xref: /openbmc/linux/fs/ocfs2/file.c (revision f21e49be)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * file.c
4  *
5  * File open, close, extend, truncate
6  *
7  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/fs.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/uio.h>
17 #include <linux/sched.h>
18 #include <linux/splice.h>
19 #include <linux/mount.h>
20 #include <linux/writeback.h>
21 #include <linux/falloc.h>
22 #include <linux/quotaops.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 
26 #include <cluster/masklog.h>
27 
28 #include "ocfs2.h"
29 
30 #include "alloc.h"
31 #include "aops.h"
32 #include "dir.h"
33 #include "dlmglue.h"
34 #include "extent_map.h"
35 #include "file.h"
36 #include "sysfile.h"
37 #include "inode.h"
38 #include "ioctl.h"
39 #include "journal.h"
40 #include "locks.h"
41 #include "mmap.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "quota.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49 
50 #include "buffer_head_io.h"
51 
52 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
53 {
54 	struct ocfs2_file_private *fp;
55 
56 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
57 	if (!fp)
58 		return -ENOMEM;
59 
60 	fp->fp_file = file;
61 	mutex_init(&fp->fp_mutex);
62 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
63 	file->private_data = fp;
64 
65 	return 0;
66 }
67 
68 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
69 {
70 	struct ocfs2_file_private *fp = file->private_data;
71 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
72 
73 	if (fp) {
74 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
75 		ocfs2_lock_res_free(&fp->fp_flock);
76 		kfree(fp);
77 		file->private_data = NULL;
78 	}
79 }
80 
81 static int ocfs2_file_open(struct inode *inode, struct file *file)
82 {
83 	int status;
84 	int mode = file->f_flags;
85 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
86 
87 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
88 			      (unsigned long long)oi->ip_blkno,
89 			      file->f_path.dentry->d_name.len,
90 			      file->f_path.dentry->d_name.name, mode);
91 
92 	if (file->f_mode & FMODE_WRITE) {
93 		status = dquot_initialize(inode);
94 		if (status)
95 			goto leave;
96 	}
97 
98 	spin_lock(&oi->ip_lock);
99 
100 	/* Check that the inode hasn't been wiped from disk by another
101 	 * node. If it hasn't then we're safe as long as we hold the
102 	 * spin lock until our increment of open count. */
103 	if (oi->ip_flags & OCFS2_INODE_DELETED) {
104 		spin_unlock(&oi->ip_lock);
105 
106 		status = -ENOENT;
107 		goto leave;
108 	}
109 
110 	if (mode & O_DIRECT)
111 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
112 
113 	oi->ip_open_count++;
114 	spin_unlock(&oi->ip_lock);
115 
116 	status = ocfs2_init_file_private(inode, file);
117 	if (status) {
118 		/*
119 		 * We want to set open count back if we're failing the
120 		 * open.
121 		 */
122 		spin_lock(&oi->ip_lock);
123 		oi->ip_open_count--;
124 		spin_unlock(&oi->ip_lock);
125 	}
126 
127 	file->f_mode |= FMODE_NOWAIT;
128 
129 leave:
130 	return status;
131 }
132 
133 static int ocfs2_file_release(struct inode *inode, struct file *file)
134 {
135 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
136 
137 	spin_lock(&oi->ip_lock);
138 	if (!--oi->ip_open_count)
139 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
140 
141 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
142 				 oi->ip_blkno,
143 				 file->f_path.dentry->d_name.len,
144 				 file->f_path.dentry->d_name.name,
145 				 oi->ip_open_count);
146 	spin_unlock(&oi->ip_lock);
147 
148 	ocfs2_free_file_private(inode, file);
149 
150 	return 0;
151 }
152 
153 static int ocfs2_dir_open(struct inode *inode, struct file *file)
154 {
155 	return ocfs2_init_file_private(inode, file);
156 }
157 
158 static int ocfs2_dir_release(struct inode *inode, struct file *file)
159 {
160 	ocfs2_free_file_private(inode, file);
161 	return 0;
162 }
163 
164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
165 			   int datasync)
166 {
167 	int err = 0;
168 	struct inode *inode = file->f_mapping->host;
169 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
170 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
171 	journal_t *journal = osb->journal->j_journal;
172 	int ret;
173 	tid_t commit_tid;
174 	bool needs_barrier = false;
175 
176 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
177 			      oi->ip_blkno,
178 			      file->f_path.dentry->d_name.len,
179 			      file->f_path.dentry->d_name.name,
180 			      (unsigned long long)datasync);
181 
182 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
183 		return -EROFS;
184 
185 	err = file_write_and_wait_range(file, start, end);
186 	if (err)
187 		return err;
188 
189 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
190 	if (journal->j_flags & JBD2_BARRIER &&
191 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
192 		needs_barrier = true;
193 	err = jbd2_complete_transaction(journal, commit_tid);
194 	if (needs_barrier) {
195 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
196 		if (!err)
197 			err = ret;
198 	}
199 
200 	if (err)
201 		mlog_errno(err);
202 
203 	return (err < 0) ? -EIO : 0;
204 }
205 
206 int ocfs2_should_update_atime(struct inode *inode,
207 			      struct vfsmount *vfsmnt)
208 {
209 	struct timespec64 now;
210 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
211 
212 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
213 		return 0;
214 
215 	if ((inode->i_flags & S_NOATIME) ||
216 	    ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
217 		return 0;
218 
219 	/*
220 	 * We can be called with no vfsmnt structure - NFSD will
221 	 * sometimes do this.
222 	 *
223 	 * Note that our action here is different than touch_atime() -
224 	 * if we can't tell whether this is a noatime mount, then we
225 	 * don't know whether to trust the value of s_atime_quantum.
226 	 */
227 	if (vfsmnt == NULL)
228 		return 0;
229 
230 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
231 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
232 		return 0;
233 
234 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
235 		if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
236 		    (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
237 			return 1;
238 
239 		return 0;
240 	}
241 
242 	now = current_time(inode);
243 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
244 		return 0;
245 	else
246 		return 1;
247 }
248 
249 int ocfs2_update_inode_atime(struct inode *inode,
250 			     struct buffer_head *bh)
251 {
252 	int ret;
253 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
254 	handle_t *handle;
255 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
256 
257 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
258 	if (IS_ERR(handle)) {
259 		ret = PTR_ERR(handle);
260 		mlog_errno(ret);
261 		goto out;
262 	}
263 
264 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
265 				      OCFS2_JOURNAL_ACCESS_WRITE);
266 	if (ret) {
267 		mlog_errno(ret);
268 		goto out_commit;
269 	}
270 
271 	/*
272 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
273 	 * have i_mutex to guard against concurrent changes to other
274 	 * inode fields.
275 	 */
276 	inode->i_atime = current_time(inode);
277 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
278 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
279 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
280 	ocfs2_journal_dirty(handle, bh);
281 
282 out_commit:
283 	ocfs2_commit_trans(osb, handle);
284 out:
285 	return ret;
286 }
287 
288 int ocfs2_set_inode_size(handle_t *handle,
289 				struct inode *inode,
290 				struct buffer_head *fe_bh,
291 				u64 new_i_size)
292 {
293 	int status;
294 
295 	i_size_write(inode, new_i_size);
296 	inode->i_blocks = ocfs2_inode_sector_count(inode);
297 	inode->i_ctime = inode->i_mtime = current_time(inode);
298 
299 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
300 	if (status < 0) {
301 		mlog_errno(status);
302 		goto bail;
303 	}
304 
305 bail:
306 	return status;
307 }
308 
309 int ocfs2_simple_size_update(struct inode *inode,
310 			     struct buffer_head *di_bh,
311 			     u64 new_i_size)
312 {
313 	int ret;
314 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
315 	handle_t *handle = NULL;
316 
317 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
318 	if (IS_ERR(handle)) {
319 		ret = PTR_ERR(handle);
320 		mlog_errno(ret);
321 		goto out;
322 	}
323 
324 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
325 				   new_i_size);
326 	if (ret < 0)
327 		mlog_errno(ret);
328 
329 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
330 	ocfs2_commit_trans(osb, handle);
331 out:
332 	return ret;
333 }
334 
335 static int ocfs2_cow_file_pos(struct inode *inode,
336 			      struct buffer_head *fe_bh,
337 			      u64 offset)
338 {
339 	int status;
340 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
341 	unsigned int num_clusters = 0;
342 	unsigned int ext_flags = 0;
343 
344 	/*
345 	 * If the new offset is aligned to the range of the cluster, there is
346 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
347 	 * CoW either.
348 	 */
349 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
350 		return 0;
351 
352 	status = ocfs2_get_clusters(inode, cpos, &phys,
353 				    &num_clusters, &ext_flags);
354 	if (status) {
355 		mlog_errno(status);
356 		goto out;
357 	}
358 
359 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
360 		goto out;
361 
362 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
363 
364 out:
365 	return status;
366 }
367 
368 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
369 				     struct inode *inode,
370 				     struct buffer_head *fe_bh,
371 				     u64 new_i_size)
372 {
373 	int status;
374 	handle_t *handle;
375 	struct ocfs2_dinode *di;
376 	u64 cluster_bytes;
377 
378 	/*
379 	 * We need to CoW the cluster contains the offset if it is reflinked
380 	 * since we will call ocfs2_zero_range_for_truncate later which will
381 	 * write "0" from offset to the end of the cluster.
382 	 */
383 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
384 	if (status) {
385 		mlog_errno(status);
386 		return status;
387 	}
388 
389 	/* TODO: This needs to actually orphan the inode in this
390 	 * transaction. */
391 
392 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
393 	if (IS_ERR(handle)) {
394 		status = PTR_ERR(handle);
395 		mlog_errno(status);
396 		goto out;
397 	}
398 
399 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
400 					 OCFS2_JOURNAL_ACCESS_WRITE);
401 	if (status < 0) {
402 		mlog_errno(status);
403 		goto out_commit;
404 	}
405 
406 	/*
407 	 * Do this before setting i_size.
408 	 */
409 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
410 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
411 					       cluster_bytes);
412 	if (status) {
413 		mlog_errno(status);
414 		goto out_commit;
415 	}
416 
417 	i_size_write(inode, new_i_size);
418 	inode->i_ctime = inode->i_mtime = current_time(inode);
419 
420 	di = (struct ocfs2_dinode *) fe_bh->b_data;
421 	di->i_size = cpu_to_le64(new_i_size);
422 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
423 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
424 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
425 
426 	ocfs2_journal_dirty(handle, fe_bh);
427 
428 out_commit:
429 	ocfs2_commit_trans(osb, handle);
430 out:
431 	return status;
432 }
433 
434 int ocfs2_truncate_file(struct inode *inode,
435 			       struct buffer_head *di_bh,
436 			       u64 new_i_size)
437 {
438 	int status = 0;
439 	struct ocfs2_dinode *fe = NULL;
440 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
441 
442 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
443 	 * already validated it */
444 	fe = (struct ocfs2_dinode *) di_bh->b_data;
445 
446 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
447 				  (unsigned long long)le64_to_cpu(fe->i_size),
448 				  (unsigned long long)new_i_size);
449 
450 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
451 			"Inode %llu, inode i_size = %lld != di "
452 			"i_size = %llu, i_flags = 0x%x\n",
453 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
454 			i_size_read(inode),
455 			(unsigned long long)le64_to_cpu(fe->i_size),
456 			le32_to_cpu(fe->i_flags));
457 
458 	if (new_i_size > le64_to_cpu(fe->i_size)) {
459 		trace_ocfs2_truncate_file_error(
460 			(unsigned long long)le64_to_cpu(fe->i_size),
461 			(unsigned long long)new_i_size);
462 		status = -EINVAL;
463 		mlog_errno(status);
464 		goto bail;
465 	}
466 
467 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
468 
469 	ocfs2_resv_discard(&osb->osb_la_resmap,
470 			   &OCFS2_I(inode)->ip_la_data_resv);
471 
472 	/*
473 	 * The inode lock forced other nodes to sync and drop their
474 	 * pages, which (correctly) happens even if we have a truncate
475 	 * without allocation change - ocfs2 cluster sizes can be much
476 	 * greater than page size, so we have to truncate them
477 	 * anyway.
478 	 */
479 
480 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
481 		unmap_mapping_range(inode->i_mapping,
482 				    new_i_size + PAGE_SIZE - 1, 0, 1);
483 		truncate_inode_pages(inode->i_mapping, new_i_size);
484 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
485 					       i_size_read(inode), 1);
486 		if (status)
487 			mlog_errno(status);
488 
489 		goto bail_unlock_sem;
490 	}
491 
492 	/* alright, we're going to need to do a full blown alloc size
493 	 * change. Orphan the inode so that recovery can complete the
494 	 * truncate if necessary. This does the task of marking
495 	 * i_size. */
496 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
497 	if (status < 0) {
498 		mlog_errno(status);
499 		goto bail_unlock_sem;
500 	}
501 
502 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
503 	truncate_inode_pages(inode->i_mapping, new_i_size);
504 
505 	status = ocfs2_commit_truncate(osb, inode, di_bh);
506 	if (status < 0) {
507 		mlog_errno(status);
508 		goto bail_unlock_sem;
509 	}
510 
511 	/* TODO: orphan dir cleanup here. */
512 bail_unlock_sem:
513 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
514 
515 bail:
516 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
517 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
518 
519 	return status;
520 }
521 
522 /*
523  * extend file allocation only here.
524  * we'll update all the disk stuff, and oip->alloc_size
525  *
526  * expect stuff to be locked, a transaction started and enough data /
527  * metadata reservations in the contexts.
528  *
529  * Will return -EAGAIN, and a reason if a restart is needed.
530  * If passed in, *reason will always be set, even in error.
531  */
532 int ocfs2_add_inode_data(struct ocfs2_super *osb,
533 			 struct inode *inode,
534 			 u32 *logical_offset,
535 			 u32 clusters_to_add,
536 			 int mark_unwritten,
537 			 struct buffer_head *fe_bh,
538 			 handle_t *handle,
539 			 struct ocfs2_alloc_context *data_ac,
540 			 struct ocfs2_alloc_context *meta_ac,
541 			 enum ocfs2_alloc_restarted *reason_ret)
542 {
543 	int ret;
544 	struct ocfs2_extent_tree et;
545 
546 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
547 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
548 					  clusters_to_add, mark_unwritten,
549 					  data_ac, meta_ac, reason_ret);
550 
551 	return ret;
552 }
553 
554 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
555 				   u32 clusters_to_add, int mark_unwritten)
556 {
557 	int status = 0;
558 	int restart_func = 0;
559 	int credits;
560 	u32 prev_clusters;
561 	struct buffer_head *bh = NULL;
562 	struct ocfs2_dinode *fe = NULL;
563 	handle_t *handle = NULL;
564 	struct ocfs2_alloc_context *data_ac = NULL;
565 	struct ocfs2_alloc_context *meta_ac = NULL;
566 	enum ocfs2_alloc_restarted why = RESTART_NONE;
567 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
568 	struct ocfs2_extent_tree et;
569 	int did_quota = 0;
570 
571 	/*
572 	 * Unwritten extent only exists for file systems which
573 	 * support holes.
574 	 */
575 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
576 
577 	status = ocfs2_read_inode_block(inode, &bh);
578 	if (status < 0) {
579 		mlog_errno(status);
580 		goto leave;
581 	}
582 	fe = (struct ocfs2_dinode *) bh->b_data;
583 
584 restart_all:
585 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
586 
587 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
588 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
589 				       &data_ac, &meta_ac);
590 	if (status) {
591 		mlog_errno(status);
592 		goto leave;
593 	}
594 
595 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
596 	handle = ocfs2_start_trans(osb, credits);
597 	if (IS_ERR(handle)) {
598 		status = PTR_ERR(handle);
599 		handle = NULL;
600 		mlog_errno(status);
601 		goto leave;
602 	}
603 
604 restarted_transaction:
605 	trace_ocfs2_extend_allocation(
606 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
607 		(unsigned long long)i_size_read(inode),
608 		le32_to_cpu(fe->i_clusters), clusters_to_add,
609 		why, restart_func);
610 
611 	status = dquot_alloc_space_nodirty(inode,
612 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
613 	if (status)
614 		goto leave;
615 	did_quota = 1;
616 
617 	/* reserve a write to the file entry early on - that we if we
618 	 * run out of credits in the allocation path, we can still
619 	 * update i_size. */
620 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
621 					 OCFS2_JOURNAL_ACCESS_WRITE);
622 	if (status < 0) {
623 		mlog_errno(status);
624 		goto leave;
625 	}
626 
627 	prev_clusters = OCFS2_I(inode)->ip_clusters;
628 
629 	status = ocfs2_add_inode_data(osb,
630 				      inode,
631 				      &logical_start,
632 				      clusters_to_add,
633 				      mark_unwritten,
634 				      bh,
635 				      handle,
636 				      data_ac,
637 				      meta_ac,
638 				      &why);
639 	if ((status < 0) && (status != -EAGAIN)) {
640 		if (status != -ENOSPC)
641 			mlog_errno(status);
642 		goto leave;
643 	}
644 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
645 	ocfs2_journal_dirty(handle, bh);
646 
647 	spin_lock(&OCFS2_I(inode)->ip_lock);
648 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
649 	spin_unlock(&OCFS2_I(inode)->ip_lock);
650 	/* Release unused quota reservation */
651 	dquot_free_space(inode,
652 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
653 	did_quota = 0;
654 
655 	if (why != RESTART_NONE && clusters_to_add) {
656 		if (why == RESTART_META) {
657 			restart_func = 1;
658 			status = 0;
659 		} else {
660 			BUG_ON(why != RESTART_TRANS);
661 
662 			status = ocfs2_allocate_extend_trans(handle, 1);
663 			if (status < 0) {
664 				/* handle still has to be committed at
665 				 * this point. */
666 				status = -ENOMEM;
667 				mlog_errno(status);
668 				goto leave;
669 			}
670 			goto restarted_transaction;
671 		}
672 	}
673 
674 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
675 	     le32_to_cpu(fe->i_clusters),
676 	     (unsigned long long)le64_to_cpu(fe->i_size),
677 	     OCFS2_I(inode)->ip_clusters,
678 	     (unsigned long long)i_size_read(inode));
679 
680 leave:
681 	if (status < 0 && did_quota)
682 		dquot_free_space(inode,
683 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
684 	if (handle) {
685 		ocfs2_commit_trans(osb, handle);
686 		handle = NULL;
687 	}
688 	if (data_ac) {
689 		ocfs2_free_alloc_context(data_ac);
690 		data_ac = NULL;
691 	}
692 	if (meta_ac) {
693 		ocfs2_free_alloc_context(meta_ac);
694 		meta_ac = NULL;
695 	}
696 	if ((!status) && restart_func) {
697 		restart_func = 0;
698 		goto restart_all;
699 	}
700 	brelse(bh);
701 	bh = NULL;
702 
703 	return status;
704 }
705 
706 /*
707  * While a write will already be ordering the data, a truncate will not.
708  * Thus, we need to explicitly order the zeroed pages.
709  */
710 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
711 						      struct buffer_head *di_bh,
712 						      loff_t start_byte,
713 						      loff_t length)
714 {
715 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
716 	handle_t *handle = NULL;
717 	int ret = 0;
718 
719 	if (!ocfs2_should_order_data(inode))
720 		goto out;
721 
722 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
723 	if (IS_ERR(handle)) {
724 		ret = -ENOMEM;
725 		mlog_errno(ret);
726 		goto out;
727 	}
728 
729 	ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
730 	if (ret < 0) {
731 		mlog_errno(ret);
732 		goto out;
733 	}
734 
735 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
736 				      OCFS2_JOURNAL_ACCESS_WRITE);
737 	if (ret)
738 		mlog_errno(ret);
739 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
740 
741 out:
742 	if (ret) {
743 		if (!IS_ERR(handle))
744 			ocfs2_commit_trans(osb, handle);
745 		handle = ERR_PTR(ret);
746 	}
747 	return handle;
748 }
749 
750 /* Some parts of this taken from generic_cont_expand, which turned out
751  * to be too fragile to do exactly what we need without us having to
752  * worry about recursive locking in ->write_begin() and ->write_end(). */
753 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
754 				 u64 abs_to, struct buffer_head *di_bh)
755 {
756 	struct address_space *mapping = inode->i_mapping;
757 	struct page *page;
758 	unsigned long index = abs_from >> PAGE_SHIFT;
759 	handle_t *handle;
760 	int ret = 0;
761 	unsigned zero_from, zero_to, block_start, block_end;
762 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
763 
764 	BUG_ON(abs_from >= abs_to);
765 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
766 	BUG_ON(abs_from & (inode->i_blkbits - 1));
767 
768 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
769 						      abs_from,
770 						      abs_to - abs_from);
771 	if (IS_ERR(handle)) {
772 		ret = PTR_ERR(handle);
773 		goto out;
774 	}
775 
776 	page = find_or_create_page(mapping, index, GFP_NOFS);
777 	if (!page) {
778 		ret = -ENOMEM;
779 		mlog_errno(ret);
780 		goto out_commit_trans;
781 	}
782 
783 	/* Get the offsets within the page that we want to zero */
784 	zero_from = abs_from & (PAGE_SIZE - 1);
785 	zero_to = abs_to & (PAGE_SIZE - 1);
786 	if (!zero_to)
787 		zero_to = PAGE_SIZE;
788 
789 	trace_ocfs2_write_zero_page(
790 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
791 			(unsigned long long)abs_from,
792 			(unsigned long long)abs_to,
793 			index, zero_from, zero_to);
794 
795 	/* We know that zero_from is block aligned */
796 	for (block_start = zero_from; block_start < zero_to;
797 	     block_start = block_end) {
798 		block_end = block_start + i_blocksize(inode);
799 
800 		/*
801 		 * block_start is block-aligned.  Bump it by one to force
802 		 * __block_write_begin and block_commit_write to zero the
803 		 * whole block.
804 		 */
805 		ret = __block_write_begin(page, block_start + 1, 0,
806 					  ocfs2_get_block);
807 		if (ret < 0) {
808 			mlog_errno(ret);
809 			goto out_unlock;
810 		}
811 
812 
813 		/* must not update i_size! */
814 		ret = block_commit_write(page, block_start + 1,
815 					 block_start + 1);
816 		if (ret < 0)
817 			mlog_errno(ret);
818 		else
819 			ret = 0;
820 	}
821 
822 	/*
823 	 * fs-writeback will release the dirty pages without page lock
824 	 * whose offset are over inode size, the release happens at
825 	 * block_write_full_page().
826 	 */
827 	i_size_write(inode, abs_to);
828 	inode->i_blocks = ocfs2_inode_sector_count(inode);
829 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
830 	inode->i_mtime = inode->i_ctime = current_time(inode);
831 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
832 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
833 	di->i_mtime_nsec = di->i_ctime_nsec;
834 	if (handle) {
835 		ocfs2_journal_dirty(handle, di_bh);
836 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
837 	}
838 
839 out_unlock:
840 	unlock_page(page);
841 	put_page(page);
842 out_commit_trans:
843 	if (handle)
844 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
845 out:
846 	return ret;
847 }
848 
849 /*
850  * Find the next range to zero.  We do this in terms of bytes because
851  * that's what ocfs2_zero_extend() wants, and it is dealing with the
852  * pagecache.  We may return multiple extents.
853  *
854  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
855  * needs to be zeroed.  range_start and range_end return the next zeroing
856  * range.  A subsequent call should pass the previous range_end as its
857  * zero_start.  If range_end is 0, there's nothing to do.
858  *
859  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
860  */
861 static int ocfs2_zero_extend_get_range(struct inode *inode,
862 				       struct buffer_head *di_bh,
863 				       u64 zero_start, u64 zero_end,
864 				       u64 *range_start, u64 *range_end)
865 {
866 	int rc = 0, needs_cow = 0;
867 	u32 p_cpos, zero_clusters = 0;
868 	u32 zero_cpos =
869 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
870 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
871 	unsigned int num_clusters = 0;
872 	unsigned int ext_flags = 0;
873 
874 	while (zero_cpos < last_cpos) {
875 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
876 					&num_clusters, &ext_flags);
877 		if (rc) {
878 			mlog_errno(rc);
879 			goto out;
880 		}
881 
882 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
883 			zero_clusters = num_clusters;
884 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
885 				needs_cow = 1;
886 			break;
887 		}
888 
889 		zero_cpos += num_clusters;
890 	}
891 	if (!zero_clusters) {
892 		*range_end = 0;
893 		goto out;
894 	}
895 
896 	while ((zero_cpos + zero_clusters) < last_cpos) {
897 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
898 					&p_cpos, &num_clusters,
899 					&ext_flags);
900 		if (rc) {
901 			mlog_errno(rc);
902 			goto out;
903 		}
904 
905 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
906 			break;
907 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
908 			needs_cow = 1;
909 		zero_clusters += num_clusters;
910 	}
911 	if ((zero_cpos + zero_clusters) > last_cpos)
912 		zero_clusters = last_cpos - zero_cpos;
913 
914 	if (needs_cow) {
915 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
916 					zero_clusters, UINT_MAX);
917 		if (rc) {
918 			mlog_errno(rc);
919 			goto out;
920 		}
921 	}
922 
923 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
924 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
925 					     zero_cpos + zero_clusters);
926 
927 out:
928 	return rc;
929 }
930 
931 /*
932  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
933  * has made sure that the entire range needs zeroing.
934  */
935 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
936 				   u64 range_end, struct buffer_head *di_bh)
937 {
938 	int rc = 0;
939 	u64 next_pos;
940 	u64 zero_pos = range_start;
941 
942 	trace_ocfs2_zero_extend_range(
943 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
944 			(unsigned long long)range_start,
945 			(unsigned long long)range_end);
946 	BUG_ON(range_start >= range_end);
947 
948 	while (zero_pos < range_end) {
949 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
950 		if (next_pos > range_end)
951 			next_pos = range_end;
952 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
953 		if (rc < 0) {
954 			mlog_errno(rc);
955 			break;
956 		}
957 		zero_pos = next_pos;
958 
959 		/*
960 		 * Very large extends have the potential to lock up
961 		 * the cpu for extended periods of time.
962 		 */
963 		cond_resched();
964 	}
965 
966 	return rc;
967 }
968 
969 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
970 		      loff_t zero_to_size)
971 {
972 	int ret = 0;
973 	u64 zero_start, range_start = 0, range_end = 0;
974 	struct super_block *sb = inode->i_sb;
975 
976 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
977 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
978 				(unsigned long long)zero_start,
979 				(unsigned long long)i_size_read(inode));
980 	while (zero_start < zero_to_size) {
981 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
982 						  zero_to_size,
983 						  &range_start,
984 						  &range_end);
985 		if (ret) {
986 			mlog_errno(ret);
987 			break;
988 		}
989 		if (!range_end)
990 			break;
991 		/* Trim the ends */
992 		if (range_start < zero_start)
993 			range_start = zero_start;
994 		if (range_end > zero_to_size)
995 			range_end = zero_to_size;
996 
997 		ret = ocfs2_zero_extend_range(inode, range_start,
998 					      range_end, di_bh);
999 		if (ret) {
1000 			mlog_errno(ret);
1001 			break;
1002 		}
1003 		zero_start = range_end;
1004 	}
1005 
1006 	return ret;
1007 }
1008 
1009 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1010 			  u64 new_i_size, u64 zero_to)
1011 {
1012 	int ret;
1013 	u32 clusters_to_add;
1014 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1015 
1016 	/*
1017 	 * Only quota files call this without a bh, and they can't be
1018 	 * refcounted.
1019 	 */
1020 	BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1021 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1022 
1023 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1024 	if (clusters_to_add < oi->ip_clusters)
1025 		clusters_to_add = 0;
1026 	else
1027 		clusters_to_add -= oi->ip_clusters;
1028 
1029 	if (clusters_to_add) {
1030 		ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1031 					      clusters_to_add, 0);
1032 		if (ret) {
1033 			mlog_errno(ret);
1034 			goto out;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * Call this even if we don't add any clusters to the tree. We
1040 	 * still need to zero the area between the old i_size and the
1041 	 * new i_size.
1042 	 */
1043 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1044 	if (ret < 0)
1045 		mlog_errno(ret);
1046 
1047 out:
1048 	return ret;
1049 }
1050 
1051 static int ocfs2_extend_file(struct inode *inode,
1052 			     struct buffer_head *di_bh,
1053 			     u64 new_i_size)
1054 {
1055 	int ret = 0;
1056 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1057 
1058 	BUG_ON(!di_bh);
1059 
1060 	/* setattr sometimes calls us like this. */
1061 	if (new_i_size == 0)
1062 		goto out;
1063 
1064 	if (i_size_read(inode) == new_i_size)
1065 		goto out;
1066 	BUG_ON(new_i_size < i_size_read(inode));
1067 
1068 	/*
1069 	 * The alloc sem blocks people in read/write from reading our
1070 	 * allocation until we're done changing it. We depend on
1071 	 * i_mutex to block other extend/truncate calls while we're
1072 	 * here.  We even have to hold it for sparse files because there
1073 	 * might be some tail zeroing.
1074 	 */
1075 	down_write(&oi->ip_alloc_sem);
1076 
1077 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1078 		/*
1079 		 * We can optimize small extends by keeping the inodes
1080 		 * inline data.
1081 		 */
1082 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1083 			up_write(&oi->ip_alloc_sem);
1084 			goto out_update_size;
1085 		}
1086 
1087 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1088 		if (ret) {
1089 			up_write(&oi->ip_alloc_sem);
1090 			mlog_errno(ret);
1091 			goto out;
1092 		}
1093 	}
1094 
1095 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1096 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1097 	else
1098 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1099 					    new_i_size);
1100 
1101 	up_write(&oi->ip_alloc_sem);
1102 
1103 	if (ret < 0) {
1104 		mlog_errno(ret);
1105 		goto out;
1106 	}
1107 
1108 out_update_size:
1109 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1110 	if (ret < 0)
1111 		mlog_errno(ret);
1112 
1113 out:
1114 	return ret;
1115 }
1116 
1117 int ocfs2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1118 		  struct iattr *attr)
1119 {
1120 	int status = 0, size_change;
1121 	int inode_locked = 0;
1122 	struct inode *inode = d_inode(dentry);
1123 	struct super_block *sb = inode->i_sb;
1124 	struct ocfs2_super *osb = OCFS2_SB(sb);
1125 	struct buffer_head *bh = NULL;
1126 	handle_t *handle = NULL;
1127 	struct dquot *transfer_to[MAXQUOTAS] = { };
1128 	int qtype;
1129 	int had_lock;
1130 	struct ocfs2_lock_holder oh;
1131 
1132 	trace_ocfs2_setattr(inode, dentry,
1133 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1134 			    dentry->d_name.len, dentry->d_name.name,
1135 			    attr->ia_valid, attr->ia_mode,
1136 			    from_kuid(&init_user_ns, attr->ia_uid),
1137 			    from_kgid(&init_user_ns, attr->ia_gid));
1138 
1139 	/* ensuring we don't even attempt to truncate a symlink */
1140 	if (S_ISLNK(inode->i_mode))
1141 		attr->ia_valid &= ~ATTR_SIZE;
1142 
1143 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1144 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1145 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1146 		return 0;
1147 
1148 	status = setattr_prepare(&init_user_ns, dentry, attr);
1149 	if (status)
1150 		return status;
1151 
1152 	if (is_quota_modification(inode, attr)) {
1153 		status = dquot_initialize(inode);
1154 		if (status)
1155 			return status;
1156 	}
1157 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1158 	if (size_change) {
1159 		/*
1160 		 * Here we should wait dio to finish before inode lock
1161 		 * to avoid a deadlock between ocfs2_setattr() and
1162 		 * ocfs2_dio_end_io_write()
1163 		 */
1164 		inode_dio_wait(inode);
1165 
1166 		status = ocfs2_rw_lock(inode, 1);
1167 		if (status < 0) {
1168 			mlog_errno(status);
1169 			goto bail;
1170 		}
1171 	}
1172 
1173 	had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1174 	if (had_lock < 0) {
1175 		status = had_lock;
1176 		goto bail_unlock_rw;
1177 	} else if (had_lock) {
1178 		/*
1179 		 * As far as we know, ocfs2_setattr() could only be the first
1180 		 * VFS entry point in the call chain of recursive cluster
1181 		 * locking issue.
1182 		 *
1183 		 * For instance:
1184 		 * chmod_common()
1185 		 *  notify_change()
1186 		 *   ocfs2_setattr()
1187 		 *    posix_acl_chmod()
1188 		 *     ocfs2_iop_get_acl()
1189 		 *
1190 		 * But, we're not 100% sure if it's always true, because the
1191 		 * ordering of the VFS entry points in the call chain is out
1192 		 * of our control. So, we'd better dump the stack here to
1193 		 * catch the other cases of recursive locking.
1194 		 */
1195 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1196 		dump_stack();
1197 	}
1198 	inode_locked = 1;
1199 
1200 	if (size_change) {
1201 		status = inode_newsize_ok(inode, attr->ia_size);
1202 		if (status)
1203 			goto bail_unlock;
1204 
1205 		if (i_size_read(inode) >= attr->ia_size) {
1206 			if (ocfs2_should_order_data(inode)) {
1207 				status = ocfs2_begin_ordered_truncate(inode,
1208 								      attr->ia_size);
1209 				if (status)
1210 					goto bail_unlock;
1211 			}
1212 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1213 		} else
1214 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1215 		if (status < 0) {
1216 			if (status != -ENOSPC)
1217 				mlog_errno(status);
1218 			status = -ENOSPC;
1219 			goto bail_unlock;
1220 		}
1221 	}
1222 
1223 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1224 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1225 		/*
1226 		 * Gather pointers to quota structures so that allocation /
1227 		 * freeing of quota structures happens here and not inside
1228 		 * dquot_transfer() where we have problems with lock ordering
1229 		 */
1230 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1231 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1232 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1233 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1234 			if (IS_ERR(transfer_to[USRQUOTA])) {
1235 				status = PTR_ERR(transfer_to[USRQUOTA]);
1236 				transfer_to[USRQUOTA] = NULL;
1237 				goto bail_unlock;
1238 			}
1239 		}
1240 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1241 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1242 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1243 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1244 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1245 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1246 				transfer_to[GRPQUOTA] = NULL;
1247 				goto bail_unlock;
1248 			}
1249 		}
1250 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1251 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1252 					   2 * ocfs2_quota_trans_credits(sb));
1253 		if (IS_ERR(handle)) {
1254 			status = PTR_ERR(handle);
1255 			mlog_errno(status);
1256 			goto bail_unlock_alloc;
1257 		}
1258 		status = __dquot_transfer(inode, transfer_to);
1259 		if (status < 0)
1260 			goto bail_commit;
1261 	} else {
1262 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1263 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1264 		if (IS_ERR(handle)) {
1265 			status = PTR_ERR(handle);
1266 			mlog_errno(status);
1267 			goto bail_unlock_alloc;
1268 		}
1269 	}
1270 
1271 	setattr_copy(&init_user_ns, inode, attr);
1272 	mark_inode_dirty(inode);
1273 
1274 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1275 	if (status < 0)
1276 		mlog_errno(status);
1277 
1278 bail_commit:
1279 	ocfs2_commit_trans(osb, handle);
1280 bail_unlock_alloc:
1281 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1282 bail_unlock:
1283 	if (status && inode_locked) {
1284 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1285 		inode_locked = 0;
1286 	}
1287 bail_unlock_rw:
1288 	if (size_change)
1289 		ocfs2_rw_unlock(inode, 1);
1290 bail:
1291 
1292 	/* Release quota pointers in case we acquired them */
1293 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1294 		dqput(transfer_to[qtype]);
1295 
1296 	if (!status && attr->ia_valid & ATTR_MODE) {
1297 		status = ocfs2_acl_chmod(inode, bh);
1298 		if (status < 0)
1299 			mlog_errno(status);
1300 	}
1301 	if (inode_locked)
1302 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1303 
1304 	brelse(bh);
1305 	return status;
1306 }
1307 
1308 int ocfs2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1309 		  struct kstat *stat, u32 request_mask, unsigned int flags)
1310 {
1311 	struct inode *inode = d_inode(path->dentry);
1312 	struct super_block *sb = path->dentry->d_sb;
1313 	struct ocfs2_super *osb = sb->s_fs_info;
1314 	int err;
1315 
1316 	err = ocfs2_inode_revalidate(path->dentry);
1317 	if (err) {
1318 		if (err != -ENOENT)
1319 			mlog_errno(err);
1320 		goto bail;
1321 	}
1322 
1323 	generic_fillattr(&init_user_ns, inode, stat);
1324 	/*
1325 	 * If there is inline data in the inode, the inode will normally not
1326 	 * have data blocks allocated (it may have an external xattr block).
1327 	 * Report at least one sector for such files, so tools like tar, rsync,
1328 	 * others don't incorrectly think the file is completely sparse.
1329 	 */
1330 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1331 		stat->blocks += (stat->size + 511)>>9;
1332 
1333 	/* We set the blksize from the cluster size for performance */
1334 	stat->blksize = osb->s_clustersize;
1335 
1336 bail:
1337 	return err;
1338 }
1339 
1340 int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode,
1341 		     int mask)
1342 {
1343 	int ret, had_lock;
1344 	struct ocfs2_lock_holder oh;
1345 
1346 	if (mask & MAY_NOT_BLOCK)
1347 		return -ECHILD;
1348 
1349 	had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1350 	if (had_lock < 0) {
1351 		ret = had_lock;
1352 		goto out;
1353 	} else if (had_lock) {
1354 		/* See comments in ocfs2_setattr() for details.
1355 		 * The call chain of this case could be:
1356 		 * do_sys_open()
1357 		 *  may_open()
1358 		 *   inode_permission()
1359 		 *    ocfs2_permission()
1360 		 *     ocfs2_iop_get_acl()
1361 		 */
1362 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1363 		dump_stack();
1364 	}
1365 
1366 	ret = generic_permission(&init_user_ns, inode, mask);
1367 
1368 	ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1369 out:
1370 	return ret;
1371 }
1372 
1373 static int __ocfs2_write_remove_suid(struct inode *inode,
1374 				     struct buffer_head *bh)
1375 {
1376 	int ret;
1377 	handle_t *handle;
1378 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1379 	struct ocfs2_dinode *di;
1380 
1381 	trace_ocfs2_write_remove_suid(
1382 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1383 			inode->i_mode);
1384 
1385 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1386 	if (IS_ERR(handle)) {
1387 		ret = PTR_ERR(handle);
1388 		mlog_errno(ret);
1389 		goto out;
1390 	}
1391 
1392 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1393 				      OCFS2_JOURNAL_ACCESS_WRITE);
1394 	if (ret < 0) {
1395 		mlog_errno(ret);
1396 		goto out_trans;
1397 	}
1398 
1399 	inode->i_mode &= ~S_ISUID;
1400 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1401 		inode->i_mode &= ~S_ISGID;
1402 
1403 	di = (struct ocfs2_dinode *) bh->b_data;
1404 	di->i_mode = cpu_to_le16(inode->i_mode);
1405 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1406 
1407 	ocfs2_journal_dirty(handle, bh);
1408 
1409 out_trans:
1410 	ocfs2_commit_trans(osb, handle);
1411 out:
1412 	return ret;
1413 }
1414 
1415 static int ocfs2_write_remove_suid(struct inode *inode)
1416 {
1417 	int ret;
1418 	struct buffer_head *bh = NULL;
1419 
1420 	ret = ocfs2_read_inode_block(inode, &bh);
1421 	if (ret < 0) {
1422 		mlog_errno(ret);
1423 		goto out;
1424 	}
1425 
1426 	ret =  __ocfs2_write_remove_suid(inode, bh);
1427 out:
1428 	brelse(bh);
1429 	return ret;
1430 }
1431 
1432 /*
1433  * Allocate enough extents to cover the region starting at byte offset
1434  * start for len bytes. Existing extents are skipped, any extents
1435  * added are marked as "unwritten".
1436  */
1437 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1438 					    u64 start, u64 len)
1439 {
1440 	int ret;
1441 	u32 cpos, phys_cpos, clusters, alloc_size;
1442 	u64 end = start + len;
1443 	struct buffer_head *di_bh = NULL;
1444 
1445 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1446 		ret = ocfs2_read_inode_block(inode, &di_bh);
1447 		if (ret) {
1448 			mlog_errno(ret);
1449 			goto out;
1450 		}
1451 
1452 		/*
1453 		 * Nothing to do if the requested reservation range
1454 		 * fits within the inode.
1455 		 */
1456 		if (ocfs2_size_fits_inline_data(di_bh, end))
1457 			goto out;
1458 
1459 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1460 		if (ret) {
1461 			mlog_errno(ret);
1462 			goto out;
1463 		}
1464 	}
1465 
1466 	/*
1467 	 * We consider both start and len to be inclusive.
1468 	 */
1469 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1470 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1471 	clusters -= cpos;
1472 
1473 	while (clusters) {
1474 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1475 					 &alloc_size, NULL);
1476 		if (ret) {
1477 			mlog_errno(ret);
1478 			goto out;
1479 		}
1480 
1481 		/*
1482 		 * Hole or existing extent len can be arbitrary, so
1483 		 * cap it to our own allocation request.
1484 		 */
1485 		if (alloc_size > clusters)
1486 			alloc_size = clusters;
1487 
1488 		if (phys_cpos) {
1489 			/*
1490 			 * We already have an allocation at this
1491 			 * region so we can safely skip it.
1492 			 */
1493 			goto next;
1494 		}
1495 
1496 		ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1497 		if (ret) {
1498 			if (ret != -ENOSPC)
1499 				mlog_errno(ret);
1500 			goto out;
1501 		}
1502 
1503 next:
1504 		cpos += alloc_size;
1505 		clusters -= alloc_size;
1506 	}
1507 
1508 	ret = 0;
1509 out:
1510 
1511 	brelse(di_bh);
1512 	return ret;
1513 }
1514 
1515 /*
1516  * Truncate a byte range, avoiding pages within partial clusters. This
1517  * preserves those pages for the zeroing code to write to.
1518  */
1519 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1520 					 u64 byte_len)
1521 {
1522 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1523 	loff_t start, end;
1524 	struct address_space *mapping = inode->i_mapping;
1525 
1526 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1527 	end = byte_start + byte_len;
1528 	end = end & ~(osb->s_clustersize - 1);
1529 
1530 	if (start < end) {
1531 		unmap_mapping_range(mapping, start, end - start, 0);
1532 		truncate_inode_pages_range(mapping, start, end - 1);
1533 	}
1534 }
1535 
1536 /*
1537  * zero out partial blocks of one cluster.
1538  *
1539  * start: file offset where zero starts, will be made upper block aligned.
1540  * len: it will be trimmed to the end of current cluster if "start + len"
1541  *      is bigger than it.
1542  */
1543 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1544 					u64 start, u64 len)
1545 {
1546 	int ret;
1547 	u64 start_block, end_block, nr_blocks;
1548 	u64 p_block, offset;
1549 	u32 cluster, p_cluster, nr_clusters;
1550 	struct super_block *sb = inode->i_sb;
1551 	u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1552 
1553 	if (start + len < end)
1554 		end = start + len;
1555 
1556 	start_block = ocfs2_blocks_for_bytes(sb, start);
1557 	end_block = ocfs2_blocks_for_bytes(sb, end);
1558 	nr_blocks = end_block - start_block;
1559 	if (!nr_blocks)
1560 		return 0;
1561 
1562 	cluster = ocfs2_bytes_to_clusters(sb, start);
1563 	ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1564 				&nr_clusters, NULL);
1565 	if (ret)
1566 		return ret;
1567 	if (!p_cluster)
1568 		return 0;
1569 
1570 	offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1571 	p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1572 	return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1573 }
1574 
1575 static int ocfs2_zero_partial_clusters(struct inode *inode,
1576 				       u64 start, u64 len)
1577 {
1578 	int ret = 0;
1579 	u64 tmpend = 0;
1580 	u64 end = start + len;
1581 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1582 	unsigned int csize = osb->s_clustersize;
1583 	handle_t *handle;
1584 	loff_t isize = i_size_read(inode);
1585 
1586 	/*
1587 	 * The "start" and "end" values are NOT necessarily part of
1588 	 * the range whose allocation is being deleted. Rather, this
1589 	 * is what the user passed in with the request. We must zero
1590 	 * partial clusters here. There's no need to worry about
1591 	 * physical allocation - the zeroing code knows to skip holes.
1592 	 */
1593 	trace_ocfs2_zero_partial_clusters(
1594 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1595 		(unsigned long long)start, (unsigned long long)end);
1596 
1597 	/*
1598 	 * If both edges are on a cluster boundary then there's no
1599 	 * zeroing required as the region is part of the allocation to
1600 	 * be truncated.
1601 	 */
1602 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1603 		goto out;
1604 
1605 	/* No page cache for EOF blocks, issue zero out to disk. */
1606 	if (end > isize) {
1607 		/*
1608 		 * zeroout eof blocks in last cluster starting from
1609 		 * "isize" even "start" > "isize" because it is
1610 		 * complicated to zeroout just at "start" as "start"
1611 		 * may be not aligned with block size, buffer write
1612 		 * would be required to do that, but out of eof buffer
1613 		 * write is not supported.
1614 		 */
1615 		ret = ocfs2_zeroout_partial_cluster(inode, isize,
1616 					end - isize);
1617 		if (ret) {
1618 			mlog_errno(ret);
1619 			goto out;
1620 		}
1621 		if (start >= isize)
1622 			goto out;
1623 		end = isize;
1624 	}
1625 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1626 	if (IS_ERR(handle)) {
1627 		ret = PTR_ERR(handle);
1628 		mlog_errno(ret);
1629 		goto out;
1630 	}
1631 
1632 	/*
1633 	 * If start is on a cluster boundary and end is somewhere in another
1634 	 * cluster, we have not COWed the cluster starting at start, unless
1635 	 * end is also within the same cluster. So, in this case, we skip this
1636 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1637 	 * to the next one.
1638 	 */
1639 	if ((start & (csize - 1)) != 0) {
1640 		/*
1641 		 * We want to get the byte offset of the end of the 1st
1642 		 * cluster.
1643 		 */
1644 		tmpend = (u64)osb->s_clustersize +
1645 			(start & ~(osb->s_clustersize - 1));
1646 		if (tmpend > end)
1647 			tmpend = end;
1648 
1649 		trace_ocfs2_zero_partial_clusters_range1(
1650 			(unsigned long long)start,
1651 			(unsigned long long)tmpend);
1652 
1653 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1654 						    tmpend);
1655 		if (ret)
1656 			mlog_errno(ret);
1657 	}
1658 
1659 	if (tmpend < end) {
1660 		/*
1661 		 * This may make start and end equal, but the zeroing
1662 		 * code will skip any work in that case so there's no
1663 		 * need to catch it up here.
1664 		 */
1665 		start = end & ~(osb->s_clustersize - 1);
1666 
1667 		trace_ocfs2_zero_partial_clusters_range2(
1668 			(unsigned long long)start, (unsigned long long)end);
1669 
1670 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1671 		if (ret)
1672 			mlog_errno(ret);
1673 	}
1674 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1675 
1676 	ocfs2_commit_trans(osb, handle);
1677 out:
1678 	return ret;
1679 }
1680 
1681 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1682 {
1683 	int i;
1684 	struct ocfs2_extent_rec *rec = NULL;
1685 
1686 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1687 
1688 		rec = &el->l_recs[i];
1689 
1690 		if (le32_to_cpu(rec->e_cpos) < pos)
1691 			break;
1692 	}
1693 
1694 	return i;
1695 }
1696 
1697 /*
1698  * Helper to calculate the punching pos and length in one run, we handle the
1699  * following three cases in order:
1700  *
1701  * - remove the entire record
1702  * - remove a partial record
1703  * - no record needs to be removed (hole-punching completed)
1704 */
1705 static void ocfs2_calc_trunc_pos(struct inode *inode,
1706 				 struct ocfs2_extent_list *el,
1707 				 struct ocfs2_extent_rec *rec,
1708 				 u32 trunc_start, u32 *trunc_cpos,
1709 				 u32 *trunc_len, u32 *trunc_end,
1710 				 u64 *blkno, int *done)
1711 {
1712 	int ret = 0;
1713 	u32 coff, range;
1714 
1715 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1716 
1717 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1718 		/*
1719 		 * remove an entire extent record.
1720 		 */
1721 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1722 		/*
1723 		 * Skip holes if any.
1724 		 */
1725 		if (range < *trunc_end)
1726 			*trunc_end = range;
1727 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1728 		*blkno = le64_to_cpu(rec->e_blkno);
1729 		*trunc_end = le32_to_cpu(rec->e_cpos);
1730 	} else if (range > trunc_start) {
1731 		/*
1732 		 * remove a partial extent record, which means we're
1733 		 * removing the last extent record.
1734 		 */
1735 		*trunc_cpos = trunc_start;
1736 		/*
1737 		 * skip hole if any.
1738 		 */
1739 		if (range < *trunc_end)
1740 			*trunc_end = range;
1741 		*trunc_len = *trunc_end - trunc_start;
1742 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1743 		*blkno = le64_to_cpu(rec->e_blkno) +
1744 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1745 		*trunc_end = trunc_start;
1746 	} else {
1747 		/*
1748 		 * It may have two following possibilities:
1749 		 *
1750 		 * - last record has been removed
1751 		 * - trunc_start was within a hole
1752 		 *
1753 		 * both two cases mean the completion of hole punching.
1754 		 */
1755 		ret = 1;
1756 	}
1757 
1758 	*done = ret;
1759 }
1760 
1761 int ocfs2_remove_inode_range(struct inode *inode,
1762 			     struct buffer_head *di_bh, u64 byte_start,
1763 			     u64 byte_len)
1764 {
1765 	int ret = 0, flags = 0, done = 0, i;
1766 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1767 	u32 cluster_in_el;
1768 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1769 	struct ocfs2_cached_dealloc_ctxt dealloc;
1770 	struct address_space *mapping = inode->i_mapping;
1771 	struct ocfs2_extent_tree et;
1772 	struct ocfs2_path *path = NULL;
1773 	struct ocfs2_extent_list *el = NULL;
1774 	struct ocfs2_extent_rec *rec = NULL;
1775 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1776 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1777 
1778 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1779 	ocfs2_init_dealloc_ctxt(&dealloc);
1780 
1781 	trace_ocfs2_remove_inode_range(
1782 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1783 			(unsigned long long)byte_start,
1784 			(unsigned long long)byte_len);
1785 
1786 	if (byte_len == 0)
1787 		return 0;
1788 
1789 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1790 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1791 					    byte_start + byte_len, 0);
1792 		if (ret) {
1793 			mlog_errno(ret);
1794 			goto out;
1795 		}
1796 		/*
1797 		 * There's no need to get fancy with the page cache
1798 		 * truncate of an inline-data inode. We're talking
1799 		 * about less than a page here, which will be cached
1800 		 * in the dinode buffer anyway.
1801 		 */
1802 		unmap_mapping_range(mapping, 0, 0, 0);
1803 		truncate_inode_pages(mapping, 0);
1804 		goto out;
1805 	}
1806 
1807 	/*
1808 	 * For reflinks, we may need to CoW 2 clusters which might be
1809 	 * partially zero'd later, if hole's start and end offset were
1810 	 * within one cluster(means is not exactly aligned to clustersize).
1811 	 */
1812 
1813 	if (ocfs2_is_refcount_inode(inode)) {
1814 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1815 		if (ret) {
1816 			mlog_errno(ret);
1817 			goto out;
1818 		}
1819 
1820 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1821 		if (ret) {
1822 			mlog_errno(ret);
1823 			goto out;
1824 		}
1825 	}
1826 
1827 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1828 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1829 	cluster_in_el = trunc_end;
1830 
1831 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1832 	if (ret) {
1833 		mlog_errno(ret);
1834 		goto out;
1835 	}
1836 
1837 	path = ocfs2_new_path_from_et(&et);
1838 	if (!path) {
1839 		ret = -ENOMEM;
1840 		mlog_errno(ret);
1841 		goto out;
1842 	}
1843 
1844 	while (trunc_end > trunc_start) {
1845 
1846 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1847 				      cluster_in_el);
1848 		if (ret) {
1849 			mlog_errno(ret);
1850 			goto out;
1851 		}
1852 
1853 		el = path_leaf_el(path);
1854 
1855 		i = ocfs2_find_rec(el, trunc_end);
1856 		/*
1857 		 * Need to go to previous extent block.
1858 		 */
1859 		if (i < 0) {
1860 			if (path->p_tree_depth == 0)
1861 				break;
1862 
1863 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1864 							    path,
1865 							    &cluster_in_el);
1866 			if (ret) {
1867 				mlog_errno(ret);
1868 				goto out;
1869 			}
1870 
1871 			/*
1872 			 * We've reached the leftmost extent block,
1873 			 * it's safe to leave.
1874 			 */
1875 			if (cluster_in_el == 0)
1876 				break;
1877 
1878 			/*
1879 			 * The 'pos' searched for previous extent block is
1880 			 * always one cluster less than actual trunc_end.
1881 			 */
1882 			trunc_end = cluster_in_el + 1;
1883 
1884 			ocfs2_reinit_path(path, 1);
1885 
1886 			continue;
1887 
1888 		} else
1889 			rec = &el->l_recs[i];
1890 
1891 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1892 				     &trunc_len, &trunc_end, &blkno, &done);
1893 		if (done)
1894 			break;
1895 
1896 		flags = rec->e_flags;
1897 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1898 
1899 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1900 					       phys_cpos, trunc_len, flags,
1901 					       &dealloc, refcount_loc, false);
1902 		if (ret < 0) {
1903 			mlog_errno(ret);
1904 			goto out;
1905 		}
1906 
1907 		cluster_in_el = trunc_end;
1908 
1909 		ocfs2_reinit_path(path, 1);
1910 	}
1911 
1912 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1913 
1914 out:
1915 	ocfs2_free_path(path);
1916 	ocfs2_schedule_truncate_log_flush(osb, 1);
1917 	ocfs2_run_deallocs(osb, &dealloc);
1918 
1919 	return ret;
1920 }
1921 
1922 /*
1923  * Parts of this function taken from xfs_change_file_space()
1924  */
1925 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1926 				     loff_t f_pos, unsigned int cmd,
1927 				     struct ocfs2_space_resv *sr,
1928 				     int change_size)
1929 {
1930 	int ret;
1931 	s64 llen;
1932 	loff_t size, orig_isize;
1933 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1934 	struct buffer_head *di_bh = NULL;
1935 	handle_t *handle;
1936 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1937 
1938 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1939 		return -EROFS;
1940 
1941 	inode_lock(inode);
1942 
1943 	/*
1944 	 * This prevents concurrent writes on other nodes
1945 	 */
1946 	ret = ocfs2_rw_lock(inode, 1);
1947 	if (ret) {
1948 		mlog_errno(ret);
1949 		goto out;
1950 	}
1951 
1952 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1953 	if (ret) {
1954 		mlog_errno(ret);
1955 		goto out_rw_unlock;
1956 	}
1957 
1958 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1959 		ret = -EPERM;
1960 		goto out_inode_unlock;
1961 	}
1962 
1963 	switch (sr->l_whence) {
1964 	case 0: /*SEEK_SET*/
1965 		break;
1966 	case 1: /*SEEK_CUR*/
1967 		sr->l_start += f_pos;
1968 		break;
1969 	case 2: /*SEEK_END*/
1970 		sr->l_start += i_size_read(inode);
1971 		break;
1972 	default:
1973 		ret = -EINVAL;
1974 		goto out_inode_unlock;
1975 	}
1976 	sr->l_whence = 0;
1977 
1978 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1979 
1980 	if (sr->l_start < 0
1981 	    || sr->l_start > max_off
1982 	    || (sr->l_start + llen) < 0
1983 	    || (sr->l_start + llen) > max_off) {
1984 		ret = -EINVAL;
1985 		goto out_inode_unlock;
1986 	}
1987 	size = sr->l_start + sr->l_len;
1988 
1989 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1990 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1991 		if (sr->l_len <= 0) {
1992 			ret = -EINVAL;
1993 			goto out_inode_unlock;
1994 		}
1995 	}
1996 
1997 	if (file && should_remove_suid(file->f_path.dentry)) {
1998 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1999 		if (ret) {
2000 			mlog_errno(ret);
2001 			goto out_inode_unlock;
2002 		}
2003 	}
2004 
2005 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2006 	switch (cmd) {
2007 	case OCFS2_IOC_RESVSP:
2008 	case OCFS2_IOC_RESVSP64:
2009 		/*
2010 		 * This takes unsigned offsets, but the signed ones we
2011 		 * pass have been checked against overflow above.
2012 		 */
2013 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2014 						       sr->l_len);
2015 		break;
2016 	case OCFS2_IOC_UNRESVSP:
2017 	case OCFS2_IOC_UNRESVSP64:
2018 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2019 					       sr->l_len);
2020 		break;
2021 	default:
2022 		ret = -EINVAL;
2023 	}
2024 
2025 	orig_isize = i_size_read(inode);
2026 	/* zeroout eof blocks in the cluster. */
2027 	if (!ret && change_size && orig_isize < size) {
2028 		ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2029 					size - orig_isize);
2030 		if (!ret)
2031 			i_size_write(inode, size);
2032 	}
2033 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2034 	if (ret) {
2035 		mlog_errno(ret);
2036 		goto out_inode_unlock;
2037 	}
2038 
2039 	/*
2040 	 * We update c/mtime for these changes
2041 	 */
2042 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2043 	if (IS_ERR(handle)) {
2044 		ret = PTR_ERR(handle);
2045 		mlog_errno(ret);
2046 		goto out_inode_unlock;
2047 	}
2048 
2049 	inode->i_ctime = inode->i_mtime = current_time(inode);
2050 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2051 	if (ret < 0)
2052 		mlog_errno(ret);
2053 
2054 	if (file && (file->f_flags & O_SYNC))
2055 		handle->h_sync = 1;
2056 
2057 	ocfs2_commit_trans(osb, handle);
2058 
2059 out_inode_unlock:
2060 	brelse(di_bh);
2061 	ocfs2_inode_unlock(inode, 1);
2062 out_rw_unlock:
2063 	ocfs2_rw_unlock(inode, 1);
2064 
2065 out:
2066 	inode_unlock(inode);
2067 	return ret;
2068 }
2069 
2070 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2071 			    struct ocfs2_space_resv *sr)
2072 {
2073 	struct inode *inode = file_inode(file);
2074 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2075 	int ret;
2076 
2077 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2078 	    !ocfs2_writes_unwritten_extents(osb))
2079 		return -ENOTTY;
2080 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2081 		 !ocfs2_sparse_alloc(osb))
2082 		return -ENOTTY;
2083 
2084 	if (!S_ISREG(inode->i_mode))
2085 		return -EINVAL;
2086 
2087 	if (!(file->f_mode & FMODE_WRITE))
2088 		return -EBADF;
2089 
2090 	ret = mnt_want_write_file(file);
2091 	if (ret)
2092 		return ret;
2093 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2094 	mnt_drop_write_file(file);
2095 	return ret;
2096 }
2097 
2098 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2099 			    loff_t len)
2100 {
2101 	struct inode *inode = file_inode(file);
2102 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2103 	struct ocfs2_space_resv sr;
2104 	int change_size = 1;
2105 	int cmd = OCFS2_IOC_RESVSP64;
2106 
2107 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2108 		return -EOPNOTSUPP;
2109 	if (!ocfs2_writes_unwritten_extents(osb))
2110 		return -EOPNOTSUPP;
2111 
2112 	if (mode & FALLOC_FL_KEEP_SIZE)
2113 		change_size = 0;
2114 
2115 	if (mode & FALLOC_FL_PUNCH_HOLE)
2116 		cmd = OCFS2_IOC_UNRESVSP64;
2117 
2118 	sr.l_whence = 0;
2119 	sr.l_start = (s64)offset;
2120 	sr.l_len = (s64)len;
2121 
2122 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2123 					 change_size);
2124 }
2125 
2126 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2127 				   size_t count)
2128 {
2129 	int ret = 0;
2130 	unsigned int extent_flags;
2131 	u32 cpos, clusters, extent_len, phys_cpos;
2132 	struct super_block *sb = inode->i_sb;
2133 
2134 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2135 	    !ocfs2_is_refcount_inode(inode) ||
2136 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2137 		return 0;
2138 
2139 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2140 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2141 
2142 	while (clusters) {
2143 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2144 					 &extent_flags);
2145 		if (ret < 0) {
2146 			mlog_errno(ret);
2147 			goto out;
2148 		}
2149 
2150 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2151 			ret = 1;
2152 			break;
2153 		}
2154 
2155 		if (extent_len > clusters)
2156 			extent_len = clusters;
2157 
2158 		clusters -= extent_len;
2159 		cpos += extent_len;
2160 	}
2161 out:
2162 	return ret;
2163 }
2164 
2165 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2166 {
2167 	int blockmask = inode->i_sb->s_blocksize - 1;
2168 	loff_t final_size = pos + count;
2169 
2170 	if ((pos & blockmask) || (final_size & blockmask))
2171 		return 1;
2172 	return 0;
2173 }
2174 
2175 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2176 					    struct buffer_head **di_bh,
2177 					    int meta_level,
2178 					    int write_sem,
2179 					    int wait)
2180 {
2181 	int ret = 0;
2182 
2183 	if (wait)
2184 		ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2185 	else
2186 		ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2187 	if (ret < 0)
2188 		goto out;
2189 
2190 	if (wait) {
2191 		if (write_sem)
2192 			down_write(&OCFS2_I(inode)->ip_alloc_sem);
2193 		else
2194 			down_read(&OCFS2_I(inode)->ip_alloc_sem);
2195 	} else {
2196 		if (write_sem)
2197 			ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2198 		else
2199 			ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2200 
2201 		if (!ret) {
2202 			ret = -EAGAIN;
2203 			goto out_unlock;
2204 		}
2205 	}
2206 
2207 	return ret;
2208 
2209 out_unlock:
2210 	brelse(*di_bh);
2211 	*di_bh = NULL;
2212 	ocfs2_inode_unlock(inode, meta_level);
2213 out:
2214 	return ret;
2215 }
2216 
2217 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2218 					       struct buffer_head **di_bh,
2219 					       int meta_level,
2220 					       int write_sem)
2221 {
2222 	if (write_sem)
2223 		up_write(&OCFS2_I(inode)->ip_alloc_sem);
2224 	else
2225 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
2226 
2227 	brelse(*di_bh);
2228 	*di_bh = NULL;
2229 
2230 	if (meta_level >= 0)
2231 		ocfs2_inode_unlock(inode, meta_level);
2232 }
2233 
2234 static int ocfs2_prepare_inode_for_write(struct file *file,
2235 					 loff_t pos, size_t count, int wait)
2236 {
2237 	int ret = 0, meta_level = 0, overwrite_io = 0;
2238 	int write_sem = 0;
2239 	struct dentry *dentry = file->f_path.dentry;
2240 	struct inode *inode = d_inode(dentry);
2241 	struct buffer_head *di_bh = NULL;
2242 	u32 cpos;
2243 	u32 clusters;
2244 
2245 	/*
2246 	 * We start with a read level meta lock and only jump to an ex
2247 	 * if we need to make modifications here.
2248 	 */
2249 	for(;;) {
2250 		ret = ocfs2_inode_lock_for_extent_tree(inode,
2251 						       &di_bh,
2252 						       meta_level,
2253 						       write_sem,
2254 						       wait);
2255 		if (ret < 0) {
2256 			if (ret != -EAGAIN)
2257 				mlog_errno(ret);
2258 			goto out;
2259 		}
2260 
2261 		/*
2262 		 * Check if IO will overwrite allocated blocks in case
2263 		 * IOCB_NOWAIT flag is set.
2264 		 */
2265 		if (!wait && !overwrite_io) {
2266 			overwrite_io = 1;
2267 
2268 			ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2269 			if (ret < 0) {
2270 				if (ret != -EAGAIN)
2271 					mlog_errno(ret);
2272 				goto out_unlock;
2273 			}
2274 		}
2275 
2276 		/* Clear suid / sgid if necessary. We do this here
2277 		 * instead of later in the write path because
2278 		 * remove_suid() calls ->setattr without any hint that
2279 		 * we may have already done our cluster locking. Since
2280 		 * ocfs2_setattr() *must* take cluster locks to
2281 		 * proceed, this will lead us to recursively lock the
2282 		 * inode. There's also the dinode i_size state which
2283 		 * can be lost via setattr during extending writes (we
2284 		 * set inode->i_size at the end of a write. */
2285 		if (should_remove_suid(dentry)) {
2286 			if (meta_level == 0) {
2287 				ocfs2_inode_unlock_for_extent_tree(inode,
2288 								   &di_bh,
2289 								   meta_level,
2290 								   write_sem);
2291 				meta_level = 1;
2292 				continue;
2293 			}
2294 
2295 			ret = ocfs2_write_remove_suid(inode);
2296 			if (ret < 0) {
2297 				mlog_errno(ret);
2298 				goto out_unlock;
2299 			}
2300 		}
2301 
2302 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2303 		if (ret == 1) {
2304 			ocfs2_inode_unlock_for_extent_tree(inode,
2305 							   &di_bh,
2306 							   meta_level,
2307 							   write_sem);
2308 			meta_level = 1;
2309 			write_sem = 1;
2310 			ret = ocfs2_inode_lock_for_extent_tree(inode,
2311 							       &di_bh,
2312 							       meta_level,
2313 							       write_sem,
2314 							       wait);
2315 			if (ret < 0) {
2316 				if (ret != -EAGAIN)
2317 					mlog_errno(ret);
2318 				goto out;
2319 			}
2320 
2321 			cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2322 			clusters =
2323 				ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2324 			ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2325 		}
2326 
2327 		if (ret < 0) {
2328 			if (ret != -EAGAIN)
2329 				mlog_errno(ret);
2330 			goto out_unlock;
2331 		}
2332 
2333 		break;
2334 	}
2335 
2336 out_unlock:
2337 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2338 					    pos, count, wait);
2339 
2340 	ocfs2_inode_unlock_for_extent_tree(inode,
2341 					   &di_bh,
2342 					   meta_level,
2343 					   write_sem);
2344 
2345 out:
2346 	return ret;
2347 }
2348 
2349 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2350 				    struct iov_iter *from)
2351 {
2352 	int rw_level;
2353 	ssize_t written = 0;
2354 	ssize_t ret;
2355 	size_t count = iov_iter_count(from);
2356 	struct file *file = iocb->ki_filp;
2357 	struct inode *inode = file_inode(file);
2358 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2359 	int full_coherency = !(osb->s_mount_opt &
2360 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2361 	void *saved_ki_complete = NULL;
2362 	int append_write = ((iocb->ki_pos + count) >=
2363 			i_size_read(inode) ? 1 : 0);
2364 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2365 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2366 
2367 	trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2368 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2369 		file->f_path.dentry->d_name.len,
2370 		file->f_path.dentry->d_name.name,
2371 		(unsigned int)from->nr_segs);	/* GRRRRR */
2372 
2373 	if (!direct_io && nowait)
2374 		return -EOPNOTSUPP;
2375 
2376 	if (count == 0)
2377 		return 0;
2378 
2379 	if (nowait) {
2380 		if (!inode_trylock(inode))
2381 			return -EAGAIN;
2382 	} else
2383 		inode_lock(inode);
2384 
2385 	/*
2386 	 * Concurrent O_DIRECT writes are allowed with
2387 	 * mount_option "coherency=buffered".
2388 	 * For append write, we must take rw EX.
2389 	 */
2390 	rw_level = (!direct_io || full_coherency || append_write);
2391 
2392 	if (nowait)
2393 		ret = ocfs2_try_rw_lock(inode, rw_level);
2394 	else
2395 		ret = ocfs2_rw_lock(inode, rw_level);
2396 	if (ret < 0) {
2397 		if (ret != -EAGAIN)
2398 			mlog_errno(ret);
2399 		goto out_mutex;
2400 	}
2401 
2402 	/*
2403 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2404 	 * inode_lock to guarantee coherency.
2405 	 */
2406 	if (direct_io && full_coherency) {
2407 		/*
2408 		 * We need to take and drop the inode lock to force
2409 		 * other nodes to drop their caches.  Buffered I/O
2410 		 * already does this in write_begin().
2411 		 */
2412 		if (nowait)
2413 			ret = ocfs2_try_inode_lock(inode, NULL, 1);
2414 		else
2415 			ret = ocfs2_inode_lock(inode, NULL, 1);
2416 		if (ret < 0) {
2417 			if (ret != -EAGAIN)
2418 				mlog_errno(ret);
2419 			goto out;
2420 		}
2421 
2422 		ocfs2_inode_unlock(inode, 1);
2423 	}
2424 
2425 	ret = generic_write_checks(iocb, from);
2426 	if (ret <= 0) {
2427 		if (ret)
2428 			mlog_errno(ret);
2429 		goto out;
2430 	}
2431 	count = ret;
2432 
2433 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2434 	if (ret < 0) {
2435 		if (ret != -EAGAIN)
2436 			mlog_errno(ret);
2437 		goto out;
2438 	}
2439 
2440 	if (direct_io && !is_sync_kiocb(iocb) &&
2441 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2442 		/*
2443 		 * Make it a sync io if it's an unaligned aio.
2444 		 */
2445 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2446 	}
2447 
2448 	/* communicate with ocfs2_dio_end_io */
2449 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2450 
2451 	written = __generic_file_write_iter(iocb, from);
2452 	/* buffered aio wouldn't have proper lock coverage today */
2453 	BUG_ON(written == -EIOCBQUEUED && !direct_io);
2454 
2455 	/*
2456 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2457 	 * function pointer which is called when o_direct io completes so that
2458 	 * it can unlock our rw lock.
2459 	 * Unfortunately there are error cases which call end_io and others
2460 	 * that don't.  so we don't have to unlock the rw_lock if either an
2461 	 * async dio is going to do it in the future or an end_io after an
2462 	 * error has already done it.
2463 	 */
2464 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2465 		rw_level = -1;
2466 	}
2467 
2468 	if (unlikely(written <= 0))
2469 		goto out;
2470 
2471 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2472 	    IS_SYNC(inode)) {
2473 		ret = filemap_fdatawrite_range(file->f_mapping,
2474 					       iocb->ki_pos - written,
2475 					       iocb->ki_pos - 1);
2476 		if (ret < 0)
2477 			written = ret;
2478 
2479 		if (!ret) {
2480 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2481 			if (ret < 0)
2482 				written = ret;
2483 		}
2484 
2485 		if (!ret)
2486 			ret = filemap_fdatawait_range(file->f_mapping,
2487 						      iocb->ki_pos - written,
2488 						      iocb->ki_pos - 1);
2489 	}
2490 
2491 out:
2492 	if (saved_ki_complete)
2493 		xchg(&iocb->ki_complete, saved_ki_complete);
2494 
2495 	if (rw_level != -1)
2496 		ocfs2_rw_unlock(inode, rw_level);
2497 
2498 out_mutex:
2499 	inode_unlock(inode);
2500 
2501 	if (written)
2502 		ret = written;
2503 	return ret;
2504 }
2505 
2506 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2507 				   struct iov_iter *to)
2508 {
2509 	int ret = 0, rw_level = -1, lock_level = 0;
2510 	struct file *filp = iocb->ki_filp;
2511 	struct inode *inode = file_inode(filp);
2512 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2513 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2514 
2515 	trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2516 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2517 			filp->f_path.dentry->d_name.len,
2518 			filp->f_path.dentry->d_name.name,
2519 			to->nr_segs);	/* GRRRRR */
2520 
2521 
2522 	if (!inode) {
2523 		ret = -EINVAL;
2524 		mlog_errno(ret);
2525 		goto bail;
2526 	}
2527 
2528 	if (!direct_io && nowait)
2529 		return -EOPNOTSUPP;
2530 
2531 	/*
2532 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2533 	 * need locks to protect pending reads from racing with truncate.
2534 	 */
2535 	if (direct_io) {
2536 		if (nowait)
2537 			ret = ocfs2_try_rw_lock(inode, 0);
2538 		else
2539 			ret = ocfs2_rw_lock(inode, 0);
2540 
2541 		if (ret < 0) {
2542 			if (ret != -EAGAIN)
2543 				mlog_errno(ret);
2544 			goto bail;
2545 		}
2546 		rw_level = 0;
2547 		/* communicate with ocfs2_dio_end_io */
2548 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2549 	}
2550 
2551 	/*
2552 	 * We're fine letting folks race truncates and extending
2553 	 * writes with read across the cluster, just like they can
2554 	 * locally. Hence no rw_lock during read.
2555 	 *
2556 	 * Take and drop the meta data lock to update inode fields
2557 	 * like i_size. This allows the checks down below
2558 	 * generic_file_read_iter() a chance of actually working.
2559 	 */
2560 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2561 				     !nowait);
2562 	if (ret < 0) {
2563 		if (ret != -EAGAIN)
2564 			mlog_errno(ret);
2565 		goto bail;
2566 	}
2567 	ocfs2_inode_unlock(inode, lock_level);
2568 
2569 	ret = generic_file_read_iter(iocb, to);
2570 	trace_generic_file_read_iter_ret(ret);
2571 
2572 	/* buffered aio wouldn't have proper lock coverage today */
2573 	BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2574 
2575 	/* see ocfs2_file_write_iter */
2576 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2577 		rw_level = -1;
2578 	}
2579 
2580 bail:
2581 	if (rw_level != -1)
2582 		ocfs2_rw_unlock(inode, rw_level);
2583 
2584 	return ret;
2585 }
2586 
2587 /* Refer generic_file_llseek_unlocked() */
2588 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2589 {
2590 	struct inode *inode = file->f_mapping->host;
2591 	int ret = 0;
2592 
2593 	inode_lock(inode);
2594 
2595 	switch (whence) {
2596 	case SEEK_SET:
2597 		break;
2598 	case SEEK_END:
2599 		/* SEEK_END requires the OCFS2 inode lock for the file
2600 		 * because it references the file's size.
2601 		 */
2602 		ret = ocfs2_inode_lock(inode, NULL, 0);
2603 		if (ret < 0) {
2604 			mlog_errno(ret);
2605 			goto out;
2606 		}
2607 		offset += i_size_read(inode);
2608 		ocfs2_inode_unlock(inode, 0);
2609 		break;
2610 	case SEEK_CUR:
2611 		if (offset == 0) {
2612 			offset = file->f_pos;
2613 			goto out;
2614 		}
2615 		offset += file->f_pos;
2616 		break;
2617 	case SEEK_DATA:
2618 	case SEEK_HOLE:
2619 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2620 		if (ret)
2621 			goto out;
2622 		break;
2623 	default:
2624 		ret = -EINVAL;
2625 		goto out;
2626 	}
2627 
2628 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2629 
2630 out:
2631 	inode_unlock(inode);
2632 	if (ret)
2633 		return ret;
2634 	return offset;
2635 }
2636 
2637 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2638 				     struct file *file_out, loff_t pos_out,
2639 				     loff_t len, unsigned int remap_flags)
2640 {
2641 	struct inode *inode_in = file_inode(file_in);
2642 	struct inode *inode_out = file_inode(file_out);
2643 	struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2644 	struct buffer_head *in_bh = NULL, *out_bh = NULL;
2645 	bool same_inode = (inode_in == inode_out);
2646 	loff_t remapped = 0;
2647 	ssize_t ret;
2648 
2649 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2650 		return -EINVAL;
2651 	if (!ocfs2_refcount_tree(osb))
2652 		return -EOPNOTSUPP;
2653 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2654 		return -EROFS;
2655 
2656 	/* Lock both files against IO */
2657 	ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2658 	if (ret)
2659 		return ret;
2660 
2661 	/* Check file eligibility and prepare for block sharing. */
2662 	ret = -EINVAL;
2663 	if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2664 	    (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2665 		goto out_unlock;
2666 
2667 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2668 			&len, remap_flags);
2669 	if (ret < 0 || len == 0)
2670 		goto out_unlock;
2671 
2672 	/* Lock out changes to the allocation maps and remap. */
2673 	down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2674 	if (!same_inode)
2675 		down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2676 				  SINGLE_DEPTH_NESTING);
2677 
2678 	/* Zap any page cache for the destination file's range. */
2679 	truncate_inode_pages_range(&inode_out->i_data,
2680 				   round_down(pos_out, PAGE_SIZE),
2681 				   round_up(pos_out + len, PAGE_SIZE) - 1);
2682 
2683 	remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2684 			inode_out, out_bh, pos_out, len);
2685 	up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2686 	if (!same_inode)
2687 		up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2688 	if (remapped < 0) {
2689 		ret = remapped;
2690 		mlog_errno(ret);
2691 		goto out_unlock;
2692 	}
2693 
2694 	/*
2695 	 * Empty the extent map so that we may get the right extent
2696 	 * record from the disk.
2697 	 */
2698 	ocfs2_extent_map_trunc(inode_in, 0);
2699 	ocfs2_extent_map_trunc(inode_out, 0);
2700 
2701 	ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2702 	if (ret) {
2703 		mlog_errno(ret);
2704 		goto out_unlock;
2705 	}
2706 
2707 out_unlock:
2708 	ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2709 	return remapped > 0 ? remapped : ret;
2710 }
2711 
2712 const struct inode_operations ocfs2_file_iops = {
2713 	.setattr	= ocfs2_setattr,
2714 	.getattr	= ocfs2_getattr,
2715 	.permission	= ocfs2_permission,
2716 	.listxattr	= ocfs2_listxattr,
2717 	.fiemap		= ocfs2_fiemap,
2718 	.get_acl	= ocfs2_iop_get_acl,
2719 	.set_acl	= ocfs2_iop_set_acl,
2720 	.fileattr_get	= ocfs2_fileattr_get,
2721 	.fileattr_set	= ocfs2_fileattr_set,
2722 };
2723 
2724 const struct inode_operations ocfs2_special_file_iops = {
2725 	.setattr	= ocfs2_setattr,
2726 	.getattr	= ocfs2_getattr,
2727 	.permission	= ocfs2_permission,
2728 	.get_acl	= ocfs2_iop_get_acl,
2729 	.set_acl	= ocfs2_iop_set_acl,
2730 };
2731 
2732 /*
2733  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2734  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2735  */
2736 const struct file_operations ocfs2_fops = {
2737 	.llseek		= ocfs2_file_llseek,
2738 	.mmap		= ocfs2_mmap,
2739 	.fsync		= ocfs2_sync_file,
2740 	.release	= ocfs2_file_release,
2741 	.open		= ocfs2_file_open,
2742 	.read_iter	= ocfs2_file_read_iter,
2743 	.write_iter	= ocfs2_file_write_iter,
2744 	.unlocked_ioctl	= ocfs2_ioctl,
2745 #ifdef CONFIG_COMPAT
2746 	.compat_ioctl   = ocfs2_compat_ioctl,
2747 #endif
2748 	.lock		= ocfs2_lock,
2749 	.flock		= ocfs2_flock,
2750 	.splice_read	= generic_file_splice_read,
2751 	.splice_write	= iter_file_splice_write,
2752 	.fallocate	= ocfs2_fallocate,
2753 	.remap_file_range = ocfs2_remap_file_range,
2754 };
2755 
2756 const struct file_operations ocfs2_dops = {
2757 	.llseek		= generic_file_llseek,
2758 	.read		= generic_read_dir,
2759 	.iterate	= ocfs2_readdir,
2760 	.fsync		= ocfs2_sync_file,
2761 	.release	= ocfs2_dir_release,
2762 	.open		= ocfs2_dir_open,
2763 	.unlocked_ioctl	= ocfs2_ioctl,
2764 #ifdef CONFIG_COMPAT
2765 	.compat_ioctl   = ocfs2_compat_ioctl,
2766 #endif
2767 	.lock		= ocfs2_lock,
2768 	.flock		= ocfs2_flock,
2769 };
2770 
2771 /*
2772  * POSIX-lockless variants of our file_operations.
2773  *
2774  * These will be used if the underlying cluster stack does not support
2775  * posix file locking, if the user passes the "localflocks" mount
2776  * option, or if we have a local-only fs.
2777  *
2778  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2779  * so we still want it in the case of no stack support for
2780  * plocks. Internally, it will do the right thing when asked to ignore
2781  * the cluster.
2782  */
2783 const struct file_operations ocfs2_fops_no_plocks = {
2784 	.llseek		= ocfs2_file_llseek,
2785 	.mmap		= ocfs2_mmap,
2786 	.fsync		= ocfs2_sync_file,
2787 	.release	= ocfs2_file_release,
2788 	.open		= ocfs2_file_open,
2789 	.read_iter	= ocfs2_file_read_iter,
2790 	.write_iter	= ocfs2_file_write_iter,
2791 	.unlocked_ioctl	= ocfs2_ioctl,
2792 #ifdef CONFIG_COMPAT
2793 	.compat_ioctl   = ocfs2_compat_ioctl,
2794 #endif
2795 	.flock		= ocfs2_flock,
2796 	.splice_read	= generic_file_splice_read,
2797 	.splice_write	= iter_file_splice_write,
2798 	.fallocate	= ocfs2_fallocate,
2799 	.remap_file_range = ocfs2_remap_file_range,
2800 };
2801 
2802 const struct file_operations ocfs2_dops_no_plocks = {
2803 	.llseek		= generic_file_llseek,
2804 	.read		= generic_read_dir,
2805 	.iterate	= ocfs2_readdir,
2806 	.fsync		= ocfs2_sync_file,
2807 	.release	= ocfs2_dir_release,
2808 	.open		= ocfs2_dir_open,
2809 	.unlocked_ioctl	= ocfs2_ioctl,
2810 #ifdef CONFIG_COMPAT
2811 	.compat_ioctl   = ocfs2_compat_ioctl,
2812 #endif
2813 	.flock		= ocfs2_flock,
2814 };
2815