusters, alloc_size; 1421 u64 end = start + len; 1422 struct buffer_head *di_bh = NULL; 1423 1424 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1425 ret = ocfs2_read_inode_block(inode, &di_bh); 1426 if (ret) { 1427 mlog_errno(ret); 1428 goto out; 1429 } 1430 1431 /* 1432 * Nothing to do if the requested reservation range 1433 * fits within the inode. 1434 */ 1435 if (ocfs2_size_fits_inline_data(di_bh, end)) 1436 goto out; 1437 1438 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1439 if (ret) { 1440 mlog_errno(ret); 1441 goto out; 1442 } 1443 } 1444 1445 /* 1446 * We consider both start and len to be inclusive. 1447 */ 1448 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1449 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1450 clusters -= cpos; 1451 1452 while (clusters) { 1453 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1454 &alloc_size, NULL); 1455 if (ret) { 1456 mlog_errno(ret); 1457 goto out; 1458 } 1459 1460 /* 1461 * Hole or existing extent len can be arbitrary, so 1462 * cap it to our own allocation request. 1463 */ 1464 if (alloc_size > clusters) 1465 alloc_size = clusters; 1466 1467 if (phys_cpos) { 1468 /* 1469 * We already have an allocation at this 1470 * region so we can safely skip it. 1471 */ 1472 goto next; 1473 } 1474 1475 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1476 if (ret) { 1477 if (ret != -ENOSPC) 1478 mlog_errno(ret); 1479 goto out; 1480 } 1481 1482 next: 1483 cpos += alloc_size; 1484 clusters -= alloc_size; 1485 } 1486 1487 ret = 0; 1488 out: 1489 1490 brelse(di_bh); 1491 return ret; 1492 } 1493 1494 /* 1495 * Truncate a byte range, avoiding pages within partial clusters. This 1496 * preserves those pages for the zeroing code to write to. 1497 */ 1498 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1499 u64 byte_len) 1500 { 1501 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1502 loff_t start, end; 1503 struct address_space *mapping = inode->i_mapping; 1504 1505 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1506 end = byte_start + byte_len; 1507 end = end & ~(osb->s_clustersize - 1); 1508 1509 if (start < end) { 1510 unmap_mapping_range(mapping, start, end - start, 0); 1511 truncate_inode_pages_range(mapping, start, end - 1); 1512 } 1513 } 1514 1515 static int ocfs2_zero_partial_clusters(struct inode *inode, 1516 u64 start, u64 len) 1517 { 1518 int ret = 0; 1519 u64 tmpend, end = start + len; 1520 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1521 unsigned int csize = osb->s_clustersize; 1522 handle_t *handle; 1523 1524 /* 1525 * The "start" and "end" values are NOT necessarily part of 1526 * the range whose allocation is being deleted. Rather, this 1527 * is what the user passed in with the request. We must zero 1528 * partial clusters here. There's no need to worry about 1529 * physical allocation - the zeroing code knows to skip holes. 1530 */ 1531 trace_ocfs2_zero_partial_clusters( 1532 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1533 (unsigned long long)start, (unsigned long long)end); 1534 1535 /* 1536 * If both edges are on a cluster boundary then there's no 1537 * zeroing required as the region is part of the allocation to 1538 * be truncated. 1539 */ 1540 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1541 goto out; 1542 1543 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1544 if (IS_ERR(handle)) { 1545 ret = PTR_ERR(handle); 1546 mlog_errno(ret); 1547 goto out; 1548 } 1549 1550 /* 1551 * We want to get the byte offset of the end of the 1st cluster. 1552 */ 1553 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1)); 1554 if (tmpend > end) 1555 tmpend = end; 1556 1557 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start, 1558 (unsigned long long)tmpend); 1559 1560 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend); 1561 if (ret) 1562 mlog_errno(ret); 1563 1564 if (tmpend < end) { 1565 /* 1566 * This may make start and end equal, but the zeroing 1567 * code will skip any work in that case so there's no 1568 * need to catch it up here. 1569 */ 1570 start = end & ~(osb->s_clustersize - 1); 1571 1572 trace_ocfs2_zero_partial_clusters_range2( 1573 (unsigned long long)start, (unsigned long long)end); 1574 1575 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1576 if (ret) 1577 mlog_errno(ret); 1578 } 1579 1580 ocfs2_commit_trans(osb, handle); 1581 out: 1582 return ret; 1583 } 1584 1585 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1586 { 1587 int i; 1588 struct ocfs2_extent_rec *rec = NULL; 1589 1590 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1591 1592 rec = &el->l_recs[i]; 1593 1594 if (le32_to_cpu(rec->e_cpos) < pos) 1595 break; 1596 } 1597 1598 return i; 1599 } 1600 1601 /* 1602 * Helper to calculate the punching pos and length in one run, we handle the 1603 * following three cases in order: 1604 * 1605 * - remove the entire record 1606 * - remove a partial record 1607 * - no record needs to be removed (hole-punching completed) 1608 */ 1609 static void ocfs2_calc_trunc_pos(struct inode *inode, 1610 struct ocfs2_extent_list *el, 1611 struct ocfs2_extent_rec *rec, 1612 u32 trunc_start, u32 *trunc_cpos, 1613 u32 *trunc_len, u32 *trunc_end, 1614 u64 *blkno, int *done) 1615 { 1616 int ret = 0; 1617 u32 coff, range; 1618 1619 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1620 1621 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1622 /* 1623 * remove an entire extent record. 1624 */ 1625 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1626 /* 1627 * Skip holes if any. 1628 */ 1629 if (range < *trunc_end) 1630 *trunc_end = range; 1631 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1632 *blkno = le64_to_cpu(rec->e_blkno); 1633 *trunc_end = le32_to_cpu(rec->e_cpos); 1634 } else if (range > trunc_start) { 1635 /* 1636 * remove a partial extent record, which means we're 1637 * removing the last extent record. 1638 */ 1639 *trunc_cpos = trunc_start; 1640 /* 1641 * skip hole if any. 1642 */ 1643 if (range < *trunc_end) 1644 *trunc_end = range; 1645 *trunc_len = *trunc_end - trunc_start; 1646 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1647 *blkno = le64_to_cpu(rec->e_blkno) + 1648 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1649 *trunc_end = trunc_start; 1650 } else { 1651 /* 1652 * It may have two following possibilities: 1653 * 1654 * - last record has been removed 1655 * - trunc_start was within a hole 1656 * 1657 * both two cases mean the completion of hole punching. 1658 */ 1659 ret = 1; 1660 } 1661 1662 *done = ret; 1663 } 1664 1665 static int ocfs2_remove_inode_range(struct inode *inode, 1666 struct buffer_head *di_bh, u64 byte_start, 1667 u64 byte_len) 1668 { 1669 int ret = 0, flags = 0, done = 0, i; 1670 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1671 u32 cluster_in_el; 1672 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1673 struct ocfs2_cached_dealloc_ctxt dealloc; 1674 struct address_space *mapping = inode->i_mapping; 1675 struct ocfs2_extent_tree et; 1676 struct ocfs2_path *path = NULL; 1677 struct ocfs2_extent_list *el = NULL; 1678 struct ocfs2_extent_rec *rec = NULL; 1679 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1680 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1681 1682 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1683 ocfs2_init_dealloc_ctxt(&dealloc); 1684 1685 trace_ocfs2_remove_inode_range( 1686 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1687 (unsigned long long)byte_start, 1688 (unsigned long long)byte_len); 1689 1690 if (byte_len == 0) 1691 return 0; 1692 1693 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1694 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1695 byte_start + byte_len, 0); 1696 if (ret) { 1697 mlog_errno(ret); 1698 goto out; 1699 } 1700 /* 1701 * There's no need to get fancy with the page cache 1702 * truncate of an inline-data inode. We're talking 1703 * about less than a page here, which will be cached 1704 * in the dinode buffer anyway. 1705 */ 1706 unmap_mapping_range(mapping, 0, 0, 0); 1707 truncate_inode_pages(mapping, 0); 1708 goto out; 1709 } 1710 1711 /* 1712 * For reflinks, we may need to CoW 2 clusters which might be 1713 * partially zero'd later, if hole's start and end offset were 1714 * within one cluster(means is not exactly aligned to clustersize). 1715 */ 1716 1717 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) { 1718 1719 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1720 if (ret) { 1721 mlog_errno(ret); 1722 goto out; 1723 } 1724 1725 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1726 if (ret) { 1727 mlog_errno(ret); 1728 goto out; 1729 } 1730 } 1731 1732 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1733 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1734 cluster_in_el = trunc_end; 1735 1736 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1737 if (ret) { 1738 mlog_errno(ret); 1739 goto out; 1740 } 1741 1742 path = ocfs2_new_path_from_et(&et); 1743 if (!path) { 1744 ret = -ENOMEM; 1745 mlog_errno(ret); 1746 goto out; 1747 } 1748 1749 while (trunc_end > trunc_start) { 1750 1751 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1752 cluster_in_el); 1753 if (ret) { 1754 mlog_errno(ret); 1755 goto out; 1756 } 1757 1758 el = path_leaf_el(path); 1759 1760 i = ocfs2_find_rec(el, trunc_end); 1761 /* 1762 * Need to go to previous extent block. 1763 */ 1764 if (i < 0) { 1765 if (path->p_tree_depth == 0) 1766 break; 1767 1768 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1769 path, 1770 &cluster_in_el); 1771 if (ret) { 1772 mlog_errno(ret); 1773 goto out; 1774 } 1775 1776 /* 1777 * We've reached the leftmost extent block, 1778 * it's safe to leave. 1779 */ 1780 if (cluster_in_el == 0) 1781 break; 1782 1783 /* 1784 * The 'pos' searched for previous extent block is 1785 * always one cluster less than actual trunc_end. 1786 */ 1787 trunc_end = cluster_in_el + 1; 1788 1789 ocfs2_reinit_path(path, 1); 1790 1791 continue; 1792 1793 } else 1794 rec = &el->l_recs[i]; 1795 1796 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1797 &trunc_len, &trunc_end, &blkno, &done); 1798 if (done) 1799 break; 1800 1801 flags = rec->e_flags; 1802 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1803 1804 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1805 phys_cpos, trunc_len, flags, 1806 &dealloc, refcount_loc); 1807 if (ret < 0) { 1808 mlog_errno(ret); 1809 goto out; 1810 } 1811 1812 cluster_in_el = trunc_end; 1813 1814 ocfs2_reinit_path(path, 1); 1815 } 1816 1817 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1818 1819 out: 1820 ocfs2_free_path(path); 1821 ocfs2_schedule_truncate_log_flush(osb, 1); 1822 ocfs2_run_deallocs(osb, &dealloc); 1823 1824 return ret; 1825 } 1826 1827 /* 1828 * Parts of this function taken from xfs_change_file_space() 1829 */ 1830 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1831 loff_t f_pos, unsigned int cmd, 1832 struct ocfs2_space_resv *sr, 1833 int change_size) 1834 { 1835 int ret; 1836 s64 llen; 1837 loff_t size; 1838 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1839 struct buffer_head *di_bh = NULL; 1840 handle_t *handle; 1841 unsigned long long max_off = inode->i_sb->s_maxbytes; 1842 1843 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1844 return -EROFS; 1845 1846 mutex_lock(&inode->i_mutex); 1847 1848 /* 1849 * This prevents concurrent writes on other nodes 1850 */ 1851 ret = ocfs2_rw_lock(inode, 1); 1852 if (ret) { 1853 mlog_errno(ret); 1854 goto out; 1855 } 1856 1857 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1858 if (ret) { 1859 mlog_errno(ret); 1860 goto out_rw_unlock; 1861 } 1862 1863 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1864 ret = -EPERM; 1865 goto out_inode_unlock; 1866 } 1867 1868 switch (sr->l_whence) { 1869 case 0: /*SEEK_SET*/ 1870 break; 1871 case 1: /*SEEK_CUR*/ 1872 sr->l_start += f_pos; 1873 break; 1874 case 2: /*SEEK_END*/ 1875 sr->l_start += i_size_read(inode); 1876 break; 1877 default: 1878 ret = -EINVAL; 1879 goto out_inode_unlock; 1880 } 1881 sr->l_whence = 0; 1882 1883 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1884 1885 if (sr->l_start < 0 1886 || sr->l_start > max_off 1887 || (sr->l_start + llen) < 0 1888 || (sr->l_start + llen) > max_off) { 1889 ret = -EINVAL; 1890 goto out_inode_unlock; 1891 } 1892 size = sr->l_start + sr->l_len; 1893 1894 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1895 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1896 if (sr->l_len <= 0) { 1897 ret = -EINVAL; 1898 goto out_inode_unlock; 1899 } 1900 } 1901 1902 if (file && should_remove_suid(file->f_path.dentry)) { 1903 ret = __ocfs2_write_remove_suid(inode, di_bh); 1904 if (ret) { 1905 mlog_errno(ret); 1906 goto out_inode_unlock; 1907 } 1908 } 1909 1910 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1911 switch (cmd) { 1912 case OCFS2_IOC_RESVSP: 1913 case OCFS2_IOC_RESVSP64: 1914 /* 1915 * This takes unsigned offsets, but the signed ones we 1916 * pass have been checked against overflow above. 1917 */ 1918 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1919 sr->l_len); 1920 break; 1921 case OCFS2_IOC_UNRESVSP: 1922 case OCFS2_IOC_UNRESVSP64: 1923 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1924 sr->l_len); 1925 break; 1926 default: 1927 ret = -EINVAL; 1928 } 1929 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1930 if (ret) { 1931 mlog_errno(ret); 1932 goto out_inode_unlock; 1933 } 1934 1935 /* 1936 * We update c/mtime for these changes 1937 */ 1938 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1939 if (IS_ERR(handle)) { 1940 ret = PTR_ERR(handle); 1941 mlog_errno(ret); 1942 goto out_inode_unlock; 1943 } 1944 1945 if (change_size && i_size_read(inode) < size) 1946 i_size_write(inode, size); 1947 1948 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 1949 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1950 if (ret < 0) 1951 mlog_errno(ret); 1952 1953 if (file && (file->f_flags & O_SYNC)) 1954 handle->h_sync = 1; 1955 1956 ocfs2_commit_trans(osb, handle); 1957 1958 out_inode_unlock: 1959 brelse(di_bh); 1960 ocfs2_inode_unlock(inode, 1); 1961 out_rw_unlock: 1962 ocfs2_rw_unlock(inode, 1); 1963 1964 out: 1965 mutex_unlock(&inode->i_mutex); 1966 return ret; 1967 } 1968 1969 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 1970 struct ocfs2_space_resv *sr) 1971 { 1972 struct inode *inode = file_inode(file); 1973 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1974 int ret; 1975 1976 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 1977 !ocfs2_writes_unwritten_extents(osb)) 1978 return -ENOTTY; 1979 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 1980 !ocfs2_sparse_alloc(osb)) 1981 return -ENOTTY; 1982 1983 if (!S_ISREG(inode->i_mode)) 1984 return -EINVAL; 1985 1986 if (!(file->f_mode & FMODE_WRITE)) 1987 return -EBADF; 1988 1989 ret = mnt_want_write_file(file); 1990 if (ret) 1991 return ret; 1992 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 1993 mnt_drop_write_file(file); 1994 return ret; 1995 } 1996 1997 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 1998 loff_t len) 1999 { 2000 struct inode *inode = file_inode(file); 2001 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2002 struct ocfs2_space_resv sr; 2003 int change_size = 1; 2004 int cmd = OCFS2_IOC_RESVSP64; 2005 2006 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2007 return -EOPNOTSUPP; 2008 if (!ocfs2_writes_unwritten_extents(osb)) 2009 return -EOPNOTSUPP; 2010 2011 if (mode & FALLOC_FL_KEEP_SIZE) 2012 change_size = 0; 2013 2014 if (mode & FALLOC_FL_PUNCH_HOLE) 2015 cmd = OCFS2_IOC_UNRESVSP64; 2016 2017 sr.l_whence = 0; 2018 sr.l_start = (s64)offset; 2019 sr.l_len = (s64)len; 2020 2021 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2022 change_size); 2023 } 2024 2025 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2026 size_t count) 2027 { 2028 int ret = 0; 2029 unsigned int extent_flags; 2030 u32 cpos, clusters, extent_len, phys_cpos; 2031 struct super_block *sb = inode->i_sb; 2032 2033 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2034 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) || 2035 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2036 return 0; 2037 2038 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2039 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2040 2041 while (clusters) { 2042 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2043 &extent_flags); 2044 if (ret < 0) { 2045 mlog_errno(ret); 2046 goto out; 2047 } 2048 2049 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2050 ret = 1; 2051 break; 2052 } 2053 2054 if (extent_len > clusters) 2055 extent_len = clusters; 2056 2057 clusters -= extent_len; 2058 cpos += extent_len; 2059 } 2060 out: 2061 return ret; 2062 } 2063 2064 static void ocfs2_aiodio_wait(struct inode *inode) 2065 { 2066 wait_queue_head_t *wq = ocfs2_ioend_wq(inode); 2067 2068 wait_event(*wq, (atomic_read(&OCFS2_I(inode)->ip_unaligned_aio) == 0)); 2069 } 2070 2071 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2072 { 2073 int blockmask = inode->i_sb->s_blocksize - 1; 2074 loff_t final_size = pos + count; 2075 2076 if ((pos & blockmask) || (final_size & blockmask)) 2077 return 1; 2078 return 0; 2079 } 2080 2081 static int ocfs2_prepare_inode_for_refcount(struct inode *inode, 2082 struct file *file, 2083 loff_t pos, size_t count, 2084 int *meta_level) 2085 { 2086 int ret; 2087 struct buffer_head *di_bh = NULL; 2088 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2089 u32 clusters = 2090 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2091 2092 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2093 if (ret) { 2094 mlog_errno(ret); 2095 goto out; 2096 } 2097 2098 *meta_level = 1; 2099 2100 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2101 if (ret) 2102 mlog_errno(ret); 2103 out: 2104 brelse(di_bh); 2105 return ret; 2106 } 2107 2108 static int ocfs2_prepare_inode_for_write(struct file *file, 2109 loff_t *ppos, 2110 size_t count, 2111 int appending, 2112 int *direct_io, 2113 int *has_refcount) 2114 { 2115 int ret = 0, meta_level = 0; 2116 struct dentry *dentry = file->f_path.dentry; 2117 struct inode *inode = dentry->d_inode; 2118 loff_t saved_pos = 0, end; 2119 2120 /* 2121 * We start with a read level meta lock and only jump to an ex 2122 * if we need to make modifications here. 2123 */ 2124 for(;;) { 2125 ret = ocfs2_inode_lock(inode, NULL, meta_level); 2126 if (ret < 0) { 2127 meta_level = -1; 2128 mlog_errno(ret); 2129 goto out; 2130 } 2131 2132 /* Clear suid / sgid if necessary. We do this here 2133 * instead of later in the write path because 2134 * remove_suid() calls ->setattr without any hint that 2135 * we may have already done our cluster locking. Since 2136 * ocfs2_setattr() *must* take cluster locks to 2137 * proceed, this will lead us to recursively lock the 2138 * inode. There's also the dinode i_size state which 2139 * can be lost via setattr during extending writes (we 2140 * set inode->i_size at the end of a write. */ 2141 if (should_remove_suid(dentry)) { 2142 if (meta_level == 0) { 2143 ocfs2_inode_unlock(inode, meta_level); 2144 meta_level = 1; 2145 continue; 2146 } 2147 2148 ret = ocfs2_write_remove_suid(inode); 2149 if (ret < 0) { 2150 mlog_errno(ret); 2151 goto out_unlock; 2152 } 2153 } 2154 2155 /* work on a copy of ppos until we're sure that we won't have 2156 * to recalculate it due to relocking. */ 2157 if (appending) 2158 saved_pos = i_size_read(inode); 2159 else 2160 saved_pos = *ppos; 2161 2162 end = saved_pos + count; 2163 2164 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count); 2165 if (ret == 1) { 2166 ocfs2_inode_unlock(inode, meta_level); 2167 meta_level = -1; 2168 2169 ret = ocfs2_prepare_inode_for_refcount(inode, 2170 file, 2171 saved_pos, 2172 count, 2173 &meta_level); 2174 if (has_refcount) 2175 *has_refcount = 1; 2176 if (direct_io) 2177 *direct_io = 0; 2178 } 2179 2180 if (ret < 0) { 2181 mlog_errno(ret); 2182 goto out_unlock; 2183 } 2184 2185 /* 2186 * Skip the O_DIRECT checks if we don't need 2187 * them. 2188 */ 2189 if (!direct_io || !(*direct_io)) 2190 break; 2191 2192 /* 2193 * There's no sane way to do direct writes to an inode 2194 * with inline data. 2195 */ 2196 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2197 *direct_io = 0; 2198 break; 2199 } 2200 2201 /* 2202 * Allowing concurrent direct writes means 2203 * i_size changes wouldn't be synchronized, so 2204 * one node could wind up truncating another 2205 * nodes writes. 2206 */ 2207 if (end > i_size_read(inode)) { 2208 *direct_io = 0; 2209 break; 2210 } 2211 2212 /* 2213 * We don't fill holes during direct io, so 2214 * check for them here. If any are found, the 2215 * caller will have to retake some cluster 2216 * locks and initiate the io as buffered. 2217 */ 2218 ret = ocfs2_check_range_for_holes(inode, saved_pos, count); 2219 if (ret == 1) { 2220 *direct_io = 0; 2221 ret = 0; 2222 } else if (ret < 0) 2223 mlog_errno(ret); 2224 break; 2225 } 2226 2227 if (appending) 2228 *ppos = saved_pos; 2229 2230 out_unlock: 2231 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2232 saved_pos, appending, count, 2233 direct_io, has_refcount); 2234 2235 if (meta_level >= 0) 2236 ocfs2_inode_unlock(inode, meta_level); 2237 2238 out: 2239 return ret; 2240 } 2241 2242 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb, 2243 const struct iovec *iov, 2244 unsigned long nr_segs, 2245 loff_t pos) 2246 { 2247 int ret, direct_io, appending, rw_level, have_alloc_sem = 0; 2248 int can_do_direct, has_refcount = 0; 2249 ssize_t written = 0; 2250 size_t ocount; /* original count */ 2251 size_t count; /* after file limit checks */ 2252 loff_t old_size, *ppos = &iocb->ki_pos; 2253 u32 old_clusters; 2254 struct file *file = iocb->ki_filp; 2255 struct inode *inode = file_inode(file); 2256 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2257 int full_coherency = !(osb->s_mount_opt & 2258 OCFS2_MOUNT_COHERENCY_BUFFERED); 2259 int unaligned_dio = 0; 2260 2261 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry, 2262 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2263 file->f_path.dentry->d_name.len, 2264 file->f_path.dentry->d_name.name, 2265 (unsigned int)nr_segs); 2266 2267 if (iocb->ki_nbytes == 0) 2268 return 0; 2269 2270 appending = file->f_flags & O_APPEND ? 1 : 0; 2271 direct_io = file->f_flags & O_DIRECT ? 1 : 0; 2272 2273 mutex_lock(&inode->i_mutex); 2274 2275 ocfs2_iocb_clear_sem_locked(iocb); 2276 2277 relock: 2278 /* to match setattr's i_mutex -> rw_lock ordering */ 2279 if (direct_io) { 2280 have_alloc_sem = 1; 2281 /* communicate with ocfs2_dio_end_io */ 2282 ocfs2_iocb_set_sem_locked(iocb); 2283 } 2284 2285 /* 2286 * Concurrent O_DIRECT writes are allowed with 2287 * mount_option "coherency=buffered". 2288 */ 2289 rw_level = (!direct_io || full_coherency); 2290 2291 ret = ocfs2_rw_lock(inode, rw_level); 2292 if (ret < 0) { 2293 mlog_errno(ret); 2294 goto out_sems; 2295 } 2296 2297 /* 2298 * O_DIRECT writes with "coherency=full" need to take EX cluster 2299 * inode_lock to guarantee coherency. 2300 */ 2301 if (direct_io && full_coherency) { 2302 /* 2303 * We need to take and drop the inode lock to force 2304 * other nodes to drop their caches. Buffered I/O 2305 * already does this in write_begin(). 2306 */ 2307 ret = ocfs2_inode_lock(inode, NULL, 1); 2308 if (ret < 0) { 2309 mlog_errno(ret); 2310 goto out; 2311 } 2312 2313 ocfs2_inode_unlock(inode, 1); 2314 } 2315 2316 can_do_direct = direct_io; 2317 ret = ocfs2_prepare_inode_for_write(file, ppos, 2318 iocb->ki_nbytes, appending, 2319 &can_do_direct, &has_refcount); 2320 if (ret < 0) { 2321 mlog_errno(ret); 2322 goto out; 2323 } 2324 2325 if (direct_io && !is_sync_kiocb(iocb)) 2326 unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_nbytes, 2327 *ppos); 2328 2329 /* 2330 * We can't complete the direct I/O as requested, fall back to 2331 * buffered I/O. 2332 */ 2333 if (direct_io && !can_do_direct) { 2334 ocfs2_rw_unlock(inode, rw_level); 2335 2336 have_alloc_sem = 0; 2337 rw_level = -1; 2338 2339 direct_io = 0; 2340 goto relock; 2341 } 2342 2343 if (unaligned_dio) { 2344 /* 2345 * Wait on previous unaligned aio to complete before 2346 * proceeding. 2347 */ 2348 ocfs2_aiodio_wait(inode); 2349 2350 /* Mark the iocb as needing a decrement in ocfs2_dio_end_io */ 2351 atomic_inc(&OCFS2_I(inode)->ip_unaligned_aio); 2352 ocfs2_iocb_set_unaligned_aio(iocb); 2353 } 2354 2355 /* 2356 * To later detect whether a journal commit for sync writes is 2357 * necessary, we sample i_size, and cluster count here. 2358 */ 2359 old_size = i_size_read(inode); 2360 old_clusters = OCFS2_I(inode)->ip_clusters; 2361 2362 /* communicate with ocfs2_dio_end_io */ 2363 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2364 2365 ret = generic_segment_checks(iov, &nr_segs, &ocount, 2366 VERIFY_READ); 2367 if (ret) 2368 goto out_dio; 2369 2370 count = ocount; 2371 ret = generic_write_checks(file, ppos, &count, 2372 S_ISBLK(inode->i_mode)); 2373 if (ret) 2374 goto out_dio; 2375 2376 if (direct_io) { 2377 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos, 2378 ppos, count, ocount); 2379 if (written < 0) { 2380 ret = written; 2381 goto out_dio; 2382 } 2383 } else { 2384 current->backing_dev_info = file->f_mapping->backing_dev_info; 2385 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos, 2386 ppos, count, 0); 2387 current->backing_dev_info = NULL; 2388 } 2389 2390 out_dio: 2391 /* buffered aio wouldn't have proper lock coverage today */ 2392 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT)); 2393 2394 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) || 2395 ((file->f_flags & O_DIRECT) && !direct_io)) { 2396 ret = filemap_fdatawrite_range(file->f_mapping, pos, 2397 pos + count - 1); 2398 if (ret < 0) 2399 written = ret; 2400 2401 if (!ret && ((old_size != i_size_read(inode)) || 2402 (old_clusters != OCFS2_I(inode)->ip_clusters) || 2403 has_refcount)) { 2404 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2405 if (ret < 0) 2406 written = ret; 2407 } 2408 2409 if (!ret) 2410 ret = filemap_fdatawait_range(file->f_mapping, pos, 2411 pos + count - 1); 2412 } 2413 2414 /* 2415 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2416 * function pointer which is called when o_direct io completes so that 2417 * it can unlock our rw lock. 2418 * Unfortunately there are error cases which call end_io and others 2419 * that don't. so we don't have to unlock the rw_lock if either an 2420 * async dio is going to do it in the future or an end_io after an 2421 * error has already done it. 2422 */ 2423 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2424 rw_level = -1; 2425 have_alloc_sem = 0; 2426 unaligned_dio = 0; 2427 } 2428 2429 if (unaligned_dio) { 2430 ocfs2_iocb_clear_unaligned_aio(iocb); 2431 atomic_dec(&OCFS2_I(inode)->ip_unaligned_aio); 2432 } 2433 2434 out: 2435 if (rw_level != -1) 2436 ocfs2_rw_unlock(inode, rw_level); 2437 2438 out_sems: 2439 if (have_alloc_sem) 2440 ocfs2_iocb_clear_sem_locked(iocb); 2441 2442 mutex_unlock(&inode->i_mutex); 2443 2444 if (written) 2445 ret = written; 2446 return ret; 2447 } 2448 2449 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe, 2450 struct file *out, 2451 struct splice_desc *sd) 2452 { 2453 int ret; 2454 2455 ret = ocfs2_prepare_inode_for_write(out, &sd->pos, 2456 sd->total_len, 0, NULL, NULL); 2457 if (ret < 0) { 2458 mlog_errno(ret); 2459 return ret; 2460 } 2461 2462 return splice_from_pipe_feed(pipe, sd, pipe_to_file); 2463 } 2464 2465 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe, 2466 struct file *out, 2467 loff_t *ppos, 2468 size_t len, 2469 unsigned int flags) 2470 { 2471 int ret; 2472 struct address_space *mapping = out->f_mapping; 2473 struct inode *inode = mapping->host; 2474 struct splice_desc sd = { 2475 .total_len = len, 2476 .flags = flags, 2477 .pos = *ppos, 2478 .u.file = out, 2479 }; 2480 2481 2482 trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry, 2483 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2484 out->f_path.dentry->d_name.len, 2485 out->f_path.dentry->d_name.name, len); 2486 2487 pipe_lock(pipe); 2488 2489 splice_from_pipe_begin(&sd); 2490 do { 2491 ret = splice_from_pipe_next(pipe, &sd); 2492 if (ret <= 0) 2493 break; 2494 2495 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2496 ret = ocfs2_rw_lock(inode, 1); 2497 if (ret < 0) 2498 mlog_errno(ret); 2499 else { 2500 ret = ocfs2_splice_to_file(pipe, out, &sd); 2501 ocfs2_rw_unlock(inode, 1); 2502 } 2503 mutex_unlock(&inode->i_mutex); 2504 } while (ret > 0); 2505 splice_from_pipe_end(pipe, &sd); 2506 2507 pipe_unlock(pipe); 2508 2509 if (sd.num_spliced) 2510 ret = sd.num_spliced; 2511 2512 if (ret > 0) { 2513 int err; 2514 2515 err = generic_write_sync(out, *ppos, ret); 2516 if (err) 2517 ret = err; 2518 else 2519 *ppos += ret; 2520 2521 balance_dirty_pages_ratelimited(mapping); 2522 } 2523 2524 return ret; 2525 } 2526 2527 static ssize_t ocfs2_file_splice_read(struct file *in, 2528 loff_t *ppos, 2529 struct pipe_inode_info *pipe, 2530 size_t len, 2531 unsigned int flags) 2532 { 2533 int ret = 0, lock_level = 0; 2534 struct inode *inode = file_inode(in); 2535 2536 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, 2537 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2538 in->f_path.dentry->d_name.len, 2539 in->f_path.dentry->d_name.name, len); 2540 2541 /* 2542 * See the comment in ocfs2_file_aio_read() 2543 */ 2544 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level); 2545 if (ret < 0) { 2546 mlog_errno(ret); 2547 goto bail; 2548 } 2549 ocfs2_inode_unlock(inode, lock_level); 2550 2551 ret = generic_file_splice_read(in, ppos, pipe, len, flags); 2552 2553 bail: 2554 return ret; 2555 } 2556 2557 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb, 2558 const struct iovec *iov, 2559 unsigned long nr_segs, 2560 loff_t pos) 2561 { 2562 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0; 2563 struct file *filp = iocb->ki_filp; 2564 struct inode *inode = file_inode(filp); 2565 2566 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry, 2567 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2568 filp->f_path.dentry->d_name.len, 2569 filp->f_path.dentry->d_name.name, nr_segs); 2570 2571 2572 if (!inode) { 2573 ret = -EINVAL; 2574 mlog_errno(ret); 2575 goto bail; 2576 } 2577 2578 ocfs2_iocb_clear_sem_locked(iocb); 2579 2580 /* 2581 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2582 * need locks to protect pending reads from racing with truncate. 2583 */ 2584 if (filp->f_flags & O_DIRECT) { 2585 have_alloc_sem = 1; 2586 ocfs2_iocb_set_sem_locked(iocb); 2587 2588 ret = ocfs2_rw_lock(inode, 0); 2589 if (ret < 0) { 2590 mlog_errno(ret); 2591 goto bail; 2592 } 2593 rw_level = 0; 2594 /* communicate with ocfs2_dio_end_io */ 2595 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2596 } 2597 2598 /* 2599 * We're fine letting folks race truncates and extending 2600 * writes with read across the cluster, just like they can 2601 * locally. Hence no rw_lock during read. 2602 * 2603 * Take and drop the meta data lock to update inode fields 2604 * like i_size. This allows the checks down below 2605 * generic_file_aio_read() a chance of actually working. 2606 */ 2607 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level); 2608 if (ret < 0) { 2609 mlog_errno(ret); 2610 goto bail; 2611 } 2612 ocfs2_inode_unlock(inode, lock_level); 2613 2614 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos); 2615 trace_generic_file_aio_read_ret(ret); 2616 2617 /* buffered aio wouldn't have proper lock coverage today */ 2618 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT)); 2619 2620 /* see ocfs2_file_aio_write */ 2621 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2622 rw_level = -1; 2623 have_alloc_sem = 0; 2624 } 2625 2626 bail: 2627 if (have_alloc_sem) 2628 ocfs2_iocb_clear_sem_locked(iocb); 2629 2630 if (rw_level != -1) 2631 ocfs2_rw_unlock(inode, rw_level); 2632 2633 return ret; 2634 } 2635 2636 /* Refer generic_file_llseek_unlocked() */ 2637 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2638 { 2639 struct inode *inode = file->f_mapping->host; 2640 int ret = 0; 2641 2642 mutex_lock(&inode->i_mutex); 2643 2644 switch (whence) { 2645 case SEEK_SET: 2646 break; 2647 case SEEK_END: 2648 offset += inode->i_size; 2649 break; 2650 case SEEK_CUR: 2651 if (offset == 0) { 2652 offset = file->f_pos; 2653 goto out; 2654 } 2655 offset += file->f_pos; 2656 break; 2657 case SEEK_DATA: 2658 case SEEK_HOLE: 2659 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2660 if (ret) 2661 goto out; 2662 break; 2663 default: 2664 ret = -EINVAL; 2665 goto out; 2666 } 2667 2668 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2669 2670 out: 2671 mutex_unlock(&inode->i_mutex); 2672 if (ret) 2673 return ret; 2674 return offset; 2675 } 2676 2677 const struct inode_operations ocfs2_file_iops = { 2678 .setattr = ocfs2_setattr, 2679 .getattr = ocfs2_getattr, 2680 .permission = ocfs2_permission, 2681 .setxattr = generic_setxattr, 2682 .getxattr = generic_getxattr, 2683 .listxattr = ocfs2_listxattr, 2684 .removexattr = generic_removexattr, 2685 .fiemap = ocfs2_fiemap, 2686 .get_acl = ocfs2_iop_get_acl, 2687 .set_acl = ocfs2_iop_set_acl, 2688 }; 2689 2690 const struct inode_operations ocfs2_special_file_iops = { 2691 .setattr = ocfs2_setattr, 2692 .getattr = ocfs2_getattr, 2693 .permission = ocfs2_permission, 2694 .get_acl = ocfs2_iop_get_acl, 2695 .set_acl = ocfs2_iop_set_acl, 2696 }; 2697 2698 /* 2699 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2700 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2701 */ 2702 const struct file_operations ocfs2_fops = { 2703 .llseek = ocfs2_file_llseek, 2704 .read = do_sync_read, 2705 .write = do_sync_write, 2706 .mmap = ocfs2_mmap, 2707 .fsync = ocfs2_sync_file, 2708 .release = ocfs2_file_release, 2709 .open = ocfs2_file_open, 2710 .aio_read = ocfs2_file_aio_read, 2711 .aio_write = ocfs2_file_aio_write, 2712 .unlocked_ioctl = ocfs2_ioctl, 2713 #ifdef CONFIG_COMPAT 2714 .compat_ioctl = ocfs2_compat_ioctl, 2715 #endif 2716 .lock = ocfs2_lock, 2717 .flock = ocfs2_flock, 2718 .splice_read = ocfs2_file_splice_read, 2719 .splice_write = ocfs2_file_splice_write, 2720 .fallocate = ocfs2_fallocate, 2721 }; 2722 2723 const struct file_operations ocfs2_dops = { 2724 .llseek = generic_file_llseek, 2725 .read = generic_read_dir, 2726 .iterate = ocfs2_readdir, 2727 .fsync = ocfs2_sync_file, 2728 .release = ocfs2_dir_release, 2729 .open = ocfs2_dir_open, 2730 .unlocked_ioctl = ocfs2_ioctl, 2731 #ifdef CONFIG_COMPAT 2732 .compat_ioctl = ocfs2_compat_ioctl, 2733 #endif 2734 .lock = ocfs2_lock, 2735 .flock = ocfs2_flock, 2736 }; 2737 2738 /* 2739 * POSIX-lockless variants of our file_operations. 2740 * 2741 * These will be used if the underlying cluster stack does not support 2742 * posix file locking, if the user passes the "localflocks" mount 2743 * option, or if we have a local-only fs. 2744 * 2745 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2746 * so we still want it in the case of no stack support for 2747 * plocks. Internally, it will do the right thing when asked to ignore 2748 * the cluster. 2749 */ 2750 const struct file_operations ocfs2_fops_no_plocks = { 2751 .llseek = ocfs2_file_llseek, 2752 .read = do_sync_read, 2753 .write = do_sync_write, 2754 .mmap = ocfs2_mmap, 2755 .fsync = ocfs2_sync_file, 2756 .release = ocfs2_file_release, 2757 .open = ocfs2_file_open, 2758 .aio_read = ocfs2_file_aio_read, 2759 .aio_write = ocfs2_file_aio_write, 2760 .unlocked_ioctl = ocfs2_ioctl, 2761 #ifdef CONFIG_COMPAT 2762 .compat_ioctl = ocfs2_compat_ioctl, 2763 #endif 2764 .flock = ocfs2_flock, 2765 .splice_read = ocfs2_file_splice_read, 2766 .splice_write = ocfs2_file_splice_write, 2767 .fallocate = ocfs2_fallocate, 2768 }; 2769 2770 const struct file_operations ocfs2_dops_no_plocks = { 2771 .llseek = generic_file_llseek, 2772 .read = generic_read_dir, 2773 .iterate = ocfs2_readdir, 2774 .fsync = ocfs2_sync_file, 2775 .release = ocfs2_dir_release, 2776 .open = ocfs2_dir_open, 2777 .unlocked_ioctl = ocfs2_ioctl, 2778 #ifdef CONFIG_COMPAT 2779 .compat_ioctl = ocfs2_compat_ioctl, 2780 #endif 2781 .flock = ocfs2_flock, 2782 }; 2783