xref: /openbmc/linux/fs/ocfs2/file.c (revision ee7da21a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * file.c
4  *
5  * File open, close, extend, truncate
6  *
7  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/fs.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/uio.h>
17 #include <linux/sched.h>
18 #include <linux/splice.h>
19 #include <linux/mount.h>
20 #include <linux/writeback.h>
21 #include <linux/falloc.h>
22 #include <linux/quotaops.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 
26 #include <cluster/masklog.h>
27 
28 #include "ocfs2.h"
29 
30 #include "alloc.h"
31 #include "aops.h"
32 #include "dir.h"
33 #include "dlmglue.h"
34 #include "extent_map.h"
35 #include "file.h"
36 #include "sysfile.h"
37 #include "inode.h"
38 #include "ioctl.h"
39 #include "journal.h"
40 #include "locks.h"
41 #include "mmap.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "quota.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49 
50 #include "buffer_head_io.h"
51 
52 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
53 {
54 	struct ocfs2_file_private *fp;
55 
56 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
57 	if (!fp)
58 		return -ENOMEM;
59 
60 	fp->fp_file = file;
61 	mutex_init(&fp->fp_mutex);
62 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
63 	file->private_data = fp;
64 
65 	return 0;
66 }
67 
68 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
69 {
70 	struct ocfs2_file_private *fp = file->private_data;
71 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
72 
73 	if (fp) {
74 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
75 		ocfs2_lock_res_free(&fp->fp_flock);
76 		kfree(fp);
77 		file->private_data = NULL;
78 	}
79 }
80 
81 static int ocfs2_file_open(struct inode *inode, struct file *file)
82 {
83 	int status;
84 	int mode = file->f_flags;
85 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
86 
87 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
88 			      (unsigned long long)oi->ip_blkno,
89 			      file->f_path.dentry->d_name.len,
90 			      file->f_path.dentry->d_name.name, mode);
91 
92 	if (file->f_mode & FMODE_WRITE) {
93 		status = dquot_initialize(inode);
94 		if (status)
95 			goto leave;
96 	}
97 
98 	spin_lock(&oi->ip_lock);
99 
100 	/* Check that the inode hasn't been wiped from disk by another
101 	 * node. If it hasn't then we're safe as long as we hold the
102 	 * spin lock until our increment of open count. */
103 	if (oi->ip_flags & OCFS2_INODE_DELETED) {
104 		spin_unlock(&oi->ip_lock);
105 
106 		status = -ENOENT;
107 		goto leave;
108 	}
109 
110 	if (mode & O_DIRECT)
111 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
112 
113 	oi->ip_open_count++;
114 	spin_unlock(&oi->ip_lock);
115 
116 	status = ocfs2_init_file_private(inode, file);
117 	if (status) {
118 		/*
119 		 * We want to set open count back if we're failing the
120 		 * open.
121 		 */
122 		spin_lock(&oi->ip_lock);
123 		oi->ip_open_count--;
124 		spin_unlock(&oi->ip_lock);
125 	}
126 
127 	file->f_mode |= FMODE_NOWAIT;
128 
129 leave:
130 	return status;
131 }
132 
133 static int ocfs2_file_release(struct inode *inode, struct file *file)
134 {
135 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
136 
137 	spin_lock(&oi->ip_lock);
138 	if (!--oi->ip_open_count)
139 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
140 
141 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
142 				 oi->ip_blkno,
143 				 file->f_path.dentry->d_name.len,
144 				 file->f_path.dentry->d_name.name,
145 				 oi->ip_open_count);
146 	spin_unlock(&oi->ip_lock);
147 
148 	ocfs2_free_file_private(inode, file);
149 
150 	return 0;
151 }
152 
153 static int ocfs2_dir_open(struct inode *inode, struct file *file)
154 {
155 	return ocfs2_init_file_private(inode, file);
156 }
157 
158 static int ocfs2_dir_release(struct inode *inode, struct file *file)
159 {
160 	ocfs2_free_file_private(inode, file);
161 	return 0;
162 }
163 
164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
165 			   int datasync)
166 {
167 	int err = 0;
168 	struct inode *inode = file->f_mapping->host;
169 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
170 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
171 	journal_t *journal = osb->journal->j_journal;
172 	int ret;
173 	tid_t commit_tid;
174 	bool needs_barrier = false;
175 
176 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
177 			      oi->ip_blkno,
178 			      file->f_path.dentry->d_name.len,
179 			      file->f_path.dentry->d_name.name,
180 			      (unsigned long long)datasync);
181 
182 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
183 		return -EROFS;
184 
185 	err = file_write_and_wait_range(file, start, end);
186 	if (err)
187 		return err;
188 
189 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
190 	if (journal->j_flags & JBD2_BARRIER &&
191 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
192 		needs_barrier = true;
193 	err = jbd2_complete_transaction(journal, commit_tid);
194 	if (needs_barrier) {
195 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
196 		if (!err)
197 			err = ret;
198 	}
199 
200 	if (err)
201 		mlog_errno(err);
202 
203 	return (err < 0) ? -EIO : 0;
204 }
205 
206 int ocfs2_should_update_atime(struct inode *inode,
207 			      struct vfsmount *vfsmnt)
208 {
209 	struct timespec64 now;
210 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
211 
212 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
213 		return 0;
214 
215 	if ((inode->i_flags & S_NOATIME) ||
216 	    ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
217 		return 0;
218 
219 	/*
220 	 * We can be called with no vfsmnt structure - NFSD will
221 	 * sometimes do this.
222 	 *
223 	 * Note that our action here is different than touch_atime() -
224 	 * if we can't tell whether this is a noatime mount, then we
225 	 * don't know whether to trust the value of s_atime_quantum.
226 	 */
227 	if (vfsmnt == NULL)
228 		return 0;
229 
230 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
231 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
232 		return 0;
233 
234 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
235 		if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
236 		    (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
237 			return 1;
238 
239 		return 0;
240 	}
241 
242 	now = current_time(inode);
243 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
244 		return 0;
245 	else
246 		return 1;
247 }
248 
249 int ocfs2_update_inode_atime(struct inode *inode,
250 			     struct buffer_head *bh)
251 {
252 	int ret;
253 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
254 	handle_t *handle;
255 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
256 
257 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
258 	if (IS_ERR(handle)) {
259 		ret = PTR_ERR(handle);
260 		mlog_errno(ret);
261 		goto out;
262 	}
263 
264 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
265 				      OCFS2_JOURNAL_ACCESS_WRITE);
266 	if (ret) {
267 		mlog_errno(ret);
268 		goto out_commit;
269 	}
270 
271 	/*
272 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
273 	 * have i_mutex to guard against concurrent changes to other
274 	 * inode fields.
275 	 */
276 	inode->i_atime = current_time(inode);
277 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
278 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
279 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
280 	ocfs2_journal_dirty(handle, bh);
281 
282 out_commit:
283 	ocfs2_commit_trans(osb, handle);
284 out:
285 	return ret;
286 }
287 
288 int ocfs2_set_inode_size(handle_t *handle,
289 				struct inode *inode,
290 				struct buffer_head *fe_bh,
291 				u64 new_i_size)
292 {
293 	int status;
294 
295 	i_size_write(inode, new_i_size);
296 	inode->i_blocks = ocfs2_inode_sector_count(inode);
297 	inode->i_ctime = inode->i_mtime = current_time(inode);
298 
299 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
300 	if (status < 0) {
301 		mlog_errno(status);
302 		goto bail;
303 	}
304 
305 bail:
306 	return status;
307 }
308 
309 int ocfs2_simple_size_update(struct inode *inode,
310 			     struct buffer_head *di_bh,
311 			     u64 new_i_size)
312 {
313 	int ret;
314 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
315 	handle_t *handle = NULL;
316 
317 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
318 	if (IS_ERR(handle)) {
319 		ret = PTR_ERR(handle);
320 		mlog_errno(ret);
321 		goto out;
322 	}
323 
324 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
325 				   new_i_size);
326 	if (ret < 0)
327 		mlog_errno(ret);
328 
329 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
330 	ocfs2_commit_trans(osb, handle);
331 out:
332 	return ret;
333 }
334 
335 static int ocfs2_cow_file_pos(struct inode *inode,
336 			      struct buffer_head *fe_bh,
337 			      u64 offset)
338 {
339 	int status;
340 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
341 	unsigned int num_clusters = 0;
342 	unsigned int ext_flags = 0;
343 
344 	/*
345 	 * If the new offset is aligned to the range of the cluster, there is
346 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
347 	 * CoW either.
348 	 */
349 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
350 		return 0;
351 
352 	status = ocfs2_get_clusters(inode, cpos, &phys,
353 				    &num_clusters, &ext_flags);
354 	if (status) {
355 		mlog_errno(status);
356 		goto out;
357 	}
358 
359 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
360 		goto out;
361 
362 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
363 
364 out:
365 	return status;
366 }
367 
368 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
369 				     struct inode *inode,
370 				     struct buffer_head *fe_bh,
371 				     u64 new_i_size)
372 {
373 	int status;
374 	handle_t *handle;
375 	struct ocfs2_dinode *di;
376 	u64 cluster_bytes;
377 
378 	/*
379 	 * We need to CoW the cluster contains the offset if it is reflinked
380 	 * since we will call ocfs2_zero_range_for_truncate later which will
381 	 * write "0" from offset to the end of the cluster.
382 	 */
383 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
384 	if (status) {
385 		mlog_errno(status);
386 		return status;
387 	}
388 
389 	/* TODO: This needs to actually orphan the inode in this
390 	 * transaction. */
391 
392 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
393 	if (IS_ERR(handle)) {
394 		status = PTR_ERR(handle);
395 		mlog_errno(status);
396 		goto out;
397 	}
398 
399 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
400 					 OCFS2_JOURNAL_ACCESS_WRITE);
401 	if (status < 0) {
402 		mlog_errno(status);
403 		goto out_commit;
404 	}
405 
406 	/*
407 	 * Do this before setting i_size.
408 	 */
409 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
410 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
411 					       cluster_bytes);
412 	if (status) {
413 		mlog_errno(status);
414 		goto out_commit;
415 	}
416 
417 	i_size_write(inode, new_i_size);
418 	inode->i_ctime = inode->i_mtime = current_time(inode);
419 
420 	di = (struct ocfs2_dinode *) fe_bh->b_data;
421 	di->i_size = cpu_to_le64(new_i_size);
422 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
423 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
424 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
425 
426 	ocfs2_journal_dirty(handle, fe_bh);
427 
428 out_commit:
429 	ocfs2_commit_trans(osb, handle);
430 out:
431 	return status;
432 }
433 
434 int ocfs2_truncate_file(struct inode *inode,
435 			       struct buffer_head *di_bh,
436 			       u64 new_i_size)
437 {
438 	int status = 0;
439 	struct ocfs2_dinode *fe = NULL;
440 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
441 
442 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
443 	 * already validated it */
444 	fe = (struct ocfs2_dinode *) di_bh->b_data;
445 
446 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
447 				  (unsigned long long)le64_to_cpu(fe->i_size),
448 				  (unsigned long long)new_i_size);
449 
450 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
451 			"Inode %llu, inode i_size = %lld != di "
452 			"i_size = %llu, i_flags = 0x%x\n",
453 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
454 			i_size_read(inode),
455 			(unsigned long long)le64_to_cpu(fe->i_size),
456 			le32_to_cpu(fe->i_flags));
457 
458 	if (new_i_size > le64_to_cpu(fe->i_size)) {
459 		trace_ocfs2_truncate_file_error(
460 			(unsigned long long)le64_to_cpu(fe->i_size),
461 			(unsigned long long)new_i_size);
462 		status = -EINVAL;
463 		mlog_errno(status);
464 		goto bail;
465 	}
466 
467 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
468 
469 	ocfs2_resv_discard(&osb->osb_la_resmap,
470 			   &OCFS2_I(inode)->ip_la_data_resv);
471 
472 	/*
473 	 * The inode lock forced other nodes to sync and drop their
474 	 * pages, which (correctly) happens even if we have a truncate
475 	 * without allocation change - ocfs2 cluster sizes can be much
476 	 * greater than page size, so we have to truncate them
477 	 * anyway.
478 	 */
479 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
480 	truncate_inode_pages(inode->i_mapping, new_i_size);
481 
482 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
483 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
484 					       i_size_read(inode), 1);
485 		if (status)
486 			mlog_errno(status);
487 
488 		goto bail_unlock_sem;
489 	}
490 
491 	/* alright, we're going to need to do a full blown alloc size
492 	 * change. Orphan the inode so that recovery can complete the
493 	 * truncate if necessary. This does the task of marking
494 	 * i_size. */
495 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
496 	if (status < 0) {
497 		mlog_errno(status);
498 		goto bail_unlock_sem;
499 	}
500 
501 	status = ocfs2_commit_truncate(osb, inode, di_bh);
502 	if (status < 0) {
503 		mlog_errno(status);
504 		goto bail_unlock_sem;
505 	}
506 
507 	/* TODO: orphan dir cleanup here. */
508 bail_unlock_sem:
509 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
510 
511 bail:
512 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
513 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
514 
515 	return status;
516 }
517 
518 /*
519  * extend file allocation only here.
520  * we'll update all the disk stuff, and oip->alloc_size
521  *
522  * expect stuff to be locked, a transaction started and enough data /
523  * metadata reservations in the contexts.
524  *
525  * Will return -EAGAIN, and a reason if a restart is needed.
526  * If passed in, *reason will always be set, even in error.
527  */
528 int ocfs2_add_inode_data(struct ocfs2_super *osb,
529 			 struct inode *inode,
530 			 u32 *logical_offset,
531 			 u32 clusters_to_add,
532 			 int mark_unwritten,
533 			 struct buffer_head *fe_bh,
534 			 handle_t *handle,
535 			 struct ocfs2_alloc_context *data_ac,
536 			 struct ocfs2_alloc_context *meta_ac,
537 			 enum ocfs2_alloc_restarted *reason_ret)
538 {
539 	int ret;
540 	struct ocfs2_extent_tree et;
541 
542 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
543 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
544 					  clusters_to_add, mark_unwritten,
545 					  data_ac, meta_ac, reason_ret);
546 
547 	return ret;
548 }
549 
550 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
551 				   u32 clusters_to_add, int mark_unwritten)
552 {
553 	int status = 0;
554 	int restart_func = 0;
555 	int credits;
556 	u32 prev_clusters;
557 	struct buffer_head *bh = NULL;
558 	struct ocfs2_dinode *fe = NULL;
559 	handle_t *handle = NULL;
560 	struct ocfs2_alloc_context *data_ac = NULL;
561 	struct ocfs2_alloc_context *meta_ac = NULL;
562 	enum ocfs2_alloc_restarted why = RESTART_NONE;
563 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
564 	struct ocfs2_extent_tree et;
565 	int did_quota = 0;
566 
567 	/*
568 	 * Unwritten extent only exists for file systems which
569 	 * support holes.
570 	 */
571 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
572 
573 	status = ocfs2_read_inode_block(inode, &bh);
574 	if (status < 0) {
575 		mlog_errno(status);
576 		goto leave;
577 	}
578 	fe = (struct ocfs2_dinode *) bh->b_data;
579 
580 restart_all:
581 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
582 
583 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
584 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
585 				       &data_ac, &meta_ac);
586 	if (status) {
587 		mlog_errno(status);
588 		goto leave;
589 	}
590 
591 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
592 	handle = ocfs2_start_trans(osb, credits);
593 	if (IS_ERR(handle)) {
594 		status = PTR_ERR(handle);
595 		handle = NULL;
596 		mlog_errno(status);
597 		goto leave;
598 	}
599 
600 restarted_transaction:
601 	trace_ocfs2_extend_allocation(
602 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
603 		(unsigned long long)i_size_read(inode),
604 		le32_to_cpu(fe->i_clusters), clusters_to_add,
605 		why, restart_func);
606 
607 	status = dquot_alloc_space_nodirty(inode,
608 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
609 	if (status)
610 		goto leave;
611 	did_quota = 1;
612 
613 	/* reserve a write to the file entry early on - that we if we
614 	 * run out of credits in the allocation path, we can still
615 	 * update i_size. */
616 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
617 					 OCFS2_JOURNAL_ACCESS_WRITE);
618 	if (status < 0) {
619 		mlog_errno(status);
620 		goto leave;
621 	}
622 
623 	prev_clusters = OCFS2_I(inode)->ip_clusters;
624 
625 	status = ocfs2_add_inode_data(osb,
626 				      inode,
627 				      &logical_start,
628 				      clusters_to_add,
629 				      mark_unwritten,
630 				      bh,
631 				      handle,
632 				      data_ac,
633 				      meta_ac,
634 				      &why);
635 	if ((status < 0) && (status != -EAGAIN)) {
636 		if (status != -ENOSPC)
637 			mlog_errno(status);
638 		goto leave;
639 	}
640 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
641 	ocfs2_journal_dirty(handle, bh);
642 
643 	spin_lock(&OCFS2_I(inode)->ip_lock);
644 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
645 	spin_unlock(&OCFS2_I(inode)->ip_lock);
646 	/* Release unused quota reservation */
647 	dquot_free_space(inode,
648 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
649 	did_quota = 0;
650 
651 	if (why != RESTART_NONE && clusters_to_add) {
652 		if (why == RESTART_META) {
653 			restart_func = 1;
654 			status = 0;
655 		} else {
656 			BUG_ON(why != RESTART_TRANS);
657 
658 			status = ocfs2_allocate_extend_trans(handle, 1);
659 			if (status < 0) {
660 				/* handle still has to be committed at
661 				 * this point. */
662 				status = -ENOMEM;
663 				mlog_errno(status);
664 				goto leave;
665 			}
666 			goto restarted_transaction;
667 		}
668 	}
669 
670 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
671 	     le32_to_cpu(fe->i_clusters),
672 	     (unsigned long long)le64_to_cpu(fe->i_size),
673 	     OCFS2_I(inode)->ip_clusters,
674 	     (unsigned long long)i_size_read(inode));
675 
676 leave:
677 	if (status < 0 && did_quota)
678 		dquot_free_space(inode,
679 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
680 	if (handle) {
681 		ocfs2_commit_trans(osb, handle);
682 		handle = NULL;
683 	}
684 	if (data_ac) {
685 		ocfs2_free_alloc_context(data_ac);
686 		data_ac = NULL;
687 	}
688 	if (meta_ac) {
689 		ocfs2_free_alloc_context(meta_ac);
690 		meta_ac = NULL;
691 	}
692 	if ((!status) && restart_func) {
693 		restart_func = 0;
694 		goto restart_all;
695 	}
696 	brelse(bh);
697 	bh = NULL;
698 
699 	return status;
700 }
701 
702 /*
703  * While a write will already be ordering the data, a truncate will not.
704  * Thus, we need to explicitly order the zeroed pages.
705  */
706 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
707 						      struct buffer_head *di_bh,
708 						      loff_t start_byte,
709 						      loff_t length)
710 {
711 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
712 	handle_t *handle = NULL;
713 	int ret = 0;
714 
715 	if (!ocfs2_should_order_data(inode))
716 		goto out;
717 
718 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
719 	if (IS_ERR(handle)) {
720 		ret = -ENOMEM;
721 		mlog_errno(ret);
722 		goto out;
723 	}
724 
725 	ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
726 	if (ret < 0) {
727 		mlog_errno(ret);
728 		goto out;
729 	}
730 
731 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
732 				      OCFS2_JOURNAL_ACCESS_WRITE);
733 	if (ret)
734 		mlog_errno(ret);
735 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
736 
737 out:
738 	if (ret) {
739 		if (!IS_ERR(handle))
740 			ocfs2_commit_trans(osb, handle);
741 		handle = ERR_PTR(ret);
742 	}
743 	return handle;
744 }
745 
746 /* Some parts of this taken from generic_cont_expand, which turned out
747  * to be too fragile to do exactly what we need without us having to
748  * worry about recursive locking in ->write_begin() and ->write_end(). */
749 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
750 				 u64 abs_to, struct buffer_head *di_bh)
751 {
752 	struct address_space *mapping = inode->i_mapping;
753 	struct page *page;
754 	unsigned long index = abs_from >> PAGE_SHIFT;
755 	handle_t *handle;
756 	int ret = 0;
757 	unsigned zero_from, zero_to, block_start, block_end;
758 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
759 
760 	BUG_ON(abs_from >= abs_to);
761 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
762 	BUG_ON(abs_from & (inode->i_blkbits - 1));
763 
764 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
765 						      abs_from,
766 						      abs_to - abs_from);
767 	if (IS_ERR(handle)) {
768 		ret = PTR_ERR(handle);
769 		goto out;
770 	}
771 
772 	page = find_or_create_page(mapping, index, GFP_NOFS);
773 	if (!page) {
774 		ret = -ENOMEM;
775 		mlog_errno(ret);
776 		goto out_commit_trans;
777 	}
778 
779 	/* Get the offsets within the page that we want to zero */
780 	zero_from = abs_from & (PAGE_SIZE - 1);
781 	zero_to = abs_to & (PAGE_SIZE - 1);
782 	if (!zero_to)
783 		zero_to = PAGE_SIZE;
784 
785 	trace_ocfs2_write_zero_page(
786 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
787 			(unsigned long long)abs_from,
788 			(unsigned long long)abs_to,
789 			index, zero_from, zero_to);
790 
791 	/* We know that zero_from is block aligned */
792 	for (block_start = zero_from; block_start < zero_to;
793 	     block_start = block_end) {
794 		block_end = block_start + i_blocksize(inode);
795 
796 		/*
797 		 * block_start is block-aligned.  Bump it by one to force
798 		 * __block_write_begin and block_commit_write to zero the
799 		 * whole block.
800 		 */
801 		ret = __block_write_begin(page, block_start + 1, 0,
802 					  ocfs2_get_block);
803 		if (ret < 0) {
804 			mlog_errno(ret);
805 			goto out_unlock;
806 		}
807 
808 
809 		/* must not update i_size! */
810 		ret = block_commit_write(page, block_start + 1,
811 					 block_start + 1);
812 		if (ret < 0)
813 			mlog_errno(ret);
814 		else
815 			ret = 0;
816 	}
817 
818 	/*
819 	 * fs-writeback will release the dirty pages without page lock
820 	 * whose offset are over inode size, the release happens at
821 	 * block_write_full_page().
822 	 */
823 	i_size_write(inode, abs_to);
824 	inode->i_blocks = ocfs2_inode_sector_count(inode);
825 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
826 	inode->i_mtime = inode->i_ctime = current_time(inode);
827 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
828 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
829 	di->i_mtime_nsec = di->i_ctime_nsec;
830 	if (handle) {
831 		ocfs2_journal_dirty(handle, di_bh);
832 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
833 	}
834 
835 out_unlock:
836 	unlock_page(page);
837 	put_page(page);
838 out_commit_trans:
839 	if (handle)
840 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
841 out:
842 	return ret;
843 }
844 
845 /*
846  * Find the next range to zero.  We do this in terms of bytes because
847  * that's what ocfs2_zero_extend() wants, and it is dealing with the
848  * pagecache.  We may return multiple extents.
849  *
850  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
851  * needs to be zeroed.  range_start and range_end return the next zeroing
852  * range.  A subsequent call should pass the previous range_end as its
853  * zero_start.  If range_end is 0, there's nothing to do.
854  *
855  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
856  */
857 static int ocfs2_zero_extend_get_range(struct inode *inode,
858 				       struct buffer_head *di_bh,
859 				       u64 zero_start, u64 zero_end,
860 				       u64 *range_start, u64 *range_end)
861 {
862 	int rc = 0, needs_cow = 0;
863 	u32 p_cpos, zero_clusters = 0;
864 	u32 zero_cpos =
865 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
866 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
867 	unsigned int num_clusters = 0;
868 	unsigned int ext_flags = 0;
869 
870 	while (zero_cpos < last_cpos) {
871 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
872 					&num_clusters, &ext_flags);
873 		if (rc) {
874 			mlog_errno(rc);
875 			goto out;
876 		}
877 
878 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
879 			zero_clusters = num_clusters;
880 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
881 				needs_cow = 1;
882 			break;
883 		}
884 
885 		zero_cpos += num_clusters;
886 	}
887 	if (!zero_clusters) {
888 		*range_end = 0;
889 		goto out;
890 	}
891 
892 	while ((zero_cpos + zero_clusters) < last_cpos) {
893 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
894 					&p_cpos, &num_clusters,
895 					&ext_flags);
896 		if (rc) {
897 			mlog_errno(rc);
898 			goto out;
899 		}
900 
901 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
902 			break;
903 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
904 			needs_cow = 1;
905 		zero_clusters += num_clusters;
906 	}
907 	if ((zero_cpos + zero_clusters) > last_cpos)
908 		zero_clusters = last_cpos - zero_cpos;
909 
910 	if (needs_cow) {
911 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
912 					zero_clusters, UINT_MAX);
913 		if (rc) {
914 			mlog_errno(rc);
915 			goto out;
916 		}
917 	}
918 
919 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
920 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
921 					     zero_cpos + zero_clusters);
922 
923 out:
924 	return rc;
925 }
926 
927 /*
928  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
929  * has made sure that the entire range needs zeroing.
930  */
931 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
932 				   u64 range_end, struct buffer_head *di_bh)
933 {
934 	int rc = 0;
935 	u64 next_pos;
936 	u64 zero_pos = range_start;
937 
938 	trace_ocfs2_zero_extend_range(
939 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
940 			(unsigned long long)range_start,
941 			(unsigned long long)range_end);
942 	BUG_ON(range_start >= range_end);
943 
944 	while (zero_pos < range_end) {
945 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
946 		if (next_pos > range_end)
947 			next_pos = range_end;
948 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
949 		if (rc < 0) {
950 			mlog_errno(rc);
951 			break;
952 		}
953 		zero_pos = next_pos;
954 
955 		/*
956 		 * Very large extends have the potential to lock up
957 		 * the cpu for extended periods of time.
958 		 */
959 		cond_resched();
960 	}
961 
962 	return rc;
963 }
964 
965 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
966 		      loff_t zero_to_size)
967 {
968 	int ret = 0;
969 	u64 zero_start, range_start = 0, range_end = 0;
970 	struct super_block *sb = inode->i_sb;
971 
972 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
973 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
974 				(unsigned long long)zero_start,
975 				(unsigned long long)i_size_read(inode));
976 	while (zero_start < zero_to_size) {
977 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
978 						  zero_to_size,
979 						  &range_start,
980 						  &range_end);
981 		if (ret) {
982 			mlog_errno(ret);
983 			break;
984 		}
985 		if (!range_end)
986 			break;
987 		/* Trim the ends */
988 		if (range_start < zero_start)
989 			range_start = zero_start;
990 		if (range_end > zero_to_size)
991 			range_end = zero_to_size;
992 
993 		ret = ocfs2_zero_extend_range(inode, range_start,
994 					      range_end, di_bh);
995 		if (ret) {
996 			mlog_errno(ret);
997 			break;
998 		}
999 		zero_start = range_end;
1000 	}
1001 
1002 	return ret;
1003 }
1004 
1005 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1006 			  u64 new_i_size, u64 zero_to)
1007 {
1008 	int ret;
1009 	u32 clusters_to_add;
1010 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1011 
1012 	/*
1013 	 * Only quota files call this without a bh, and they can't be
1014 	 * refcounted.
1015 	 */
1016 	BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1017 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1018 
1019 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1020 	if (clusters_to_add < oi->ip_clusters)
1021 		clusters_to_add = 0;
1022 	else
1023 		clusters_to_add -= oi->ip_clusters;
1024 
1025 	if (clusters_to_add) {
1026 		ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1027 					      clusters_to_add, 0);
1028 		if (ret) {
1029 			mlog_errno(ret);
1030 			goto out;
1031 		}
1032 	}
1033 
1034 	/*
1035 	 * Call this even if we don't add any clusters to the tree. We
1036 	 * still need to zero the area between the old i_size and the
1037 	 * new i_size.
1038 	 */
1039 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1040 	if (ret < 0)
1041 		mlog_errno(ret);
1042 
1043 out:
1044 	return ret;
1045 }
1046 
1047 static int ocfs2_extend_file(struct inode *inode,
1048 			     struct buffer_head *di_bh,
1049 			     u64 new_i_size)
1050 {
1051 	int ret = 0;
1052 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1053 
1054 	BUG_ON(!di_bh);
1055 
1056 	/* setattr sometimes calls us like this. */
1057 	if (new_i_size == 0)
1058 		goto out;
1059 
1060 	if (i_size_read(inode) == new_i_size)
1061 		goto out;
1062 	BUG_ON(new_i_size < i_size_read(inode));
1063 
1064 	/*
1065 	 * The alloc sem blocks people in read/write from reading our
1066 	 * allocation until we're done changing it. We depend on
1067 	 * i_mutex to block other extend/truncate calls while we're
1068 	 * here.  We even have to hold it for sparse files because there
1069 	 * might be some tail zeroing.
1070 	 */
1071 	down_write(&oi->ip_alloc_sem);
1072 
1073 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1074 		/*
1075 		 * We can optimize small extends by keeping the inodes
1076 		 * inline data.
1077 		 */
1078 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1079 			up_write(&oi->ip_alloc_sem);
1080 			goto out_update_size;
1081 		}
1082 
1083 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1084 		if (ret) {
1085 			up_write(&oi->ip_alloc_sem);
1086 			mlog_errno(ret);
1087 			goto out;
1088 		}
1089 	}
1090 
1091 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1092 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1093 	else
1094 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1095 					    new_i_size);
1096 
1097 	up_write(&oi->ip_alloc_sem);
1098 
1099 	if (ret < 0) {
1100 		mlog_errno(ret);
1101 		goto out;
1102 	}
1103 
1104 out_update_size:
1105 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1106 	if (ret < 0)
1107 		mlog_errno(ret);
1108 
1109 out:
1110 	return ret;
1111 }
1112 
1113 int ocfs2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1114 		  struct iattr *attr)
1115 {
1116 	int status = 0, size_change;
1117 	int inode_locked = 0;
1118 	struct inode *inode = d_inode(dentry);
1119 	struct super_block *sb = inode->i_sb;
1120 	struct ocfs2_super *osb = OCFS2_SB(sb);
1121 	struct buffer_head *bh = NULL;
1122 	handle_t *handle = NULL;
1123 	struct dquot *transfer_to[MAXQUOTAS] = { };
1124 	int qtype;
1125 	int had_lock;
1126 	struct ocfs2_lock_holder oh;
1127 
1128 	trace_ocfs2_setattr(inode, dentry,
1129 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1130 			    dentry->d_name.len, dentry->d_name.name,
1131 			    attr->ia_valid, attr->ia_mode,
1132 			    from_kuid(&init_user_ns, attr->ia_uid),
1133 			    from_kgid(&init_user_ns, attr->ia_gid));
1134 
1135 	/* ensuring we don't even attempt to truncate a symlink */
1136 	if (S_ISLNK(inode->i_mode))
1137 		attr->ia_valid &= ~ATTR_SIZE;
1138 
1139 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1140 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1141 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1142 		return 0;
1143 
1144 	status = setattr_prepare(&init_user_ns, dentry, attr);
1145 	if (status)
1146 		return status;
1147 
1148 	if (is_quota_modification(inode, attr)) {
1149 		status = dquot_initialize(inode);
1150 		if (status)
1151 			return status;
1152 	}
1153 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1154 	if (size_change) {
1155 		/*
1156 		 * Here we should wait dio to finish before inode lock
1157 		 * to avoid a deadlock between ocfs2_setattr() and
1158 		 * ocfs2_dio_end_io_write()
1159 		 */
1160 		inode_dio_wait(inode);
1161 
1162 		status = ocfs2_rw_lock(inode, 1);
1163 		if (status < 0) {
1164 			mlog_errno(status);
1165 			goto bail;
1166 		}
1167 	}
1168 
1169 	had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1170 	if (had_lock < 0) {
1171 		status = had_lock;
1172 		goto bail_unlock_rw;
1173 	} else if (had_lock) {
1174 		/*
1175 		 * As far as we know, ocfs2_setattr() could only be the first
1176 		 * VFS entry point in the call chain of recursive cluster
1177 		 * locking issue.
1178 		 *
1179 		 * For instance:
1180 		 * chmod_common()
1181 		 *  notify_change()
1182 		 *   ocfs2_setattr()
1183 		 *    posix_acl_chmod()
1184 		 *     ocfs2_iop_get_acl()
1185 		 *
1186 		 * But, we're not 100% sure if it's always true, because the
1187 		 * ordering of the VFS entry points in the call chain is out
1188 		 * of our control. So, we'd better dump the stack here to
1189 		 * catch the other cases of recursive locking.
1190 		 */
1191 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1192 		dump_stack();
1193 	}
1194 	inode_locked = 1;
1195 
1196 	if (size_change) {
1197 		status = inode_newsize_ok(inode, attr->ia_size);
1198 		if (status)
1199 			goto bail_unlock;
1200 
1201 		if (i_size_read(inode) >= attr->ia_size) {
1202 			if (ocfs2_should_order_data(inode)) {
1203 				status = ocfs2_begin_ordered_truncate(inode,
1204 								      attr->ia_size);
1205 				if (status)
1206 					goto bail_unlock;
1207 			}
1208 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1209 		} else
1210 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1211 		if (status < 0) {
1212 			if (status != -ENOSPC)
1213 				mlog_errno(status);
1214 			status = -ENOSPC;
1215 			goto bail_unlock;
1216 		}
1217 	}
1218 
1219 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1220 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1221 		/*
1222 		 * Gather pointers to quota structures so that allocation /
1223 		 * freeing of quota structures happens here and not inside
1224 		 * dquot_transfer() where we have problems with lock ordering
1225 		 */
1226 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1227 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1228 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1229 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1230 			if (IS_ERR(transfer_to[USRQUOTA])) {
1231 				status = PTR_ERR(transfer_to[USRQUOTA]);
1232 				transfer_to[USRQUOTA] = NULL;
1233 				goto bail_unlock;
1234 			}
1235 		}
1236 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1237 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1238 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1239 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1240 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1241 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1242 				transfer_to[GRPQUOTA] = NULL;
1243 				goto bail_unlock;
1244 			}
1245 		}
1246 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1247 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1248 					   2 * ocfs2_quota_trans_credits(sb));
1249 		if (IS_ERR(handle)) {
1250 			status = PTR_ERR(handle);
1251 			mlog_errno(status);
1252 			goto bail_unlock_alloc;
1253 		}
1254 		status = __dquot_transfer(inode, transfer_to);
1255 		if (status < 0)
1256 			goto bail_commit;
1257 	} else {
1258 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1259 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1260 		if (IS_ERR(handle)) {
1261 			status = PTR_ERR(handle);
1262 			mlog_errno(status);
1263 			goto bail_unlock_alloc;
1264 		}
1265 	}
1266 
1267 	setattr_copy(&init_user_ns, inode, attr);
1268 	mark_inode_dirty(inode);
1269 
1270 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1271 	if (status < 0)
1272 		mlog_errno(status);
1273 
1274 bail_commit:
1275 	ocfs2_commit_trans(osb, handle);
1276 bail_unlock_alloc:
1277 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1278 bail_unlock:
1279 	if (status && inode_locked) {
1280 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1281 		inode_locked = 0;
1282 	}
1283 bail_unlock_rw:
1284 	if (size_change)
1285 		ocfs2_rw_unlock(inode, 1);
1286 bail:
1287 
1288 	/* Release quota pointers in case we acquired them */
1289 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1290 		dqput(transfer_to[qtype]);
1291 
1292 	if (!status && attr->ia_valid & ATTR_MODE) {
1293 		status = ocfs2_acl_chmod(inode, bh);
1294 		if (status < 0)
1295 			mlog_errno(status);
1296 	}
1297 	if (inode_locked)
1298 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1299 
1300 	brelse(bh);
1301 	return status;
1302 }
1303 
1304 int ocfs2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1305 		  struct kstat *stat, u32 request_mask, unsigned int flags)
1306 {
1307 	struct inode *inode = d_inode(path->dentry);
1308 	struct super_block *sb = path->dentry->d_sb;
1309 	struct ocfs2_super *osb = sb->s_fs_info;
1310 	int err;
1311 
1312 	err = ocfs2_inode_revalidate(path->dentry);
1313 	if (err) {
1314 		if (err != -ENOENT)
1315 			mlog_errno(err);
1316 		goto bail;
1317 	}
1318 
1319 	generic_fillattr(&init_user_ns, inode, stat);
1320 	/*
1321 	 * If there is inline data in the inode, the inode will normally not
1322 	 * have data blocks allocated (it may have an external xattr block).
1323 	 * Report at least one sector for such files, so tools like tar, rsync,
1324 	 * others don't incorrectly think the file is completely sparse.
1325 	 */
1326 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1327 		stat->blocks += (stat->size + 511)>>9;
1328 
1329 	/* We set the blksize from the cluster size for performance */
1330 	stat->blksize = osb->s_clustersize;
1331 
1332 bail:
1333 	return err;
1334 }
1335 
1336 int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode,
1337 		     int mask)
1338 {
1339 	int ret, had_lock;
1340 	struct ocfs2_lock_holder oh;
1341 
1342 	if (mask & MAY_NOT_BLOCK)
1343 		return -ECHILD;
1344 
1345 	had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1346 	if (had_lock < 0) {
1347 		ret = had_lock;
1348 		goto out;
1349 	} else if (had_lock) {
1350 		/* See comments in ocfs2_setattr() for details.
1351 		 * The call chain of this case could be:
1352 		 * do_sys_open()
1353 		 *  may_open()
1354 		 *   inode_permission()
1355 		 *    ocfs2_permission()
1356 		 *     ocfs2_iop_get_acl()
1357 		 */
1358 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1359 		dump_stack();
1360 	}
1361 
1362 	ret = generic_permission(&init_user_ns, inode, mask);
1363 
1364 	ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1365 out:
1366 	return ret;
1367 }
1368 
1369 static int __ocfs2_write_remove_suid(struct inode *inode,
1370 				     struct buffer_head *bh)
1371 {
1372 	int ret;
1373 	handle_t *handle;
1374 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1375 	struct ocfs2_dinode *di;
1376 
1377 	trace_ocfs2_write_remove_suid(
1378 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1379 			inode->i_mode);
1380 
1381 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1382 	if (IS_ERR(handle)) {
1383 		ret = PTR_ERR(handle);
1384 		mlog_errno(ret);
1385 		goto out;
1386 	}
1387 
1388 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1389 				      OCFS2_JOURNAL_ACCESS_WRITE);
1390 	if (ret < 0) {
1391 		mlog_errno(ret);
1392 		goto out_trans;
1393 	}
1394 
1395 	inode->i_mode &= ~S_ISUID;
1396 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1397 		inode->i_mode &= ~S_ISGID;
1398 
1399 	di = (struct ocfs2_dinode *) bh->b_data;
1400 	di->i_mode = cpu_to_le16(inode->i_mode);
1401 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1402 
1403 	ocfs2_journal_dirty(handle, bh);
1404 
1405 out_trans:
1406 	ocfs2_commit_trans(osb, handle);
1407 out:
1408 	return ret;
1409 }
1410 
1411 static int ocfs2_write_remove_suid(struct inode *inode)
1412 {
1413 	int ret;
1414 	struct buffer_head *bh = NULL;
1415 
1416 	ret = ocfs2_read_inode_block(inode, &bh);
1417 	if (ret < 0) {
1418 		mlog_errno(ret);
1419 		goto out;
1420 	}
1421 
1422 	ret =  __ocfs2_write_remove_suid(inode, bh);
1423 out:
1424 	brelse(bh);
1425 	return ret;
1426 }
1427 
1428 /*
1429  * Allocate enough extents to cover the region starting at byte offset
1430  * start for len bytes. Existing extents are skipped, any extents
1431  * added are marked as "unwritten".
1432  */
1433 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1434 					    u64 start, u64 len)
1435 {
1436 	int ret;
1437 	u32 cpos, phys_cpos, clusters, alloc_size;
1438 	u64 end = start + len;
1439 	struct buffer_head *di_bh = NULL;
1440 
1441 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1442 		ret = ocfs2_read_inode_block(inode, &di_bh);
1443 		if (ret) {
1444 			mlog_errno(ret);
1445 			goto out;
1446 		}
1447 
1448 		/*
1449 		 * Nothing to do if the requested reservation range
1450 		 * fits within the inode.
1451 		 */
1452 		if (ocfs2_size_fits_inline_data(di_bh, end))
1453 			goto out;
1454 
1455 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1456 		if (ret) {
1457 			mlog_errno(ret);
1458 			goto out;
1459 		}
1460 	}
1461 
1462 	/*
1463 	 * We consider both start and len to be inclusive.
1464 	 */
1465 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1466 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1467 	clusters -= cpos;
1468 
1469 	while (clusters) {
1470 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1471 					 &alloc_size, NULL);
1472 		if (ret) {
1473 			mlog_errno(ret);
1474 			goto out;
1475 		}
1476 
1477 		/*
1478 		 * Hole or existing extent len can be arbitrary, so
1479 		 * cap it to our own allocation request.
1480 		 */
1481 		if (alloc_size > clusters)
1482 			alloc_size = clusters;
1483 
1484 		if (phys_cpos) {
1485 			/*
1486 			 * We already have an allocation at this
1487 			 * region so we can safely skip it.
1488 			 */
1489 			goto next;
1490 		}
1491 
1492 		ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1493 		if (ret) {
1494 			if (ret != -ENOSPC)
1495 				mlog_errno(ret);
1496 			goto out;
1497 		}
1498 
1499 next:
1500 		cpos += alloc_size;
1501 		clusters -= alloc_size;
1502 	}
1503 
1504 	ret = 0;
1505 out:
1506 
1507 	brelse(di_bh);
1508 	return ret;
1509 }
1510 
1511 /*
1512  * Truncate a byte range, avoiding pages within partial clusters. This
1513  * preserves those pages for the zeroing code to write to.
1514  */
1515 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1516 					 u64 byte_len)
1517 {
1518 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1519 	loff_t start, end;
1520 	struct address_space *mapping = inode->i_mapping;
1521 
1522 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1523 	end = byte_start + byte_len;
1524 	end = end & ~(osb->s_clustersize - 1);
1525 
1526 	if (start < end) {
1527 		unmap_mapping_range(mapping, start, end - start, 0);
1528 		truncate_inode_pages_range(mapping, start, end - 1);
1529 	}
1530 }
1531 
1532 /*
1533  * zero out partial blocks of one cluster.
1534  *
1535  * start: file offset where zero starts, will be made upper block aligned.
1536  * len: it will be trimmed to the end of current cluster if "start + len"
1537  *      is bigger than it.
1538  */
1539 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1540 					u64 start, u64 len)
1541 {
1542 	int ret;
1543 	u64 start_block, end_block, nr_blocks;
1544 	u64 p_block, offset;
1545 	u32 cluster, p_cluster, nr_clusters;
1546 	struct super_block *sb = inode->i_sb;
1547 	u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1548 
1549 	if (start + len < end)
1550 		end = start + len;
1551 
1552 	start_block = ocfs2_blocks_for_bytes(sb, start);
1553 	end_block = ocfs2_blocks_for_bytes(sb, end);
1554 	nr_blocks = end_block - start_block;
1555 	if (!nr_blocks)
1556 		return 0;
1557 
1558 	cluster = ocfs2_bytes_to_clusters(sb, start);
1559 	ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1560 				&nr_clusters, NULL);
1561 	if (ret)
1562 		return ret;
1563 	if (!p_cluster)
1564 		return 0;
1565 
1566 	offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1567 	p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1568 	return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1569 }
1570 
1571 static int ocfs2_zero_partial_clusters(struct inode *inode,
1572 				       u64 start, u64 len)
1573 {
1574 	int ret = 0;
1575 	u64 tmpend = 0;
1576 	u64 end = start + len;
1577 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1578 	unsigned int csize = osb->s_clustersize;
1579 	handle_t *handle;
1580 	loff_t isize = i_size_read(inode);
1581 
1582 	/*
1583 	 * The "start" and "end" values are NOT necessarily part of
1584 	 * the range whose allocation is being deleted. Rather, this
1585 	 * is what the user passed in with the request. We must zero
1586 	 * partial clusters here. There's no need to worry about
1587 	 * physical allocation - the zeroing code knows to skip holes.
1588 	 */
1589 	trace_ocfs2_zero_partial_clusters(
1590 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1591 		(unsigned long long)start, (unsigned long long)end);
1592 
1593 	/*
1594 	 * If both edges are on a cluster boundary then there's no
1595 	 * zeroing required as the region is part of the allocation to
1596 	 * be truncated.
1597 	 */
1598 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1599 		goto out;
1600 
1601 	/* No page cache for EOF blocks, issue zero out to disk. */
1602 	if (end > isize) {
1603 		/*
1604 		 * zeroout eof blocks in last cluster starting from
1605 		 * "isize" even "start" > "isize" because it is
1606 		 * complicated to zeroout just at "start" as "start"
1607 		 * may be not aligned with block size, buffer write
1608 		 * would be required to do that, but out of eof buffer
1609 		 * write is not supported.
1610 		 */
1611 		ret = ocfs2_zeroout_partial_cluster(inode, isize,
1612 					end - isize);
1613 		if (ret) {
1614 			mlog_errno(ret);
1615 			goto out;
1616 		}
1617 		if (start >= isize)
1618 			goto out;
1619 		end = isize;
1620 	}
1621 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1622 	if (IS_ERR(handle)) {
1623 		ret = PTR_ERR(handle);
1624 		mlog_errno(ret);
1625 		goto out;
1626 	}
1627 
1628 	/*
1629 	 * If start is on a cluster boundary and end is somewhere in another
1630 	 * cluster, we have not COWed the cluster starting at start, unless
1631 	 * end is also within the same cluster. So, in this case, we skip this
1632 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1633 	 * to the next one.
1634 	 */
1635 	if ((start & (csize - 1)) != 0) {
1636 		/*
1637 		 * We want to get the byte offset of the end of the 1st
1638 		 * cluster.
1639 		 */
1640 		tmpend = (u64)osb->s_clustersize +
1641 			(start & ~(osb->s_clustersize - 1));
1642 		if (tmpend > end)
1643 			tmpend = end;
1644 
1645 		trace_ocfs2_zero_partial_clusters_range1(
1646 			(unsigned long long)start,
1647 			(unsigned long long)tmpend);
1648 
1649 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1650 						    tmpend);
1651 		if (ret)
1652 			mlog_errno(ret);
1653 	}
1654 
1655 	if (tmpend < end) {
1656 		/*
1657 		 * This may make start and end equal, but the zeroing
1658 		 * code will skip any work in that case so there's no
1659 		 * need to catch it up here.
1660 		 */
1661 		start = end & ~(osb->s_clustersize - 1);
1662 
1663 		trace_ocfs2_zero_partial_clusters_range2(
1664 			(unsigned long long)start, (unsigned long long)end);
1665 
1666 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1667 		if (ret)
1668 			mlog_errno(ret);
1669 	}
1670 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1671 
1672 	ocfs2_commit_trans(osb, handle);
1673 out:
1674 	return ret;
1675 }
1676 
1677 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1678 {
1679 	int i;
1680 	struct ocfs2_extent_rec *rec = NULL;
1681 
1682 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1683 
1684 		rec = &el->l_recs[i];
1685 
1686 		if (le32_to_cpu(rec->e_cpos) < pos)
1687 			break;
1688 	}
1689 
1690 	return i;
1691 }
1692 
1693 /*
1694  * Helper to calculate the punching pos and length in one run, we handle the
1695  * following three cases in order:
1696  *
1697  * - remove the entire record
1698  * - remove a partial record
1699  * - no record needs to be removed (hole-punching completed)
1700 */
1701 static void ocfs2_calc_trunc_pos(struct inode *inode,
1702 				 struct ocfs2_extent_list *el,
1703 				 struct ocfs2_extent_rec *rec,
1704 				 u32 trunc_start, u32 *trunc_cpos,
1705 				 u32 *trunc_len, u32 *trunc_end,
1706 				 u64 *blkno, int *done)
1707 {
1708 	int ret = 0;
1709 	u32 coff, range;
1710 
1711 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1712 
1713 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1714 		/*
1715 		 * remove an entire extent record.
1716 		 */
1717 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1718 		/*
1719 		 * Skip holes if any.
1720 		 */
1721 		if (range < *trunc_end)
1722 			*trunc_end = range;
1723 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1724 		*blkno = le64_to_cpu(rec->e_blkno);
1725 		*trunc_end = le32_to_cpu(rec->e_cpos);
1726 	} else if (range > trunc_start) {
1727 		/*
1728 		 * remove a partial extent record, which means we're
1729 		 * removing the last extent record.
1730 		 */
1731 		*trunc_cpos = trunc_start;
1732 		/*
1733 		 * skip hole if any.
1734 		 */
1735 		if (range < *trunc_end)
1736 			*trunc_end = range;
1737 		*trunc_len = *trunc_end - trunc_start;
1738 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1739 		*blkno = le64_to_cpu(rec->e_blkno) +
1740 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1741 		*trunc_end = trunc_start;
1742 	} else {
1743 		/*
1744 		 * It may have two following possibilities:
1745 		 *
1746 		 * - last record has been removed
1747 		 * - trunc_start was within a hole
1748 		 *
1749 		 * both two cases mean the completion of hole punching.
1750 		 */
1751 		ret = 1;
1752 	}
1753 
1754 	*done = ret;
1755 }
1756 
1757 int ocfs2_remove_inode_range(struct inode *inode,
1758 			     struct buffer_head *di_bh, u64 byte_start,
1759 			     u64 byte_len)
1760 {
1761 	int ret = 0, flags = 0, done = 0, i;
1762 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1763 	u32 cluster_in_el;
1764 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1765 	struct ocfs2_cached_dealloc_ctxt dealloc;
1766 	struct address_space *mapping = inode->i_mapping;
1767 	struct ocfs2_extent_tree et;
1768 	struct ocfs2_path *path = NULL;
1769 	struct ocfs2_extent_list *el = NULL;
1770 	struct ocfs2_extent_rec *rec = NULL;
1771 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1772 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1773 
1774 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1775 	ocfs2_init_dealloc_ctxt(&dealloc);
1776 
1777 	trace_ocfs2_remove_inode_range(
1778 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1779 			(unsigned long long)byte_start,
1780 			(unsigned long long)byte_len);
1781 
1782 	if (byte_len == 0)
1783 		return 0;
1784 
1785 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1786 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1787 					    byte_start + byte_len, 0);
1788 		if (ret) {
1789 			mlog_errno(ret);
1790 			goto out;
1791 		}
1792 		/*
1793 		 * There's no need to get fancy with the page cache
1794 		 * truncate of an inline-data inode. We're talking
1795 		 * about less than a page here, which will be cached
1796 		 * in the dinode buffer anyway.
1797 		 */
1798 		unmap_mapping_range(mapping, 0, 0, 0);
1799 		truncate_inode_pages(mapping, 0);
1800 		goto out;
1801 	}
1802 
1803 	/*
1804 	 * For reflinks, we may need to CoW 2 clusters which might be
1805 	 * partially zero'd later, if hole's start and end offset were
1806 	 * within one cluster(means is not exactly aligned to clustersize).
1807 	 */
1808 
1809 	if (ocfs2_is_refcount_inode(inode)) {
1810 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1811 		if (ret) {
1812 			mlog_errno(ret);
1813 			goto out;
1814 		}
1815 
1816 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1817 		if (ret) {
1818 			mlog_errno(ret);
1819 			goto out;
1820 		}
1821 	}
1822 
1823 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1824 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1825 	cluster_in_el = trunc_end;
1826 
1827 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1828 	if (ret) {
1829 		mlog_errno(ret);
1830 		goto out;
1831 	}
1832 
1833 	path = ocfs2_new_path_from_et(&et);
1834 	if (!path) {
1835 		ret = -ENOMEM;
1836 		mlog_errno(ret);
1837 		goto out;
1838 	}
1839 
1840 	while (trunc_end > trunc_start) {
1841 
1842 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1843 				      cluster_in_el);
1844 		if (ret) {
1845 			mlog_errno(ret);
1846 			goto out;
1847 		}
1848 
1849 		el = path_leaf_el(path);
1850 
1851 		i = ocfs2_find_rec(el, trunc_end);
1852 		/*
1853 		 * Need to go to previous extent block.
1854 		 */
1855 		if (i < 0) {
1856 			if (path->p_tree_depth == 0)
1857 				break;
1858 
1859 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1860 							    path,
1861 							    &cluster_in_el);
1862 			if (ret) {
1863 				mlog_errno(ret);
1864 				goto out;
1865 			}
1866 
1867 			/*
1868 			 * We've reached the leftmost extent block,
1869 			 * it's safe to leave.
1870 			 */
1871 			if (cluster_in_el == 0)
1872 				break;
1873 
1874 			/*
1875 			 * The 'pos' searched for previous extent block is
1876 			 * always one cluster less than actual trunc_end.
1877 			 */
1878 			trunc_end = cluster_in_el + 1;
1879 
1880 			ocfs2_reinit_path(path, 1);
1881 
1882 			continue;
1883 
1884 		} else
1885 			rec = &el->l_recs[i];
1886 
1887 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1888 				     &trunc_len, &trunc_end, &blkno, &done);
1889 		if (done)
1890 			break;
1891 
1892 		flags = rec->e_flags;
1893 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1894 
1895 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1896 					       phys_cpos, trunc_len, flags,
1897 					       &dealloc, refcount_loc, false);
1898 		if (ret < 0) {
1899 			mlog_errno(ret);
1900 			goto out;
1901 		}
1902 
1903 		cluster_in_el = trunc_end;
1904 
1905 		ocfs2_reinit_path(path, 1);
1906 	}
1907 
1908 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1909 
1910 out:
1911 	ocfs2_free_path(path);
1912 	ocfs2_schedule_truncate_log_flush(osb, 1);
1913 	ocfs2_run_deallocs(osb, &dealloc);
1914 
1915 	return ret;
1916 }
1917 
1918 /*
1919  * Parts of this function taken from xfs_change_file_space()
1920  */
1921 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1922 				     loff_t f_pos, unsigned int cmd,
1923 				     struct ocfs2_space_resv *sr,
1924 				     int change_size)
1925 {
1926 	int ret;
1927 	s64 llen;
1928 	loff_t size, orig_isize;
1929 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1930 	struct buffer_head *di_bh = NULL;
1931 	handle_t *handle;
1932 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1933 
1934 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1935 		return -EROFS;
1936 
1937 	inode_lock(inode);
1938 
1939 	/*
1940 	 * This prevents concurrent writes on other nodes
1941 	 */
1942 	ret = ocfs2_rw_lock(inode, 1);
1943 	if (ret) {
1944 		mlog_errno(ret);
1945 		goto out;
1946 	}
1947 
1948 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1949 	if (ret) {
1950 		mlog_errno(ret);
1951 		goto out_rw_unlock;
1952 	}
1953 
1954 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1955 		ret = -EPERM;
1956 		goto out_inode_unlock;
1957 	}
1958 
1959 	switch (sr->l_whence) {
1960 	case 0: /*SEEK_SET*/
1961 		break;
1962 	case 1: /*SEEK_CUR*/
1963 		sr->l_start += f_pos;
1964 		break;
1965 	case 2: /*SEEK_END*/
1966 		sr->l_start += i_size_read(inode);
1967 		break;
1968 	default:
1969 		ret = -EINVAL;
1970 		goto out_inode_unlock;
1971 	}
1972 	sr->l_whence = 0;
1973 
1974 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1975 
1976 	if (sr->l_start < 0
1977 	    || sr->l_start > max_off
1978 	    || (sr->l_start + llen) < 0
1979 	    || (sr->l_start + llen) > max_off) {
1980 		ret = -EINVAL;
1981 		goto out_inode_unlock;
1982 	}
1983 	size = sr->l_start + sr->l_len;
1984 
1985 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1986 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1987 		if (sr->l_len <= 0) {
1988 			ret = -EINVAL;
1989 			goto out_inode_unlock;
1990 		}
1991 	}
1992 
1993 	if (file && should_remove_suid(file->f_path.dentry)) {
1994 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1995 		if (ret) {
1996 			mlog_errno(ret);
1997 			goto out_inode_unlock;
1998 		}
1999 	}
2000 
2001 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2002 	switch (cmd) {
2003 	case OCFS2_IOC_RESVSP:
2004 	case OCFS2_IOC_RESVSP64:
2005 		/*
2006 		 * This takes unsigned offsets, but the signed ones we
2007 		 * pass have been checked against overflow above.
2008 		 */
2009 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2010 						       sr->l_len);
2011 		break;
2012 	case OCFS2_IOC_UNRESVSP:
2013 	case OCFS2_IOC_UNRESVSP64:
2014 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2015 					       sr->l_len);
2016 		break;
2017 	default:
2018 		ret = -EINVAL;
2019 	}
2020 
2021 	orig_isize = i_size_read(inode);
2022 	/* zeroout eof blocks in the cluster. */
2023 	if (!ret && change_size && orig_isize < size) {
2024 		ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2025 					size - orig_isize);
2026 		if (!ret)
2027 			i_size_write(inode, size);
2028 	}
2029 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2030 	if (ret) {
2031 		mlog_errno(ret);
2032 		goto out_inode_unlock;
2033 	}
2034 
2035 	/*
2036 	 * We update c/mtime for these changes
2037 	 */
2038 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2039 	if (IS_ERR(handle)) {
2040 		ret = PTR_ERR(handle);
2041 		mlog_errno(ret);
2042 		goto out_inode_unlock;
2043 	}
2044 
2045 	inode->i_ctime = inode->i_mtime = current_time(inode);
2046 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2047 	if (ret < 0)
2048 		mlog_errno(ret);
2049 
2050 	if (file && (file->f_flags & O_SYNC))
2051 		handle->h_sync = 1;
2052 
2053 	ocfs2_commit_trans(osb, handle);
2054 
2055 out_inode_unlock:
2056 	brelse(di_bh);
2057 	ocfs2_inode_unlock(inode, 1);
2058 out_rw_unlock:
2059 	ocfs2_rw_unlock(inode, 1);
2060 
2061 out:
2062 	inode_unlock(inode);
2063 	return ret;
2064 }
2065 
2066 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2067 			    struct ocfs2_space_resv *sr)
2068 {
2069 	struct inode *inode = file_inode(file);
2070 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2071 	int ret;
2072 
2073 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2074 	    !ocfs2_writes_unwritten_extents(osb))
2075 		return -ENOTTY;
2076 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2077 		 !ocfs2_sparse_alloc(osb))
2078 		return -ENOTTY;
2079 
2080 	if (!S_ISREG(inode->i_mode))
2081 		return -EINVAL;
2082 
2083 	if (!(file->f_mode & FMODE_WRITE))
2084 		return -EBADF;
2085 
2086 	ret = mnt_want_write_file(file);
2087 	if (ret)
2088 		return ret;
2089 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2090 	mnt_drop_write_file(file);
2091 	return ret;
2092 }
2093 
2094 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2095 			    loff_t len)
2096 {
2097 	struct inode *inode = file_inode(file);
2098 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2099 	struct ocfs2_space_resv sr;
2100 	int change_size = 1;
2101 	int cmd = OCFS2_IOC_RESVSP64;
2102 
2103 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2104 		return -EOPNOTSUPP;
2105 	if (!ocfs2_writes_unwritten_extents(osb))
2106 		return -EOPNOTSUPP;
2107 
2108 	if (mode & FALLOC_FL_KEEP_SIZE)
2109 		change_size = 0;
2110 
2111 	if (mode & FALLOC_FL_PUNCH_HOLE)
2112 		cmd = OCFS2_IOC_UNRESVSP64;
2113 
2114 	sr.l_whence = 0;
2115 	sr.l_start = (s64)offset;
2116 	sr.l_len = (s64)len;
2117 
2118 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2119 					 change_size);
2120 }
2121 
2122 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2123 				   size_t count)
2124 {
2125 	int ret = 0;
2126 	unsigned int extent_flags;
2127 	u32 cpos, clusters, extent_len, phys_cpos;
2128 	struct super_block *sb = inode->i_sb;
2129 
2130 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2131 	    !ocfs2_is_refcount_inode(inode) ||
2132 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2133 		return 0;
2134 
2135 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2136 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2137 
2138 	while (clusters) {
2139 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2140 					 &extent_flags);
2141 		if (ret < 0) {
2142 			mlog_errno(ret);
2143 			goto out;
2144 		}
2145 
2146 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2147 			ret = 1;
2148 			break;
2149 		}
2150 
2151 		if (extent_len > clusters)
2152 			extent_len = clusters;
2153 
2154 		clusters -= extent_len;
2155 		cpos += extent_len;
2156 	}
2157 out:
2158 	return ret;
2159 }
2160 
2161 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2162 {
2163 	int blockmask = inode->i_sb->s_blocksize - 1;
2164 	loff_t final_size = pos + count;
2165 
2166 	if ((pos & blockmask) || (final_size & blockmask))
2167 		return 1;
2168 	return 0;
2169 }
2170 
2171 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2172 					    struct buffer_head **di_bh,
2173 					    int meta_level,
2174 					    int write_sem,
2175 					    int wait)
2176 {
2177 	int ret = 0;
2178 
2179 	if (wait)
2180 		ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2181 	else
2182 		ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2183 	if (ret < 0)
2184 		goto out;
2185 
2186 	if (wait) {
2187 		if (write_sem)
2188 			down_write(&OCFS2_I(inode)->ip_alloc_sem);
2189 		else
2190 			down_read(&OCFS2_I(inode)->ip_alloc_sem);
2191 	} else {
2192 		if (write_sem)
2193 			ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2194 		else
2195 			ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2196 
2197 		if (!ret) {
2198 			ret = -EAGAIN;
2199 			goto out_unlock;
2200 		}
2201 	}
2202 
2203 	return ret;
2204 
2205 out_unlock:
2206 	brelse(*di_bh);
2207 	*di_bh = NULL;
2208 	ocfs2_inode_unlock(inode, meta_level);
2209 out:
2210 	return ret;
2211 }
2212 
2213 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2214 					       struct buffer_head **di_bh,
2215 					       int meta_level,
2216 					       int write_sem)
2217 {
2218 	if (write_sem)
2219 		up_write(&OCFS2_I(inode)->ip_alloc_sem);
2220 	else
2221 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
2222 
2223 	brelse(*di_bh);
2224 	*di_bh = NULL;
2225 
2226 	if (meta_level >= 0)
2227 		ocfs2_inode_unlock(inode, meta_level);
2228 }
2229 
2230 static int ocfs2_prepare_inode_for_write(struct file *file,
2231 					 loff_t pos, size_t count, int wait)
2232 {
2233 	int ret = 0, meta_level = 0, overwrite_io = 0;
2234 	int write_sem = 0;
2235 	struct dentry *dentry = file->f_path.dentry;
2236 	struct inode *inode = d_inode(dentry);
2237 	struct buffer_head *di_bh = NULL;
2238 	u32 cpos;
2239 	u32 clusters;
2240 
2241 	/*
2242 	 * We start with a read level meta lock and only jump to an ex
2243 	 * if we need to make modifications here.
2244 	 */
2245 	for(;;) {
2246 		ret = ocfs2_inode_lock_for_extent_tree(inode,
2247 						       &di_bh,
2248 						       meta_level,
2249 						       write_sem,
2250 						       wait);
2251 		if (ret < 0) {
2252 			if (ret != -EAGAIN)
2253 				mlog_errno(ret);
2254 			goto out;
2255 		}
2256 
2257 		/*
2258 		 * Check if IO will overwrite allocated blocks in case
2259 		 * IOCB_NOWAIT flag is set.
2260 		 */
2261 		if (!wait && !overwrite_io) {
2262 			overwrite_io = 1;
2263 
2264 			ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2265 			if (ret < 0) {
2266 				if (ret != -EAGAIN)
2267 					mlog_errno(ret);
2268 				goto out_unlock;
2269 			}
2270 		}
2271 
2272 		/* Clear suid / sgid if necessary. We do this here
2273 		 * instead of later in the write path because
2274 		 * remove_suid() calls ->setattr without any hint that
2275 		 * we may have already done our cluster locking. Since
2276 		 * ocfs2_setattr() *must* take cluster locks to
2277 		 * proceed, this will lead us to recursively lock the
2278 		 * inode. There's also the dinode i_size state which
2279 		 * can be lost via setattr during extending writes (we
2280 		 * set inode->i_size at the end of a write. */
2281 		if (should_remove_suid(dentry)) {
2282 			if (meta_level == 0) {
2283 				ocfs2_inode_unlock_for_extent_tree(inode,
2284 								   &di_bh,
2285 								   meta_level,
2286 								   write_sem);
2287 				meta_level = 1;
2288 				continue;
2289 			}
2290 
2291 			ret = ocfs2_write_remove_suid(inode);
2292 			if (ret < 0) {
2293 				mlog_errno(ret);
2294 				goto out_unlock;
2295 			}
2296 		}
2297 
2298 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2299 		if (ret == 1) {
2300 			ocfs2_inode_unlock_for_extent_tree(inode,
2301 							   &di_bh,
2302 							   meta_level,
2303 							   write_sem);
2304 			meta_level = 1;
2305 			write_sem = 1;
2306 			ret = ocfs2_inode_lock_for_extent_tree(inode,
2307 							       &di_bh,
2308 							       meta_level,
2309 							       write_sem,
2310 							       wait);
2311 			if (ret < 0) {
2312 				if (ret != -EAGAIN)
2313 					mlog_errno(ret);
2314 				goto out;
2315 			}
2316 
2317 			cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2318 			clusters =
2319 				ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2320 			ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2321 		}
2322 
2323 		if (ret < 0) {
2324 			if (ret != -EAGAIN)
2325 				mlog_errno(ret);
2326 			goto out_unlock;
2327 		}
2328 
2329 		break;
2330 	}
2331 
2332 out_unlock:
2333 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2334 					    pos, count, wait);
2335 
2336 	ocfs2_inode_unlock_for_extent_tree(inode,
2337 					   &di_bh,
2338 					   meta_level,
2339 					   write_sem);
2340 
2341 out:
2342 	return ret;
2343 }
2344 
2345 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2346 				    struct iov_iter *from)
2347 {
2348 	int rw_level;
2349 	ssize_t written = 0;
2350 	ssize_t ret;
2351 	size_t count = iov_iter_count(from);
2352 	struct file *file = iocb->ki_filp;
2353 	struct inode *inode = file_inode(file);
2354 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2355 	int full_coherency = !(osb->s_mount_opt &
2356 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2357 	void *saved_ki_complete = NULL;
2358 	int append_write = ((iocb->ki_pos + count) >=
2359 			i_size_read(inode) ? 1 : 0);
2360 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2361 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2362 
2363 	trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2364 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2365 		file->f_path.dentry->d_name.len,
2366 		file->f_path.dentry->d_name.name,
2367 		(unsigned int)from->nr_segs);	/* GRRRRR */
2368 
2369 	if (!direct_io && nowait)
2370 		return -EOPNOTSUPP;
2371 
2372 	if (count == 0)
2373 		return 0;
2374 
2375 	if (nowait) {
2376 		if (!inode_trylock(inode))
2377 			return -EAGAIN;
2378 	} else
2379 		inode_lock(inode);
2380 
2381 	/*
2382 	 * Concurrent O_DIRECT writes are allowed with
2383 	 * mount_option "coherency=buffered".
2384 	 * For append write, we must take rw EX.
2385 	 */
2386 	rw_level = (!direct_io || full_coherency || append_write);
2387 
2388 	if (nowait)
2389 		ret = ocfs2_try_rw_lock(inode, rw_level);
2390 	else
2391 		ret = ocfs2_rw_lock(inode, rw_level);
2392 	if (ret < 0) {
2393 		if (ret != -EAGAIN)
2394 			mlog_errno(ret);
2395 		goto out_mutex;
2396 	}
2397 
2398 	/*
2399 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2400 	 * inode_lock to guarantee coherency.
2401 	 */
2402 	if (direct_io && full_coherency) {
2403 		/*
2404 		 * We need to take and drop the inode lock to force
2405 		 * other nodes to drop their caches.  Buffered I/O
2406 		 * already does this in write_begin().
2407 		 */
2408 		if (nowait)
2409 			ret = ocfs2_try_inode_lock(inode, NULL, 1);
2410 		else
2411 			ret = ocfs2_inode_lock(inode, NULL, 1);
2412 		if (ret < 0) {
2413 			if (ret != -EAGAIN)
2414 				mlog_errno(ret);
2415 			goto out;
2416 		}
2417 
2418 		ocfs2_inode_unlock(inode, 1);
2419 	}
2420 
2421 	ret = generic_write_checks(iocb, from);
2422 	if (ret <= 0) {
2423 		if (ret)
2424 			mlog_errno(ret);
2425 		goto out;
2426 	}
2427 	count = ret;
2428 
2429 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2430 	if (ret < 0) {
2431 		if (ret != -EAGAIN)
2432 			mlog_errno(ret);
2433 		goto out;
2434 	}
2435 
2436 	if (direct_io && !is_sync_kiocb(iocb) &&
2437 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2438 		/*
2439 		 * Make it a sync io if it's an unaligned aio.
2440 		 */
2441 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2442 	}
2443 
2444 	/* communicate with ocfs2_dio_end_io */
2445 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2446 
2447 	written = __generic_file_write_iter(iocb, from);
2448 	/* buffered aio wouldn't have proper lock coverage today */
2449 	BUG_ON(written == -EIOCBQUEUED && !direct_io);
2450 
2451 	/*
2452 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2453 	 * function pointer which is called when o_direct io completes so that
2454 	 * it can unlock our rw lock.
2455 	 * Unfortunately there are error cases which call end_io and others
2456 	 * that don't.  so we don't have to unlock the rw_lock if either an
2457 	 * async dio is going to do it in the future or an end_io after an
2458 	 * error has already done it.
2459 	 */
2460 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2461 		rw_level = -1;
2462 	}
2463 
2464 	if (unlikely(written <= 0))
2465 		goto out;
2466 
2467 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2468 	    IS_SYNC(inode)) {
2469 		ret = filemap_fdatawrite_range(file->f_mapping,
2470 					       iocb->ki_pos - written,
2471 					       iocb->ki_pos - 1);
2472 		if (ret < 0)
2473 			written = ret;
2474 
2475 		if (!ret) {
2476 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2477 			if (ret < 0)
2478 				written = ret;
2479 		}
2480 
2481 		if (!ret)
2482 			ret = filemap_fdatawait_range(file->f_mapping,
2483 						      iocb->ki_pos - written,
2484 						      iocb->ki_pos - 1);
2485 	}
2486 
2487 out:
2488 	if (saved_ki_complete)
2489 		xchg(&iocb->ki_complete, saved_ki_complete);
2490 
2491 	if (rw_level != -1)
2492 		ocfs2_rw_unlock(inode, rw_level);
2493 
2494 out_mutex:
2495 	inode_unlock(inode);
2496 
2497 	if (written)
2498 		ret = written;
2499 	return ret;
2500 }
2501 
2502 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2503 				   struct iov_iter *to)
2504 {
2505 	int ret = 0, rw_level = -1, lock_level = 0;
2506 	struct file *filp = iocb->ki_filp;
2507 	struct inode *inode = file_inode(filp);
2508 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2509 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2510 
2511 	trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2512 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2513 			filp->f_path.dentry->d_name.len,
2514 			filp->f_path.dentry->d_name.name,
2515 			to->nr_segs);	/* GRRRRR */
2516 
2517 
2518 	if (!inode) {
2519 		ret = -EINVAL;
2520 		mlog_errno(ret);
2521 		goto bail;
2522 	}
2523 
2524 	if (!direct_io && nowait)
2525 		return -EOPNOTSUPP;
2526 
2527 	/*
2528 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2529 	 * need locks to protect pending reads from racing with truncate.
2530 	 */
2531 	if (direct_io) {
2532 		if (nowait)
2533 			ret = ocfs2_try_rw_lock(inode, 0);
2534 		else
2535 			ret = ocfs2_rw_lock(inode, 0);
2536 
2537 		if (ret < 0) {
2538 			if (ret != -EAGAIN)
2539 				mlog_errno(ret);
2540 			goto bail;
2541 		}
2542 		rw_level = 0;
2543 		/* communicate with ocfs2_dio_end_io */
2544 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2545 	}
2546 
2547 	/*
2548 	 * We're fine letting folks race truncates and extending
2549 	 * writes with read across the cluster, just like they can
2550 	 * locally. Hence no rw_lock during read.
2551 	 *
2552 	 * Take and drop the meta data lock to update inode fields
2553 	 * like i_size. This allows the checks down below
2554 	 * generic_file_read_iter() a chance of actually working.
2555 	 */
2556 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2557 				     !nowait);
2558 	if (ret < 0) {
2559 		if (ret != -EAGAIN)
2560 			mlog_errno(ret);
2561 		goto bail;
2562 	}
2563 	ocfs2_inode_unlock(inode, lock_level);
2564 
2565 	ret = generic_file_read_iter(iocb, to);
2566 	trace_generic_file_read_iter_ret(ret);
2567 
2568 	/* buffered aio wouldn't have proper lock coverage today */
2569 	BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2570 
2571 	/* see ocfs2_file_write_iter */
2572 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2573 		rw_level = -1;
2574 	}
2575 
2576 bail:
2577 	if (rw_level != -1)
2578 		ocfs2_rw_unlock(inode, rw_level);
2579 
2580 	return ret;
2581 }
2582 
2583 /* Refer generic_file_llseek_unlocked() */
2584 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2585 {
2586 	struct inode *inode = file->f_mapping->host;
2587 	int ret = 0;
2588 
2589 	inode_lock(inode);
2590 
2591 	switch (whence) {
2592 	case SEEK_SET:
2593 		break;
2594 	case SEEK_END:
2595 		/* SEEK_END requires the OCFS2 inode lock for the file
2596 		 * because it references the file's size.
2597 		 */
2598 		ret = ocfs2_inode_lock(inode, NULL, 0);
2599 		if (ret < 0) {
2600 			mlog_errno(ret);
2601 			goto out;
2602 		}
2603 		offset += i_size_read(inode);
2604 		ocfs2_inode_unlock(inode, 0);
2605 		break;
2606 	case SEEK_CUR:
2607 		if (offset == 0) {
2608 			offset = file->f_pos;
2609 			goto out;
2610 		}
2611 		offset += file->f_pos;
2612 		break;
2613 	case SEEK_DATA:
2614 	case SEEK_HOLE:
2615 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2616 		if (ret)
2617 			goto out;
2618 		break;
2619 	default:
2620 		ret = -EINVAL;
2621 		goto out;
2622 	}
2623 
2624 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2625 
2626 out:
2627 	inode_unlock(inode);
2628 	if (ret)
2629 		return ret;
2630 	return offset;
2631 }
2632 
2633 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2634 				     struct file *file_out, loff_t pos_out,
2635 				     loff_t len, unsigned int remap_flags)
2636 {
2637 	struct inode *inode_in = file_inode(file_in);
2638 	struct inode *inode_out = file_inode(file_out);
2639 	struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2640 	struct buffer_head *in_bh = NULL, *out_bh = NULL;
2641 	bool same_inode = (inode_in == inode_out);
2642 	loff_t remapped = 0;
2643 	ssize_t ret;
2644 
2645 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2646 		return -EINVAL;
2647 	if (!ocfs2_refcount_tree(osb))
2648 		return -EOPNOTSUPP;
2649 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2650 		return -EROFS;
2651 
2652 	/* Lock both files against IO */
2653 	ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2654 	if (ret)
2655 		return ret;
2656 
2657 	/* Check file eligibility and prepare for block sharing. */
2658 	ret = -EINVAL;
2659 	if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2660 	    (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2661 		goto out_unlock;
2662 
2663 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2664 			&len, remap_flags);
2665 	if (ret < 0 || len == 0)
2666 		goto out_unlock;
2667 
2668 	/* Lock out changes to the allocation maps and remap. */
2669 	down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2670 	if (!same_inode)
2671 		down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2672 				  SINGLE_DEPTH_NESTING);
2673 
2674 	/* Zap any page cache for the destination file's range. */
2675 	truncate_inode_pages_range(&inode_out->i_data,
2676 				   round_down(pos_out, PAGE_SIZE),
2677 				   round_up(pos_out + len, PAGE_SIZE) - 1);
2678 
2679 	remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2680 			inode_out, out_bh, pos_out, len);
2681 	up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2682 	if (!same_inode)
2683 		up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2684 	if (remapped < 0) {
2685 		ret = remapped;
2686 		mlog_errno(ret);
2687 		goto out_unlock;
2688 	}
2689 
2690 	/*
2691 	 * Empty the extent map so that we may get the right extent
2692 	 * record from the disk.
2693 	 */
2694 	ocfs2_extent_map_trunc(inode_in, 0);
2695 	ocfs2_extent_map_trunc(inode_out, 0);
2696 
2697 	ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2698 	if (ret) {
2699 		mlog_errno(ret);
2700 		goto out_unlock;
2701 	}
2702 
2703 out_unlock:
2704 	ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2705 	return remapped > 0 ? remapped : ret;
2706 }
2707 
2708 const struct inode_operations ocfs2_file_iops = {
2709 	.setattr	= ocfs2_setattr,
2710 	.getattr	= ocfs2_getattr,
2711 	.permission	= ocfs2_permission,
2712 	.listxattr	= ocfs2_listxattr,
2713 	.fiemap		= ocfs2_fiemap,
2714 	.get_acl	= ocfs2_iop_get_acl,
2715 	.set_acl	= ocfs2_iop_set_acl,
2716 	.fileattr_get	= ocfs2_fileattr_get,
2717 	.fileattr_set	= ocfs2_fileattr_set,
2718 };
2719 
2720 const struct inode_operations ocfs2_special_file_iops = {
2721 	.setattr	= ocfs2_setattr,
2722 	.getattr	= ocfs2_getattr,
2723 	.permission	= ocfs2_permission,
2724 	.get_acl	= ocfs2_iop_get_acl,
2725 	.set_acl	= ocfs2_iop_set_acl,
2726 };
2727 
2728 /*
2729  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2730  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2731  */
2732 const struct file_operations ocfs2_fops = {
2733 	.llseek		= ocfs2_file_llseek,
2734 	.mmap		= ocfs2_mmap,
2735 	.fsync		= ocfs2_sync_file,
2736 	.release	= ocfs2_file_release,
2737 	.open		= ocfs2_file_open,
2738 	.read_iter	= ocfs2_file_read_iter,
2739 	.write_iter	= ocfs2_file_write_iter,
2740 	.unlocked_ioctl	= ocfs2_ioctl,
2741 #ifdef CONFIG_COMPAT
2742 	.compat_ioctl   = ocfs2_compat_ioctl,
2743 #endif
2744 	.lock		= ocfs2_lock,
2745 	.flock		= ocfs2_flock,
2746 	.splice_read	= generic_file_splice_read,
2747 	.splice_write	= iter_file_splice_write,
2748 	.fallocate	= ocfs2_fallocate,
2749 	.remap_file_range = ocfs2_remap_file_range,
2750 };
2751 
2752 const struct file_operations ocfs2_dops = {
2753 	.llseek		= generic_file_llseek,
2754 	.read		= generic_read_dir,
2755 	.iterate	= ocfs2_readdir,
2756 	.fsync		= ocfs2_sync_file,
2757 	.release	= ocfs2_dir_release,
2758 	.open		= ocfs2_dir_open,
2759 	.unlocked_ioctl	= ocfs2_ioctl,
2760 #ifdef CONFIG_COMPAT
2761 	.compat_ioctl   = ocfs2_compat_ioctl,
2762 #endif
2763 	.lock		= ocfs2_lock,
2764 	.flock		= ocfs2_flock,
2765 };
2766 
2767 /*
2768  * POSIX-lockless variants of our file_operations.
2769  *
2770  * These will be used if the underlying cluster stack does not support
2771  * posix file locking, if the user passes the "localflocks" mount
2772  * option, or if we have a local-only fs.
2773  *
2774  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2775  * so we still want it in the case of no stack support for
2776  * plocks. Internally, it will do the right thing when asked to ignore
2777  * the cluster.
2778  */
2779 const struct file_operations ocfs2_fops_no_plocks = {
2780 	.llseek		= ocfs2_file_llseek,
2781 	.mmap		= ocfs2_mmap,
2782 	.fsync		= ocfs2_sync_file,
2783 	.release	= ocfs2_file_release,
2784 	.open		= ocfs2_file_open,
2785 	.read_iter	= ocfs2_file_read_iter,
2786 	.write_iter	= ocfs2_file_write_iter,
2787 	.unlocked_ioctl	= ocfs2_ioctl,
2788 #ifdef CONFIG_COMPAT
2789 	.compat_ioctl   = ocfs2_compat_ioctl,
2790 #endif
2791 	.flock		= ocfs2_flock,
2792 	.splice_read	= generic_file_splice_read,
2793 	.splice_write	= iter_file_splice_write,
2794 	.fallocate	= ocfs2_fallocate,
2795 	.remap_file_range = ocfs2_remap_file_range,
2796 };
2797 
2798 const struct file_operations ocfs2_dops_no_plocks = {
2799 	.llseek		= generic_file_llseek,
2800 	.read		= generic_read_dir,
2801 	.iterate	= ocfs2_readdir,
2802 	.fsync		= ocfs2_sync_file,
2803 	.release	= ocfs2_dir_release,
2804 	.open		= ocfs2_dir_open,
2805 	.unlocked_ioctl	= ocfs2_ioctl,
2806 #ifdef CONFIG_COMPAT
2807 	.compat_ioctl   = ocfs2_compat_ioctl,
2808 #endif
2809 	.flock		= ocfs2_flock,
2810 };
2811