xref: /openbmc/linux/fs/ocfs2/file.c (revision e4c0d0e2)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 
41 #include <cluster/masklog.h>
42 
43 #include "ocfs2.h"
44 
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64 
65 #include "buffer_head_io.h"
66 
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 	struct ocfs2_file_private *fp;
70 
71 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 	if (!fp)
73 		return -ENOMEM;
74 
75 	fp->fp_file = file;
76 	mutex_init(&fp->fp_mutex);
77 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 	file->private_data = fp;
79 
80 	return 0;
81 }
82 
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 	struct ocfs2_file_private *fp = file->private_data;
86 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87 
88 	if (fp) {
89 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 		ocfs2_lock_res_free(&fp->fp_flock);
91 		kfree(fp);
92 		file->private_data = NULL;
93 	}
94 }
95 
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 	int status;
99 	int mode = file->f_flags;
100 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
101 
102 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 			      (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 			      file->f_path.dentry->d_name.len,
105 			      file->f_path.dentry->d_name.name, mode);
106 
107 	if (file->f_mode & FMODE_WRITE)
108 		dquot_initialize(inode);
109 
110 	spin_lock(&oi->ip_lock);
111 
112 	/* Check that the inode hasn't been wiped from disk by another
113 	 * node. If it hasn't then we're safe as long as we hold the
114 	 * spin lock until our increment of open count. */
115 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 		spin_unlock(&oi->ip_lock);
117 
118 		status = -ENOENT;
119 		goto leave;
120 	}
121 
122 	if (mode & O_DIRECT)
123 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124 
125 	oi->ip_open_count++;
126 	spin_unlock(&oi->ip_lock);
127 
128 	status = ocfs2_init_file_private(inode, file);
129 	if (status) {
130 		/*
131 		 * We want to set open count back if we're failing the
132 		 * open.
133 		 */
134 		spin_lock(&oi->ip_lock);
135 		oi->ip_open_count--;
136 		spin_unlock(&oi->ip_lock);
137 	}
138 
139 leave:
140 	return status;
141 }
142 
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
146 
147 	spin_lock(&oi->ip_lock);
148 	if (!--oi->ip_open_count)
149 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150 
151 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152 				 oi->ip_blkno,
153 				 file->f_path.dentry->d_name.len,
154 				 file->f_path.dentry->d_name.name,
155 				 oi->ip_open_count);
156 	spin_unlock(&oi->ip_lock);
157 
158 	ocfs2_free_file_private(inode, file);
159 
160 	return 0;
161 }
162 
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165 	return ocfs2_init_file_private(inode, file);
166 }
167 
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170 	ocfs2_free_file_private(inode, file);
171 	return 0;
172 }
173 
174 static int ocfs2_sync_file(struct file *file, int datasync)
175 {
176 	int err = 0;
177 	journal_t *journal;
178 	struct inode *inode = file->f_mapping->host;
179 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
180 
181 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
182 			      OCFS2_I(inode)->ip_blkno,
183 			      file->f_path.dentry->d_name.len,
184 			      file->f_path.dentry->d_name.name,
185 			      (unsigned long long)datasync);
186 
187 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
188 		/*
189 		 * We still have to flush drive's caches to get data to the
190 		 * platter
191 		 */
192 		if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
193 			blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
194 		goto bail;
195 	}
196 
197 	journal = osb->journal->j_journal;
198 	err = jbd2_journal_force_commit(journal);
199 
200 bail:
201 	if (err)
202 		mlog_errno(err);
203 
204 	return (err < 0) ? -EIO : 0;
205 }
206 
207 int ocfs2_should_update_atime(struct inode *inode,
208 			      struct vfsmount *vfsmnt)
209 {
210 	struct timespec now;
211 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
212 
213 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
214 		return 0;
215 
216 	if ((inode->i_flags & S_NOATIME) ||
217 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
218 		return 0;
219 
220 	/*
221 	 * We can be called with no vfsmnt structure - NFSD will
222 	 * sometimes do this.
223 	 *
224 	 * Note that our action here is different than touch_atime() -
225 	 * if we can't tell whether this is a noatime mount, then we
226 	 * don't know whether to trust the value of s_atime_quantum.
227 	 */
228 	if (vfsmnt == NULL)
229 		return 0;
230 
231 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
232 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
233 		return 0;
234 
235 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
236 		if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
237 		    (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
238 			return 1;
239 
240 		return 0;
241 	}
242 
243 	now = CURRENT_TIME;
244 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
245 		return 0;
246 	else
247 		return 1;
248 }
249 
250 int ocfs2_update_inode_atime(struct inode *inode,
251 			     struct buffer_head *bh)
252 {
253 	int ret;
254 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
255 	handle_t *handle;
256 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
257 
258 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
259 	if (IS_ERR(handle)) {
260 		ret = PTR_ERR(handle);
261 		mlog_errno(ret);
262 		goto out;
263 	}
264 
265 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
266 				      OCFS2_JOURNAL_ACCESS_WRITE);
267 	if (ret) {
268 		mlog_errno(ret);
269 		goto out_commit;
270 	}
271 
272 	/*
273 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
274 	 * have i_mutex to guard against concurrent changes to other
275 	 * inode fields.
276 	 */
277 	inode->i_atime = CURRENT_TIME;
278 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
279 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
280 	ocfs2_journal_dirty(handle, bh);
281 
282 out_commit:
283 	ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
284 out:
285 	return ret;
286 }
287 
288 static int ocfs2_set_inode_size(handle_t *handle,
289 				struct inode *inode,
290 				struct buffer_head *fe_bh,
291 				u64 new_i_size)
292 {
293 	int status;
294 
295 	i_size_write(inode, new_i_size);
296 	inode->i_blocks = ocfs2_inode_sector_count(inode);
297 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
298 
299 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
300 	if (status < 0) {
301 		mlog_errno(status);
302 		goto bail;
303 	}
304 
305 bail:
306 	return status;
307 }
308 
309 int ocfs2_simple_size_update(struct inode *inode,
310 			     struct buffer_head *di_bh,
311 			     u64 new_i_size)
312 {
313 	int ret;
314 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
315 	handle_t *handle = NULL;
316 
317 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
318 	if (IS_ERR(handle)) {
319 		ret = PTR_ERR(handle);
320 		mlog_errno(ret);
321 		goto out;
322 	}
323 
324 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
325 				   new_i_size);
326 	if (ret < 0)
327 		mlog_errno(ret);
328 
329 	ocfs2_commit_trans(osb, handle);
330 out:
331 	return ret;
332 }
333 
334 static int ocfs2_cow_file_pos(struct inode *inode,
335 			      struct buffer_head *fe_bh,
336 			      u64 offset)
337 {
338 	int status;
339 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
340 	unsigned int num_clusters = 0;
341 	unsigned int ext_flags = 0;
342 
343 	/*
344 	 * If the new offset is aligned to the range of the cluster, there is
345 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
346 	 * CoW either.
347 	 */
348 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
349 		return 0;
350 
351 	status = ocfs2_get_clusters(inode, cpos, &phys,
352 				    &num_clusters, &ext_flags);
353 	if (status) {
354 		mlog_errno(status);
355 		goto out;
356 	}
357 
358 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
359 		goto out;
360 
361 	return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1);
362 
363 out:
364 	return status;
365 }
366 
367 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
368 				     struct inode *inode,
369 				     struct buffer_head *fe_bh,
370 				     u64 new_i_size)
371 {
372 	int status;
373 	handle_t *handle;
374 	struct ocfs2_dinode *di;
375 	u64 cluster_bytes;
376 
377 	/*
378 	 * We need to CoW the cluster contains the offset if it is reflinked
379 	 * since we will call ocfs2_zero_range_for_truncate later which will
380 	 * write "0" from offset to the end of the cluster.
381 	 */
382 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
383 	if (status) {
384 		mlog_errno(status);
385 		return status;
386 	}
387 
388 	/* TODO: This needs to actually orphan the inode in this
389 	 * transaction. */
390 
391 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
392 	if (IS_ERR(handle)) {
393 		status = PTR_ERR(handle);
394 		mlog_errno(status);
395 		goto out;
396 	}
397 
398 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
399 					 OCFS2_JOURNAL_ACCESS_WRITE);
400 	if (status < 0) {
401 		mlog_errno(status);
402 		goto out_commit;
403 	}
404 
405 	/*
406 	 * Do this before setting i_size.
407 	 */
408 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
409 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
410 					       cluster_bytes);
411 	if (status) {
412 		mlog_errno(status);
413 		goto out_commit;
414 	}
415 
416 	i_size_write(inode, new_i_size);
417 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
418 
419 	di = (struct ocfs2_dinode *) fe_bh->b_data;
420 	di->i_size = cpu_to_le64(new_i_size);
421 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
422 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
423 
424 	ocfs2_journal_dirty(handle, fe_bh);
425 
426 out_commit:
427 	ocfs2_commit_trans(osb, handle);
428 out:
429 	return status;
430 }
431 
432 static int ocfs2_truncate_file(struct inode *inode,
433 			       struct buffer_head *di_bh,
434 			       u64 new_i_size)
435 {
436 	int status = 0;
437 	struct ocfs2_dinode *fe = NULL;
438 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
439 
440 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
441 	 * already validated it */
442 	fe = (struct ocfs2_dinode *) di_bh->b_data;
443 
444 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
445 				  (unsigned long long)le64_to_cpu(fe->i_size),
446 				  (unsigned long long)new_i_size);
447 
448 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
449 			"Inode %llu, inode i_size = %lld != di "
450 			"i_size = %llu, i_flags = 0x%x\n",
451 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
452 			i_size_read(inode),
453 			(unsigned long long)le64_to_cpu(fe->i_size),
454 			le32_to_cpu(fe->i_flags));
455 
456 	if (new_i_size > le64_to_cpu(fe->i_size)) {
457 		trace_ocfs2_truncate_file_error(
458 			(unsigned long long)le64_to_cpu(fe->i_size),
459 			(unsigned long long)new_i_size);
460 		status = -EINVAL;
461 		mlog_errno(status);
462 		goto bail;
463 	}
464 
465 	/* lets handle the simple truncate cases before doing any more
466 	 * cluster locking. */
467 	if (new_i_size == le64_to_cpu(fe->i_size))
468 		goto bail;
469 
470 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
471 
472 	ocfs2_resv_discard(&osb->osb_la_resmap,
473 			   &OCFS2_I(inode)->ip_la_data_resv);
474 
475 	/*
476 	 * The inode lock forced other nodes to sync and drop their
477 	 * pages, which (correctly) happens even if we have a truncate
478 	 * without allocation change - ocfs2 cluster sizes can be much
479 	 * greater than page size, so we have to truncate them
480 	 * anyway.
481 	 */
482 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
483 	truncate_inode_pages(inode->i_mapping, new_i_size);
484 
485 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
486 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
487 					       i_size_read(inode), 1);
488 		if (status)
489 			mlog_errno(status);
490 
491 		goto bail_unlock_sem;
492 	}
493 
494 	/* alright, we're going to need to do a full blown alloc size
495 	 * change. Orphan the inode so that recovery can complete the
496 	 * truncate if necessary. This does the task of marking
497 	 * i_size. */
498 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
499 	if (status < 0) {
500 		mlog_errno(status);
501 		goto bail_unlock_sem;
502 	}
503 
504 	status = ocfs2_commit_truncate(osb, inode, di_bh);
505 	if (status < 0) {
506 		mlog_errno(status);
507 		goto bail_unlock_sem;
508 	}
509 
510 	/* TODO: orphan dir cleanup here. */
511 bail_unlock_sem:
512 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
513 
514 bail:
515 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
516 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
517 
518 	return status;
519 }
520 
521 /*
522  * extend file allocation only here.
523  * we'll update all the disk stuff, and oip->alloc_size
524  *
525  * expect stuff to be locked, a transaction started and enough data /
526  * metadata reservations in the contexts.
527  *
528  * Will return -EAGAIN, and a reason if a restart is needed.
529  * If passed in, *reason will always be set, even in error.
530  */
531 int ocfs2_add_inode_data(struct ocfs2_super *osb,
532 			 struct inode *inode,
533 			 u32 *logical_offset,
534 			 u32 clusters_to_add,
535 			 int mark_unwritten,
536 			 struct buffer_head *fe_bh,
537 			 handle_t *handle,
538 			 struct ocfs2_alloc_context *data_ac,
539 			 struct ocfs2_alloc_context *meta_ac,
540 			 enum ocfs2_alloc_restarted *reason_ret)
541 {
542 	int ret;
543 	struct ocfs2_extent_tree et;
544 
545 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
546 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
547 					  clusters_to_add, mark_unwritten,
548 					  data_ac, meta_ac, reason_ret);
549 
550 	return ret;
551 }
552 
553 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
554 				     u32 clusters_to_add, int mark_unwritten)
555 {
556 	int status = 0;
557 	int restart_func = 0;
558 	int credits;
559 	u32 prev_clusters;
560 	struct buffer_head *bh = NULL;
561 	struct ocfs2_dinode *fe = NULL;
562 	handle_t *handle = NULL;
563 	struct ocfs2_alloc_context *data_ac = NULL;
564 	struct ocfs2_alloc_context *meta_ac = NULL;
565 	enum ocfs2_alloc_restarted why;
566 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
567 	struct ocfs2_extent_tree et;
568 	int did_quota = 0;
569 
570 	/*
571 	 * This function only exists for file systems which don't
572 	 * support holes.
573 	 */
574 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
575 
576 	status = ocfs2_read_inode_block(inode, &bh);
577 	if (status < 0) {
578 		mlog_errno(status);
579 		goto leave;
580 	}
581 	fe = (struct ocfs2_dinode *) bh->b_data;
582 
583 restart_all:
584 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
585 
586 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
587 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
588 				       &data_ac, &meta_ac);
589 	if (status) {
590 		mlog_errno(status);
591 		goto leave;
592 	}
593 
594 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list,
595 					    clusters_to_add);
596 	handle = ocfs2_start_trans(osb, credits);
597 	if (IS_ERR(handle)) {
598 		status = PTR_ERR(handle);
599 		handle = NULL;
600 		mlog_errno(status);
601 		goto leave;
602 	}
603 
604 restarted_transaction:
605 	trace_ocfs2_extend_allocation(
606 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
607 		(unsigned long long)i_size_read(inode),
608 		le32_to_cpu(fe->i_clusters), clusters_to_add,
609 		why, restart_func);
610 
611 	status = dquot_alloc_space_nodirty(inode,
612 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
613 	if (status)
614 		goto leave;
615 	did_quota = 1;
616 
617 	/* reserve a write to the file entry early on - that we if we
618 	 * run out of credits in the allocation path, we can still
619 	 * update i_size. */
620 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
621 					 OCFS2_JOURNAL_ACCESS_WRITE);
622 	if (status < 0) {
623 		mlog_errno(status);
624 		goto leave;
625 	}
626 
627 	prev_clusters = OCFS2_I(inode)->ip_clusters;
628 
629 	status = ocfs2_add_inode_data(osb,
630 				      inode,
631 				      &logical_start,
632 				      clusters_to_add,
633 				      mark_unwritten,
634 				      bh,
635 				      handle,
636 				      data_ac,
637 				      meta_ac,
638 				      &why);
639 	if ((status < 0) && (status != -EAGAIN)) {
640 		if (status != -ENOSPC)
641 			mlog_errno(status);
642 		goto leave;
643 	}
644 
645 	ocfs2_journal_dirty(handle, bh);
646 
647 	spin_lock(&OCFS2_I(inode)->ip_lock);
648 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
649 	spin_unlock(&OCFS2_I(inode)->ip_lock);
650 	/* Release unused quota reservation */
651 	dquot_free_space(inode,
652 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
653 	did_quota = 0;
654 
655 	if (why != RESTART_NONE && clusters_to_add) {
656 		if (why == RESTART_META) {
657 			restart_func = 1;
658 			status = 0;
659 		} else {
660 			BUG_ON(why != RESTART_TRANS);
661 
662 			/* TODO: This can be more intelligent. */
663 			credits = ocfs2_calc_extend_credits(osb->sb,
664 							    &fe->id2.i_list,
665 							    clusters_to_add);
666 			status = ocfs2_extend_trans(handle, credits);
667 			if (status < 0) {
668 				/* handle still has to be committed at
669 				 * this point. */
670 				status = -ENOMEM;
671 				mlog_errno(status);
672 				goto leave;
673 			}
674 			goto restarted_transaction;
675 		}
676 	}
677 
678 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
679 	     le32_to_cpu(fe->i_clusters),
680 	     (unsigned long long)le64_to_cpu(fe->i_size),
681 	     OCFS2_I(inode)->ip_clusters,
682 	     (unsigned long long)i_size_read(inode));
683 
684 leave:
685 	if (status < 0 && did_quota)
686 		dquot_free_space(inode,
687 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
688 	if (handle) {
689 		ocfs2_commit_trans(osb, handle);
690 		handle = NULL;
691 	}
692 	if (data_ac) {
693 		ocfs2_free_alloc_context(data_ac);
694 		data_ac = NULL;
695 	}
696 	if (meta_ac) {
697 		ocfs2_free_alloc_context(meta_ac);
698 		meta_ac = NULL;
699 	}
700 	if ((!status) && restart_func) {
701 		restart_func = 0;
702 		goto restart_all;
703 	}
704 	brelse(bh);
705 	bh = NULL;
706 
707 	return status;
708 }
709 
710 /*
711  * While a write will already be ordering the data, a truncate will not.
712  * Thus, we need to explicitly order the zeroed pages.
713  */
714 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
715 {
716 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
717 	handle_t *handle = NULL;
718 	int ret = 0;
719 
720 	if (!ocfs2_should_order_data(inode))
721 		goto out;
722 
723 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
724 	if (IS_ERR(handle)) {
725 		ret = -ENOMEM;
726 		mlog_errno(ret);
727 		goto out;
728 	}
729 
730 	ret = ocfs2_jbd2_file_inode(handle, inode);
731 	if (ret < 0)
732 		mlog_errno(ret);
733 
734 out:
735 	if (ret) {
736 		if (!IS_ERR(handle))
737 			ocfs2_commit_trans(osb, handle);
738 		handle = ERR_PTR(ret);
739 	}
740 	return handle;
741 }
742 
743 /* Some parts of this taken from generic_cont_expand, which turned out
744  * to be too fragile to do exactly what we need without us having to
745  * worry about recursive locking in ->write_begin() and ->write_end(). */
746 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
747 				 u64 abs_to)
748 {
749 	struct address_space *mapping = inode->i_mapping;
750 	struct page *page;
751 	unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
752 	handle_t *handle = NULL;
753 	int ret = 0;
754 	unsigned zero_from, zero_to, block_start, block_end;
755 
756 	BUG_ON(abs_from >= abs_to);
757 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
758 	BUG_ON(abs_from & (inode->i_blkbits - 1));
759 
760 	page = find_or_create_page(mapping, index, GFP_NOFS);
761 	if (!page) {
762 		ret = -ENOMEM;
763 		mlog_errno(ret);
764 		goto out;
765 	}
766 
767 	/* Get the offsets within the page that we want to zero */
768 	zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
769 	zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
770 	if (!zero_to)
771 		zero_to = PAGE_CACHE_SIZE;
772 
773 	trace_ocfs2_write_zero_page(
774 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
775 			(unsigned long long)abs_from,
776 			(unsigned long long)abs_to,
777 			index, zero_from, zero_to);
778 
779 	/* We know that zero_from is block aligned */
780 	for (block_start = zero_from; block_start < zero_to;
781 	     block_start = block_end) {
782 		block_end = block_start + (1 << inode->i_blkbits);
783 
784 		/*
785 		 * block_start is block-aligned.  Bump it by one to force
786 		 * __block_write_begin and block_commit_write to zero the
787 		 * whole block.
788 		 */
789 		ret = __block_write_begin(page, block_start + 1, 0,
790 					  ocfs2_get_block);
791 		if (ret < 0) {
792 			mlog_errno(ret);
793 			goto out_unlock;
794 		}
795 
796 		if (!handle) {
797 			handle = ocfs2_zero_start_ordered_transaction(inode);
798 			if (IS_ERR(handle)) {
799 				ret = PTR_ERR(handle);
800 				handle = NULL;
801 				break;
802 			}
803 		}
804 
805 		/* must not update i_size! */
806 		ret = block_commit_write(page, block_start + 1,
807 					 block_start + 1);
808 		if (ret < 0)
809 			mlog_errno(ret);
810 		else
811 			ret = 0;
812 	}
813 
814 	if (handle)
815 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
816 
817 out_unlock:
818 	unlock_page(page);
819 	page_cache_release(page);
820 out:
821 	return ret;
822 }
823 
824 /*
825  * Find the next range to zero.  We do this in terms of bytes because
826  * that's what ocfs2_zero_extend() wants, and it is dealing with the
827  * pagecache.  We may return multiple extents.
828  *
829  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
830  * needs to be zeroed.  range_start and range_end return the next zeroing
831  * range.  A subsequent call should pass the previous range_end as its
832  * zero_start.  If range_end is 0, there's nothing to do.
833  *
834  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
835  */
836 static int ocfs2_zero_extend_get_range(struct inode *inode,
837 				       struct buffer_head *di_bh,
838 				       u64 zero_start, u64 zero_end,
839 				       u64 *range_start, u64 *range_end)
840 {
841 	int rc = 0, needs_cow = 0;
842 	u32 p_cpos, zero_clusters = 0;
843 	u32 zero_cpos =
844 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
845 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
846 	unsigned int num_clusters = 0;
847 	unsigned int ext_flags = 0;
848 
849 	while (zero_cpos < last_cpos) {
850 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
851 					&num_clusters, &ext_flags);
852 		if (rc) {
853 			mlog_errno(rc);
854 			goto out;
855 		}
856 
857 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
858 			zero_clusters = num_clusters;
859 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
860 				needs_cow = 1;
861 			break;
862 		}
863 
864 		zero_cpos += num_clusters;
865 	}
866 	if (!zero_clusters) {
867 		*range_end = 0;
868 		goto out;
869 	}
870 
871 	while ((zero_cpos + zero_clusters) < last_cpos) {
872 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
873 					&p_cpos, &num_clusters,
874 					&ext_flags);
875 		if (rc) {
876 			mlog_errno(rc);
877 			goto out;
878 		}
879 
880 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
881 			break;
882 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
883 			needs_cow = 1;
884 		zero_clusters += num_clusters;
885 	}
886 	if ((zero_cpos + zero_clusters) > last_cpos)
887 		zero_clusters = last_cpos - zero_cpos;
888 
889 	if (needs_cow) {
890 		rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos,
891 					zero_clusters, UINT_MAX);
892 		if (rc) {
893 			mlog_errno(rc);
894 			goto out;
895 		}
896 	}
897 
898 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
899 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
900 					     zero_cpos + zero_clusters);
901 
902 out:
903 	return rc;
904 }
905 
906 /*
907  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
908  * has made sure that the entire range needs zeroing.
909  */
910 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
911 				   u64 range_end)
912 {
913 	int rc = 0;
914 	u64 next_pos;
915 	u64 zero_pos = range_start;
916 
917 	trace_ocfs2_zero_extend_range(
918 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
919 			(unsigned long long)range_start,
920 			(unsigned long long)range_end);
921 	BUG_ON(range_start >= range_end);
922 
923 	while (zero_pos < range_end) {
924 		next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
925 		if (next_pos > range_end)
926 			next_pos = range_end;
927 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
928 		if (rc < 0) {
929 			mlog_errno(rc);
930 			break;
931 		}
932 		zero_pos = next_pos;
933 
934 		/*
935 		 * Very large extends have the potential to lock up
936 		 * the cpu for extended periods of time.
937 		 */
938 		cond_resched();
939 	}
940 
941 	return rc;
942 }
943 
944 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
945 		      loff_t zero_to_size)
946 {
947 	int ret = 0;
948 	u64 zero_start, range_start = 0, range_end = 0;
949 	struct super_block *sb = inode->i_sb;
950 
951 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
952 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
953 				(unsigned long long)zero_start,
954 				(unsigned long long)i_size_read(inode));
955 	while (zero_start < zero_to_size) {
956 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
957 						  zero_to_size,
958 						  &range_start,
959 						  &range_end);
960 		if (ret) {
961 			mlog_errno(ret);
962 			break;
963 		}
964 		if (!range_end)
965 			break;
966 		/* Trim the ends */
967 		if (range_start < zero_start)
968 			range_start = zero_start;
969 		if (range_end > zero_to_size)
970 			range_end = zero_to_size;
971 
972 		ret = ocfs2_zero_extend_range(inode, range_start,
973 					      range_end);
974 		if (ret) {
975 			mlog_errno(ret);
976 			break;
977 		}
978 		zero_start = range_end;
979 	}
980 
981 	return ret;
982 }
983 
984 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
985 			  u64 new_i_size, u64 zero_to)
986 {
987 	int ret;
988 	u32 clusters_to_add;
989 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
990 
991 	/*
992 	 * Only quota files call this without a bh, and they can't be
993 	 * refcounted.
994 	 */
995 	BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
996 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
997 
998 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
999 	if (clusters_to_add < oi->ip_clusters)
1000 		clusters_to_add = 0;
1001 	else
1002 		clusters_to_add -= oi->ip_clusters;
1003 
1004 	if (clusters_to_add) {
1005 		ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1006 						clusters_to_add, 0);
1007 		if (ret) {
1008 			mlog_errno(ret);
1009 			goto out;
1010 		}
1011 	}
1012 
1013 	/*
1014 	 * Call this even if we don't add any clusters to the tree. We
1015 	 * still need to zero the area between the old i_size and the
1016 	 * new i_size.
1017 	 */
1018 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1019 	if (ret < 0)
1020 		mlog_errno(ret);
1021 
1022 out:
1023 	return ret;
1024 }
1025 
1026 static int ocfs2_extend_file(struct inode *inode,
1027 			     struct buffer_head *di_bh,
1028 			     u64 new_i_size)
1029 {
1030 	int ret = 0;
1031 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1032 
1033 	BUG_ON(!di_bh);
1034 
1035 	/* setattr sometimes calls us like this. */
1036 	if (new_i_size == 0)
1037 		goto out;
1038 
1039 	if (i_size_read(inode) == new_i_size)
1040 		goto out;
1041 	BUG_ON(new_i_size < i_size_read(inode));
1042 
1043 	/*
1044 	 * The alloc sem blocks people in read/write from reading our
1045 	 * allocation until we're done changing it. We depend on
1046 	 * i_mutex to block other extend/truncate calls while we're
1047 	 * here.  We even have to hold it for sparse files because there
1048 	 * might be some tail zeroing.
1049 	 */
1050 	down_write(&oi->ip_alloc_sem);
1051 
1052 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1053 		/*
1054 		 * We can optimize small extends by keeping the inodes
1055 		 * inline data.
1056 		 */
1057 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1058 			up_write(&oi->ip_alloc_sem);
1059 			goto out_update_size;
1060 		}
1061 
1062 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1063 		if (ret) {
1064 			up_write(&oi->ip_alloc_sem);
1065 			mlog_errno(ret);
1066 			goto out;
1067 		}
1068 	}
1069 
1070 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1071 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1072 	else
1073 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1074 					    new_i_size);
1075 
1076 	up_write(&oi->ip_alloc_sem);
1077 
1078 	if (ret < 0) {
1079 		mlog_errno(ret);
1080 		goto out;
1081 	}
1082 
1083 out_update_size:
1084 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1085 	if (ret < 0)
1086 		mlog_errno(ret);
1087 
1088 out:
1089 	return ret;
1090 }
1091 
1092 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1093 {
1094 	int status = 0, size_change;
1095 	struct inode *inode = dentry->d_inode;
1096 	struct super_block *sb = inode->i_sb;
1097 	struct ocfs2_super *osb = OCFS2_SB(sb);
1098 	struct buffer_head *bh = NULL;
1099 	handle_t *handle = NULL;
1100 	struct dquot *transfer_to[MAXQUOTAS] = { };
1101 	int qtype;
1102 
1103 	trace_ocfs2_setattr(inode, dentry,
1104 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1105 			    dentry->d_name.len, dentry->d_name.name,
1106 			    attr->ia_valid, attr->ia_mode,
1107 			    attr->ia_uid, attr->ia_gid);
1108 
1109 	/* ensuring we don't even attempt to truncate a symlink */
1110 	if (S_ISLNK(inode->i_mode))
1111 		attr->ia_valid &= ~ATTR_SIZE;
1112 
1113 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1114 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1115 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1116 		return 0;
1117 
1118 	status = inode_change_ok(inode, attr);
1119 	if (status)
1120 		return status;
1121 
1122 	if (is_quota_modification(inode, attr))
1123 		dquot_initialize(inode);
1124 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1125 	if (size_change) {
1126 		status = ocfs2_rw_lock(inode, 1);
1127 		if (status < 0) {
1128 			mlog_errno(status);
1129 			goto bail;
1130 		}
1131 	}
1132 
1133 	status = ocfs2_inode_lock(inode, &bh, 1);
1134 	if (status < 0) {
1135 		if (status != -ENOENT)
1136 			mlog_errno(status);
1137 		goto bail_unlock_rw;
1138 	}
1139 
1140 	if (size_change && attr->ia_size != i_size_read(inode)) {
1141 		status = inode_newsize_ok(inode, attr->ia_size);
1142 		if (status)
1143 			goto bail_unlock;
1144 
1145 		if (i_size_read(inode) > attr->ia_size) {
1146 			if (ocfs2_should_order_data(inode)) {
1147 				status = ocfs2_begin_ordered_truncate(inode,
1148 								      attr->ia_size);
1149 				if (status)
1150 					goto bail_unlock;
1151 			}
1152 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1153 		} else
1154 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1155 		if (status < 0) {
1156 			if (status != -ENOSPC)
1157 				mlog_errno(status);
1158 			status = -ENOSPC;
1159 			goto bail_unlock;
1160 		}
1161 	}
1162 
1163 	if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
1164 	    (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
1165 		/*
1166 		 * Gather pointers to quota structures so that allocation /
1167 		 * freeing of quota structures happens here and not inside
1168 		 * dquot_transfer() where we have problems with lock ordering
1169 		 */
1170 		if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid
1171 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1172 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1173 			transfer_to[USRQUOTA] = dqget(sb, attr->ia_uid,
1174 						      USRQUOTA);
1175 			if (!transfer_to[USRQUOTA]) {
1176 				status = -ESRCH;
1177 				goto bail_unlock;
1178 			}
1179 		}
1180 		if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid
1181 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1182 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1183 			transfer_to[GRPQUOTA] = dqget(sb, attr->ia_gid,
1184 						      GRPQUOTA);
1185 			if (!transfer_to[GRPQUOTA]) {
1186 				status = -ESRCH;
1187 				goto bail_unlock;
1188 			}
1189 		}
1190 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1191 					   2 * ocfs2_quota_trans_credits(sb));
1192 		if (IS_ERR(handle)) {
1193 			status = PTR_ERR(handle);
1194 			mlog_errno(status);
1195 			goto bail_unlock;
1196 		}
1197 		status = __dquot_transfer(inode, transfer_to);
1198 		if (status < 0)
1199 			goto bail_commit;
1200 	} else {
1201 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1202 		if (IS_ERR(handle)) {
1203 			status = PTR_ERR(handle);
1204 			mlog_errno(status);
1205 			goto bail_unlock;
1206 		}
1207 	}
1208 
1209 	/*
1210 	 * This will intentionally not wind up calling truncate_setsize(),
1211 	 * since all the work for a size change has been done above.
1212 	 * Otherwise, we could get into problems with truncate as
1213 	 * ip_alloc_sem is used there to protect against i_size
1214 	 * changes.
1215 	 *
1216 	 * XXX: this means the conditional below can probably be removed.
1217 	 */
1218 	if ((attr->ia_valid & ATTR_SIZE) &&
1219 	    attr->ia_size != i_size_read(inode)) {
1220 		status = vmtruncate(inode, attr->ia_size);
1221 		if (status) {
1222 			mlog_errno(status);
1223 			goto bail_commit;
1224 		}
1225 	}
1226 
1227 	setattr_copy(inode, attr);
1228 	mark_inode_dirty(inode);
1229 
1230 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1231 	if (status < 0)
1232 		mlog_errno(status);
1233 
1234 bail_commit:
1235 	ocfs2_commit_trans(osb, handle);
1236 bail_unlock:
1237 	ocfs2_inode_unlock(inode, 1);
1238 bail_unlock_rw:
1239 	if (size_change)
1240 		ocfs2_rw_unlock(inode, 1);
1241 bail:
1242 	brelse(bh);
1243 
1244 	/* Release quota pointers in case we acquired them */
1245 	for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1246 		dqput(transfer_to[qtype]);
1247 
1248 	if (!status && attr->ia_valid & ATTR_MODE) {
1249 		status = ocfs2_acl_chmod(inode);
1250 		if (status < 0)
1251 			mlog_errno(status);
1252 	}
1253 
1254 	return status;
1255 }
1256 
1257 int ocfs2_getattr(struct vfsmount *mnt,
1258 		  struct dentry *dentry,
1259 		  struct kstat *stat)
1260 {
1261 	struct inode *inode = dentry->d_inode;
1262 	struct super_block *sb = dentry->d_inode->i_sb;
1263 	struct ocfs2_super *osb = sb->s_fs_info;
1264 	int err;
1265 
1266 	err = ocfs2_inode_revalidate(dentry);
1267 	if (err) {
1268 		if (err != -ENOENT)
1269 			mlog_errno(err);
1270 		goto bail;
1271 	}
1272 
1273 	generic_fillattr(inode, stat);
1274 
1275 	/* We set the blksize from the cluster size for performance */
1276 	stat->blksize = osb->s_clustersize;
1277 
1278 bail:
1279 	return err;
1280 }
1281 
1282 int ocfs2_permission(struct inode *inode, int mask, unsigned int flags)
1283 {
1284 	int ret;
1285 
1286 	if (flags & IPERM_FLAG_RCU)
1287 		return -ECHILD;
1288 
1289 	ret = ocfs2_inode_lock(inode, NULL, 0);
1290 	if (ret) {
1291 		if (ret != -ENOENT)
1292 			mlog_errno(ret);
1293 		goto out;
1294 	}
1295 
1296 	ret = generic_permission(inode, mask, flags, ocfs2_check_acl);
1297 
1298 	ocfs2_inode_unlock(inode, 0);
1299 out:
1300 	return ret;
1301 }
1302 
1303 static int __ocfs2_write_remove_suid(struct inode *inode,
1304 				     struct buffer_head *bh)
1305 {
1306 	int ret;
1307 	handle_t *handle;
1308 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1309 	struct ocfs2_dinode *di;
1310 
1311 	trace_ocfs2_write_remove_suid(
1312 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1313 			inode->i_mode);
1314 
1315 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1316 	if (IS_ERR(handle)) {
1317 		ret = PTR_ERR(handle);
1318 		mlog_errno(ret);
1319 		goto out;
1320 	}
1321 
1322 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1323 				      OCFS2_JOURNAL_ACCESS_WRITE);
1324 	if (ret < 0) {
1325 		mlog_errno(ret);
1326 		goto out_trans;
1327 	}
1328 
1329 	inode->i_mode &= ~S_ISUID;
1330 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1331 		inode->i_mode &= ~S_ISGID;
1332 
1333 	di = (struct ocfs2_dinode *) bh->b_data;
1334 	di->i_mode = cpu_to_le16(inode->i_mode);
1335 
1336 	ocfs2_journal_dirty(handle, bh);
1337 
1338 out_trans:
1339 	ocfs2_commit_trans(osb, handle);
1340 out:
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Will look for holes and unwritten extents in the range starting at
1346  * pos for count bytes (inclusive).
1347  */
1348 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1349 				       size_t count)
1350 {
1351 	int ret = 0;
1352 	unsigned int extent_flags;
1353 	u32 cpos, clusters, extent_len, phys_cpos;
1354 	struct super_block *sb = inode->i_sb;
1355 
1356 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1357 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1358 
1359 	while (clusters) {
1360 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1361 					 &extent_flags);
1362 		if (ret < 0) {
1363 			mlog_errno(ret);
1364 			goto out;
1365 		}
1366 
1367 		if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1368 			ret = 1;
1369 			break;
1370 		}
1371 
1372 		if (extent_len > clusters)
1373 			extent_len = clusters;
1374 
1375 		clusters -= extent_len;
1376 		cpos += extent_len;
1377 	}
1378 out:
1379 	return ret;
1380 }
1381 
1382 static int ocfs2_write_remove_suid(struct inode *inode)
1383 {
1384 	int ret;
1385 	struct buffer_head *bh = NULL;
1386 
1387 	ret = ocfs2_read_inode_block(inode, &bh);
1388 	if (ret < 0) {
1389 		mlog_errno(ret);
1390 		goto out;
1391 	}
1392 
1393 	ret =  __ocfs2_write_remove_suid(inode, bh);
1394 out:
1395 	brelse(bh);
1396 	return ret;
1397 }
1398 
1399 /*
1400  * Allocate enough extents to cover the region starting at byte offset
1401  * start for len bytes. Existing extents are skipped, any extents
1402  * added are marked as "unwritten".
1403  */
1404 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1405 					    u64 start, u64 len)
1406 {
1407 	int ret;
1408 	u32 cpos, phys_cpos, clusters, alloc_size;
1409 	u64 end = start + len;
1410 	struct buffer_head *di_bh = NULL;
1411 
1412 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1413 		ret = ocfs2_read_inode_block(inode, &di_bh);
1414 		if (ret) {
1415 			mlog_errno(ret);
1416 			goto out;
1417 		}
1418 
1419 		/*
1420 		 * Nothing to do if the requested reservation range
1421 		 * fits within the inode.
1422 		 */
1423 		if (ocfs2_size_fits_inline_data(di_bh, end))
1424 			goto out;
1425 
1426 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1427 		if (ret) {
1428 			mlog_errno(ret);
1429 			goto out;
1430 		}
1431 	}
1432 
1433 	/*
1434 	 * We consider both start and len to be inclusive.
1435 	 */
1436 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1437 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1438 	clusters -= cpos;
1439 
1440 	while (clusters) {
1441 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1442 					 &alloc_size, NULL);
1443 		if (ret) {
1444 			mlog_errno(ret);
1445 			goto out;
1446 		}
1447 
1448 		/*
1449 		 * Hole or existing extent len can be arbitrary, so
1450 		 * cap it to our own allocation request.
1451 		 */
1452 		if (alloc_size > clusters)
1453 			alloc_size = clusters;
1454 
1455 		if (phys_cpos) {
1456 			/*
1457 			 * We already have an allocation at this
1458 			 * region so we can safely skip it.
1459 			 */
1460 			goto next;
1461 		}
1462 
1463 		ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1464 		if (ret) {
1465 			if (ret != -ENOSPC)
1466 				mlog_errno(ret);
1467 			goto out;
1468 		}
1469 
1470 next:
1471 		cpos += alloc_size;
1472 		clusters -= alloc_size;
1473 	}
1474 
1475 	ret = 0;
1476 out:
1477 
1478 	brelse(di_bh);
1479 	return ret;
1480 }
1481 
1482 /*
1483  * Truncate a byte range, avoiding pages within partial clusters. This
1484  * preserves those pages for the zeroing code to write to.
1485  */
1486 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1487 					 u64 byte_len)
1488 {
1489 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1490 	loff_t start, end;
1491 	struct address_space *mapping = inode->i_mapping;
1492 
1493 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1494 	end = byte_start + byte_len;
1495 	end = end & ~(osb->s_clustersize - 1);
1496 
1497 	if (start < end) {
1498 		unmap_mapping_range(mapping, start, end - start, 0);
1499 		truncate_inode_pages_range(mapping, start, end - 1);
1500 	}
1501 }
1502 
1503 static int ocfs2_zero_partial_clusters(struct inode *inode,
1504 				       u64 start, u64 len)
1505 {
1506 	int ret = 0;
1507 	u64 tmpend, end = start + len;
1508 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1509 	unsigned int csize = osb->s_clustersize;
1510 	handle_t *handle;
1511 
1512 	/*
1513 	 * The "start" and "end" values are NOT necessarily part of
1514 	 * the range whose allocation is being deleted. Rather, this
1515 	 * is what the user passed in with the request. We must zero
1516 	 * partial clusters here. There's no need to worry about
1517 	 * physical allocation - the zeroing code knows to skip holes.
1518 	 */
1519 	trace_ocfs2_zero_partial_clusters(
1520 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1521 		(unsigned long long)start, (unsigned long long)end);
1522 
1523 	/*
1524 	 * If both edges are on a cluster boundary then there's no
1525 	 * zeroing required as the region is part of the allocation to
1526 	 * be truncated.
1527 	 */
1528 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1529 		goto out;
1530 
1531 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1532 	if (IS_ERR(handle)) {
1533 		ret = PTR_ERR(handle);
1534 		mlog_errno(ret);
1535 		goto out;
1536 	}
1537 
1538 	/*
1539 	 * We want to get the byte offset of the end of the 1st cluster.
1540 	 */
1541 	tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1542 	if (tmpend > end)
1543 		tmpend = end;
1544 
1545 	trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1546 						 (unsigned long long)tmpend);
1547 
1548 	ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1549 	if (ret)
1550 		mlog_errno(ret);
1551 
1552 	if (tmpend < end) {
1553 		/*
1554 		 * This may make start and end equal, but the zeroing
1555 		 * code will skip any work in that case so there's no
1556 		 * need to catch it up here.
1557 		 */
1558 		start = end & ~(osb->s_clustersize - 1);
1559 
1560 		trace_ocfs2_zero_partial_clusters_range2(
1561 			(unsigned long long)start, (unsigned long long)end);
1562 
1563 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1564 		if (ret)
1565 			mlog_errno(ret);
1566 	}
1567 
1568 	ocfs2_commit_trans(osb, handle);
1569 out:
1570 	return ret;
1571 }
1572 
1573 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1574 {
1575 	int i;
1576 	struct ocfs2_extent_rec *rec = NULL;
1577 
1578 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1579 
1580 		rec = &el->l_recs[i];
1581 
1582 		if (le32_to_cpu(rec->e_cpos) < pos)
1583 			break;
1584 	}
1585 
1586 	return i;
1587 }
1588 
1589 /*
1590  * Helper to calculate the punching pos and length in one run, we handle the
1591  * following three cases in order:
1592  *
1593  * - remove the entire record
1594  * - remove a partial record
1595  * - no record needs to be removed (hole-punching completed)
1596 */
1597 static void ocfs2_calc_trunc_pos(struct inode *inode,
1598 				 struct ocfs2_extent_list *el,
1599 				 struct ocfs2_extent_rec *rec,
1600 				 u32 trunc_start, u32 *trunc_cpos,
1601 				 u32 *trunc_len, u32 *trunc_end,
1602 				 u64 *blkno, int *done)
1603 {
1604 	int ret = 0;
1605 	u32 coff, range;
1606 
1607 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1608 
1609 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1610 		/*
1611 		 * remove an entire extent record.
1612 		 */
1613 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1614 		/*
1615 		 * Skip holes if any.
1616 		 */
1617 		if (range < *trunc_end)
1618 			*trunc_end = range;
1619 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1620 		*blkno = le64_to_cpu(rec->e_blkno);
1621 		*trunc_end = le32_to_cpu(rec->e_cpos);
1622 	} else if (range > trunc_start) {
1623 		/*
1624 		 * remove a partial extent record, which means we're
1625 		 * removing the last extent record.
1626 		 */
1627 		*trunc_cpos = trunc_start;
1628 		/*
1629 		 * skip hole if any.
1630 		 */
1631 		if (range < *trunc_end)
1632 			*trunc_end = range;
1633 		*trunc_len = *trunc_end - trunc_start;
1634 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1635 		*blkno = le64_to_cpu(rec->e_blkno) +
1636 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1637 		*trunc_end = trunc_start;
1638 	} else {
1639 		/*
1640 		 * It may have two following possibilities:
1641 		 *
1642 		 * - last record has been removed
1643 		 * - trunc_start was within a hole
1644 		 *
1645 		 * both two cases mean the completion of hole punching.
1646 		 */
1647 		ret = 1;
1648 	}
1649 
1650 	*done = ret;
1651 }
1652 
1653 static int ocfs2_remove_inode_range(struct inode *inode,
1654 				    struct buffer_head *di_bh, u64 byte_start,
1655 				    u64 byte_len)
1656 {
1657 	int ret = 0, flags = 0, done = 0, i;
1658 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1659 	u32 cluster_in_el;
1660 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1661 	struct ocfs2_cached_dealloc_ctxt dealloc;
1662 	struct address_space *mapping = inode->i_mapping;
1663 	struct ocfs2_extent_tree et;
1664 	struct ocfs2_path *path = NULL;
1665 	struct ocfs2_extent_list *el = NULL;
1666 	struct ocfs2_extent_rec *rec = NULL;
1667 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1668 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1669 
1670 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1671 	ocfs2_init_dealloc_ctxt(&dealloc);
1672 
1673 	trace_ocfs2_remove_inode_range(
1674 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1675 			(unsigned long long)byte_start,
1676 			(unsigned long long)byte_len);
1677 
1678 	if (byte_len == 0)
1679 		return 0;
1680 
1681 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1682 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1683 					    byte_start + byte_len, 0);
1684 		if (ret) {
1685 			mlog_errno(ret);
1686 			goto out;
1687 		}
1688 		/*
1689 		 * There's no need to get fancy with the page cache
1690 		 * truncate of an inline-data inode. We're talking
1691 		 * about less than a page here, which will be cached
1692 		 * in the dinode buffer anyway.
1693 		 */
1694 		unmap_mapping_range(mapping, 0, 0, 0);
1695 		truncate_inode_pages(mapping, 0);
1696 		goto out;
1697 	}
1698 
1699 	/*
1700 	 * For reflinks, we may need to CoW 2 clusters which might be
1701 	 * partially zero'd later, if hole's start and end offset were
1702 	 * within one cluster(means is not exactly aligned to clustersize).
1703 	 */
1704 
1705 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1706 
1707 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1708 		if (ret) {
1709 			mlog_errno(ret);
1710 			goto out;
1711 		}
1712 
1713 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1714 		if (ret) {
1715 			mlog_errno(ret);
1716 			goto out;
1717 		}
1718 	}
1719 
1720 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1721 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1722 	cluster_in_el = trunc_end;
1723 
1724 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1725 	if (ret) {
1726 		mlog_errno(ret);
1727 		goto out;
1728 	}
1729 
1730 	path = ocfs2_new_path_from_et(&et);
1731 	if (!path) {
1732 		ret = -ENOMEM;
1733 		mlog_errno(ret);
1734 		goto out;
1735 	}
1736 
1737 	while (trunc_end > trunc_start) {
1738 
1739 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1740 				      cluster_in_el);
1741 		if (ret) {
1742 			mlog_errno(ret);
1743 			goto out;
1744 		}
1745 
1746 		el = path_leaf_el(path);
1747 
1748 		i = ocfs2_find_rec(el, trunc_end);
1749 		/*
1750 		 * Need to go to previous extent block.
1751 		 */
1752 		if (i < 0) {
1753 			if (path->p_tree_depth == 0)
1754 				break;
1755 
1756 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1757 							    path,
1758 							    &cluster_in_el);
1759 			if (ret) {
1760 				mlog_errno(ret);
1761 				goto out;
1762 			}
1763 
1764 			/*
1765 			 * We've reached the leftmost extent block,
1766 			 * it's safe to leave.
1767 			 */
1768 			if (cluster_in_el == 0)
1769 				break;
1770 
1771 			/*
1772 			 * The 'pos' searched for previous extent block is
1773 			 * always one cluster less than actual trunc_end.
1774 			 */
1775 			trunc_end = cluster_in_el + 1;
1776 
1777 			ocfs2_reinit_path(path, 1);
1778 
1779 			continue;
1780 
1781 		} else
1782 			rec = &el->l_recs[i];
1783 
1784 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1785 				     &trunc_len, &trunc_end, &blkno, &done);
1786 		if (done)
1787 			break;
1788 
1789 		flags = rec->e_flags;
1790 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1791 
1792 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1793 					       phys_cpos, trunc_len, flags,
1794 					       &dealloc, refcount_loc);
1795 		if (ret < 0) {
1796 			mlog_errno(ret);
1797 			goto out;
1798 		}
1799 
1800 		cluster_in_el = trunc_end;
1801 
1802 		ocfs2_reinit_path(path, 1);
1803 	}
1804 
1805 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1806 
1807 out:
1808 	ocfs2_schedule_truncate_log_flush(osb, 1);
1809 	ocfs2_run_deallocs(osb, &dealloc);
1810 
1811 	return ret;
1812 }
1813 
1814 /*
1815  * Parts of this function taken from xfs_change_file_space()
1816  */
1817 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1818 				     loff_t f_pos, unsigned int cmd,
1819 				     struct ocfs2_space_resv *sr,
1820 				     int change_size)
1821 {
1822 	int ret;
1823 	s64 llen;
1824 	loff_t size;
1825 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1826 	struct buffer_head *di_bh = NULL;
1827 	handle_t *handle;
1828 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1829 
1830 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1831 		return -EROFS;
1832 
1833 	mutex_lock(&inode->i_mutex);
1834 
1835 	/*
1836 	 * This prevents concurrent writes on other nodes
1837 	 */
1838 	ret = ocfs2_rw_lock(inode, 1);
1839 	if (ret) {
1840 		mlog_errno(ret);
1841 		goto out;
1842 	}
1843 
1844 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1845 	if (ret) {
1846 		mlog_errno(ret);
1847 		goto out_rw_unlock;
1848 	}
1849 
1850 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1851 		ret = -EPERM;
1852 		goto out_inode_unlock;
1853 	}
1854 
1855 	switch (sr->l_whence) {
1856 	case 0: /*SEEK_SET*/
1857 		break;
1858 	case 1: /*SEEK_CUR*/
1859 		sr->l_start += f_pos;
1860 		break;
1861 	case 2: /*SEEK_END*/
1862 		sr->l_start += i_size_read(inode);
1863 		break;
1864 	default:
1865 		ret = -EINVAL;
1866 		goto out_inode_unlock;
1867 	}
1868 	sr->l_whence = 0;
1869 
1870 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1871 
1872 	if (sr->l_start < 0
1873 	    || sr->l_start > max_off
1874 	    || (sr->l_start + llen) < 0
1875 	    || (sr->l_start + llen) > max_off) {
1876 		ret = -EINVAL;
1877 		goto out_inode_unlock;
1878 	}
1879 	size = sr->l_start + sr->l_len;
1880 
1881 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1882 		if (sr->l_len <= 0) {
1883 			ret = -EINVAL;
1884 			goto out_inode_unlock;
1885 		}
1886 	}
1887 
1888 	if (file && should_remove_suid(file->f_path.dentry)) {
1889 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1890 		if (ret) {
1891 			mlog_errno(ret);
1892 			goto out_inode_unlock;
1893 		}
1894 	}
1895 
1896 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1897 	switch (cmd) {
1898 	case OCFS2_IOC_RESVSP:
1899 	case OCFS2_IOC_RESVSP64:
1900 		/*
1901 		 * This takes unsigned offsets, but the signed ones we
1902 		 * pass have been checked against overflow above.
1903 		 */
1904 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1905 						       sr->l_len);
1906 		break;
1907 	case OCFS2_IOC_UNRESVSP:
1908 	case OCFS2_IOC_UNRESVSP64:
1909 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1910 					       sr->l_len);
1911 		break;
1912 	default:
1913 		ret = -EINVAL;
1914 	}
1915 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1916 	if (ret) {
1917 		mlog_errno(ret);
1918 		goto out_inode_unlock;
1919 	}
1920 
1921 	/*
1922 	 * We update c/mtime for these changes
1923 	 */
1924 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1925 	if (IS_ERR(handle)) {
1926 		ret = PTR_ERR(handle);
1927 		mlog_errno(ret);
1928 		goto out_inode_unlock;
1929 	}
1930 
1931 	if (change_size && i_size_read(inode) < size)
1932 		i_size_write(inode, size);
1933 
1934 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1935 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1936 	if (ret < 0)
1937 		mlog_errno(ret);
1938 
1939 	ocfs2_commit_trans(osb, handle);
1940 
1941 out_inode_unlock:
1942 	brelse(di_bh);
1943 	ocfs2_inode_unlock(inode, 1);
1944 out_rw_unlock:
1945 	ocfs2_rw_unlock(inode, 1);
1946 
1947 out:
1948 	mutex_unlock(&inode->i_mutex);
1949 	return ret;
1950 }
1951 
1952 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1953 			    struct ocfs2_space_resv *sr)
1954 {
1955 	struct inode *inode = file->f_path.dentry->d_inode;
1956 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1957 
1958 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1959 	    !ocfs2_writes_unwritten_extents(osb))
1960 		return -ENOTTY;
1961 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1962 		 !ocfs2_sparse_alloc(osb))
1963 		return -ENOTTY;
1964 
1965 	if (!S_ISREG(inode->i_mode))
1966 		return -EINVAL;
1967 
1968 	if (!(file->f_mode & FMODE_WRITE))
1969 		return -EBADF;
1970 
1971 	return __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1972 }
1973 
1974 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1975 			    loff_t len)
1976 {
1977 	struct inode *inode = file->f_path.dentry->d_inode;
1978 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1979 	struct ocfs2_space_resv sr;
1980 	int change_size = 1;
1981 	int cmd = OCFS2_IOC_RESVSP64;
1982 
1983 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1984 		return -EOPNOTSUPP;
1985 	if (!ocfs2_writes_unwritten_extents(osb))
1986 		return -EOPNOTSUPP;
1987 
1988 	if (mode & FALLOC_FL_KEEP_SIZE)
1989 		change_size = 0;
1990 
1991 	if (mode & FALLOC_FL_PUNCH_HOLE)
1992 		cmd = OCFS2_IOC_UNRESVSP64;
1993 
1994 	sr.l_whence = 0;
1995 	sr.l_start = (s64)offset;
1996 	sr.l_len = (s64)len;
1997 
1998 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
1999 					 change_size);
2000 }
2001 
2002 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2003 				   size_t count)
2004 {
2005 	int ret = 0;
2006 	unsigned int extent_flags;
2007 	u32 cpos, clusters, extent_len, phys_cpos;
2008 	struct super_block *sb = inode->i_sb;
2009 
2010 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2011 	    !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2012 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2013 		return 0;
2014 
2015 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2016 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2017 
2018 	while (clusters) {
2019 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2020 					 &extent_flags);
2021 		if (ret < 0) {
2022 			mlog_errno(ret);
2023 			goto out;
2024 		}
2025 
2026 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2027 			ret = 1;
2028 			break;
2029 		}
2030 
2031 		if (extent_len > clusters)
2032 			extent_len = clusters;
2033 
2034 		clusters -= extent_len;
2035 		cpos += extent_len;
2036 	}
2037 out:
2038 	return ret;
2039 }
2040 
2041 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2042 					    struct file *file,
2043 					    loff_t pos, size_t count,
2044 					    int *meta_level)
2045 {
2046 	int ret;
2047 	struct buffer_head *di_bh = NULL;
2048 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2049 	u32 clusters =
2050 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2051 
2052 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2053 	if (ret) {
2054 		mlog_errno(ret);
2055 		goto out;
2056 	}
2057 
2058 	*meta_level = 1;
2059 
2060 	ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX);
2061 	if (ret)
2062 		mlog_errno(ret);
2063 out:
2064 	brelse(di_bh);
2065 	return ret;
2066 }
2067 
2068 static int ocfs2_prepare_inode_for_write(struct file *file,
2069 					 loff_t *ppos,
2070 					 size_t count,
2071 					 int appending,
2072 					 int *direct_io,
2073 					 int *has_refcount)
2074 {
2075 	int ret = 0, meta_level = 0;
2076 	struct dentry *dentry = file->f_path.dentry;
2077 	struct inode *inode = dentry->d_inode;
2078 	loff_t saved_pos = 0, end;
2079 
2080 	/*
2081 	 * We start with a read level meta lock and only jump to an ex
2082 	 * if we need to make modifications here.
2083 	 */
2084 	for(;;) {
2085 		ret = ocfs2_inode_lock(inode, NULL, meta_level);
2086 		if (ret < 0) {
2087 			meta_level = -1;
2088 			mlog_errno(ret);
2089 			goto out;
2090 		}
2091 
2092 		/* Clear suid / sgid if necessary. We do this here
2093 		 * instead of later in the write path because
2094 		 * remove_suid() calls ->setattr without any hint that
2095 		 * we may have already done our cluster locking. Since
2096 		 * ocfs2_setattr() *must* take cluster locks to
2097 		 * proceeed, this will lead us to recursively lock the
2098 		 * inode. There's also the dinode i_size state which
2099 		 * can be lost via setattr during extending writes (we
2100 		 * set inode->i_size at the end of a write. */
2101 		if (should_remove_suid(dentry)) {
2102 			if (meta_level == 0) {
2103 				ocfs2_inode_unlock(inode, meta_level);
2104 				meta_level = 1;
2105 				continue;
2106 			}
2107 
2108 			ret = ocfs2_write_remove_suid(inode);
2109 			if (ret < 0) {
2110 				mlog_errno(ret);
2111 				goto out_unlock;
2112 			}
2113 		}
2114 
2115 		/* work on a copy of ppos until we're sure that we won't have
2116 		 * to recalculate it due to relocking. */
2117 		if (appending)
2118 			saved_pos = i_size_read(inode);
2119 		else
2120 			saved_pos = *ppos;
2121 
2122 		end = saved_pos + count;
2123 
2124 		ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2125 		if (ret == 1) {
2126 			ocfs2_inode_unlock(inode, meta_level);
2127 			meta_level = -1;
2128 
2129 			ret = ocfs2_prepare_inode_for_refcount(inode,
2130 							       file,
2131 							       saved_pos,
2132 							       count,
2133 							       &meta_level);
2134 			if (has_refcount)
2135 				*has_refcount = 1;
2136 			if (direct_io)
2137 				*direct_io = 0;
2138 		}
2139 
2140 		if (ret < 0) {
2141 			mlog_errno(ret);
2142 			goto out_unlock;
2143 		}
2144 
2145 		/*
2146 		 * Skip the O_DIRECT checks if we don't need
2147 		 * them.
2148 		 */
2149 		if (!direct_io || !(*direct_io))
2150 			break;
2151 
2152 		/*
2153 		 * There's no sane way to do direct writes to an inode
2154 		 * with inline data.
2155 		 */
2156 		if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2157 			*direct_io = 0;
2158 			break;
2159 		}
2160 
2161 		/*
2162 		 * Allowing concurrent direct writes means
2163 		 * i_size changes wouldn't be synchronized, so
2164 		 * one node could wind up truncating another
2165 		 * nodes writes.
2166 		 */
2167 		if (end > i_size_read(inode)) {
2168 			*direct_io = 0;
2169 			break;
2170 		}
2171 
2172 		/*
2173 		 * We don't fill holes during direct io, so
2174 		 * check for them here. If any are found, the
2175 		 * caller will have to retake some cluster
2176 		 * locks and initiate the io as buffered.
2177 		 */
2178 		ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2179 		if (ret == 1) {
2180 			*direct_io = 0;
2181 			ret = 0;
2182 		} else if (ret < 0)
2183 			mlog_errno(ret);
2184 		break;
2185 	}
2186 
2187 	if (appending)
2188 		*ppos = saved_pos;
2189 
2190 out_unlock:
2191 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2192 					    saved_pos, appending, count,
2193 					    direct_io, has_refcount);
2194 
2195 	if (meta_level >= 0)
2196 		ocfs2_inode_unlock(inode, meta_level);
2197 
2198 out:
2199 	return ret;
2200 }
2201 
2202 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2203 				    const struct iovec *iov,
2204 				    unsigned long nr_segs,
2205 				    loff_t pos)
2206 {
2207 	int ret, direct_io, appending, rw_level, have_alloc_sem  = 0;
2208 	int can_do_direct, has_refcount = 0;
2209 	ssize_t written = 0;
2210 	size_t ocount;		/* original count */
2211 	size_t count;		/* after file limit checks */
2212 	loff_t old_size, *ppos = &iocb->ki_pos;
2213 	u32 old_clusters;
2214 	struct file *file = iocb->ki_filp;
2215 	struct inode *inode = file->f_path.dentry->d_inode;
2216 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2217 	int full_coherency = !(osb->s_mount_opt &
2218 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2219 
2220 	trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2221 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2222 		file->f_path.dentry->d_name.len,
2223 		file->f_path.dentry->d_name.name,
2224 		(unsigned int)nr_segs);
2225 
2226 	if (iocb->ki_left == 0)
2227 		return 0;
2228 
2229 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2230 
2231 	appending = file->f_flags & O_APPEND ? 1 : 0;
2232 	direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2233 
2234 	mutex_lock(&inode->i_mutex);
2235 
2236 	ocfs2_iocb_clear_sem_locked(iocb);
2237 
2238 relock:
2239 	/* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */
2240 	if (direct_io) {
2241 		down_read(&inode->i_alloc_sem);
2242 		have_alloc_sem = 1;
2243 		/* communicate with ocfs2_dio_end_io */
2244 		ocfs2_iocb_set_sem_locked(iocb);
2245 	}
2246 
2247 	/*
2248 	 * Concurrent O_DIRECT writes are allowed with
2249 	 * mount_option "coherency=buffered".
2250 	 */
2251 	rw_level = (!direct_io || full_coherency);
2252 
2253 	ret = ocfs2_rw_lock(inode, rw_level);
2254 	if (ret < 0) {
2255 		mlog_errno(ret);
2256 		goto out_sems;
2257 	}
2258 
2259 	/*
2260 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2261 	 * inode_lock to guarantee coherency.
2262 	 */
2263 	if (direct_io && full_coherency) {
2264 		/*
2265 		 * We need to take and drop the inode lock to force
2266 		 * other nodes to drop their caches.  Buffered I/O
2267 		 * already does this in write_begin().
2268 		 */
2269 		ret = ocfs2_inode_lock(inode, NULL, 1);
2270 		if (ret < 0) {
2271 			mlog_errno(ret);
2272 			goto out_sems;
2273 		}
2274 
2275 		ocfs2_inode_unlock(inode, 1);
2276 	}
2277 
2278 	can_do_direct = direct_io;
2279 	ret = ocfs2_prepare_inode_for_write(file, ppos,
2280 					    iocb->ki_left, appending,
2281 					    &can_do_direct, &has_refcount);
2282 	if (ret < 0) {
2283 		mlog_errno(ret);
2284 		goto out;
2285 	}
2286 
2287 	/*
2288 	 * We can't complete the direct I/O as requested, fall back to
2289 	 * buffered I/O.
2290 	 */
2291 	if (direct_io && !can_do_direct) {
2292 		ocfs2_rw_unlock(inode, rw_level);
2293 		up_read(&inode->i_alloc_sem);
2294 
2295 		have_alloc_sem = 0;
2296 		rw_level = -1;
2297 
2298 		direct_io = 0;
2299 		goto relock;
2300 	}
2301 
2302 	/*
2303 	 * To later detect whether a journal commit for sync writes is
2304 	 * necessary, we sample i_size, and cluster count here.
2305 	 */
2306 	old_size = i_size_read(inode);
2307 	old_clusters = OCFS2_I(inode)->ip_clusters;
2308 
2309 	/* communicate with ocfs2_dio_end_io */
2310 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2311 
2312 	ret = generic_segment_checks(iov, &nr_segs, &ocount,
2313 				     VERIFY_READ);
2314 	if (ret)
2315 		goto out_dio;
2316 
2317 	count = ocount;
2318 	ret = generic_write_checks(file, ppos, &count,
2319 				   S_ISBLK(inode->i_mode));
2320 	if (ret)
2321 		goto out_dio;
2322 
2323 	if (direct_io) {
2324 		written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2325 						    ppos, count, ocount);
2326 		if (written < 0) {
2327 			ret = written;
2328 			goto out_dio;
2329 		}
2330 	} else {
2331 		current->backing_dev_info = file->f_mapping->backing_dev_info;
2332 		written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2333 						      ppos, count, 0);
2334 		current->backing_dev_info = NULL;
2335 	}
2336 
2337 out_dio:
2338 	/* buffered aio wouldn't have proper lock coverage today */
2339 	BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2340 
2341 	if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2342 	    ((file->f_flags & O_DIRECT) && !direct_io)) {
2343 		ret = filemap_fdatawrite_range(file->f_mapping, pos,
2344 					       pos + count - 1);
2345 		if (ret < 0)
2346 			written = ret;
2347 
2348 		if (!ret && ((old_size != i_size_read(inode)) ||
2349 			     (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2350 			     has_refcount)) {
2351 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2352 			if (ret < 0)
2353 				written = ret;
2354 		}
2355 
2356 		if (!ret)
2357 			ret = filemap_fdatawait_range(file->f_mapping, pos,
2358 						      pos + count - 1);
2359 	}
2360 
2361 	/*
2362 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2363 	 * function pointer which is called when o_direct io completes so that
2364 	 * it can unlock our rw lock.  (it's the clustered equivalent of
2365 	 * i_alloc_sem; protects truncate from racing with pending ios).
2366 	 * Unfortunately there are error cases which call end_io and others
2367 	 * that don't.  so we don't have to unlock the rw_lock if either an
2368 	 * async dio is going to do it in the future or an end_io after an
2369 	 * error has already done it.
2370 	 */
2371 	if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2372 		rw_level = -1;
2373 		have_alloc_sem = 0;
2374 	}
2375 
2376 out:
2377 	if (rw_level != -1)
2378 		ocfs2_rw_unlock(inode, rw_level);
2379 
2380 out_sems:
2381 	if (have_alloc_sem) {
2382 		up_read(&inode->i_alloc_sem);
2383 		ocfs2_iocb_clear_sem_locked(iocb);
2384 	}
2385 
2386 	mutex_unlock(&inode->i_mutex);
2387 
2388 	if (written)
2389 		ret = written;
2390 	return ret;
2391 }
2392 
2393 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2394 				struct file *out,
2395 				struct splice_desc *sd)
2396 {
2397 	int ret;
2398 
2399 	ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2400 					    sd->total_len, 0, NULL, NULL);
2401 	if (ret < 0) {
2402 		mlog_errno(ret);
2403 		return ret;
2404 	}
2405 
2406 	return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2407 }
2408 
2409 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2410 				       struct file *out,
2411 				       loff_t *ppos,
2412 				       size_t len,
2413 				       unsigned int flags)
2414 {
2415 	int ret;
2416 	struct address_space *mapping = out->f_mapping;
2417 	struct inode *inode = mapping->host;
2418 	struct splice_desc sd = {
2419 		.total_len = len,
2420 		.flags = flags,
2421 		.pos = *ppos,
2422 		.u.file = out,
2423 	};
2424 
2425 
2426 	trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2427 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2428 			out->f_path.dentry->d_name.len,
2429 			out->f_path.dentry->d_name.name, len);
2430 
2431 	if (pipe->inode)
2432 		mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
2433 
2434 	splice_from_pipe_begin(&sd);
2435 	do {
2436 		ret = splice_from_pipe_next(pipe, &sd);
2437 		if (ret <= 0)
2438 			break;
2439 
2440 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2441 		ret = ocfs2_rw_lock(inode, 1);
2442 		if (ret < 0)
2443 			mlog_errno(ret);
2444 		else {
2445 			ret = ocfs2_splice_to_file(pipe, out, &sd);
2446 			ocfs2_rw_unlock(inode, 1);
2447 		}
2448 		mutex_unlock(&inode->i_mutex);
2449 	} while (ret > 0);
2450 	splice_from_pipe_end(pipe, &sd);
2451 
2452 	if (pipe->inode)
2453 		mutex_unlock(&pipe->inode->i_mutex);
2454 
2455 	if (sd.num_spliced)
2456 		ret = sd.num_spliced;
2457 
2458 	if (ret > 0) {
2459 		unsigned long nr_pages;
2460 		int err;
2461 
2462 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2463 
2464 		err = generic_write_sync(out, *ppos, ret);
2465 		if (err)
2466 			ret = err;
2467 		else
2468 			*ppos += ret;
2469 
2470 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
2471 	}
2472 
2473 	return ret;
2474 }
2475 
2476 static ssize_t ocfs2_file_splice_read(struct file *in,
2477 				      loff_t *ppos,
2478 				      struct pipe_inode_info *pipe,
2479 				      size_t len,
2480 				      unsigned int flags)
2481 {
2482 	int ret = 0, lock_level = 0;
2483 	struct inode *inode = in->f_path.dentry->d_inode;
2484 
2485 	trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2486 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2487 			in->f_path.dentry->d_name.len,
2488 			in->f_path.dentry->d_name.name, len);
2489 
2490 	/*
2491 	 * See the comment in ocfs2_file_aio_read()
2492 	 */
2493 	ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level);
2494 	if (ret < 0) {
2495 		mlog_errno(ret);
2496 		goto bail;
2497 	}
2498 	ocfs2_inode_unlock(inode, lock_level);
2499 
2500 	ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2501 
2502 bail:
2503 	return ret;
2504 }
2505 
2506 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2507 				   const struct iovec *iov,
2508 				   unsigned long nr_segs,
2509 				   loff_t pos)
2510 {
2511 	int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2512 	struct file *filp = iocb->ki_filp;
2513 	struct inode *inode = filp->f_path.dentry->d_inode;
2514 
2515 	trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2516 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2517 			filp->f_path.dentry->d_name.len,
2518 			filp->f_path.dentry->d_name.name, nr_segs);
2519 
2520 
2521 	if (!inode) {
2522 		ret = -EINVAL;
2523 		mlog_errno(ret);
2524 		goto bail;
2525 	}
2526 
2527 	ocfs2_iocb_clear_sem_locked(iocb);
2528 
2529 	/*
2530 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2531 	 * need locks to protect pending reads from racing with truncate.
2532 	 */
2533 	if (filp->f_flags & O_DIRECT) {
2534 		down_read(&inode->i_alloc_sem);
2535 		have_alloc_sem = 1;
2536 		ocfs2_iocb_set_sem_locked(iocb);
2537 
2538 		ret = ocfs2_rw_lock(inode, 0);
2539 		if (ret < 0) {
2540 			mlog_errno(ret);
2541 			goto bail;
2542 		}
2543 		rw_level = 0;
2544 		/* communicate with ocfs2_dio_end_io */
2545 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2546 	}
2547 
2548 	/*
2549 	 * We're fine letting folks race truncates and extending
2550 	 * writes with read across the cluster, just like they can
2551 	 * locally. Hence no rw_lock during read.
2552 	 *
2553 	 * Take and drop the meta data lock to update inode fields
2554 	 * like i_size. This allows the checks down below
2555 	 * generic_file_aio_read() a chance of actually working.
2556 	 */
2557 	ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level);
2558 	if (ret < 0) {
2559 		mlog_errno(ret);
2560 		goto bail;
2561 	}
2562 	ocfs2_inode_unlock(inode, lock_level);
2563 
2564 	ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2565 	trace_generic_file_aio_read_ret(ret);
2566 
2567 	/* buffered aio wouldn't have proper lock coverage today */
2568 	BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2569 
2570 	/* see ocfs2_file_aio_write */
2571 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2572 		rw_level = -1;
2573 		have_alloc_sem = 0;
2574 	}
2575 
2576 bail:
2577 	if (have_alloc_sem) {
2578 		up_read(&inode->i_alloc_sem);
2579 		ocfs2_iocb_clear_sem_locked(iocb);
2580 	}
2581 	if (rw_level != -1)
2582 		ocfs2_rw_unlock(inode, rw_level);
2583 
2584 	return ret;
2585 }
2586 
2587 const struct inode_operations ocfs2_file_iops = {
2588 	.setattr	= ocfs2_setattr,
2589 	.getattr	= ocfs2_getattr,
2590 	.permission	= ocfs2_permission,
2591 	.setxattr	= generic_setxattr,
2592 	.getxattr	= generic_getxattr,
2593 	.listxattr	= ocfs2_listxattr,
2594 	.removexattr	= generic_removexattr,
2595 	.fiemap		= ocfs2_fiemap,
2596 };
2597 
2598 const struct inode_operations ocfs2_special_file_iops = {
2599 	.setattr	= ocfs2_setattr,
2600 	.getattr	= ocfs2_getattr,
2601 	.permission	= ocfs2_permission,
2602 };
2603 
2604 /*
2605  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2606  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2607  */
2608 const struct file_operations ocfs2_fops = {
2609 	.llseek		= generic_file_llseek,
2610 	.read		= do_sync_read,
2611 	.write		= do_sync_write,
2612 	.mmap		= ocfs2_mmap,
2613 	.fsync		= ocfs2_sync_file,
2614 	.release	= ocfs2_file_release,
2615 	.open		= ocfs2_file_open,
2616 	.aio_read	= ocfs2_file_aio_read,
2617 	.aio_write	= ocfs2_file_aio_write,
2618 	.unlocked_ioctl	= ocfs2_ioctl,
2619 #ifdef CONFIG_COMPAT
2620 	.compat_ioctl   = ocfs2_compat_ioctl,
2621 #endif
2622 	.lock		= ocfs2_lock,
2623 	.flock		= ocfs2_flock,
2624 	.splice_read	= ocfs2_file_splice_read,
2625 	.splice_write	= ocfs2_file_splice_write,
2626 	.fallocate	= ocfs2_fallocate,
2627 };
2628 
2629 const struct file_operations ocfs2_dops = {
2630 	.llseek		= generic_file_llseek,
2631 	.read		= generic_read_dir,
2632 	.readdir	= ocfs2_readdir,
2633 	.fsync		= ocfs2_sync_file,
2634 	.release	= ocfs2_dir_release,
2635 	.open		= ocfs2_dir_open,
2636 	.unlocked_ioctl	= ocfs2_ioctl,
2637 #ifdef CONFIG_COMPAT
2638 	.compat_ioctl   = ocfs2_compat_ioctl,
2639 #endif
2640 	.lock		= ocfs2_lock,
2641 	.flock		= ocfs2_flock,
2642 };
2643 
2644 /*
2645  * POSIX-lockless variants of our file_operations.
2646  *
2647  * These will be used if the underlying cluster stack does not support
2648  * posix file locking, if the user passes the "localflocks" mount
2649  * option, or if we have a local-only fs.
2650  *
2651  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2652  * so we still want it in the case of no stack support for
2653  * plocks. Internally, it will do the right thing when asked to ignore
2654  * the cluster.
2655  */
2656 const struct file_operations ocfs2_fops_no_plocks = {
2657 	.llseek		= generic_file_llseek,
2658 	.read		= do_sync_read,
2659 	.write		= do_sync_write,
2660 	.mmap		= ocfs2_mmap,
2661 	.fsync		= ocfs2_sync_file,
2662 	.release	= ocfs2_file_release,
2663 	.open		= ocfs2_file_open,
2664 	.aio_read	= ocfs2_file_aio_read,
2665 	.aio_write	= ocfs2_file_aio_write,
2666 	.unlocked_ioctl	= ocfs2_ioctl,
2667 #ifdef CONFIG_COMPAT
2668 	.compat_ioctl   = ocfs2_compat_ioctl,
2669 #endif
2670 	.flock		= ocfs2_flock,
2671 	.splice_read	= ocfs2_file_splice_read,
2672 	.splice_write	= ocfs2_file_splice_write,
2673 	.fallocate	= ocfs2_fallocate,
2674 };
2675 
2676 const struct file_operations ocfs2_dops_no_plocks = {
2677 	.llseek		= generic_file_llseek,
2678 	.read		= generic_read_dir,
2679 	.readdir	= ocfs2_readdir,
2680 	.fsync		= ocfs2_sync_file,
2681 	.release	= ocfs2_dir_release,
2682 	.open		= ocfs2_dir_open,
2683 	.unlocked_ioctl	= ocfs2_ioctl,
2684 #ifdef CONFIG_COMPAT
2685 	.compat_ioctl   = ocfs2_compat_ioctl,
2686 #endif
2687 	.flock		= ocfs2_flock,
2688 };
2689