xref: /openbmc/linux/fs/ocfs2/file.c (revision e53134fe)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 #include <linux/backing-dev.h>
41 
42 #include <cluster/masklog.h>
43 
44 #include "ocfs2.h"
45 
46 #include "alloc.h"
47 #include "aops.h"
48 #include "dir.h"
49 #include "dlmglue.h"
50 #include "extent_map.h"
51 #include "file.h"
52 #include "sysfile.h"
53 #include "inode.h"
54 #include "ioctl.h"
55 #include "journal.h"
56 #include "locks.h"
57 #include "mmap.h"
58 #include "suballoc.h"
59 #include "super.h"
60 #include "xattr.h"
61 #include "acl.h"
62 #include "quota.h"
63 #include "refcounttree.h"
64 #include "ocfs2_trace.h"
65 
66 #include "buffer_head_io.h"
67 
68 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
69 {
70 	struct ocfs2_file_private *fp;
71 
72 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
73 	if (!fp)
74 		return -ENOMEM;
75 
76 	fp->fp_file = file;
77 	mutex_init(&fp->fp_mutex);
78 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
79 	file->private_data = fp;
80 
81 	return 0;
82 }
83 
84 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
85 {
86 	struct ocfs2_file_private *fp = file->private_data;
87 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
88 
89 	if (fp) {
90 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
91 		ocfs2_lock_res_free(&fp->fp_flock);
92 		kfree(fp);
93 		file->private_data = NULL;
94 	}
95 }
96 
97 static int ocfs2_file_open(struct inode *inode, struct file *file)
98 {
99 	int status;
100 	int mode = file->f_flags;
101 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
102 
103 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
104 			      (unsigned long long)oi->ip_blkno,
105 			      file->f_path.dentry->d_name.len,
106 			      file->f_path.dentry->d_name.name, mode);
107 
108 	if (file->f_mode & FMODE_WRITE) {
109 		status = dquot_initialize(inode);
110 		if (status)
111 			goto leave;
112 	}
113 
114 	spin_lock(&oi->ip_lock);
115 
116 	/* Check that the inode hasn't been wiped from disk by another
117 	 * node. If it hasn't then we're safe as long as we hold the
118 	 * spin lock until our increment of open count. */
119 	if (oi->ip_flags & OCFS2_INODE_DELETED) {
120 		spin_unlock(&oi->ip_lock);
121 
122 		status = -ENOENT;
123 		goto leave;
124 	}
125 
126 	if (mode & O_DIRECT)
127 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
128 
129 	oi->ip_open_count++;
130 	spin_unlock(&oi->ip_lock);
131 
132 	status = ocfs2_init_file_private(inode, file);
133 	if (status) {
134 		/*
135 		 * We want to set open count back if we're failing the
136 		 * open.
137 		 */
138 		spin_lock(&oi->ip_lock);
139 		oi->ip_open_count--;
140 		spin_unlock(&oi->ip_lock);
141 	}
142 
143 	file->f_mode |= FMODE_NOWAIT;
144 
145 leave:
146 	return status;
147 }
148 
149 static int ocfs2_file_release(struct inode *inode, struct file *file)
150 {
151 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
152 
153 	spin_lock(&oi->ip_lock);
154 	if (!--oi->ip_open_count)
155 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
156 
157 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
158 				 oi->ip_blkno,
159 				 file->f_path.dentry->d_name.len,
160 				 file->f_path.dentry->d_name.name,
161 				 oi->ip_open_count);
162 	spin_unlock(&oi->ip_lock);
163 
164 	ocfs2_free_file_private(inode, file);
165 
166 	return 0;
167 }
168 
169 static int ocfs2_dir_open(struct inode *inode, struct file *file)
170 {
171 	return ocfs2_init_file_private(inode, file);
172 }
173 
174 static int ocfs2_dir_release(struct inode *inode, struct file *file)
175 {
176 	ocfs2_free_file_private(inode, file);
177 	return 0;
178 }
179 
180 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
181 			   int datasync)
182 {
183 	int err = 0;
184 	struct inode *inode = file->f_mapping->host;
185 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
186 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
187 	journal_t *journal = osb->journal->j_journal;
188 	int ret;
189 	tid_t commit_tid;
190 	bool needs_barrier = false;
191 
192 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
193 			      oi->ip_blkno,
194 			      file->f_path.dentry->d_name.len,
195 			      file->f_path.dentry->d_name.name,
196 			      (unsigned long long)datasync);
197 
198 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
199 		return -EROFS;
200 
201 	err = file_write_and_wait_range(file, start, end);
202 	if (err)
203 		return err;
204 
205 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
206 	if (journal->j_flags & JBD2_BARRIER &&
207 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
208 		needs_barrier = true;
209 	err = jbd2_complete_transaction(journal, commit_tid);
210 	if (needs_barrier) {
211 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
212 		if (!err)
213 			err = ret;
214 	}
215 
216 	if (err)
217 		mlog_errno(err);
218 
219 	return (err < 0) ? -EIO : 0;
220 }
221 
222 int ocfs2_should_update_atime(struct inode *inode,
223 			      struct vfsmount *vfsmnt)
224 {
225 	struct timespec64 now;
226 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
227 
228 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
229 		return 0;
230 
231 	if ((inode->i_flags & S_NOATIME) ||
232 	    ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
233 		return 0;
234 
235 	/*
236 	 * We can be called with no vfsmnt structure - NFSD will
237 	 * sometimes do this.
238 	 *
239 	 * Note that our action here is different than touch_atime() -
240 	 * if we can't tell whether this is a noatime mount, then we
241 	 * don't know whether to trust the value of s_atime_quantum.
242 	 */
243 	if (vfsmnt == NULL)
244 		return 0;
245 
246 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
247 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
248 		return 0;
249 
250 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
251 		if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
252 		    (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
253 			return 1;
254 
255 		return 0;
256 	}
257 
258 	now = current_time(inode);
259 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
260 		return 0;
261 	else
262 		return 1;
263 }
264 
265 int ocfs2_update_inode_atime(struct inode *inode,
266 			     struct buffer_head *bh)
267 {
268 	int ret;
269 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
270 	handle_t *handle;
271 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
272 
273 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
274 	if (IS_ERR(handle)) {
275 		ret = PTR_ERR(handle);
276 		mlog_errno(ret);
277 		goto out;
278 	}
279 
280 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
281 				      OCFS2_JOURNAL_ACCESS_WRITE);
282 	if (ret) {
283 		mlog_errno(ret);
284 		goto out_commit;
285 	}
286 
287 	/*
288 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
289 	 * have i_mutex to guard against concurrent changes to other
290 	 * inode fields.
291 	 */
292 	inode->i_atime = current_time(inode);
293 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
294 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
295 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
296 	ocfs2_journal_dirty(handle, bh);
297 
298 out_commit:
299 	ocfs2_commit_trans(osb, handle);
300 out:
301 	return ret;
302 }
303 
304 int ocfs2_set_inode_size(handle_t *handle,
305 				struct inode *inode,
306 				struct buffer_head *fe_bh,
307 				u64 new_i_size)
308 {
309 	int status;
310 
311 	i_size_write(inode, new_i_size);
312 	inode->i_blocks = ocfs2_inode_sector_count(inode);
313 	inode->i_ctime = inode->i_mtime = current_time(inode);
314 
315 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
316 	if (status < 0) {
317 		mlog_errno(status);
318 		goto bail;
319 	}
320 
321 bail:
322 	return status;
323 }
324 
325 int ocfs2_simple_size_update(struct inode *inode,
326 			     struct buffer_head *di_bh,
327 			     u64 new_i_size)
328 {
329 	int ret;
330 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
331 	handle_t *handle = NULL;
332 
333 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
334 	if (IS_ERR(handle)) {
335 		ret = PTR_ERR(handle);
336 		mlog_errno(ret);
337 		goto out;
338 	}
339 
340 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
341 				   new_i_size);
342 	if (ret < 0)
343 		mlog_errno(ret);
344 
345 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
346 	ocfs2_commit_trans(osb, handle);
347 out:
348 	return ret;
349 }
350 
351 static int ocfs2_cow_file_pos(struct inode *inode,
352 			      struct buffer_head *fe_bh,
353 			      u64 offset)
354 {
355 	int status;
356 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
357 	unsigned int num_clusters = 0;
358 	unsigned int ext_flags = 0;
359 
360 	/*
361 	 * If the new offset is aligned to the range of the cluster, there is
362 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
363 	 * CoW either.
364 	 */
365 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
366 		return 0;
367 
368 	status = ocfs2_get_clusters(inode, cpos, &phys,
369 				    &num_clusters, &ext_flags);
370 	if (status) {
371 		mlog_errno(status);
372 		goto out;
373 	}
374 
375 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
376 		goto out;
377 
378 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
379 
380 out:
381 	return status;
382 }
383 
384 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
385 				     struct inode *inode,
386 				     struct buffer_head *fe_bh,
387 				     u64 new_i_size)
388 {
389 	int status;
390 	handle_t *handle;
391 	struct ocfs2_dinode *di;
392 	u64 cluster_bytes;
393 
394 	/*
395 	 * We need to CoW the cluster contains the offset if it is reflinked
396 	 * since we will call ocfs2_zero_range_for_truncate later which will
397 	 * write "0" from offset to the end of the cluster.
398 	 */
399 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
400 	if (status) {
401 		mlog_errno(status);
402 		return status;
403 	}
404 
405 	/* TODO: This needs to actually orphan the inode in this
406 	 * transaction. */
407 
408 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
409 	if (IS_ERR(handle)) {
410 		status = PTR_ERR(handle);
411 		mlog_errno(status);
412 		goto out;
413 	}
414 
415 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
416 					 OCFS2_JOURNAL_ACCESS_WRITE);
417 	if (status < 0) {
418 		mlog_errno(status);
419 		goto out_commit;
420 	}
421 
422 	/*
423 	 * Do this before setting i_size.
424 	 */
425 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
426 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
427 					       cluster_bytes);
428 	if (status) {
429 		mlog_errno(status);
430 		goto out_commit;
431 	}
432 
433 	i_size_write(inode, new_i_size);
434 	inode->i_ctime = inode->i_mtime = current_time(inode);
435 
436 	di = (struct ocfs2_dinode *) fe_bh->b_data;
437 	di->i_size = cpu_to_le64(new_i_size);
438 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
439 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
440 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
441 
442 	ocfs2_journal_dirty(handle, fe_bh);
443 
444 out_commit:
445 	ocfs2_commit_trans(osb, handle);
446 out:
447 	return status;
448 }
449 
450 int ocfs2_truncate_file(struct inode *inode,
451 			       struct buffer_head *di_bh,
452 			       u64 new_i_size)
453 {
454 	int status = 0;
455 	struct ocfs2_dinode *fe = NULL;
456 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
457 
458 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
459 	 * already validated it */
460 	fe = (struct ocfs2_dinode *) di_bh->b_data;
461 
462 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
463 				  (unsigned long long)le64_to_cpu(fe->i_size),
464 				  (unsigned long long)new_i_size);
465 
466 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
467 			"Inode %llu, inode i_size = %lld != di "
468 			"i_size = %llu, i_flags = 0x%x\n",
469 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
470 			i_size_read(inode),
471 			(unsigned long long)le64_to_cpu(fe->i_size),
472 			le32_to_cpu(fe->i_flags));
473 
474 	if (new_i_size > le64_to_cpu(fe->i_size)) {
475 		trace_ocfs2_truncate_file_error(
476 			(unsigned long long)le64_to_cpu(fe->i_size),
477 			(unsigned long long)new_i_size);
478 		status = -EINVAL;
479 		mlog_errno(status);
480 		goto bail;
481 	}
482 
483 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
484 
485 	ocfs2_resv_discard(&osb->osb_la_resmap,
486 			   &OCFS2_I(inode)->ip_la_data_resv);
487 
488 	/*
489 	 * The inode lock forced other nodes to sync and drop their
490 	 * pages, which (correctly) happens even if we have a truncate
491 	 * without allocation change - ocfs2 cluster sizes can be much
492 	 * greater than page size, so we have to truncate them
493 	 * anyway.
494 	 */
495 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
496 	truncate_inode_pages(inode->i_mapping, new_i_size);
497 
498 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
499 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
500 					       i_size_read(inode), 1);
501 		if (status)
502 			mlog_errno(status);
503 
504 		goto bail_unlock_sem;
505 	}
506 
507 	/* alright, we're going to need to do a full blown alloc size
508 	 * change. Orphan the inode so that recovery can complete the
509 	 * truncate if necessary. This does the task of marking
510 	 * i_size. */
511 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
512 	if (status < 0) {
513 		mlog_errno(status);
514 		goto bail_unlock_sem;
515 	}
516 
517 	status = ocfs2_commit_truncate(osb, inode, di_bh);
518 	if (status < 0) {
519 		mlog_errno(status);
520 		goto bail_unlock_sem;
521 	}
522 
523 	/* TODO: orphan dir cleanup here. */
524 bail_unlock_sem:
525 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
526 
527 bail:
528 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
529 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
530 
531 	return status;
532 }
533 
534 /*
535  * extend file allocation only here.
536  * we'll update all the disk stuff, and oip->alloc_size
537  *
538  * expect stuff to be locked, a transaction started and enough data /
539  * metadata reservations in the contexts.
540  *
541  * Will return -EAGAIN, and a reason if a restart is needed.
542  * If passed in, *reason will always be set, even in error.
543  */
544 int ocfs2_add_inode_data(struct ocfs2_super *osb,
545 			 struct inode *inode,
546 			 u32 *logical_offset,
547 			 u32 clusters_to_add,
548 			 int mark_unwritten,
549 			 struct buffer_head *fe_bh,
550 			 handle_t *handle,
551 			 struct ocfs2_alloc_context *data_ac,
552 			 struct ocfs2_alloc_context *meta_ac,
553 			 enum ocfs2_alloc_restarted *reason_ret)
554 {
555 	int ret;
556 	struct ocfs2_extent_tree et;
557 
558 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
559 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
560 					  clusters_to_add, mark_unwritten,
561 					  data_ac, meta_ac, reason_ret);
562 
563 	return ret;
564 }
565 
566 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
567 				   u32 clusters_to_add, int mark_unwritten)
568 {
569 	int status = 0;
570 	int restart_func = 0;
571 	int credits;
572 	u32 prev_clusters;
573 	struct buffer_head *bh = NULL;
574 	struct ocfs2_dinode *fe = NULL;
575 	handle_t *handle = NULL;
576 	struct ocfs2_alloc_context *data_ac = NULL;
577 	struct ocfs2_alloc_context *meta_ac = NULL;
578 	enum ocfs2_alloc_restarted why = RESTART_NONE;
579 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
580 	struct ocfs2_extent_tree et;
581 	int did_quota = 0;
582 
583 	/*
584 	 * Unwritten extent only exists for file systems which
585 	 * support holes.
586 	 */
587 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
588 
589 	status = ocfs2_read_inode_block(inode, &bh);
590 	if (status < 0) {
591 		mlog_errno(status);
592 		goto leave;
593 	}
594 	fe = (struct ocfs2_dinode *) bh->b_data;
595 
596 restart_all:
597 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
598 
599 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
600 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
601 				       &data_ac, &meta_ac);
602 	if (status) {
603 		mlog_errno(status);
604 		goto leave;
605 	}
606 
607 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
608 	handle = ocfs2_start_trans(osb, credits);
609 	if (IS_ERR(handle)) {
610 		status = PTR_ERR(handle);
611 		handle = NULL;
612 		mlog_errno(status);
613 		goto leave;
614 	}
615 
616 restarted_transaction:
617 	trace_ocfs2_extend_allocation(
618 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
619 		(unsigned long long)i_size_read(inode),
620 		le32_to_cpu(fe->i_clusters), clusters_to_add,
621 		why, restart_func);
622 
623 	status = dquot_alloc_space_nodirty(inode,
624 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
625 	if (status)
626 		goto leave;
627 	did_quota = 1;
628 
629 	/* reserve a write to the file entry early on - that we if we
630 	 * run out of credits in the allocation path, we can still
631 	 * update i_size. */
632 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
633 					 OCFS2_JOURNAL_ACCESS_WRITE);
634 	if (status < 0) {
635 		mlog_errno(status);
636 		goto leave;
637 	}
638 
639 	prev_clusters = OCFS2_I(inode)->ip_clusters;
640 
641 	status = ocfs2_add_inode_data(osb,
642 				      inode,
643 				      &logical_start,
644 				      clusters_to_add,
645 				      mark_unwritten,
646 				      bh,
647 				      handle,
648 				      data_ac,
649 				      meta_ac,
650 				      &why);
651 	if ((status < 0) && (status != -EAGAIN)) {
652 		if (status != -ENOSPC)
653 			mlog_errno(status);
654 		goto leave;
655 	}
656 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
657 	ocfs2_journal_dirty(handle, bh);
658 
659 	spin_lock(&OCFS2_I(inode)->ip_lock);
660 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
661 	spin_unlock(&OCFS2_I(inode)->ip_lock);
662 	/* Release unused quota reservation */
663 	dquot_free_space(inode,
664 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
665 	did_quota = 0;
666 
667 	if (why != RESTART_NONE && clusters_to_add) {
668 		if (why == RESTART_META) {
669 			restart_func = 1;
670 			status = 0;
671 		} else {
672 			BUG_ON(why != RESTART_TRANS);
673 
674 			status = ocfs2_allocate_extend_trans(handle, 1);
675 			if (status < 0) {
676 				/* handle still has to be committed at
677 				 * this point. */
678 				status = -ENOMEM;
679 				mlog_errno(status);
680 				goto leave;
681 			}
682 			goto restarted_transaction;
683 		}
684 	}
685 
686 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
687 	     le32_to_cpu(fe->i_clusters),
688 	     (unsigned long long)le64_to_cpu(fe->i_size),
689 	     OCFS2_I(inode)->ip_clusters,
690 	     (unsigned long long)i_size_read(inode));
691 
692 leave:
693 	if (status < 0 && did_quota)
694 		dquot_free_space(inode,
695 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
696 	if (handle) {
697 		ocfs2_commit_trans(osb, handle);
698 		handle = NULL;
699 	}
700 	if (data_ac) {
701 		ocfs2_free_alloc_context(data_ac);
702 		data_ac = NULL;
703 	}
704 	if (meta_ac) {
705 		ocfs2_free_alloc_context(meta_ac);
706 		meta_ac = NULL;
707 	}
708 	if ((!status) && restart_func) {
709 		restart_func = 0;
710 		goto restart_all;
711 	}
712 	brelse(bh);
713 	bh = NULL;
714 
715 	return status;
716 }
717 
718 /*
719  * While a write will already be ordering the data, a truncate will not.
720  * Thus, we need to explicitly order the zeroed pages.
721  */
722 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
723 						struct buffer_head *di_bh)
724 {
725 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
726 	handle_t *handle = NULL;
727 	int ret = 0;
728 
729 	if (!ocfs2_should_order_data(inode))
730 		goto out;
731 
732 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
733 	if (IS_ERR(handle)) {
734 		ret = -ENOMEM;
735 		mlog_errno(ret);
736 		goto out;
737 	}
738 
739 	ret = ocfs2_jbd2_file_inode(handle, inode);
740 	if (ret < 0) {
741 		mlog_errno(ret);
742 		goto out;
743 	}
744 
745 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
746 				      OCFS2_JOURNAL_ACCESS_WRITE);
747 	if (ret)
748 		mlog_errno(ret);
749 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
750 
751 out:
752 	if (ret) {
753 		if (!IS_ERR(handle))
754 			ocfs2_commit_trans(osb, handle);
755 		handle = ERR_PTR(ret);
756 	}
757 	return handle;
758 }
759 
760 /* Some parts of this taken from generic_cont_expand, which turned out
761  * to be too fragile to do exactly what we need without us having to
762  * worry about recursive locking in ->write_begin() and ->write_end(). */
763 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
764 				 u64 abs_to, struct buffer_head *di_bh)
765 {
766 	struct address_space *mapping = inode->i_mapping;
767 	struct page *page;
768 	unsigned long index = abs_from >> PAGE_SHIFT;
769 	handle_t *handle;
770 	int ret = 0;
771 	unsigned zero_from, zero_to, block_start, block_end;
772 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
773 
774 	BUG_ON(abs_from >= abs_to);
775 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
776 	BUG_ON(abs_from & (inode->i_blkbits - 1));
777 
778 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
779 	if (IS_ERR(handle)) {
780 		ret = PTR_ERR(handle);
781 		goto out;
782 	}
783 
784 	page = find_or_create_page(mapping, index, GFP_NOFS);
785 	if (!page) {
786 		ret = -ENOMEM;
787 		mlog_errno(ret);
788 		goto out_commit_trans;
789 	}
790 
791 	/* Get the offsets within the page that we want to zero */
792 	zero_from = abs_from & (PAGE_SIZE - 1);
793 	zero_to = abs_to & (PAGE_SIZE - 1);
794 	if (!zero_to)
795 		zero_to = PAGE_SIZE;
796 
797 	trace_ocfs2_write_zero_page(
798 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
799 			(unsigned long long)abs_from,
800 			(unsigned long long)abs_to,
801 			index, zero_from, zero_to);
802 
803 	/* We know that zero_from is block aligned */
804 	for (block_start = zero_from; block_start < zero_to;
805 	     block_start = block_end) {
806 		block_end = block_start + i_blocksize(inode);
807 
808 		/*
809 		 * block_start is block-aligned.  Bump it by one to force
810 		 * __block_write_begin and block_commit_write to zero the
811 		 * whole block.
812 		 */
813 		ret = __block_write_begin(page, block_start + 1, 0,
814 					  ocfs2_get_block);
815 		if (ret < 0) {
816 			mlog_errno(ret);
817 			goto out_unlock;
818 		}
819 
820 
821 		/* must not update i_size! */
822 		ret = block_commit_write(page, block_start + 1,
823 					 block_start + 1);
824 		if (ret < 0)
825 			mlog_errno(ret);
826 		else
827 			ret = 0;
828 	}
829 
830 	/*
831 	 * fs-writeback will release the dirty pages without page lock
832 	 * whose offset are over inode size, the release happens at
833 	 * block_write_full_page().
834 	 */
835 	i_size_write(inode, abs_to);
836 	inode->i_blocks = ocfs2_inode_sector_count(inode);
837 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
838 	inode->i_mtime = inode->i_ctime = current_time(inode);
839 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
840 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
841 	di->i_mtime_nsec = di->i_ctime_nsec;
842 	if (handle) {
843 		ocfs2_journal_dirty(handle, di_bh);
844 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
845 	}
846 
847 out_unlock:
848 	unlock_page(page);
849 	put_page(page);
850 out_commit_trans:
851 	if (handle)
852 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
853 out:
854 	return ret;
855 }
856 
857 /*
858  * Find the next range to zero.  We do this in terms of bytes because
859  * that's what ocfs2_zero_extend() wants, and it is dealing with the
860  * pagecache.  We may return multiple extents.
861  *
862  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
863  * needs to be zeroed.  range_start and range_end return the next zeroing
864  * range.  A subsequent call should pass the previous range_end as its
865  * zero_start.  If range_end is 0, there's nothing to do.
866  *
867  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
868  */
869 static int ocfs2_zero_extend_get_range(struct inode *inode,
870 				       struct buffer_head *di_bh,
871 				       u64 zero_start, u64 zero_end,
872 				       u64 *range_start, u64 *range_end)
873 {
874 	int rc = 0, needs_cow = 0;
875 	u32 p_cpos, zero_clusters = 0;
876 	u32 zero_cpos =
877 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
878 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
879 	unsigned int num_clusters = 0;
880 	unsigned int ext_flags = 0;
881 
882 	while (zero_cpos < last_cpos) {
883 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
884 					&num_clusters, &ext_flags);
885 		if (rc) {
886 			mlog_errno(rc);
887 			goto out;
888 		}
889 
890 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
891 			zero_clusters = num_clusters;
892 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
893 				needs_cow = 1;
894 			break;
895 		}
896 
897 		zero_cpos += num_clusters;
898 	}
899 	if (!zero_clusters) {
900 		*range_end = 0;
901 		goto out;
902 	}
903 
904 	while ((zero_cpos + zero_clusters) < last_cpos) {
905 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
906 					&p_cpos, &num_clusters,
907 					&ext_flags);
908 		if (rc) {
909 			mlog_errno(rc);
910 			goto out;
911 		}
912 
913 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
914 			break;
915 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
916 			needs_cow = 1;
917 		zero_clusters += num_clusters;
918 	}
919 	if ((zero_cpos + zero_clusters) > last_cpos)
920 		zero_clusters = last_cpos - zero_cpos;
921 
922 	if (needs_cow) {
923 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
924 					zero_clusters, UINT_MAX);
925 		if (rc) {
926 			mlog_errno(rc);
927 			goto out;
928 		}
929 	}
930 
931 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
932 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
933 					     zero_cpos + zero_clusters);
934 
935 out:
936 	return rc;
937 }
938 
939 /*
940  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
941  * has made sure that the entire range needs zeroing.
942  */
943 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
944 				   u64 range_end, struct buffer_head *di_bh)
945 {
946 	int rc = 0;
947 	u64 next_pos;
948 	u64 zero_pos = range_start;
949 
950 	trace_ocfs2_zero_extend_range(
951 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
952 			(unsigned long long)range_start,
953 			(unsigned long long)range_end);
954 	BUG_ON(range_start >= range_end);
955 
956 	while (zero_pos < range_end) {
957 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
958 		if (next_pos > range_end)
959 			next_pos = range_end;
960 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
961 		if (rc < 0) {
962 			mlog_errno(rc);
963 			break;
964 		}
965 		zero_pos = next_pos;
966 
967 		/*
968 		 * Very large extends have the potential to lock up
969 		 * the cpu for extended periods of time.
970 		 */
971 		cond_resched();
972 	}
973 
974 	return rc;
975 }
976 
977 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
978 		      loff_t zero_to_size)
979 {
980 	int ret = 0;
981 	u64 zero_start, range_start = 0, range_end = 0;
982 	struct super_block *sb = inode->i_sb;
983 
984 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
985 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
986 				(unsigned long long)zero_start,
987 				(unsigned long long)i_size_read(inode));
988 	while (zero_start < zero_to_size) {
989 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
990 						  zero_to_size,
991 						  &range_start,
992 						  &range_end);
993 		if (ret) {
994 			mlog_errno(ret);
995 			break;
996 		}
997 		if (!range_end)
998 			break;
999 		/* Trim the ends */
1000 		if (range_start < zero_start)
1001 			range_start = zero_start;
1002 		if (range_end > zero_to_size)
1003 			range_end = zero_to_size;
1004 
1005 		ret = ocfs2_zero_extend_range(inode, range_start,
1006 					      range_end, di_bh);
1007 		if (ret) {
1008 			mlog_errno(ret);
1009 			break;
1010 		}
1011 		zero_start = range_end;
1012 	}
1013 
1014 	return ret;
1015 }
1016 
1017 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1018 			  u64 new_i_size, u64 zero_to)
1019 {
1020 	int ret;
1021 	u32 clusters_to_add;
1022 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1023 
1024 	/*
1025 	 * Only quota files call this without a bh, and they can't be
1026 	 * refcounted.
1027 	 */
1028 	BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1029 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1030 
1031 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1032 	if (clusters_to_add < oi->ip_clusters)
1033 		clusters_to_add = 0;
1034 	else
1035 		clusters_to_add -= oi->ip_clusters;
1036 
1037 	if (clusters_to_add) {
1038 		ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1039 					      clusters_to_add, 0);
1040 		if (ret) {
1041 			mlog_errno(ret);
1042 			goto out;
1043 		}
1044 	}
1045 
1046 	/*
1047 	 * Call this even if we don't add any clusters to the tree. We
1048 	 * still need to zero the area between the old i_size and the
1049 	 * new i_size.
1050 	 */
1051 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1052 	if (ret < 0)
1053 		mlog_errno(ret);
1054 
1055 out:
1056 	return ret;
1057 }
1058 
1059 static int ocfs2_extend_file(struct inode *inode,
1060 			     struct buffer_head *di_bh,
1061 			     u64 new_i_size)
1062 {
1063 	int ret = 0;
1064 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1065 
1066 	BUG_ON(!di_bh);
1067 
1068 	/* setattr sometimes calls us like this. */
1069 	if (new_i_size == 0)
1070 		goto out;
1071 
1072 	if (i_size_read(inode) == new_i_size)
1073 		goto out;
1074 	BUG_ON(new_i_size < i_size_read(inode));
1075 
1076 	/*
1077 	 * The alloc sem blocks people in read/write from reading our
1078 	 * allocation until we're done changing it. We depend on
1079 	 * i_mutex to block other extend/truncate calls while we're
1080 	 * here.  We even have to hold it for sparse files because there
1081 	 * might be some tail zeroing.
1082 	 */
1083 	down_write(&oi->ip_alloc_sem);
1084 
1085 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1086 		/*
1087 		 * We can optimize small extends by keeping the inodes
1088 		 * inline data.
1089 		 */
1090 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1091 			up_write(&oi->ip_alloc_sem);
1092 			goto out_update_size;
1093 		}
1094 
1095 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1096 		if (ret) {
1097 			up_write(&oi->ip_alloc_sem);
1098 			mlog_errno(ret);
1099 			goto out;
1100 		}
1101 	}
1102 
1103 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1104 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1105 	else
1106 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1107 					    new_i_size);
1108 
1109 	up_write(&oi->ip_alloc_sem);
1110 
1111 	if (ret < 0) {
1112 		mlog_errno(ret);
1113 		goto out;
1114 	}
1115 
1116 out_update_size:
1117 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1118 	if (ret < 0)
1119 		mlog_errno(ret);
1120 
1121 out:
1122 	return ret;
1123 }
1124 
1125 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1126 {
1127 	int status = 0, size_change;
1128 	int inode_locked = 0;
1129 	struct inode *inode = d_inode(dentry);
1130 	struct super_block *sb = inode->i_sb;
1131 	struct ocfs2_super *osb = OCFS2_SB(sb);
1132 	struct buffer_head *bh = NULL;
1133 	handle_t *handle = NULL;
1134 	struct dquot *transfer_to[MAXQUOTAS] = { };
1135 	int qtype;
1136 	int had_lock;
1137 	struct ocfs2_lock_holder oh;
1138 
1139 	trace_ocfs2_setattr(inode, dentry,
1140 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1141 			    dentry->d_name.len, dentry->d_name.name,
1142 			    attr->ia_valid, attr->ia_mode,
1143 			    from_kuid(&init_user_ns, attr->ia_uid),
1144 			    from_kgid(&init_user_ns, attr->ia_gid));
1145 
1146 	/* ensuring we don't even attempt to truncate a symlink */
1147 	if (S_ISLNK(inode->i_mode))
1148 		attr->ia_valid &= ~ATTR_SIZE;
1149 
1150 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1151 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1152 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1153 		return 0;
1154 
1155 	status = setattr_prepare(dentry, attr);
1156 	if (status)
1157 		return status;
1158 
1159 	if (is_quota_modification(inode, attr)) {
1160 		status = dquot_initialize(inode);
1161 		if (status)
1162 			return status;
1163 	}
1164 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1165 	if (size_change) {
1166 		/*
1167 		 * Here we should wait dio to finish before inode lock
1168 		 * to avoid a deadlock between ocfs2_setattr() and
1169 		 * ocfs2_dio_end_io_write()
1170 		 */
1171 		inode_dio_wait(inode);
1172 
1173 		status = ocfs2_rw_lock(inode, 1);
1174 		if (status < 0) {
1175 			mlog_errno(status);
1176 			goto bail;
1177 		}
1178 	}
1179 
1180 	had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1181 	if (had_lock < 0) {
1182 		status = had_lock;
1183 		goto bail_unlock_rw;
1184 	} else if (had_lock) {
1185 		/*
1186 		 * As far as we know, ocfs2_setattr() could only be the first
1187 		 * VFS entry point in the call chain of recursive cluster
1188 		 * locking issue.
1189 		 *
1190 		 * For instance:
1191 		 * chmod_common()
1192 		 *  notify_change()
1193 		 *   ocfs2_setattr()
1194 		 *    posix_acl_chmod()
1195 		 *     ocfs2_iop_get_acl()
1196 		 *
1197 		 * But, we're not 100% sure if it's always true, because the
1198 		 * ordering of the VFS entry points in the call chain is out
1199 		 * of our control. So, we'd better dump the stack here to
1200 		 * catch the other cases of recursive locking.
1201 		 */
1202 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1203 		dump_stack();
1204 	}
1205 	inode_locked = 1;
1206 
1207 	if (size_change) {
1208 		status = inode_newsize_ok(inode, attr->ia_size);
1209 		if (status)
1210 			goto bail_unlock;
1211 
1212 		if (i_size_read(inode) >= attr->ia_size) {
1213 			if (ocfs2_should_order_data(inode)) {
1214 				status = ocfs2_begin_ordered_truncate(inode,
1215 								      attr->ia_size);
1216 				if (status)
1217 					goto bail_unlock;
1218 			}
1219 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1220 		} else
1221 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1222 		if (status < 0) {
1223 			if (status != -ENOSPC)
1224 				mlog_errno(status);
1225 			status = -ENOSPC;
1226 			goto bail_unlock;
1227 		}
1228 	}
1229 
1230 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1231 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1232 		/*
1233 		 * Gather pointers to quota structures so that allocation /
1234 		 * freeing of quota structures happens here and not inside
1235 		 * dquot_transfer() where we have problems with lock ordering
1236 		 */
1237 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1238 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1239 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1240 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1241 			if (IS_ERR(transfer_to[USRQUOTA])) {
1242 				status = PTR_ERR(transfer_to[USRQUOTA]);
1243 				goto bail_unlock;
1244 			}
1245 		}
1246 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1247 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1248 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1249 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1250 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1251 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1252 				goto bail_unlock;
1253 			}
1254 		}
1255 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1256 					   2 * ocfs2_quota_trans_credits(sb));
1257 		if (IS_ERR(handle)) {
1258 			status = PTR_ERR(handle);
1259 			mlog_errno(status);
1260 			goto bail_unlock;
1261 		}
1262 		status = __dquot_transfer(inode, transfer_to);
1263 		if (status < 0)
1264 			goto bail_commit;
1265 	} else {
1266 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1267 		if (IS_ERR(handle)) {
1268 			status = PTR_ERR(handle);
1269 			mlog_errno(status);
1270 			goto bail_unlock;
1271 		}
1272 	}
1273 
1274 	setattr_copy(inode, attr);
1275 	mark_inode_dirty(inode);
1276 
1277 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1278 	if (status < 0)
1279 		mlog_errno(status);
1280 
1281 bail_commit:
1282 	ocfs2_commit_trans(osb, handle);
1283 bail_unlock:
1284 	if (status && inode_locked) {
1285 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1286 		inode_locked = 0;
1287 	}
1288 bail_unlock_rw:
1289 	if (size_change)
1290 		ocfs2_rw_unlock(inode, 1);
1291 bail:
1292 
1293 	/* Release quota pointers in case we acquired them */
1294 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1295 		dqput(transfer_to[qtype]);
1296 
1297 	if (!status && attr->ia_valid & ATTR_MODE) {
1298 		status = ocfs2_acl_chmod(inode, bh);
1299 		if (status < 0)
1300 			mlog_errno(status);
1301 	}
1302 	if (inode_locked)
1303 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1304 
1305 	brelse(bh);
1306 	return status;
1307 }
1308 
1309 int ocfs2_getattr(const struct path *path, struct kstat *stat,
1310 		  u32 request_mask, unsigned int flags)
1311 {
1312 	struct inode *inode = d_inode(path->dentry);
1313 	struct super_block *sb = path->dentry->d_sb;
1314 	struct ocfs2_super *osb = sb->s_fs_info;
1315 	int err;
1316 
1317 	err = ocfs2_inode_revalidate(path->dentry);
1318 	if (err) {
1319 		if (err != -ENOENT)
1320 			mlog_errno(err);
1321 		goto bail;
1322 	}
1323 
1324 	generic_fillattr(inode, stat);
1325 	/*
1326 	 * If there is inline data in the inode, the inode will normally not
1327 	 * have data blocks allocated (it may have an external xattr block).
1328 	 * Report at least one sector for such files, so tools like tar, rsync,
1329 	 * others don't incorrectly think the file is completely sparse.
1330 	 */
1331 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1332 		stat->blocks += (stat->size + 511)>>9;
1333 
1334 	/* We set the blksize from the cluster size for performance */
1335 	stat->blksize = osb->s_clustersize;
1336 
1337 bail:
1338 	return err;
1339 }
1340 
1341 int ocfs2_permission(struct inode *inode, int mask)
1342 {
1343 	int ret, had_lock;
1344 	struct ocfs2_lock_holder oh;
1345 
1346 	if (mask & MAY_NOT_BLOCK)
1347 		return -ECHILD;
1348 
1349 	had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1350 	if (had_lock < 0) {
1351 		ret = had_lock;
1352 		goto out;
1353 	} else if (had_lock) {
1354 		/* See comments in ocfs2_setattr() for details.
1355 		 * The call chain of this case could be:
1356 		 * do_sys_open()
1357 		 *  may_open()
1358 		 *   inode_permission()
1359 		 *    ocfs2_permission()
1360 		 *     ocfs2_iop_get_acl()
1361 		 */
1362 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1363 		dump_stack();
1364 	}
1365 
1366 	ret = generic_permission(inode, mask);
1367 
1368 	ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1369 out:
1370 	return ret;
1371 }
1372 
1373 static int __ocfs2_write_remove_suid(struct inode *inode,
1374 				     struct buffer_head *bh)
1375 {
1376 	int ret;
1377 	handle_t *handle;
1378 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1379 	struct ocfs2_dinode *di;
1380 
1381 	trace_ocfs2_write_remove_suid(
1382 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1383 			inode->i_mode);
1384 
1385 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1386 	if (IS_ERR(handle)) {
1387 		ret = PTR_ERR(handle);
1388 		mlog_errno(ret);
1389 		goto out;
1390 	}
1391 
1392 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1393 				      OCFS2_JOURNAL_ACCESS_WRITE);
1394 	if (ret < 0) {
1395 		mlog_errno(ret);
1396 		goto out_trans;
1397 	}
1398 
1399 	inode->i_mode &= ~S_ISUID;
1400 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1401 		inode->i_mode &= ~S_ISGID;
1402 
1403 	di = (struct ocfs2_dinode *) bh->b_data;
1404 	di->i_mode = cpu_to_le16(inode->i_mode);
1405 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1406 
1407 	ocfs2_journal_dirty(handle, bh);
1408 
1409 out_trans:
1410 	ocfs2_commit_trans(osb, handle);
1411 out:
1412 	return ret;
1413 }
1414 
1415 static int ocfs2_write_remove_suid(struct inode *inode)
1416 {
1417 	int ret;
1418 	struct buffer_head *bh = NULL;
1419 
1420 	ret = ocfs2_read_inode_block(inode, &bh);
1421 	if (ret < 0) {
1422 		mlog_errno(ret);
1423 		goto out;
1424 	}
1425 
1426 	ret =  __ocfs2_write_remove_suid(inode, bh);
1427 out:
1428 	brelse(bh);
1429 	return ret;
1430 }
1431 
1432 /*
1433  * Allocate enough extents to cover the region starting at byte offset
1434  * start for len bytes. Existing extents are skipped, any extents
1435  * added are marked as "unwritten".
1436  */
1437 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1438 					    u64 start, u64 len)
1439 {
1440 	int ret;
1441 	u32 cpos, phys_cpos, clusters, alloc_size;
1442 	u64 end = start + len;
1443 	struct buffer_head *di_bh = NULL;
1444 
1445 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1446 		ret = ocfs2_read_inode_block(inode, &di_bh);
1447 		if (ret) {
1448 			mlog_errno(ret);
1449 			goto out;
1450 		}
1451 
1452 		/*
1453 		 * Nothing to do if the requested reservation range
1454 		 * fits within the inode.
1455 		 */
1456 		if (ocfs2_size_fits_inline_data(di_bh, end))
1457 			goto out;
1458 
1459 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1460 		if (ret) {
1461 			mlog_errno(ret);
1462 			goto out;
1463 		}
1464 	}
1465 
1466 	/*
1467 	 * We consider both start and len to be inclusive.
1468 	 */
1469 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1470 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1471 	clusters -= cpos;
1472 
1473 	while (clusters) {
1474 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1475 					 &alloc_size, NULL);
1476 		if (ret) {
1477 			mlog_errno(ret);
1478 			goto out;
1479 		}
1480 
1481 		/*
1482 		 * Hole or existing extent len can be arbitrary, so
1483 		 * cap it to our own allocation request.
1484 		 */
1485 		if (alloc_size > clusters)
1486 			alloc_size = clusters;
1487 
1488 		if (phys_cpos) {
1489 			/*
1490 			 * We already have an allocation at this
1491 			 * region so we can safely skip it.
1492 			 */
1493 			goto next;
1494 		}
1495 
1496 		ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1497 		if (ret) {
1498 			if (ret != -ENOSPC)
1499 				mlog_errno(ret);
1500 			goto out;
1501 		}
1502 
1503 next:
1504 		cpos += alloc_size;
1505 		clusters -= alloc_size;
1506 	}
1507 
1508 	ret = 0;
1509 out:
1510 
1511 	brelse(di_bh);
1512 	return ret;
1513 }
1514 
1515 /*
1516  * Truncate a byte range, avoiding pages within partial clusters. This
1517  * preserves those pages for the zeroing code to write to.
1518  */
1519 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1520 					 u64 byte_len)
1521 {
1522 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1523 	loff_t start, end;
1524 	struct address_space *mapping = inode->i_mapping;
1525 
1526 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1527 	end = byte_start + byte_len;
1528 	end = end & ~(osb->s_clustersize - 1);
1529 
1530 	if (start < end) {
1531 		unmap_mapping_range(mapping, start, end - start, 0);
1532 		truncate_inode_pages_range(mapping, start, end - 1);
1533 	}
1534 }
1535 
1536 static int ocfs2_zero_partial_clusters(struct inode *inode,
1537 				       u64 start, u64 len)
1538 {
1539 	int ret = 0;
1540 	u64 tmpend = 0;
1541 	u64 end = start + len;
1542 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1543 	unsigned int csize = osb->s_clustersize;
1544 	handle_t *handle;
1545 
1546 	/*
1547 	 * The "start" and "end" values are NOT necessarily part of
1548 	 * the range whose allocation is being deleted. Rather, this
1549 	 * is what the user passed in with the request. We must zero
1550 	 * partial clusters here. There's no need to worry about
1551 	 * physical allocation - the zeroing code knows to skip holes.
1552 	 */
1553 	trace_ocfs2_zero_partial_clusters(
1554 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1555 		(unsigned long long)start, (unsigned long long)end);
1556 
1557 	/*
1558 	 * If both edges are on a cluster boundary then there's no
1559 	 * zeroing required as the region is part of the allocation to
1560 	 * be truncated.
1561 	 */
1562 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1563 		goto out;
1564 
1565 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1566 	if (IS_ERR(handle)) {
1567 		ret = PTR_ERR(handle);
1568 		mlog_errno(ret);
1569 		goto out;
1570 	}
1571 
1572 	/*
1573 	 * If start is on a cluster boundary and end is somewhere in another
1574 	 * cluster, we have not COWed the cluster starting at start, unless
1575 	 * end is also within the same cluster. So, in this case, we skip this
1576 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1577 	 * to the next one.
1578 	 */
1579 	if ((start & (csize - 1)) != 0) {
1580 		/*
1581 		 * We want to get the byte offset of the end of the 1st
1582 		 * cluster.
1583 		 */
1584 		tmpend = (u64)osb->s_clustersize +
1585 			(start & ~(osb->s_clustersize - 1));
1586 		if (tmpend > end)
1587 			tmpend = end;
1588 
1589 		trace_ocfs2_zero_partial_clusters_range1(
1590 			(unsigned long long)start,
1591 			(unsigned long long)tmpend);
1592 
1593 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1594 						    tmpend);
1595 		if (ret)
1596 			mlog_errno(ret);
1597 	}
1598 
1599 	if (tmpend < end) {
1600 		/*
1601 		 * This may make start and end equal, but the zeroing
1602 		 * code will skip any work in that case so there's no
1603 		 * need to catch it up here.
1604 		 */
1605 		start = end & ~(osb->s_clustersize - 1);
1606 
1607 		trace_ocfs2_zero_partial_clusters_range2(
1608 			(unsigned long long)start, (unsigned long long)end);
1609 
1610 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1611 		if (ret)
1612 			mlog_errno(ret);
1613 	}
1614 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1615 
1616 	ocfs2_commit_trans(osb, handle);
1617 out:
1618 	return ret;
1619 }
1620 
1621 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1622 {
1623 	int i;
1624 	struct ocfs2_extent_rec *rec = NULL;
1625 
1626 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1627 
1628 		rec = &el->l_recs[i];
1629 
1630 		if (le32_to_cpu(rec->e_cpos) < pos)
1631 			break;
1632 	}
1633 
1634 	return i;
1635 }
1636 
1637 /*
1638  * Helper to calculate the punching pos and length in one run, we handle the
1639  * following three cases in order:
1640  *
1641  * - remove the entire record
1642  * - remove a partial record
1643  * - no record needs to be removed (hole-punching completed)
1644 */
1645 static void ocfs2_calc_trunc_pos(struct inode *inode,
1646 				 struct ocfs2_extent_list *el,
1647 				 struct ocfs2_extent_rec *rec,
1648 				 u32 trunc_start, u32 *trunc_cpos,
1649 				 u32 *trunc_len, u32 *trunc_end,
1650 				 u64 *blkno, int *done)
1651 {
1652 	int ret = 0;
1653 	u32 coff, range;
1654 
1655 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1656 
1657 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1658 		/*
1659 		 * remove an entire extent record.
1660 		 */
1661 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1662 		/*
1663 		 * Skip holes if any.
1664 		 */
1665 		if (range < *trunc_end)
1666 			*trunc_end = range;
1667 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1668 		*blkno = le64_to_cpu(rec->e_blkno);
1669 		*trunc_end = le32_to_cpu(rec->e_cpos);
1670 	} else if (range > trunc_start) {
1671 		/*
1672 		 * remove a partial extent record, which means we're
1673 		 * removing the last extent record.
1674 		 */
1675 		*trunc_cpos = trunc_start;
1676 		/*
1677 		 * skip hole if any.
1678 		 */
1679 		if (range < *trunc_end)
1680 			*trunc_end = range;
1681 		*trunc_len = *trunc_end - trunc_start;
1682 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1683 		*blkno = le64_to_cpu(rec->e_blkno) +
1684 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1685 		*trunc_end = trunc_start;
1686 	} else {
1687 		/*
1688 		 * It may have two following possibilities:
1689 		 *
1690 		 * - last record has been removed
1691 		 * - trunc_start was within a hole
1692 		 *
1693 		 * both two cases mean the completion of hole punching.
1694 		 */
1695 		ret = 1;
1696 	}
1697 
1698 	*done = ret;
1699 }
1700 
1701 int ocfs2_remove_inode_range(struct inode *inode,
1702 			     struct buffer_head *di_bh, u64 byte_start,
1703 			     u64 byte_len)
1704 {
1705 	int ret = 0, flags = 0, done = 0, i;
1706 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1707 	u32 cluster_in_el;
1708 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1709 	struct ocfs2_cached_dealloc_ctxt dealloc;
1710 	struct address_space *mapping = inode->i_mapping;
1711 	struct ocfs2_extent_tree et;
1712 	struct ocfs2_path *path = NULL;
1713 	struct ocfs2_extent_list *el = NULL;
1714 	struct ocfs2_extent_rec *rec = NULL;
1715 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1716 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1717 
1718 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1719 	ocfs2_init_dealloc_ctxt(&dealloc);
1720 
1721 	trace_ocfs2_remove_inode_range(
1722 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1723 			(unsigned long long)byte_start,
1724 			(unsigned long long)byte_len);
1725 
1726 	if (byte_len == 0)
1727 		return 0;
1728 
1729 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1730 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1731 					    byte_start + byte_len, 0);
1732 		if (ret) {
1733 			mlog_errno(ret);
1734 			goto out;
1735 		}
1736 		/*
1737 		 * There's no need to get fancy with the page cache
1738 		 * truncate of an inline-data inode. We're talking
1739 		 * about less than a page here, which will be cached
1740 		 * in the dinode buffer anyway.
1741 		 */
1742 		unmap_mapping_range(mapping, 0, 0, 0);
1743 		truncate_inode_pages(mapping, 0);
1744 		goto out;
1745 	}
1746 
1747 	/*
1748 	 * For reflinks, we may need to CoW 2 clusters which might be
1749 	 * partially zero'd later, if hole's start and end offset were
1750 	 * within one cluster(means is not exactly aligned to clustersize).
1751 	 */
1752 
1753 	if (ocfs2_is_refcount_inode(inode)) {
1754 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1755 		if (ret) {
1756 			mlog_errno(ret);
1757 			goto out;
1758 		}
1759 
1760 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1761 		if (ret) {
1762 			mlog_errno(ret);
1763 			goto out;
1764 		}
1765 	}
1766 
1767 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1768 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1769 	cluster_in_el = trunc_end;
1770 
1771 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1772 	if (ret) {
1773 		mlog_errno(ret);
1774 		goto out;
1775 	}
1776 
1777 	path = ocfs2_new_path_from_et(&et);
1778 	if (!path) {
1779 		ret = -ENOMEM;
1780 		mlog_errno(ret);
1781 		goto out;
1782 	}
1783 
1784 	while (trunc_end > trunc_start) {
1785 
1786 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1787 				      cluster_in_el);
1788 		if (ret) {
1789 			mlog_errno(ret);
1790 			goto out;
1791 		}
1792 
1793 		el = path_leaf_el(path);
1794 
1795 		i = ocfs2_find_rec(el, trunc_end);
1796 		/*
1797 		 * Need to go to previous extent block.
1798 		 */
1799 		if (i < 0) {
1800 			if (path->p_tree_depth == 0)
1801 				break;
1802 
1803 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1804 							    path,
1805 							    &cluster_in_el);
1806 			if (ret) {
1807 				mlog_errno(ret);
1808 				goto out;
1809 			}
1810 
1811 			/*
1812 			 * We've reached the leftmost extent block,
1813 			 * it's safe to leave.
1814 			 */
1815 			if (cluster_in_el == 0)
1816 				break;
1817 
1818 			/*
1819 			 * The 'pos' searched for previous extent block is
1820 			 * always one cluster less than actual trunc_end.
1821 			 */
1822 			trunc_end = cluster_in_el + 1;
1823 
1824 			ocfs2_reinit_path(path, 1);
1825 
1826 			continue;
1827 
1828 		} else
1829 			rec = &el->l_recs[i];
1830 
1831 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1832 				     &trunc_len, &trunc_end, &blkno, &done);
1833 		if (done)
1834 			break;
1835 
1836 		flags = rec->e_flags;
1837 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1838 
1839 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1840 					       phys_cpos, trunc_len, flags,
1841 					       &dealloc, refcount_loc, false);
1842 		if (ret < 0) {
1843 			mlog_errno(ret);
1844 			goto out;
1845 		}
1846 
1847 		cluster_in_el = trunc_end;
1848 
1849 		ocfs2_reinit_path(path, 1);
1850 	}
1851 
1852 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1853 
1854 out:
1855 	ocfs2_free_path(path);
1856 	ocfs2_schedule_truncate_log_flush(osb, 1);
1857 	ocfs2_run_deallocs(osb, &dealloc);
1858 
1859 	return ret;
1860 }
1861 
1862 /*
1863  * Parts of this function taken from xfs_change_file_space()
1864  */
1865 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1866 				     loff_t f_pos, unsigned int cmd,
1867 				     struct ocfs2_space_resv *sr,
1868 				     int change_size)
1869 {
1870 	int ret;
1871 	s64 llen;
1872 	loff_t size;
1873 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1874 	struct buffer_head *di_bh = NULL;
1875 	handle_t *handle;
1876 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1877 
1878 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1879 		return -EROFS;
1880 
1881 	inode_lock(inode);
1882 
1883 	/*
1884 	 * This prevents concurrent writes on other nodes
1885 	 */
1886 	ret = ocfs2_rw_lock(inode, 1);
1887 	if (ret) {
1888 		mlog_errno(ret);
1889 		goto out;
1890 	}
1891 
1892 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1893 	if (ret) {
1894 		mlog_errno(ret);
1895 		goto out_rw_unlock;
1896 	}
1897 
1898 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1899 		ret = -EPERM;
1900 		goto out_inode_unlock;
1901 	}
1902 
1903 	switch (sr->l_whence) {
1904 	case 0: /*SEEK_SET*/
1905 		break;
1906 	case 1: /*SEEK_CUR*/
1907 		sr->l_start += f_pos;
1908 		break;
1909 	case 2: /*SEEK_END*/
1910 		sr->l_start += i_size_read(inode);
1911 		break;
1912 	default:
1913 		ret = -EINVAL;
1914 		goto out_inode_unlock;
1915 	}
1916 	sr->l_whence = 0;
1917 
1918 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1919 
1920 	if (sr->l_start < 0
1921 	    || sr->l_start > max_off
1922 	    || (sr->l_start + llen) < 0
1923 	    || (sr->l_start + llen) > max_off) {
1924 		ret = -EINVAL;
1925 		goto out_inode_unlock;
1926 	}
1927 	size = sr->l_start + sr->l_len;
1928 
1929 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1930 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1931 		if (sr->l_len <= 0) {
1932 			ret = -EINVAL;
1933 			goto out_inode_unlock;
1934 		}
1935 	}
1936 
1937 	if (file && should_remove_suid(file->f_path.dentry)) {
1938 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1939 		if (ret) {
1940 			mlog_errno(ret);
1941 			goto out_inode_unlock;
1942 		}
1943 	}
1944 
1945 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1946 	switch (cmd) {
1947 	case OCFS2_IOC_RESVSP:
1948 	case OCFS2_IOC_RESVSP64:
1949 		/*
1950 		 * This takes unsigned offsets, but the signed ones we
1951 		 * pass have been checked against overflow above.
1952 		 */
1953 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1954 						       sr->l_len);
1955 		break;
1956 	case OCFS2_IOC_UNRESVSP:
1957 	case OCFS2_IOC_UNRESVSP64:
1958 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1959 					       sr->l_len);
1960 		break;
1961 	default:
1962 		ret = -EINVAL;
1963 	}
1964 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1965 	if (ret) {
1966 		mlog_errno(ret);
1967 		goto out_inode_unlock;
1968 	}
1969 
1970 	/*
1971 	 * We update c/mtime for these changes
1972 	 */
1973 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1974 	if (IS_ERR(handle)) {
1975 		ret = PTR_ERR(handle);
1976 		mlog_errno(ret);
1977 		goto out_inode_unlock;
1978 	}
1979 
1980 	if (change_size && i_size_read(inode) < size)
1981 		i_size_write(inode, size);
1982 
1983 	inode->i_ctime = inode->i_mtime = current_time(inode);
1984 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1985 	if (ret < 0)
1986 		mlog_errno(ret);
1987 
1988 	if (file && (file->f_flags & O_SYNC))
1989 		handle->h_sync = 1;
1990 
1991 	ocfs2_commit_trans(osb, handle);
1992 
1993 out_inode_unlock:
1994 	brelse(di_bh);
1995 	ocfs2_inode_unlock(inode, 1);
1996 out_rw_unlock:
1997 	ocfs2_rw_unlock(inode, 1);
1998 
1999 out:
2000 	inode_unlock(inode);
2001 	return ret;
2002 }
2003 
2004 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2005 			    struct ocfs2_space_resv *sr)
2006 {
2007 	struct inode *inode = file_inode(file);
2008 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2009 	int ret;
2010 
2011 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2012 	    !ocfs2_writes_unwritten_extents(osb))
2013 		return -ENOTTY;
2014 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2015 		 !ocfs2_sparse_alloc(osb))
2016 		return -ENOTTY;
2017 
2018 	if (!S_ISREG(inode->i_mode))
2019 		return -EINVAL;
2020 
2021 	if (!(file->f_mode & FMODE_WRITE))
2022 		return -EBADF;
2023 
2024 	ret = mnt_want_write_file(file);
2025 	if (ret)
2026 		return ret;
2027 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2028 	mnt_drop_write_file(file);
2029 	return ret;
2030 }
2031 
2032 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2033 			    loff_t len)
2034 {
2035 	struct inode *inode = file_inode(file);
2036 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2037 	struct ocfs2_space_resv sr;
2038 	int change_size = 1;
2039 	int cmd = OCFS2_IOC_RESVSP64;
2040 
2041 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2042 		return -EOPNOTSUPP;
2043 	if (!ocfs2_writes_unwritten_extents(osb))
2044 		return -EOPNOTSUPP;
2045 
2046 	if (mode & FALLOC_FL_KEEP_SIZE)
2047 		change_size = 0;
2048 
2049 	if (mode & FALLOC_FL_PUNCH_HOLE)
2050 		cmd = OCFS2_IOC_UNRESVSP64;
2051 
2052 	sr.l_whence = 0;
2053 	sr.l_start = (s64)offset;
2054 	sr.l_len = (s64)len;
2055 
2056 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2057 					 change_size);
2058 }
2059 
2060 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2061 				   size_t count)
2062 {
2063 	int ret = 0;
2064 	unsigned int extent_flags;
2065 	u32 cpos, clusters, extent_len, phys_cpos;
2066 	struct super_block *sb = inode->i_sb;
2067 
2068 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2069 	    !ocfs2_is_refcount_inode(inode) ||
2070 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2071 		return 0;
2072 
2073 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2074 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2075 
2076 	while (clusters) {
2077 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2078 					 &extent_flags);
2079 		if (ret < 0) {
2080 			mlog_errno(ret);
2081 			goto out;
2082 		}
2083 
2084 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2085 			ret = 1;
2086 			break;
2087 		}
2088 
2089 		if (extent_len > clusters)
2090 			extent_len = clusters;
2091 
2092 		clusters -= extent_len;
2093 		cpos += extent_len;
2094 	}
2095 out:
2096 	return ret;
2097 }
2098 
2099 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2100 {
2101 	int blockmask = inode->i_sb->s_blocksize - 1;
2102 	loff_t final_size = pos + count;
2103 
2104 	if ((pos & blockmask) || (final_size & blockmask))
2105 		return 1;
2106 	return 0;
2107 }
2108 
2109 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2110 					    struct file *file,
2111 					    loff_t pos, size_t count,
2112 					    int *meta_level)
2113 {
2114 	int ret;
2115 	struct buffer_head *di_bh = NULL;
2116 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2117 	u32 clusters =
2118 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2119 
2120 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2121 	if (ret) {
2122 		mlog_errno(ret);
2123 		goto out;
2124 	}
2125 
2126 	*meta_level = 1;
2127 
2128 	ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2129 	if (ret)
2130 		mlog_errno(ret);
2131 out:
2132 	brelse(di_bh);
2133 	return ret;
2134 }
2135 
2136 static int ocfs2_prepare_inode_for_write(struct file *file,
2137 					 loff_t pos, size_t count, int wait)
2138 {
2139 	int ret = 0, meta_level = 0, overwrite_io = 0;
2140 	struct dentry *dentry = file->f_path.dentry;
2141 	struct inode *inode = d_inode(dentry);
2142 	struct buffer_head *di_bh = NULL;
2143 	loff_t end;
2144 
2145 	/*
2146 	 * We start with a read level meta lock and only jump to an ex
2147 	 * if we need to make modifications here.
2148 	 */
2149 	for(;;) {
2150 		if (wait)
2151 			ret = ocfs2_inode_lock(inode, NULL, meta_level);
2152 		else
2153 			ret = ocfs2_try_inode_lock(inode,
2154 				overwrite_io ? NULL : &di_bh, meta_level);
2155 		if (ret < 0) {
2156 			meta_level = -1;
2157 			if (ret != -EAGAIN)
2158 				mlog_errno(ret);
2159 			goto out;
2160 		}
2161 
2162 		/*
2163 		 * Check if IO will overwrite allocated blocks in case
2164 		 * IOCB_NOWAIT flag is set.
2165 		 */
2166 		if (!wait && !overwrite_io) {
2167 			overwrite_io = 1;
2168 			if (!down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem)) {
2169 				ret = -EAGAIN;
2170 				goto out_unlock;
2171 			}
2172 
2173 			ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2174 			brelse(di_bh);
2175 			di_bh = NULL;
2176 			up_read(&OCFS2_I(inode)->ip_alloc_sem);
2177 			if (ret < 0) {
2178 				if (ret != -EAGAIN)
2179 					mlog_errno(ret);
2180 				goto out_unlock;
2181 			}
2182 		}
2183 
2184 		/* Clear suid / sgid if necessary. We do this here
2185 		 * instead of later in the write path because
2186 		 * remove_suid() calls ->setattr without any hint that
2187 		 * we may have already done our cluster locking. Since
2188 		 * ocfs2_setattr() *must* take cluster locks to
2189 		 * proceed, this will lead us to recursively lock the
2190 		 * inode. There's also the dinode i_size state which
2191 		 * can be lost via setattr during extending writes (we
2192 		 * set inode->i_size at the end of a write. */
2193 		if (should_remove_suid(dentry)) {
2194 			if (meta_level == 0) {
2195 				ocfs2_inode_unlock(inode, meta_level);
2196 				meta_level = 1;
2197 				continue;
2198 			}
2199 
2200 			ret = ocfs2_write_remove_suid(inode);
2201 			if (ret < 0) {
2202 				mlog_errno(ret);
2203 				goto out_unlock;
2204 			}
2205 		}
2206 
2207 		end = pos + count;
2208 
2209 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2210 		if (ret == 1) {
2211 			ocfs2_inode_unlock(inode, meta_level);
2212 			meta_level = -1;
2213 
2214 			ret = ocfs2_prepare_inode_for_refcount(inode,
2215 							       file,
2216 							       pos,
2217 							       count,
2218 							       &meta_level);
2219 		}
2220 
2221 		if (ret < 0) {
2222 			mlog_errno(ret);
2223 			goto out_unlock;
2224 		}
2225 
2226 		break;
2227 	}
2228 
2229 out_unlock:
2230 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2231 					    pos, count, wait);
2232 
2233 	brelse(di_bh);
2234 
2235 	if (meta_level >= 0)
2236 		ocfs2_inode_unlock(inode, meta_level);
2237 
2238 out:
2239 	return ret;
2240 }
2241 
2242 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2243 				    struct iov_iter *from)
2244 {
2245 	int rw_level;
2246 	ssize_t written = 0;
2247 	ssize_t ret;
2248 	size_t count = iov_iter_count(from);
2249 	struct file *file = iocb->ki_filp;
2250 	struct inode *inode = file_inode(file);
2251 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2252 	int full_coherency = !(osb->s_mount_opt &
2253 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2254 	void *saved_ki_complete = NULL;
2255 	int append_write = ((iocb->ki_pos + count) >=
2256 			i_size_read(inode) ? 1 : 0);
2257 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2258 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2259 
2260 	trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2261 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2262 		file->f_path.dentry->d_name.len,
2263 		file->f_path.dentry->d_name.name,
2264 		(unsigned int)from->nr_segs);	/* GRRRRR */
2265 
2266 	if (!direct_io && nowait)
2267 		return -EOPNOTSUPP;
2268 
2269 	if (count == 0)
2270 		return 0;
2271 
2272 	if (nowait) {
2273 		if (!inode_trylock(inode))
2274 			return -EAGAIN;
2275 	} else
2276 		inode_lock(inode);
2277 
2278 	/*
2279 	 * Concurrent O_DIRECT writes are allowed with
2280 	 * mount_option "coherency=buffered".
2281 	 * For append write, we must take rw EX.
2282 	 */
2283 	rw_level = (!direct_io || full_coherency || append_write);
2284 
2285 	if (nowait)
2286 		ret = ocfs2_try_rw_lock(inode, rw_level);
2287 	else
2288 		ret = ocfs2_rw_lock(inode, rw_level);
2289 	if (ret < 0) {
2290 		if (ret != -EAGAIN)
2291 			mlog_errno(ret);
2292 		goto out_mutex;
2293 	}
2294 
2295 	/*
2296 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2297 	 * inode_lock to guarantee coherency.
2298 	 */
2299 	if (direct_io && full_coherency) {
2300 		/*
2301 		 * We need to take and drop the inode lock to force
2302 		 * other nodes to drop their caches.  Buffered I/O
2303 		 * already does this in write_begin().
2304 		 */
2305 		if (nowait)
2306 			ret = ocfs2_try_inode_lock(inode, NULL, 1);
2307 		else
2308 			ret = ocfs2_inode_lock(inode, NULL, 1);
2309 		if (ret < 0) {
2310 			if (ret != -EAGAIN)
2311 				mlog_errno(ret);
2312 			goto out;
2313 		}
2314 
2315 		ocfs2_inode_unlock(inode, 1);
2316 	}
2317 
2318 	ret = generic_write_checks(iocb, from);
2319 	if (ret <= 0) {
2320 		if (ret)
2321 			mlog_errno(ret);
2322 		goto out;
2323 	}
2324 	count = ret;
2325 
2326 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2327 	if (ret < 0) {
2328 		if (ret != -EAGAIN)
2329 			mlog_errno(ret);
2330 		goto out;
2331 	}
2332 
2333 	if (direct_io && !is_sync_kiocb(iocb) &&
2334 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2335 		/*
2336 		 * Make it a sync io if it's an unaligned aio.
2337 		 */
2338 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2339 	}
2340 
2341 	/* communicate with ocfs2_dio_end_io */
2342 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2343 
2344 	written = __generic_file_write_iter(iocb, from);
2345 	/* buffered aio wouldn't have proper lock coverage today */
2346 	BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2347 
2348 	/*
2349 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2350 	 * function pointer which is called when o_direct io completes so that
2351 	 * it can unlock our rw lock.
2352 	 * Unfortunately there are error cases which call end_io and others
2353 	 * that don't.  so we don't have to unlock the rw_lock if either an
2354 	 * async dio is going to do it in the future or an end_io after an
2355 	 * error has already done it.
2356 	 */
2357 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2358 		rw_level = -1;
2359 	}
2360 
2361 	if (unlikely(written <= 0))
2362 		goto out;
2363 
2364 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2365 	    IS_SYNC(inode)) {
2366 		ret = filemap_fdatawrite_range(file->f_mapping,
2367 					       iocb->ki_pos - written,
2368 					       iocb->ki_pos - 1);
2369 		if (ret < 0)
2370 			written = ret;
2371 
2372 		if (!ret) {
2373 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2374 			if (ret < 0)
2375 				written = ret;
2376 		}
2377 
2378 		if (!ret)
2379 			ret = filemap_fdatawait_range(file->f_mapping,
2380 						      iocb->ki_pos - written,
2381 						      iocb->ki_pos - 1);
2382 	}
2383 
2384 out:
2385 	if (saved_ki_complete)
2386 		xchg(&iocb->ki_complete, saved_ki_complete);
2387 
2388 	if (rw_level != -1)
2389 		ocfs2_rw_unlock(inode, rw_level);
2390 
2391 out_mutex:
2392 	inode_unlock(inode);
2393 
2394 	if (written)
2395 		ret = written;
2396 	return ret;
2397 }
2398 
2399 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2400 				   struct iov_iter *to)
2401 {
2402 	int ret = 0, rw_level = -1, lock_level = 0;
2403 	struct file *filp = iocb->ki_filp;
2404 	struct inode *inode = file_inode(filp);
2405 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2406 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2407 
2408 	trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2409 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2410 			filp->f_path.dentry->d_name.len,
2411 			filp->f_path.dentry->d_name.name,
2412 			to->nr_segs);	/* GRRRRR */
2413 
2414 
2415 	if (!inode) {
2416 		ret = -EINVAL;
2417 		mlog_errno(ret);
2418 		goto bail;
2419 	}
2420 
2421 	if (!direct_io && nowait)
2422 		return -EOPNOTSUPP;
2423 
2424 	/*
2425 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2426 	 * need locks to protect pending reads from racing with truncate.
2427 	 */
2428 	if (direct_io) {
2429 		if (nowait)
2430 			ret = ocfs2_try_rw_lock(inode, 0);
2431 		else
2432 			ret = ocfs2_rw_lock(inode, 0);
2433 
2434 		if (ret < 0) {
2435 			if (ret != -EAGAIN)
2436 				mlog_errno(ret);
2437 			goto bail;
2438 		}
2439 		rw_level = 0;
2440 		/* communicate with ocfs2_dio_end_io */
2441 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2442 	}
2443 
2444 	/*
2445 	 * We're fine letting folks race truncates and extending
2446 	 * writes with read across the cluster, just like they can
2447 	 * locally. Hence no rw_lock during read.
2448 	 *
2449 	 * Take and drop the meta data lock to update inode fields
2450 	 * like i_size. This allows the checks down below
2451 	 * generic_file_read_iter() a chance of actually working.
2452 	 */
2453 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2454 				     !nowait);
2455 	if (ret < 0) {
2456 		if (ret != -EAGAIN)
2457 			mlog_errno(ret);
2458 		goto bail;
2459 	}
2460 	ocfs2_inode_unlock(inode, lock_level);
2461 
2462 	ret = generic_file_read_iter(iocb, to);
2463 	trace_generic_file_read_iter_ret(ret);
2464 
2465 	/* buffered aio wouldn't have proper lock coverage today */
2466 	BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2467 
2468 	/* see ocfs2_file_write_iter */
2469 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2470 		rw_level = -1;
2471 	}
2472 
2473 bail:
2474 	if (rw_level != -1)
2475 		ocfs2_rw_unlock(inode, rw_level);
2476 
2477 	return ret;
2478 }
2479 
2480 /* Refer generic_file_llseek_unlocked() */
2481 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2482 {
2483 	struct inode *inode = file->f_mapping->host;
2484 	int ret = 0;
2485 
2486 	inode_lock(inode);
2487 
2488 	switch (whence) {
2489 	case SEEK_SET:
2490 		break;
2491 	case SEEK_END:
2492 		/* SEEK_END requires the OCFS2 inode lock for the file
2493 		 * because it references the file's size.
2494 		 */
2495 		ret = ocfs2_inode_lock(inode, NULL, 0);
2496 		if (ret < 0) {
2497 			mlog_errno(ret);
2498 			goto out;
2499 		}
2500 		offset += i_size_read(inode);
2501 		ocfs2_inode_unlock(inode, 0);
2502 		break;
2503 	case SEEK_CUR:
2504 		if (offset == 0) {
2505 			offset = file->f_pos;
2506 			goto out;
2507 		}
2508 		offset += file->f_pos;
2509 		break;
2510 	case SEEK_DATA:
2511 	case SEEK_HOLE:
2512 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2513 		if (ret)
2514 			goto out;
2515 		break;
2516 	default:
2517 		ret = -EINVAL;
2518 		goto out;
2519 	}
2520 
2521 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2522 
2523 out:
2524 	inode_unlock(inode);
2525 	if (ret)
2526 		return ret;
2527 	return offset;
2528 }
2529 
2530 static int ocfs2_file_clone_range(struct file *file_in,
2531 				  loff_t pos_in,
2532 				  struct file *file_out,
2533 				  loff_t pos_out,
2534 				  u64 len)
2535 {
2536 	return ocfs2_reflink_remap_range(file_in, pos_in, file_out, pos_out,
2537 					 len, false);
2538 }
2539 
2540 static int ocfs2_file_dedupe_range(struct file *file_in,
2541 				   loff_t pos_in,
2542 				   struct file *file_out,
2543 				   loff_t pos_out,
2544 				   u64 len)
2545 {
2546 	return ocfs2_reflink_remap_range(file_in, pos_in, file_out, pos_out,
2547 					  len, true);
2548 }
2549 
2550 const struct inode_operations ocfs2_file_iops = {
2551 	.setattr	= ocfs2_setattr,
2552 	.getattr	= ocfs2_getattr,
2553 	.permission	= ocfs2_permission,
2554 	.listxattr	= ocfs2_listxattr,
2555 	.fiemap		= ocfs2_fiemap,
2556 	.get_acl	= ocfs2_iop_get_acl,
2557 	.set_acl	= ocfs2_iop_set_acl,
2558 };
2559 
2560 const struct inode_operations ocfs2_special_file_iops = {
2561 	.setattr	= ocfs2_setattr,
2562 	.getattr	= ocfs2_getattr,
2563 	.permission	= ocfs2_permission,
2564 	.get_acl	= ocfs2_iop_get_acl,
2565 	.set_acl	= ocfs2_iop_set_acl,
2566 };
2567 
2568 /*
2569  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2570  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2571  */
2572 const struct file_operations ocfs2_fops = {
2573 	.llseek		= ocfs2_file_llseek,
2574 	.mmap		= ocfs2_mmap,
2575 	.fsync		= ocfs2_sync_file,
2576 	.release	= ocfs2_file_release,
2577 	.open		= ocfs2_file_open,
2578 	.read_iter	= ocfs2_file_read_iter,
2579 	.write_iter	= ocfs2_file_write_iter,
2580 	.unlocked_ioctl	= ocfs2_ioctl,
2581 #ifdef CONFIG_COMPAT
2582 	.compat_ioctl   = ocfs2_compat_ioctl,
2583 #endif
2584 	.lock		= ocfs2_lock,
2585 	.flock		= ocfs2_flock,
2586 	.splice_read	= generic_file_splice_read,
2587 	.splice_write	= iter_file_splice_write,
2588 	.fallocate	= ocfs2_fallocate,
2589 	.clone_file_range = ocfs2_file_clone_range,
2590 	.dedupe_file_range = ocfs2_file_dedupe_range,
2591 };
2592 
2593 const struct file_operations ocfs2_dops = {
2594 	.llseek		= generic_file_llseek,
2595 	.read		= generic_read_dir,
2596 	.iterate	= ocfs2_readdir,
2597 	.fsync		= ocfs2_sync_file,
2598 	.release	= ocfs2_dir_release,
2599 	.open		= ocfs2_dir_open,
2600 	.unlocked_ioctl	= ocfs2_ioctl,
2601 #ifdef CONFIG_COMPAT
2602 	.compat_ioctl   = ocfs2_compat_ioctl,
2603 #endif
2604 	.lock		= ocfs2_lock,
2605 	.flock		= ocfs2_flock,
2606 };
2607 
2608 /*
2609  * POSIX-lockless variants of our file_operations.
2610  *
2611  * These will be used if the underlying cluster stack does not support
2612  * posix file locking, if the user passes the "localflocks" mount
2613  * option, or if we have a local-only fs.
2614  *
2615  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2616  * so we still want it in the case of no stack support for
2617  * plocks. Internally, it will do the right thing when asked to ignore
2618  * the cluster.
2619  */
2620 const struct file_operations ocfs2_fops_no_plocks = {
2621 	.llseek		= ocfs2_file_llseek,
2622 	.mmap		= ocfs2_mmap,
2623 	.fsync		= ocfs2_sync_file,
2624 	.release	= ocfs2_file_release,
2625 	.open		= ocfs2_file_open,
2626 	.read_iter	= ocfs2_file_read_iter,
2627 	.write_iter	= ocfs2_file_write_iter,
2628 	.unlocked_ioctl	= ocfs2_ioctl,
2629 #ifdef CONFIG_COMPAT
2630 	.compat_ioctl   = ocfs2_compat_ioctl,
2631 #endif
2632 	.flock		= ocfs2_flock,
2633 	.splice_read	= generic_file_splice_read,
2634 	.splice_write	= iter_file_splice_write,
2635 	.fallocate	= ocfs2_fallocate,
2636 	.clone_file_range = ocfs2_file_clone_range,
2637 	.dedupe_file_range = ocfs2_file_dedupe_range,
2638 };
2639 
2640 const struct file_operations ocfs2_dops_no_plocks = {
2641 	.llseek		= generic_file_llseek,
2642 	.read		= generic_read_dir,
2643 	.iterate	= ocfs2_readdir,
2644 	.fsync		= ocfs2_sync_file,
2645 	.release	= ocfs2_dir_release,
2646 	.open		= ocfs2_dir_open,
2647 	.unlocked_ioctl	= ocfs2_ioctl,
2648 #ifdef CONFIG_COMPAT
2649 	.compat_ioctl   = ocfs2_compat_ioctl,
2650 #endif
2651 	.flock		= ocfs2_flock,
2652 };
2653