1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * file.c 5 * 6 * File open, close, extend, truncate 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/capability.h> 27 #include <linux/fs.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/highmem.h> 31 #include <linux/pagemap.h> 32 #include <linux/uio.h> 33 #include <linux/sched.h> 34 #include <linux/splice.h> 35 #include <linux/mount.h> 36 #include <linux/writeback.h> 37 #include <linux/falloc.h> 38 #include <linux/quotaops.h> 39 #include <linux/blkdev.h> 40 41 #include <cluster/masklog.h> 42 43 #include "ocfs2.h" 44 45 #include "alloc.h" 46 #include "aops.h" 47 #include "dir.h" 48 #include "dlmglue.h" 49 #include "extent_map.h" 50 #include "file.h" 51 #include "sysfile.h" 52 #include "inode.h" 53 #include "ioctl.h" 54 #include "journal.h" 55 #include "locks.h" 56 #include "mmap.h" 57 #include "suballoc.h" 58 #include "super.h" 59 #include "xattr.h" 60 #include "acl.h" 61 #include "quota.h" 62 #include "refcounttree.h" 63 #include "ocfs2_trace.h" 64 65 #include "buffer_head_io.h" 66 67 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 68 { 69 struct ocfs2_file_private *fp; 70 71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 72 if (!fp) 73 return -ENOMEM; 74 75 fp->fp_file = file; 76 mutex_init(&fp->fp_mutex); 77 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 78 file->private_data = fp; 79 80 return 0; 81 } 82 83 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 84 { 85 struct ocfs2_file_private *fp = file->private_data; 86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 87 88 if (fp) { 89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 90 ocfs2_lock_res_free(&fp->fp_flock); 91 kfree(fp); 92 file->private_data = NULL; 93 } 94 } 95 96 static int ocfs2_file_open(struct inode *inode, struct file *file) 97 { 98 int status; 99 int mode = file->f_flags; 100 struct ocfs2_inode_info *oi = OCFS2_I(inode); 101 102 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 103 (unsigned long long)OCFS2_I(inode)->ip_blkno, 104 file->f_path.dentry->d_name.len, 105 file->f_path.dentry->d_name.name, mode); 106 107 if (file->f_mode & FMODE_WRITE) 108 dquot_initialize(inode); 109 110 spin_lock(&oi->ip_lock); 111 112 /* Check that the inode hasn't been wiped from disk by another 113 * node. If it hasn't then we're safe as long as we hold the 114 * spin lock until our increment of open count. */ 115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { 116 spin_unlock(&oi->ip_lock); 117 118 status = -ENOENT; 119 goto leave; 120 } 121 122 if (mode & O_DIRECT) 123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 124 125 oi->ip_open_count++; 126 spin_unlock(&oi->ip_lock); 127 128 status = ocfs2_init_file_private(inode, file); 129 if (status) { 130 /* 131 * We want to set open count back if we're failing the 132 * open. 133 */ 134 spin_lock(&oi->ip_lock); 135 oi->ip_open_count--; 136 spin_unlock(&oi->ip_lock); 137 } 138 139 leave: 140 return status; 141 } 142 143 static int ocfs2_file_release(struct inode *inode, struct file *file) 144 { 145 struct ocfs2_inode_info *oi = OCFS2_I(inode); 146 147 spin_lock(&oi->ip_lock); 148 if (!--oi->ip_open_count) 149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 150 151 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 152 oi->ip_blkno, 153 file->f_path.dentry->d_name.len, 154 file->f_path.dentry->d_name.name, 155 oi->ip_open_count); 156 spin_unlock(&oi->ip_lock); 157 158 ocfs2_free_file_private(inode, file); 159 160 return 0; 161 } 162 163 static int ocfs2_dir_open(struct inode *inode, struct file *file) 164 { 165 return ocfs2_init_file_private(inode, file); 166 } 167 168 static int ocfs2_dir_release(struct inode *inode, struct file *file) 169 { 170 ocfs2_free_file_private(inode, file); 171 return 0; 172 } 173 174 static int ocfs2_sync_file(struct file *file, int datasync) 175 { 176 int err = 0; 177 journal_t *journal; 178 struct inode *inode = file->f_mapping->host; 179 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 180 181 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 182 OCFS2_I(inode)->ip_blkno, 183 file->f_path.dentry->d_name.len, 184 file->f_path.dentry->d_name.name, 185 (unsigned long long)datasync); 186 187 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) { 188 /* 189 * We still have to flush drive's caches to get data to the 190 * platter 191 */ 192 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 193 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 194 goto bail; 195 } 196 197 journal = osb->journal->j_journal; 198 err = jbd2_journal_force_commit(journal); 199 200 bail: 201 if (err) 202 mlog_errno(err); 203 204 return (err < 0) ? -EIO : 0; 205 } 206 207 int ocfs2_should_update_atime(struct inode *inode, 208 struct vfsmount *vfsmnt) 209 { 210 struct timespec now; 211 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 212 213 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 214 return 0; 215 216 if ((inode->i_flags & S_NOATIME) || 217 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) 218 return 0; 219 220 /* 221 * We can be called with no vfsmnt structure - NFSD will 222 * sometimes do this. 223 * 224 * Note that our action here is different than touch_atime() - 225 * if we can't tell whether this is a noatime mount, then we 226 * don't know whether to trust the value of s_atime_quantum. 227 */ 228 if (vfsmnt == NULL) 229 return 0; 230 231 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 232 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 233 return 0; 234 235 if (vfsmnt->mnt_flags & MNT_RELATIME) { 236 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 237 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 238 return 1; 239 240 return 0; 241 } 242 243 now = CURRENT_TIME; 244 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 245 return 0; 246 else 247 return 1; 248 } 249 250 int ocfs2_update_inode_atime(struct inode *inode, 251 struct buffer_head *bh) 252 { 253 int ret; 254 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 255 handle_t *handle; 256 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 257 258 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 259 if (IS_ERR(handle)) { 260 ret = PTR_ERR(handle); 261 mlog_errno(ret); 262 goto out; 263 } 264 265 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 266 OCFS2_JOURNAL_ACCESS_WRITE); 267 if (ret) { 268 mlog_errno(ret); 269 goto out_commit; 270 } 271 272 /* 273 * Don't use ocfs2_mark_inode_dirty() here as we don't always 274 * have i_mutex to guard against concurrent changes to other 275 * inode fields. 276 */ 277 inode->i_atime = CURRENT_TIME; 278 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 279 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 280 ocfs2_journal_dirty(handle, bh); 281 282 out_commit: 283 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 284 out: 285 return ret; 286 } 287 288 static int ocfs2_set_inode_size(handle_t *handle, 289 struct inode *inode, 290 struct buffer_head *fe_bh, 291 u64 new_i_size) 292 { 293 int status; 294 295 i_size_write(inode, new_i_size); 296 inode->i_blocks = ocfs2_inode_sector_count(inode); 297 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 298 299 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 300 if (status < 0) { 301 mlog_errno(status); 302 goto bail; 303 } 304 305 bail: 306 return status; 307 } 308 309 int ocfs2_simple_size_update(struct inode *inode, 310 struct buffer_head *di_bh, 311 u64 new_i_size) 312 { 313 int ret; 314 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 315 handle_t *handle = NULL; 316 317 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 318 if (IS_ERR(handle)) { 319 ret = PTR_ERR(handle); 320 mlog_errno(ret); 321 goto out; 322 } 323 324 ret = ocfs2_set_inode_size(handle, inode, di_bh, 325 new_i_size); 326 if (ret < 0) 327 mlog_errno(ret); 328 329 ocfs2_commit_trans(osb, handle); 330 out: 331 return ret; 332 } 333 334 static int ocfs2_cow_file_pos(struct inode *inode, 335 struct buffer_head *fe_bh, 336 u64 offset) 337 { 338 int status; 339 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 340 unsigned int num_clusters = 0; 341 unsigned int ext_flags = 0; 342 343 /* 344 * If the new offset is aligned to the range of the cluster, there is 345 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 346 * CoW either. 347 */ 348 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 349 return 0; 350 351 status = ocfs2_get_clusters(inode, cpos, &phys, 352 &num_clusters, &ext_flags); 353 if (status) { 354 mlog_errno(status); 355 goto out; 356 } 357 358 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 359 goto out; 360 361 return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1); 362 363 out: 364 return status; 365 } 366 367 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 368 struct inode *inode, 369 struct buffer_head *fe_bh, 370 u64 new_i_size) 371 { 372 int status; 373 handle_t *handle; 374 struct ocfs2_dinode *di; 375 u64 cluster_bytes; 376 377 /* 378 * We need to CoW the cluster contains the offset if it is reflinked 379 * since we will call ocfs2_zero_range_for_truncate later which will 380 * write "0" from offset to the end of the cluster. 381 */ 382 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 383 if (status) { 384 mlog_errno(status); 385 return status; 386 } 387 388 /* TODO: This needs to actually orphan the inode in this 389 * transaction. */ 390 391 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 392 if (IS_ERR(handle)) { 393 status = PTR_ERR(handle); 394 mlog_errno(status); 395 goto out; 396 } 397 398 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 399 OCFS2_JOURNAL_ACCESS_WRITE); 400 if (status < 0) { 401 mlog_errno(status); 402 goto out_commit; 403 } 404 405 /* 406 * Do this before setting i_size. 407 */ 408 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 409 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 410 cluster_bytes); 411 if (status) { 412 mlog_errno(status); 413 goto out_commit; 414 } 415 416 i_size_write(inode, new_i_size); 417 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 418 419 di = (struct ocfs2_dinode *) fe_bh->b_data; 420 di->i_size = cpu_to_le64(new_i_size); 421 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 422 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 423 424 ocfs2_journal_dirty(handle, fe_bh); 425 426 out_commit: 427 ocfs2_commit_trans(osb, handle); 428 out: 429 return status; 430 } 431 432 static int ocfs2_truncate_file(struct inode *inode, 433 struct buffer_head *di_bh, 434 u64 new_i_size) 435 { 436 int status = 0; 437 struct ocfs2_dinode *fe = NULL; 438 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 439 440 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 441 * already validated it */ 442 fe = (struct ocfs2_dinode *) di_bh->b_data; 443 444 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 445 (unsigned long long)le64_to_cpu(fe->i_size), 446 (unsigned long long)new_i_size); 447 448 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 449 "Inode %llu, inode i_size = %lld != di " 450 "i_size = %llu, i_flags = 0x%x\n", 451 (unsigned long long)OCFS2_I(inode)->ip_blkno, 452 i_size_read(inode), 453 (unsigned long long)le64_to_cpu(fe->i_size), 454 le32_to_cpu(fe->i_flags)); 455 456 if (new_i_size > le64_to_cpu(fe->i_size)) { 457 trace_ocfs2_truncate_file_error( 458 (unsigned long long)le64_to_cpu(fe->i_size), 459 (unsigned long long)new_i_size); 460 status = -EINVAL; 461 mlog_errno(status); 462 goto bail; 463 } 464 465 /* lets handle the simple truncate cases before doing any more 466 * cluster locking. */ 467 if (new_i_size == le64_to_cpu(fe->i_size)) 468 goto bail; 469 470 down_write(&OCFS2_I(inode)->ip_alloc_sem); 471 472 ocfs2_resv_discard(&osb->osb_la_resmap, 473 &OCFS2_I(inode)->ip_la_data_resv); 474 475 /* 476 * The inode lock forced other nodes to sync and drop their 477 * pages, which (correctly) happens even if we have a truncate 478 * without allocation change - ocfs2 cluster sizes can be much 479 * greater than page size, so we have to truncate them 480 * anyway. 481 */ 482 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 483 truncate_inode_pages(inode->i_mapping, new_i_size); 484 485 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 486 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 487 i_size_read(inode), 1); 488 if (status) 489 mlog_errno(status); 490 491 goto bail_unlock_sem; 492 } 493 494 /* alright, we're going to need to do a full blown alloc size 495 * change. Orphan the inode so that recovery can complete the 496 * truncate if necessary. This does the task of marking 497 * i_size. */ 498 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 499 if (status < 0) { 500 mlog_errno(status); 501 goto bail_unlock_sem; 502 } 503 504 status = ocfs2_commit_truncate(osb, inode, di_bh); 505 if (status < 0) { 506 mlog_errno(status); 507 goto bail_unlock_sem; 508 } 509 510 /* TODO: orphan dir cleanup here. */ 511 bail_unlock_sem: 512 up_write(&OCFS2_I(inode)->ip_alloc_sem); 513 514 bail: 515 if (!status && OCFS2_I(inode)->ip_clusters == 0) 516 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 517 518 return status; 519 } 520 521 /* 522 * extend file allocation only here. 523 * we'll update all the disk stuff, and oip->alloc_size 524 * 525 * expect stuff to be locked, a transaction started and enough data / 526 * metadata reservations in the contexts. 527 * 528 * Will return -EAGAIN, and a reason if a restart is needed. 529 * If passed in, *reason will always be set, even in error. 530 */ 531 int ocfs2_add_inode_data(struct ocfs2_super *osb, 532 struct inode *inode, 533 u32 *logical_offset, 534 u32 clusters_to_add, 535 int mark_unwritten, 536 struct buffer_head *fe_bh, 537 handle_t *handle, 538 struct ocfs2_alloc_context *data_ac, 539 struct ocfs2_alloc_context *meta_ac, 540 enum ocfs2_alloc_restarted *reason_ret) 541 { 542 int ret; 543 struct ocfs2_extent_tree et; 544 545 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 546 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 547 clusters_to_add, mark_unwritten, 548 data_ac, meta_ac, reason_ret); 549 550 return ret; 551 } 552 553 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 554 u32 clusters_to_add, int mark_unwritten) 555 { 556 int status = 0; 557 int restart_func = 0; 558 int credits; 559 u32 prev_clusters; 560 struct buffer_head *bh = NULL; 561 struct ocfs2_dinode *fe = NULL; 562 handle_t *handle = NULL; 563 struct ocfs2_alloc_context *data_ac = NULL; 564 struct ocfs2_alloc_context *meta_ac = NULL; 565 enum ocfs2_alloc_restarted why; 566 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 567 struct ocfs2_extent_tree et; 568 int did_quota = 0; 569 570 /* 571 * This function only exists for file systems which don't 572 * support holes. 573 */ 574 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 575 576 status = ocfs2_read_inode_block(inode, &bh); 577 if (status < 0) { 578 mlog_errno(status); 579 goto leave; 580 } 581 fe = (struct ocfs2_dinode *) bh->b_data; 582 583 restart_all: 584 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 585 586 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 587 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 588 &data_ac, &meta_ac); 589 if (status) { 590 mlog_errno(status); 591 goto leave; 592 } 593 594 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list, 595 clusters_to_add); 596 handle = ocfs2_start_trans(osb, credits); 597 if (IS_ERR(handle)) { 598 status = PTR_ERR(handle); 599 handle = NULL; 600 mlog_errno(status); 601 goto leave; 602 } 603 604 restarted_transaction: 605 trace_ocfs2_extend_allocation( 606 (unsigned long long)OCFS2_I(inode)->ip_blkno, 607 (unsigned long long)i_size_read(inode), 608 le32_to_cpu(fe->i_clusters), clusters_to_add, 609 why, restart_func); 610 611 status = dquot_alloc_space_nodirty(inode, 612 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 613 if (status) 614 goto leave; 615 did_quota = 1; 616 617 /* reserve a write to the file entry early on - that we if we 618 * run out of credits in the allocation path, we can still 619 * update i_size. */ 620 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 621 OCFS2_JOURNAL_ACCESS_WRITE); 622 if (status < 0) { 623 mlog_errno(status); 624 goto leave; 625 } 626 627 prev_clusters = OCFS2_I(inode)->ip_clusters; 628 629 status = ocfs2_add_inode_data(osb, 630 inode, 631 &logical_start, 632 clusters_to_add, 633 mark_unwritten, 634 bh, 635 handle, 636 data_ac, 637 meta_ac, 638 &why); 639 if ((status < 0) && (status != -EAGAIN)) { 640 if (status != -ENOSPC) 641 mlog_errno(status); 642 goto leave; 643 } 644 645 ocfs2_journal_dirty(handle, bh); 646 647 spin_lock(&OCFS2_I(inode)->ip_lock); 648 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 649 spin_unlock(&OCFS2_I(inode)->ip_lock); 650 /* Release unused quota reservation */ 651 dquot_free_space(inode, 652 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 653 did_quota = 0; 654 655 if (why != RESTART_NONE && clusters_to_add) { 656 if (why == RESTART_META) { 657 restart_func = 1; 658 status = 0; 659 } else { 660 BUG_ON(why != RESTART_TRANS); 661 662 /* TODO: This can be more intelligent. */ 663 credits = ocfs2_calc_extend_credits(osb->sb, 664 &fe->id2.i_list, 665 clusters_to_add); 666 status = ocfs2_extend_trans(handle, credits); 667 if (status < 0) { 668 /* handle still has to be committed at 669 * this point. */ 670 status = -ENOMEM; 671 mlog_errno(status); 672 goto leave; 673 } 674 goto restarted_transaction; 675 } 676 } 677 678 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 679 le32_to_cpu(fe->i_clusters), 680 (unsigned long long)le64_to_cpu(fe->i_size), 681 OCFS2_I(inode)->ip_clusters, 682 (unsigned long long)i_size_read(inode)); 683 684 leave: 685 if (status < 0 && did_quota) 686 dquot_free_space(inode, 687 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 688 if (handle) { 689 ocfs2_commit_trans(osb, handle); 690 handle = NULL; 691 } 692 if (data_ac) { 693 ocfs2_free_alloc_context(data_ac); 694 data_ac = NULL; 695 } 696 if (meta_ac) { 697 ocfs2_free_alloc_context(meta_ac); 698 meta_ac = NULL; 699 } 700 if ((!status) && restart_func) { 701 restart_func = 0; 702 goto restart_all; 703 } 704 brelse(bh); 705 bh = NULL; 706 707 return status; 708 } 709 710 /* 711 * While a write will already be ordering the data, a truncate will not. 712 * Thus, we need to explicitly order the zeroed pages. 713 */ 714 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode) 715 { 716 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 717 handle_t *handle = NULL; 718 int ret = 0; 719 720 if (!ocfs2_should_order_data(inode)) 721 goto out; 722 723 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 724 if (IS_ERR(handle)) { 725 ret = -ENOMEM; 726 mlog_errno(ret); 727 goto out; 728 } 729 730 ret = ocfs2_jbd2_file_inode(handle, inode); 731 if (ret < 0) 732 mlog_errno(ret); 733 734 out: 735 if (ret) { 736 if (!IS_ERR(handle)) 737 ocfs2_commit_trans(osb, handle); 738 handle = ERR_PTR(ret); 739 } 740 return handle; 741 } 742 743 /* Some parts of this taken from generic_cont_expand, which turned out 744 * to be too fragile to do exactly what we need without us having to 745 * worry about recursive locking in ->write_begin() and ->write_end(). */ 746 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 747 u64 abs_to) 748 { 749 struct address_space *mapping = inode->i_mapping; 750 struct page *page; 751 unsigned long index = abs_from >> PAGE_CACHE_SHIFT; 752 handle_t *handle = NULL; 753 int ret = 0; 754 unsigned zero_from, zero_to, block_start, block_end; 755 756 BUG_ON(abs_from >= abs_to); 757 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT)); 758 BUG_ON(abs_from & (inode->i_blkbits - 1)); 759 760 page = find_or_create_page(mapping, index, GFP_NOFS); 761 if (!page) { 762 ret = -ENOMEM; 763 mlog_errno(ret); 764 goto out; 765 } 766 767 /* Get the offsets within the page that we want to zero */ 768 zero_from = abs_from & (PAGE_CACHE_SIZE - 1); 769 zero_to = abs_to & (PAGE_CACHE_SIZE - 1); 770 if (!zero_to) 771 zero_to = PAGE_CACHE_SIZE; 772 773 trace_ocfs2_write_zero_page( 774 (unsigned long long)OCFS2_I(inode)->ip_blkno, 775 (unsigned long long)abs_from, 776 (unsigned long long)abs_to, 777 index, zero_from, zero_to); 778 779 /* We know that zero_from is block aligned */ 780 for (block_start = zero_from; block_start < zero_to; 781 block_start = block_end) { 782 block_end = block_start + (1 << inode->i_blkbits); 783 784 /* 785 * block_start is block-aligned. Bump it by one to force 786 * __block_write_begin and block_commit_write to zero the 787 * whole block. 788 */ 789 ret = __block_write_begin(page, block_start + 1, 0, 790 ocfs2_get_block); 791 if (ret < 0) { 792 mlog_errno(ret); 793 goto out_unlock; 794 } 795 796 if (!handle) { 797 handle = ocfs2_zero_start_ordered_transaction(inode); 798 if (IS_ERR(handle)) { 799 ret = PTR_ERR(handle); 800 handle = NULL; 801 break; 802 } 803 } 804 805 /* must not update i_size! */ 806 ret = block_commit_write(page, block_start + 1, 807 block_start + 1); 808 if (ret < 0) 809 mlog_errno(ret); 810 else 811 ret = 0; 812 } 813 814 if (handle) 815 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 816 817 out_unlock: 818 unlock_page(page); 819 page_cache_release(page); 820 out: 821 return ret; 822 } 823 824 /* 825 * Find the next range to zero. We do this in terms of bytes because 826 * that's what ocfs2_zero_extend() wants, and it is dealing with the 827 * pagecache. We may return multiple extents. 828 * 829 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 830 * needs to be zeroed. range_start and range_end return the next zeroing 831 * range. A subsequent call should pass the previous range_end as its 832 * zero_start. If range_end is 0, there's nothing to do. 833 * 834 * Unwritten extents are skipped over. Refcounted extents are CoWd. 835 */ 836 static int ocfs2_zero_extend_get_range(struct inode *inode, 837 struct buffer_head *di_bh, 838 u64 zero_start, u64 zero_end, 839 u64 *range_start, u64 *range_end) 840 { 841 int rc = 0, needs_cow = 0; 842 u32 p_cpos, zero_clusters = 0; 843 u32 zero_cpos = 844 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 845 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 846 unsigned int num_clusters = 0; 847 unsigned int ext_flags = 0; 848 849 while (zero_cpos < last_cpos) { 850 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 851 &num_clusters, &ext_flags); 852 if (rc) { 853 mlog_errno(rc); 854 goto out; 855 } 856 857 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 858 zero_clusters = num_clusters; 859 if (ext_flags & OCFS2_EXT_REFCOUNTED) 860 needs_cow = 1; 861 break; 862 } 863 864 zero_cpos += num_clusters; 865 } 866 if (!zero_clusters) { 867 *range_end = 0; 868 goto out; 869 } 870 871 while ((zero_cpos + zero_clusters) < last_cpos) { 872 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 873 &p_cpos, &num_clusters, 874 &ext_flags); 875 if (rc) { 876 mlog_errno(rc); 877 goto out; 878 } 879 880 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 881 break; 882 if (ext_flags & OCFS2_EXT_REFCOUNTED) 883 needs_cow = 1; 884 zero_clusters += num_clusters; 885 } 886 if ((zero_cpos + zero_clusters) > last_cpos) 887 zero_clusters = last_cpos - zero_cpos; 888 889 if (needs_cow) { 890 rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos, 891 zero_clusters, UINT_MAX); 892 if (rc) { 893 mlog_errno(rc); 894 goto out; 895 } 896 } 897 898 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 899 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 900 zero_cpos + zero_clusters); 901 902 out: 903 return rc; 904 } 905 906 /* 907 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 908 * has made sure that the entire range needs zeroing. 909 */ 910 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 911 u64 range_end) 912 { 913 int rc = 0; 914 u64 next_pos; 915 u64 zero_pos = range_start; 916 917 trace_ocfs2_zero_extend_range( 918 (unsigned long long)OCFS2_I(inode)->ip_blkno, 919 (unsigned long long)range_start, 920 (unsigned long long)range_end); 921 BUG_ON(range_start >= range_end); 922 923 while (zero_pos < range_end) { 924 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE; 925 if (next_pos > range_end) 926 next_pos = range_end; 927 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos); 928 if (rc < 0) { 929 mlog_errno(rc); 930 break; 931 } 932 zero_pos = next_pos; 933 934 /* 935 * Very large extends have the potential to lock up 936 * the cpu for extended periods of time. 937 */ 938 cond_resched(); 939 } 940 941 return rc; 942 } 943 944 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 945 loff_t zero_to_size) 946 { 947 int ret = 0; 948 u64 zero_start, range_start = 0, range_end = 0; 949 struct super_block *sb = inode->i_sb; 950 951 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 952 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 953 (unsigned long long)zero_start, 954 (unsigned long long)i_size_read(inode)); 955 while (zero_start < zero_to_size) { 956 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 957 zero_to_size, 958 &range_start, 959 &range_end); 960 if (ret) { 961 mlog_errno(ret); 962 break; 963 } 964 if (!range_end) 965 break; 966 /* Trim the ends */ 967 if (range_start < zero_start) 968 range_start = zero_start; 969 if (range_end > zero_to_size) 970 range_end = zero_to_size; 971 972 ret = ocfs2_zero_extend_range(inode, range_start, 973 range_end); 974 if (ret) { 975 mlog_errno(ret); 976 break; 977 } 978 zero_start = range_end; 979 } 980 981 return ret; 982 } 983 984 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 985 u64 new_i_size, u64 zero_to) 986 { 987 int ret; 988 u32 clusters_to_add; 989 struct ocfs2_inode_info *oi = OCFS2_I(inode); 990 991 /* 992 * Only quota files call this without a bh, and they can't be 993 * refcounted. 994 */ 995 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL)); 996 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 997 998 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 999 if (clusters_to_add < oi->ip_clusters) 1000 clusters_to_add = 0; 1001 else 1002 clusters_to_add -= oi->ip_clusters; 1003 1004 if (clusters_to_add) { 1005 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters, 1006 clusters_to_add, 0); 1007 if (ret) { 1008 mlog_errno(ret); 1009 goto out; 1010 } 1011 } 1012 1013 /* 1014 * Call this even if we don't add any clusters to the tree. We 1015 * still need to zero the area between the old i_size and the 1016 * new i_size. 1017 */ 1018 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1019 if (ret < 0) 1020 mlog_errno(ret); 1021 1022 out: 1023 return ret; 1024 } 1025 1026 static int ocfs2_extend_file(struct inode *inode, 1027 struct buffer_head *di_bh, 1028 u64 new_i_size) 1029 { 1030 int ret = 0; 1031 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1032 1033 BUG_ON(!di_bh); 1034 1035 /* setattr sometimes calls us like this. */ 1036 if (new_i_size == 0) 1037 goto out; 1038 1039 if (i_size_read(inode) == new_i_size) 1040 goto out; 1041 BUG_ON(new_i_size < i_size_read(inode)); 1042 1043 /* 1044 * The alloc sem blocks people in read/write from reading our 1045 * allocation until we're done changing it. We depend on 1046 * i_mutex to block other extend/truncate calls while we're 1047 * here. We even have to hold it for sparse files because there 1048 * might be some tail zeroing. 1049 */ 1050 down_write(&oi->ip_alloc_sem); 1051 1052 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1053 /* 1054 * We can optimize small extends by keeping the inodes 1055 * inline data. 1056 */ 1057 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1058 up_write(&oi->ip_alloc_sem); 1059 goto out_update_size; 1060 } 1061 1062 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1063 if (ret) { 1064 up_write(&oi->ip_alloc_sem); 1065 mlog_errno(ret); 1066 goto out; 1067 } 1068 } 1069 1070 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1071 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1072 else 1073 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1074 new_i_size); 1075 1076 up_write(&oi->ip_alloc_sem); 1077 1078 if (ret < 0) { 1079 mlog_errno(ret); 1080 goto out; 1081 } 1082 1083 out_update_size: 1084 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1085 if (ret < 0) 1086 mlog_errno(ret); 1087 1088 out: 1089 return ret; 1090 } 1091 1092 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) 1093 { 1094 int status = 0, size_change; 1095 struct inode *inode = dentry->d_inode; 1096 struct super_block *sb = inode->i_sb; 1097 struct ocfs2_super *osb = OCFS2_SB(sb); 1098 struct buffer_head *bh = NULL; 1099 handle_t *handle = NULL; 1100 struct dquot *transfer_to[MAXQUOTAS] = { }; 1101 int qtype; 1102 1103 trace_ocfs2_setattr(inode, dentry, 1104 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1105 dentry->d_name.len, dentry->d_name.name, 1106 attr->ia_valid, attr->ia_mode, 1107 attr->ia_uid, attr->ia_gid); 1108 1109 /* ensuring we don't even attempt to truncate a symlink */ 1110 if (S_ISLNK(inode->i_mode)) 1111 attr->ia_valid &= ~ATTR_SIZE; 1112 1113 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1114 | ATTR_GID | ATTR_UID | ATTR_MODE) 1115 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1116 return 0; 1117 1118 status = inode_change_ok(inode, attr); 1119 if (status) 1120 return status; 1121 1122 if (is_quota_modification(inode, attr)) 1123 dquot_initialize(inode); 1124 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1125 if (size_change) { 1126 status = ocfs2_rw_lock(inode, 1); 1127 if (status < 0) { 1128 mlog_errno(status); 1129 goto bail; 1130 } 1131 } 1132 1133 status = ocfs2_inode_lock(inode, &bh, 1); 1134 if (status < 0) { 1135 if (status != -ENOENT) 1136 mlog_errno(status); 1137 goto bail_unlock_rw; 1138 } 1139 1140 if (size_change && attr->ia_size != i_size_read(inode)) { 1141 status = inode_newsize_ok(inode, attr->ia_size); 1142 if (status) 1143 goto bail_unlock; 1144 1145 if (i_size_read(inode) > attr->ia_size) { 1146 if (ocfs2_should_order_data(inode)) { 1147 status = ocfs2_begin_ordered_truncate(inode, 1148 attr->ia_size); 1149 if (status) 1150 goto bail_unlock; 1151 } 1152 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1153 } else 1154 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1155 if (status < 0) { 1156 if (status != -ENOSPC) 1157 mlog_errno(status); 1158 status = -ENOSPC; 1159 goto bail_unlock; 1160 } 1161 } 1162 1163 if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 1164 (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 1165 /* 1166 * Gather pointers to quota structures so that allocation / 1167 * freeing of quota structures happens here and not inside 1168 * dquot_transfer() where we have problems with lock ordering 1169 */ 1170 if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid 1171 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1172 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1173 transfer_to[USRQUOTA] = dqget(sb, attr->ia_uid, 1174 USRQUOTA); 1175 if (!transfer_to[USRQUOTA]) { 1176 status = -ESRCH; 1177 goto bail_unlock; 1178 } 1179 } 1180 if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid 1181 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1182 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1183 transfer_to[GRPQUOTA] = dqget(sb, attr->ia_gid, 1184 GRPQUOTA); 1185 if (!transfer_to[GRPQUOTA]) { 1186 status = -ESRCH; 1187 goto bail_unlock; 1188 } 1189 } 1190 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1191 2 * ocfs2_quota_trans_credits(sb)); 1192 if (IS_ERR(handle)) { 1193 status = PTR_ERR(handle); 1194 mlog_errno(status); 1195 goto bail_unlock; 1196 } 1197 status = __dquot_transfer(inode, transfer_to); 1198 if (status < 0) 1199 goto bail_commit; 1200 } else { 1201 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1202 if (IS_ERR(handle)) { 1203 status = PTR_ERR(handle); 1204 mlog_errno(status); 1205 goto bail_unlock; 1206 } 1207 } 1208 1209 /* 1210 * This will intentionally not wind up calling truncate_setsize(), 1211 * since all the work for a size change has been done above. 1212 * Otherwise, we could get into problems with truncate as 1213 * ip_alloc_sem is used there to protect against i_size 1214 * changes. 1215 * 1216 * XXX: this means the conditional below can probably be removed. 1217 */ 1218 if ((attr->ia_valid & ATTR_SIZE) && 1219 attr->ia_size != i_size_read(inode)) { 1220 status = vmtruncate(inode, attr->ia_size); 1221 if (status) { 1222 mlog_errno(status); 1223 goto bail_commit; 1224 } 1225 } 1226 1227 setattr_copy(inode, attr); 1228 mark_inode_dirty(inode); 1229 1230 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1231 if (status < 0) 1232 mlog_errno(status); 1233 1234 bail_commit: 1235 ocfs2_commit_trans(osb, handle); 1236 bail_unlock: 1237 ocfs2_inode_unlock(inode, 1); 1238 bail_unlock_rw: 1239 if (size_change) 1240 ocfs2_rw_unlock(inode, 1); 1241 bail: 1242 brelse(bh); 1243 1244 /* Release quota pointers in case we acquired them */ 1245 for (qtype = 0; qtype < MAXQUOTAS; qtype++) 1246 dqput(transfer_to[qtype]); 1247 1248 if (!status && attr->ia_valid & ATTR_MODE) { 1249 status = ocfs2_acl_chmod(inode); 1250 if (status < 0) 1251 mlog_errno(status); 1252 } 1253 1254 return status; 1255 } 1256 1257 int ocfs2_getattr(struct vfsmount *mnt, 1258 struct dentry *dentry, 1259 struct kstat *stat) 1260 { 1261 struct inode *inode = dentry->d_inode; 1262 struct super_block *sb = dentry->d_inode->i_sb; 1263 struct ocfs2_super *osb = sb->s_fs_info; 1264 int err; 1265 1266 err = ocfs2_inode_revalidate(dentry); 1267 if (err) { 1268 if (err != -ENOENT) 1269 mlog_errno(err); 1270 goto bail; 1271 } 1272 1273 generic_fillattr(inode, stat); 1274 1275 /* We set the blksize from the cluster size for performance */ 1276 stat->blksize = osb->s_clustersize; 1277 1278 bail: 1279 return err; 1280 } 1281 1282 int ocfs2_permission(struct inode *inode, int mask, unsigned int flags) 1283 { 1284 int ret; 1285 1286 if (flags & IPERM_FLAG_RCU) 1287 return -ECHILD; 1288 1289 ret = ocfs2_inode_lock(inode, NULL, 0); 1290 if (ret) { 1291 if (ret != -ENOENT) 1292 mlog_errno(ret); 1293 goto out; 1294 } 1295 1296 ret = generic_permission(inode, mask, flags, ocfs2_check_acl); 1297 1298 ocfs2_inode_unlock(inode, 0); 1299 out: 1300 return ret; 1301 } 1302 1303 static int __ocfs2_write_remove_suid(struct inode *inode, 1304 struct buffer_head *bh) 1305 { 1306 int ret; 1307 handle_t *handle; 1308 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1309 struct ocfs2_dinode *di; 1310 1311 trace_ocfs2_write_remove_suid( 1312 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1313 inode->i_mode); 1314 1315 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1316 if (IS_ERR(handle)) { 1317 ret = PTR_ERR(handle); 1318 mlog_errno(ret); 1319 goto out; 1320 } 1321 1322 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1323 OCFS2_JOURNAL_ACCESS_WRITE); 1324 if (ret < 0) { 1325 mlog_errno(ret); 1326 goto out_trans; 1327 } 1328 1329 inode->i_mode &= ~S_ISUID; 1330 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1331 inode->i_mode &= ~S_ISGID; 1332 1333 di = (struct ocfs2_dinode *) bh->b_data; 1334 di->i_mode = cpu_to_le16(inode->i_mode); 1335 1336 ocfs2_journal_dirty(handle, bh); 1337 1338 out_trans: 1339 ocfs2_commit_trans(osb, handle); 1340 out: 1341 return ret; 1342 } 1343 1344 /* 1345 * Will look for holes and unwritten extents in the range starting at 1346 * pos for count bytes (inclusive). 1347 */ 1348 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos, 1349 size_t count) 1350 { 1351 int ret = 0; 1352 unsigned int extent_flags; 1353 u32 cpos, clusters, extent_len, phys_cpos; 1354 struct super_block *sb = inode->i_sb; 1355 1356 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 1357 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 1358 1359 while (clusters) { 1360 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 1361 &extent_flags); 1362 if (ret < 0) { 1363 mlog_errno(ret); 1364 goto out; 1365 } 1366 1367 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) { 1368 ret = 1; 1369 break; 1370 } 1371 1372 if (extent_len > clusters) 1373 extent_len = clusters; 1374 1375 clusters -= extent_len; 1376 cpos += extent_len; 1377 } 1378 out: 1379 return ret; 1380 } 1381 1382 static int ocfs2_write_remove_suid(struct inode *inode) 1383 { 1384 int ret; 1385 struct buffer_head *bh = NULL; 1386 1387 ret = ocfs2_read_inode_block(inode, &bh); 1388 if (ret < 0) { 1389 mlog_errno(ret); 1390 goto out; 1391 } 1392 1393 ret = __ocfs2_write_remove_suid(inode, bh); 1394 out: 1395 brelse(bh); 1396 return ret; 1397 } 1398 1399 /* 1400 * Allocate enough extents to cover the region starting at byte offset 1401 * start for len bytes. Existing extents are skipped, any extents 1402 * added are marked as "unwritten". 1403 */ 1404 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1405 u64 start, u64 len) 1406 { 1407 int ret; 1408 u32 cpos, phys_cpos, clusters, alloc_size; 1409 u64 end = start + len; 1410 struct buffer_head *di_bh = NULL; 1411 1412 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1413 ret = ocfs2_read_inode_block(inode, &di_bh); 1414 if (ret) { 1415 mlog_errno(ret); 1416 goto out; 1417 } 1418 1419 /* 1420 * Nothing to do if the requested reservation range 1421 * fits within the inode. 1422 */ 1423 if (ocfs2_size_fits_inline_data(di_bh, end)) 1424 goto out; 1425 1426 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1427 if (ret) { 1428 mlog_errno(ret); 1429 goto out; 1430 } 1431 } 1432 1433 /* 1434 * We consider both start and len to be inclusive. 1435 */ 1436 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1437 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1438 clusters -= cpos; 1439 1440 while (clusters) { 1441 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1442 &alloc_size, NULL); 1443 if (ret) { 1444 mlog_errno(ret); 1445 goto out; 1446 } 1447 1448 /* 1449 * Hole or existing extent len can be arbitrary, so 1450 * cap it to our own allocation request. 1451 */ 1452 if (alloc_size > clusters) 1453 alloc_size = clusters; 1454 1455 if (phys_cpos) { 1456 /* 1457 * We already have an allocation at this 1458 * region so we can safely skip it. 1459 */ 1460 goto next; 1461 } 1462 1463 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1464 if (ret) { 1465 if (ret != -ENOSPC) 1466 mlog_errno(ret); 1467 goto out; 1468 } 1469 1470 next: 1471 cpos += alloc_size; 1472 clusters -= alloc_size; 1473 } 1474 1475 ret = 0; 1476 out: 1477 1478 brelse(di_bh); 1479 return ret; 1480 } 1481 1482 /* 1483 * Truncate a byte range, avoiding pages within partial clusters. This 1484 * preserves those pages for the zeroing code to write to. 1485 */ 1486 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1487 u64 byte_len) 1488 { 1489 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1490 loff_t start, end; 1491 struct address_space *mapping = inode->i_mapping; 1492 1493 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1494 end = byte_start + byte_len; 1495 end = end & ~(osb->s_clustersize - 1); 1496 1497 if (start < end) { 1498 unmap_mapping_range(mapping, start, end - start, 0); 1499 truncate_inode_pages_range(mapping, start, end - 1); 1500 } 1501 } 1502 1503 static int ocfs2_zero_partial_clusters(struct inode *inode, 1504 u64 start, u64 len) 1505 { 1506 int ret = 0; 1507 u64 tmpend, end = start + len; 1508 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1509 unsigned int csize = osb->s_clustersize; 1510 handle_t *handle; 1511 1512 /* 1513 * The "start" and "end" values are NOT necessarily part of 1514 * the range whose allocation is being deleted. Rather, this 1515 * is what the user passed in with the request. We must zero 1516 * partial clusters here. There's no need to worry about 1517 * physical allocation - the zeroing code knows to skip holes. 1518 */ 1519 trace_ocfs2_zero_partial_clusters( 1520 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1521 (unsigned long long)start, (unsigned long long)end); 1522 1523 /* 1524 * If both edges are on a cluster boundary then there's no 1525 * zeroing required as the region is part of the allocation to 1526 * be truncated. 1527 */ 1528 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1529 goto out; 1530 1531 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1532 if (IS_ERR(handle)) { 1533 ret = PTR_ERR(handle); 1534 mlog_errno(ret); 1535 goto out; 1536 } 1537 1538 /* 1539 * We want to get the byte offset of the end of the 1st cluster. 1540 */ 1541 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1)); 1542 if (tmpend > end) 1543 tmpend = end; 1544 1545 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start, 1546 (unsigned long long)tmpend); 1547 1548 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend); 1549 if (ret) 1550 mlog_errno(ret); 1551 1552 if (tmpend < end) { 1553 /* 1554 * This may make start and end equal, but the zeroing 1555 * code will skip any work in that case so there's no 1556 * need to catch it up here. 1557 */ 1558 start = end & ~(osb->s_clustersize - 1); 1559 1560 trace_ocfs2_zero_partial_clusters_range2( 1561 (unsigned long long)start, (unsigned long long)end); 1562 1563 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1564 if (ret) 1565 mlog_errno(ret); 1566 } 1567 1568 ocfs2_commit_trans(osb, handle); 1569 out: 1570 return ret; 1571 } 1572 1573 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1574 { 1575 int i; 1576 struct ocfs2_extent_rec *rec = NULL; 1577 1578 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1579 1580 rec = &el->l_recs[i]; 1581 1582 if (le32_to_cpu(rec->e_cpos) < pos) 1583 break; 1584 } 1585 1586 return i; 1587 } 1588 1589 /* 1590 * Helper to calculate the punching pos and length in one run, we handle the 1591 * following three cases in order: 1592 * 1593 * - remove the entire record 1594 * - remove a partial record 1595 * - no record needs to be removed (hole-punching completed) 1596 */ 1597 static void ocfs2_calc_trunc_pos(struct inode *inode, 1598 struct ocfs2_extent_list *el, 1599 struct ocfs2_extent_rec *rec, 1600 u32 trunc_start, u32 *trunc_cpos, 1601 u32 *trunc_len, u32 *trunc_end, 1602 u64 *blkno, int *done) 1603 { 1604 int ret = 0; 1605 u32 coff, range; 1606 1607 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1608 1609 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1610 /* 1611 * remove an entire extent record. 1612 */ 1613 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1614 /* 1615 * Skip holes if any. 1616 */ 1617 if (range < *trunc_end) 1618 *trunc_end = range; 1619 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1620 *blkno = le64_to_cpu(rec->e_blkno); 1621 *trunc_end = le32_to_cpu(rec->e_cpos); 1622 } else if (range > trunc_start) { 1623 /* 1624 * remove a partial extent record, which means we're 1625 * removing the last extent record. 1626 */ 1627 *trunc_cpos = trunc_start; 1628 /* 1629 * skip hole if any. 1630 */ 1631 if (range < *trunc_end) 1632 *trunc_end = range; 1633 *trunc_len = *trunc_end - trunc_start; 1634 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1635 *blkno = le64_to_cpu(rec->e_blkno) + 1636 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1637 *trunc_end = trunc_start; 1638 } else { 1639 /* 1640 * It may have two following possibilities: 1641 * 1642 * - last record has been removed 1643 * - trunc_start was within a hole 1644 * 1645 * both two cases mean the completion of hole punching. 1646 */ 1647 ret = 1; 1648 } 1649 1650 *done = ret; 1651 } 1652 1653 static int ocfs2_remove_inode_range(struct inode *inode, 1654 struct buffer_head *di_bh, u64 byte_start, 1655 u64 byte_len) 1656 { 1657 int ret = 0, flags = 0, done = 0, i; 1658 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1659 u32 cluster_in_el; 1660 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1661 struct ocfs2_cached_dealloc_ctxt dealloc; 1662 struct address_space *mapping = inode->i_mapping; 1663 struct ocfs2_extent_tree et; 1664 struct ocfs2_path *path = NULL; 1665 struct ocfs2_extent_list *el = NULL; 1666 struct ocfs2_extent_rec *rec = NULL; 1667 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1668 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1669 1670 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1671 ocfs2_init_dealloc_ctxt(&dealloc); 1672 1673 trace_ocfs2_remove_inode_range( 1674 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1675 (unsigned long long)byte_start, 1676 (unsigned long long)byte_len); 1677 1678 if (byte_len == 0) 1679 return 0; 1680 1681 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1682 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1683 byte_start + byte_len, 0); 1684 if (ret) { 1685 mlog_errno(ret); 1686 goto out; 1687 } 1688 /* 1689 * There's no need to get fancy with the page cache 1690 * truncate of an inline-data inode. We're talking 1691 * about less than a page here, which will be cached 1692 * in the dinode buffer anyway. 1693 */ 1694 unmap_mapping_range(mapping, 0, 0, 0); 1695 truncate_inode_pages(mapping, 0); 1696 goto out; 1697 } 1698 1699 /* 1700 * For reflinks, we may need to CoW 2 clusters which might be 1701 * partially zero'd later, if hole's start and end offset were 1702 * within one cluster(means is not exactly aligned to clustersize). 1703 */ 1704 1705 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) { 1706 1707 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1708 if (ret) { 1709 mlog_errno(ret); 1710 goto out; 1711 } 1712 1713 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1714 if (ret) { 1715 mlog_errno(ret); 1716 goto out; 1717 } 1718 } 1719 1720 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1721 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1722 cluster_in_el = trunc_end; 1723 1724 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1725 if (ret) { 1726 mlog_errno(ret); 1727 goto out; 1728 } 1729 1730 path = ocfs2_new_path_from_et(&et); 1731 if (!path) { 1732 ret = -ENOMEM; 1733 mlog_errno(ret); 1734 goto out; 1735 } 1736 1737 while (trunc_end > trunc_start) { 1738 1739 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1740 cluster_in_el); 1741 if (ret) { 1742 mlog_errno(ret); 1743 goto out; 1744 } 1745 1746 el = path_leaf_el(path); 1747 1748 i = ocfs2_find_rec(el, trunc_end); 1749 /* 1750 * Need to go to previous extent block. 1751 */ 1752 if (i < 0) { 1753 if (path->p_tree_depth == 0) 1754 break; 1755 1756 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1757 path, 1758 &cluster_in_el); 1759 if (ret) { 1760 mlog_errno(ret); 1761 goto out; 1762 } 1763 1764 /* 1765 * We've reached the leftmost extent block, 1766 * it's safe to leave. 1767 */ 1768 if (cluster_in_el == 0) 1769 break; 1770 1771 /* 1772 * The 'pos' searched for previous extent block is 1773 * always one cluster less than actual trunc_end. 1774 */ 1775 trunc_end = cluster_in_el + 1; 1776 1777 ocfs2_reinit_path(path, 1); 1778 1779 continue; 1780 1781 } else 1782 rec = &el->l_recs[i]; 1783 1784 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1785 &trunc_len, &trunc_end, &blkno, &done); 1786 if (done) 1787 break; 1788 1789 flags = rec->e_flags; 1790 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1791 1792 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1793 phys_cpos, trunc_len, flags, 1794 &dealloc, refcount_loc); 1795 if (ret < 0) { 1796 mlog_errno(ret); 1797 goto out; 1798 } 1799 1800 cluster_in_el = trunc_end; 1801 1802 ocfs2_reinit_path(path, 1); 1803 } 1804 1805 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1806 1807 out: 1808 ocfs2_schedule_truncate_log_flush(osb, 1); 1809 ocfs2_run_deallocs(osb, &dealloc); 1810 1811 return ret; 1812 } 1813 1814 /* 1815 * Parts of this function taken from xfs_change_file_space() 1816 */ 1817 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1818 loff_t f_pos, unsigned int cmd, 1819 struct ocfs2_space_resv *sr, 1820 int change_size) 1821 { 1822 int ret; 1823 s64 llen; 1824 loff_t size; 1825 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1826 struct buffer_head *di_bh = NULL; 1827 handle_t *handle; 1828 unsigned long long max_off = inode->i_sb->s_maxbytes; 1829 1830 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1831 return -EROFS; 1832 1833 mutex_lock(&inode->i_mutex); 1834 1835 /* 1836 * This prevents concurrent writes on other nodes 1837 */ 1838 ret = ocfs2_rw_lock(inode, 1); 1839 if (ret) { 1840 mlog_errno(ret); 1841 goto out; 1842 } 1843 1844 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1845 if (ret) { 1846 mlog_errno(ret); 1847 goto out_rw_unlock; 1848 } 1849 1850 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1851 ret = -EPERM; 1852 goto out_inode_unlock; 1853 } 1854 1855 switch (sr->l_whence) { 1856 case 0: /*SEEK_SET*/ 1857 break; 1858 case 1: /*SEEK_CUR*/ 1859 sr->l_start += f_pos; 1860 break; 1861 case 2: /*SEEK_END*/ 1862 sr->l_start += i_size_read(inode); 1863 break; 1864 default: 1865 ret = -EINVAL; 1866 goto out_inode_unlock; 1867 } 1868 sr->l_whence = 0; 1869 1870 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1871 1872 if (sr->l_start < 0 1873 || sr->l_start > max_off 1874 || (sr->l_start + llen) < 0 1875 || (sr->l_start + llen) > max_off) { 1876 ret = -EINVAL; 1877 goto out_inode_unlock; 1878 } 1879 size = sr->l_start + sr->l_len; 1880 1881 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) { 1882 if (sr->l_len <= 0) { 1883 ret = -EINVAL; 1884 goto out_inode_unlock; 1885 } 1886 } 1887 1888 if (file && should_remove_suid(file->f_path.dentry)) { 1889 ret = __ocfs2_write_remove_suid(inode, di_bh); 1890 if (ret) { 1891 mlog_errno(ret); 1892 goto out_inode_unlock; 1893 } 1894 } 1895 1896 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1897 switch (cmd) { 1898 case OCFS2_IOC_RESVSP: 1899 case OCFS2_IOC_RESVSP64: 1900 /* 1901 * This takes unsigned offsets, but the signed ones we 1902 * pass have been checked against overflow above. 1903 */ 1904 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1905 sr->l_len); 1906 break; 1907 case OCFS2_IOC_UNRESVSP: 1908 case OCFS2_IOC_UNRESVSP64: 1909 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1910 sr->l_len); 1911 break; 1912 default: 1913 ret = -EINVAL; 1914 } 1915 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1916 if (ret) { 1917 mlog_errno(ret); 1918 goto out_inode_unlock; 1919 } 1920 1921 /* 1922 * We update c/mtime for these changes 1923 */ 1924 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1925 if (IS_ERR(handle)) { 1926 ret = PTR_ERR(handle); 1927 mlog_errno(ret); 1928 goto out_inode_unlock; 1929 } 1930 1931 if (change_size && i_size_read(inode) < size) 1932 i_size_write(inode, size); 1933 1934 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 1935 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1936 if (ret < 0) 1937 mlog_errno(ret); 1938 1939 ocfs2_commit_trans(osb, handle); 1940 1941 out_inode_unlock: 1942 brelse(di_bh); 1943 ocfs2_inode_unlock(inode, 1); 1944 out_rw_unlock: 1945 ocfs2_rw_unlock(inode, 1); 1946 1947 out: 1948 mutex_unlock(&inode->i_mutex); 1949 return ret; 1950 } 1951 1952 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 1953 struct ocfs2_space_resv *sr) 1954 { 1955 struct inode *inode = file->f_path.dentry->d_inode; 1956 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1957 1958 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 1959 !ocfs2_writes_unwritten_extents(osb)) 1960 return -ENOTTY; 1961 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 1962 !ocfs2_sparse_alloc(osb)) 1963 return -ENOTTY; 1964 1965 if (!S_ISREG(inode->i_mode)) 1966 return -EINVAL; 1967 1968 if (!(file->f_mode & FMODE_WRITE)) 1969 return -EBADF; 1970 1971 return __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 1972 } 1973 1974 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 1975 loff_t len) 1976 { 1977 struct inode *inode = file->f_path.dentry->d_inode; 1978 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1979 struct ocfs2_space_resv sr; 1980 int change_size = 1; 1981 int cmd = OCFS2_IOC_RESVSP64; 1982 1983 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 1984 return -EOPNOTSUPP; 1985 if (!ocfs2_writes_unwritten_extents(osb)) 1986 return -EOPNOTSUPP; 1987 1988 if (mode & FALLOC_FL_KEEP_SIZE) 1989 change_size = 0; 1990 1991 if (mode & FALLOC_FL_PUNCH_HOLE) 1992 cmd = OCFS2_IOC_UNRESVSP64; 1993 1994 sr.l_whence = 0; 1995 sr.l_start = (s64)offset; 1996 sr.l_len = (s64)len; 1997 1998 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 1999 change_size); 2000 } 2001 2002 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2003 size_t count) 2004 { 2005 int ret = 0; 2006 unsigned int extent_flags; 2007 u32 cpos, clusters, extent_len, phys_cpos; 2008 struct super_block *sb = inode->i_sb; 2009 2010 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2011 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) || 2012 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2013 return 0; 2014 2015 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2016 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2017 2018 while (clusters) { 2019 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2020 &extent_flags); 2021 if (ret < 0) { 2022 mlog_errno(ret); 2023 goto out; 2024 } 2025 2026 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2027 ret = 1; 2028 break; 2029 } 2030 2031 if (extent_len > clusters) 2032 extent_len = clusters; 2033 2034 clusters -= extent_len; 2035 cpos += extent_len; 2036 } 2037 out: 2038 return ret; 2039 } 2040 2041 static int ocfs2_prepare_inode_for_refcount(struct inode *inode, 2042 struct file *file, 2043 loff_t pos, size_t count, 2044 int *meta_level) 2045 { 2046 int ret; 2047 struct buffer_head *di_bh = NULL; 2048 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2049 u32 clusters = 2050 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2051 2052 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2053 if (ret) { 2054 mlog_errno(ret); 2055 goto out; 2056 } 2057 2058 *meta_level = 1; 2059 2060 ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX); 2061 if (ret) 2062 mlog_errno(ret); 2063 out: 2064 brelse(di_bh); 2065 return ret; 2066 } 2067 2068 static int ocfs2_prepare_inode_for_write(struct file *file, 2069 loff_t *ppos, 2070 size_t count, 2071 int appending, 2072 int *direct_io, 2073 int *has_refcount) 2074 { 2075 int ret = 0, meta_level = 0; 2076 struct dentry *dentry = file->f_path.dentry; 2077 struct inode *inode = dentry->d_inode; 2078 loff_t saved_pos = 0, end; 2079 2080 /* 2081 * We start with a read level meta lock and only jump to an ex 2082 * if we need to make modifications here. 2083 */ 2084 for(;;) { 2085 ret = ocfs2_inode_lock(inode, NULL, meta_level); 2086 if (ret < 0) { 2087 meta_level = -1; 2088 mlog_errno(ret); 2089 goto out; 2090 } 2091 2092 /* Clear suid / sgid if necessary. We do this here 2093 * instead of later in the write path because 2094 * remove_suid() calls ->setattr without any hint that 2095 * we may have already done our cluster locking. Since 2096 * ocfs2_setattr() *must* take cluster locks to 2097 * proceeed, this will lead us to recursively lock the 2098 * inode. There's also the dinode i_size state which 2099 * can be lost via setattr during extending writes (we 2100 * set inode->i_size at the end of a write. */ 2101 if (should_remove_suid(dentry)) { 2102 if (meta_level == 0) { 2103 ocfs2_inode_unlock(inode, meta_level); 2104 meta_level = 1; 2105 continue; 2106 } 2107 2108 ret = ocfs2_write_remove_suid(inode); 2109 if (ret < 0) { 2110 mlog_errno(ret); 2111 goto out_unlock; 2112 } 2113 } 2114 2115 /* work on a copy of ppos until we're sure that we won't have 2116 * to recalculate it due to relocking. */ 2117 if (appending) 2118 saved_pos = i_size_read(inode); 2119 else 2120 saved_pos = *ppos; 2121 2122 end = saved_pos + count; 2123 2124 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count); 2125 if (ret == 1) { 2126 ocfs2_inode_unlock(inode, meta_level); 2127 meta_level = -1; 2128 2129 ret = ocfs2_prepare_inode_for_refcount(inode, 2130 file, 2131 saved_pos, 2132 count, 2133 &meta_level); 2134 if (has_refcount) 2135 *has_refcount = 1; 2136 if (direct_io) 2137 *direct_io = 0; 2138 } 2139 2140 if (ret < 0) { 2141 mlog_errno(ret); 2142 goto out_unlock; 2143 } 2144 2145 /* 2146 * Skip the O_DIRECT checks if we don't need 2147 * them. 2148 */ 2149 if (!direct_io || !(*direct_io)) 2150 break; 2151 2152 /* 2153 * There's no sane way to do direct writes to an inode 2154 * with inline data. 2155 */ 2156 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2157 *direct_io = 0; 2158 break; 2159 } 2160 2161 /* 2162 * Allowing concurrent direct writes means 2163 * i_size changes wouldn't be synchronized, so 2164 * one node could wind up truncating another 2165 * nodes writes. 2166 */ 2167 if (end > i_size_read(inode)) { 2168 *direct_io = 0; 2169 break; 2170 } 2171 2172 /* 2173 * We don't fill holes during direct io, so 2174 * check for them here. If any are found, the 2175 * caller will have to retake some cluster 2176 * locks and initiate the io as buffered. 2177 */ 2178 ret = ocfs2_check_range_for_holes(inode, saved_pos, count); 2179 if (ret == 1) { 2180 *direct_io = 0; 2181 ret = 0; 2182 } else if (ret < 0) 2183 mlog_errno(ret); 2184 break; 2185 } 2186 2187 if (appending) 2188 *ppos = saved_pos; 2189 2190 out_unlock: 2191 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2192 saved_pos, appending, count, 2193 direct_io, has_refcount); 2194 2195 if (meta_level >= 0) 2196 ocfs2_inode_unlock(inode, meta_level); 2197 2198 out: 2199 return ret; 2200 } 2201 2202 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb, 2203 const struct iovec *iov, 2204 unsigned long nr_segs, 2205 loff_t pos) 2206 { 2207 int ret, direct_io, appending, rw_level, have_alloc_sem = 0; 2208 int can_do_direct, has_refcount = 0; 2209 ssize_t written = 0; 2210 size_t ocount; /* original count */ 2211 size_t count; /* after file limit checks */ 2212 loff_t old_size, *ppos = &iocb->ki_pos; 2213 u32 old_clusters; 2214 struct file *file = iocb->ki_filp; 2215 struct inode *inode = file->f_path.dentry->d_inode; 2216 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2217 int full_coherency = !(osb->s_mount_opt & 2218 OCFS2_MOUNT_COHERENCY_BUFFERED); 2219 2220 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry, 2221 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2222 file->f_path.dentry->d_name.len, 2223 file->f_path.dentry->d_name.name, 2224 (unsigned int)nr_segs); 2225 2226 if (iocb->ki_left == 0) 2227 return 0; 2228 2229 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2230 2231 appending = file->f_flags & O_APPEND ? 1 : 0; 2232 direct_io = file->f_flags & O_DIRECT ? 1 : 0; 2233 2234 mutex_lock(&inode->i_mutex); 2235 2236 ocfs2_iocb_clear_sem_locked(iocb); 2237 2238 relock: 2239 /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */ 2240 if (direct_io) { 2241 down_read(&inode->i_alloc_sem); 2242 have_alloc_sem = 1; 2243 /* communicate with ocfs2_dio_end_io */ 2244 ocfs2_iocb_set_sem_locked(iocb); 2245 } 2246 2247 /* 2248 * Concurrent O_DIRECT writes are allowed with 2249 * mount_option "coherency=buffered". 2250 */ 2251 rw_level = (!direct_io || full_coherency); 2252 2253 ret = ocfs2_rw_lock(inode, rw_level); 2254 if (ret < 0) { 2255 mlog_errno(ret); 2256 goto out_sems; 2257 } 2258 2259 /* 2260 * O_DIRECT writes with "coherency=full" need to take EX cluster 2261 * inode_lock to guarantee coherency. 2262 */ 2263 if (direct_io && full_coherency) { 2264 /* 2265 * We need to take and drop the inode lock to force 2266 * other nodes to drop their caches. Buffered I/O 2267 * already does this in write_begin(). 2268 */ 2269 ret = ocfs2_inode_lock(inode, NULL, 1); 2270 if (ret < 0) { 2271 mlog_errno(ret); 2272 goto out_sems; 2273 } 2274 2275 ocfs2_inode_unlock(inode, 1); 2276 } 2277 2278 can_do_direct = direct_io; 2279 ret = ocfs2_prepare_inode_for_write(file, ppos, 2280 iocb->ki_left, appending, 2281 &can_do_direct, &has_refcount); 2282 if (ret < 0) { 2283 mlog_errno(ret); 2284 goto out; 2285 } 2286 2287 /* 2288 * We can't complete the direct I/O as requested, fall back to 2289 * buffered I/O. 2290 */ 2291 if (direct_io && !can_do_direct) { 2292 ocfs2_rw_unlock(inode, rw_level); 2293 up_read(&inode->i_alloc_sem); 2294 2295 have_alloc_sem = 0; 2296 rw_level = -1; 2297 2298 direct_io = 0; 2299 goto relock; 2300 } 2301 2302 /* 2303 * To later detect whether a journal commit for sync writes is 2304 * necessary, we sample i_size, and cluster count here. 2305 */ 2306 old_size = i_size_read(inode); 2307 old_clusters = OCFS2_I(inode)->ip_clusters; 2308 2309 /* communicate with ocfs2_dio_end_io */ 2310 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2311 2312 ret = generic_segment_checks(iov, &nr_segs, &ocount, 2313 VERIFY_READ); 2314 if (ret) 2315 goto out_dio; 2316 2317 count = ocount; 2318 ret = generic_write_checks(file, ppos, &count, 2319 S_ISBLK(inode->i_mode)); 2320 if (ret) 2321 goto out_dio; 2322 2323 if (direct_io) { 2324 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos, 2325 ppos, count, ocount); 2326 if (written < 0) { 2327 ret = written; 2328 goto out_dio; 2329 } 2330 } else { 2331 current->backing_dev_info = file->f_mapping->backing_dev_info; 2332 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos, 2333 ppos, count, 0); 2334 current->backing_dev_info = NULL; 2335 } 2336 2337 out_dio: 2338 /* buffered aio wouldn't have proper lock coverage today */ 2339 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT)); 2340 2341 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) || 2342 ((file->f_flags & O_DIRECT) && !direct_io)) { 2343 ret = filemap_fdatawrite_range(file->f_mapping, pos, 2344 pos + count - 1); 2345 if (ret < 0) 2346 written = ret; 2347 2348 if (!ret && ((old_size != i_size_read(inode)) || 2349 (old_clusters != OCFS2_I(inode)->ip_clusters) || 2350 has_refcount)) { 2351 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2352 if (ret < 0) 2353 written = ret; 2354 } 2355 2356 if (!ret) 2357 ret = filemap_fdatawait_range(file->f_mapping, pos, 2358 pos + count - 1); 2359 } 2360 2361 /* 2362 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2363 * function pointer which is called when o_direct io completes so that 2364 * it can unlock our rw lock. (it's the clustered equivalent of 2365 * i_alloc_sem; protects truncate from racing with pending ios). 2366 * Unfortunately there are error cases which call end_io and others 2367 * that don't. so we don't have to unlock the rw_lock if either an 2368 * async dio is going to do it in the future or an end_io after an 2369 * error has already done it. 2370 */ 2371 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2372 rw_level = -1; 2373 have_alloc_sem = 0; 2374 } 2375 2376 out: 2377 if (rw_level != -1) 2378 ocfs2_rw_unlock(inode, rw_level); 2379 2380 out_sems: 2381 if (have_alloc_sem) { 2382 up_read(&inode->i_alloc_sem); 2383 ocfs2_iocb_clear_sem_locked(iocb); 2384 } 2385 2386 mutex_unlock(&inode->i_mutex); 2387 2388 if (written) 2389 ret = written; 2390 return ret; 2391 } 2392 2393 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe, 2394 struct file *out, 2395 struct splice_desc *sd) 2396 { 2397 int ret; 2398 2399 ret = ocfs2_prepare_inode_for_write(out, &sd->pos, 2400 sd->total_len, 0, NULL, NULL); 2401 if (ret < 0) { 2402 mlog_errno(ret); 2403 return ret; 2404 } 2405 2406 return splice_from_pipe_feed(pipe, sd, pipe_to_file); 2407 } 2408 2409 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe, 2410 struct file *out, 2411 loff_t *ppos, 2412 size_t len, 2413 unsigned int flags) 2414 { 2415 int ret; 2416 struct address_space *mapping = out->f_mapping; 2417 struct inode *inode = mapping->host; 2418 struct splice_desc sd = { 2419 .total_len = len, 2420 .flags = flags, 2421 .pos = *ppos, 2422 .u.file = out, 2423 }; 2424 2425 2426 trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry, 2427 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2428 out->f_path.dentry->d_name.len, 2429 out->f_path.dentry->d_name.name, len); 2430 2431 if (pipe->inode) 2432 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT); 2433 2434 splice_from_pipe_begin(&sd); 2435 do { 2436 ret = splice_from_pipe_next(pipe, &sd); 2437 if (ret <= 0) 2438 break; 2439 2440 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2441 ret = ocfs2_rw_lock(inode, 1); 2442 if (ret < 0) 2443 mlog_errno(ret); 2444 else { 2445 ret = ocfs2_splice_to_file(pipe, out, &sd); 2446 ocfs2_rw_unlock(inode, 1); 2447 } 2448 mutex_unlock(&inode->i_mutex); 2449 } while (ret > 0); 2450 splice_from_pipe_end(pipe, &sd); 2451 2452 if (pipe->inode) 2453 mutex_unlock(&pipe->inode->i_mutex); 2454 2455 if (sd.num_spliced) 2456 ret = sd.num_spliced; 2457 2458 if (ret > 0) { 2459 unsigned long nr_pages; 2460 int err; 2461 2462 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2463 2464 err = generic_write_sync(out, *ppos, ret); 2465 if (err) 2466 ret = err; 2467 else 2468 *ppos += ret; 2469 2470 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 2471 } 2472 2473 return ret; 2474 } 2475 2476 static ssize_t ocfs2_file_splice_read(struct file *in, 2477 loff_t *ppos, 2478 struct pipe_inode_info *pipe, 2479 size_t len, 2480 unsigned int flags) 2481 { 2482 int ret = 0, lock_level = 0; 2483 struct inode *inode = in->f_path.dentry->d_inode; 2484 2485 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, 2486 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2487 in->f_path.dentry->d_name.len, 2488 in->f_path.dentry->d_name.name, len); 2489 2490 /* 2491 * See the comment in ocfs2_file_aio_read() 2492 */ 2493 ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level); 2494 if (ret < 0) { 2495 mlog_errno(ret); 2496 goto bail; 2497 } 2498 ocfs2_inode_unlock(inode, lock_level); 2499 2500 ret = generic_file_splice_read(in, ppos, pipe, len, flags); 2501 2502 bail: 2503 return ret; 2504 } 2505 2506 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb, 2507 const struct iovec *iov, 2508 unsigned long nr_segs, 2509 loff_t pos) 2510 { 2511 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0; 2512 struct file *filp = iocb->ki_filp; 2513 struct inode *inode = filp->f_path.dentry->d_inode; 2514 2515 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry, 2516 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2517 filp->f_path.dentry->d_name.len, 2518 filp->f_path.dentry->d_name.name, nr_segs); 2519 2520 2521 if (!inode) { 2522 ret = -EINVAL; 2523 mlog_errno(ret); 2524 goto bail; 2525 } 2526 2527 ocfs2_iocb_clear_sem_locked(iocb); 2528 2529 /* 2530 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2531 * need locks to protect pending reads from racing with truncate. 2532 */ 2533 if (filp->f_flags & O_DIRECT) { 2534 down_read(&inode->i_alloc_sem); 2535 have_alloc_sem = 1; 2536 ocfs2_iocb_set_sem_locked(iocb); 2537 2538 ret = ocfs2_rw_lock(inode, 0); 2539 if (ret < 0) { 2540 mlog_errno(ret); 2541 goto bail; 2542 } 2543 rw_level = 0; 2544 /* communicate with ocfs2_dio_end_io */ 2545 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2546 } 2547 2548 /* 2549 * We're fine letting folks race truncates and extending 2550 * writes with read across the cluster, just like they can 2551 * locally. Hence no rw_lock during read. 2552 * 2553 * Take and drop the meta data lock to update inode fields 2554 * like i_size. This allows the checks down below 2555 * generic_file_aio_read() a chance of actually working. 2556 */ 2557 ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level); 2558 if (ret < 0) { 2559 mlog_errno(ret); 2560 goto bail; 2561 } 2562 ocfs2_inode_unlock(inode, lock_level); 2563 2564 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos); 2565 trace_generic_file_aio_read_ret(ret); 2566 2567 /* buffered aio wouldn't have proper lock coverage today */ 2568 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT)); 2569 2570 /* see ocfs2_file_aio_write */ 2571 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2572 rw_level = -1; 2573 have_alloc_sem = 0; 2574 } 2575 2576 bail: 2577 if (have_alloc_sem) { 2578 up_read(&inode->i_alloc_sem); 2579 ocfs2_iocb_clear_sem_locked(iocb); 2580 } 2581 if (rw_level != -1) 2582 ocfs2_rw_unlock(inode, rw_level); 2583 2584 return ret; 2585 } 2586 2587 const struct inode_operations ocfs2_file_iops = { 2588 .setattr = ocfs2_setattr, 2589 .getattr = ocfs2_getattr, 2590 .permission = ocfs2_permission, 2591 .setxattr = generic_setxattr, 2592 .getxattr = generic_getxattr, 2593 .listxattr = ocfs2_listxattr, 2594 .removexattr = generic_removexattr, 2595 .fiemap = ocfs2_fiemap, 2596 }; 2597 2598 const struct inode_operations ocfs2_special_file_iops = { 2599 .setattr = ocfs2_setattr, 2600 .getattr = ocfs2_getattr, 2601 .permission = ocfs2_permission, 2602 }; 2603 2604 /* 2605 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2606 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2607 */ 2608 const struct file_operations ocfs2_fops = { 2609 .llseek = generic_file_llseek, 2610 .read = do_sync_read, 2611 .write = do_sync_write, 2612 .mmap = ocfs2_mmap, 2613 .fsync = ocfs2_sync_file, 2614 .release = ocfs2_file_release, 2615 .open = ocfs2_file_open, 2616 .aio_read = ocfs2_file_aio_read, 2617 .aio_write = ocfs2_file_aio_write, 2618 .unlocked_ioctl = ocfs2_ioctl, 2619 #ifdef CONFIG_COMPAT 2620 .compat_ioctl = ocfs2_compat_ioctl, 2621 #endif 2622 .lock = ocfs2_lock, 2623 .flock = ocfs2_flock, 2624 .splice_read = ocfs2_file_splice_read, 2625 .splice_write = ocfs2_file_splice_write, 2626 .fallocate = ocfs2_fallocate, 2627 }; 2628 2629 const struct file_operations ocfs2_dops = { 2630 .llseek = generic_file_llseek, 2631 .read = generic_read_dir, 2632 .readdir = ocfs2_readdir, 2633 .fsync = ocfs2_sync_file, 2634 .release = ocfs2_dir_release, 2635 .open = ocfs2_dir_open, 2636 .unlocked_ioctl = ocfs2_ioctl, 2637 #ifdef CONFIG_COMPAT 2638 .compat_ioctl = ocfs2_compat_ioctl, 2639 #endif 2640 .lock = ocfs2_lock, 2641 .flock = ocfs2_flock, 2642 }; 2643 2644 /* 2645 * POSIX-lockless variants of our file_operations. 2646 * 2647 * These will be used if the underlying cluster stack does not support 2648 * posix file locking, if the user passes the "localflocks" mount 2649 * option, or if we have a local-only fs. 2650 * 2651 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2652 * so we still want it in the case of no stack support for 2653 * plocks. Internally, it will do the right thing when asked to ignore 2654 * the cluster. 2655 */ 2656 const struct file_operations ocfs2_fops_no_plocks = { 2657 .llseek = generic_file_llseek, 2658 .read = do_sync_read, 2659 .write = do_sync_write, 2660 .mmap = ocfs2_mmap, 2661 .fsync = ocfs2_sync_file, 2662 .release = ocfs2_file_release, 2663 .open = ocfs2_file_open, 2664 .aio_read = ocfs2_file_aio_read, 2665 .aio_write = ocfs2_file_aio_write, 2666 .unlocked_ioctl = ocfs2_ioctl, 2667 #ifdef CONFIG_COMPAT 2668 .compat_ioctl = ocfs2_compat_ioctl, 2669 #endif 2670 .flock = ocfs2_flock, 2671 .splice_read = ocfs2_file_splice_read, 2672 .splice_write = ocfs2_file_splice_write, 2673 .fallocate = ocfs2_fallocate, 2674 }; 2675 2676 const struct file_operations ocfs2_dops_no_plocks = { 2677 .llseek = generic_file_llseek, 2678 .read = generic_read_dir, 2679 .readdir = ocfs2_readdir, 2680 .fsync = ocfs2_sync_file, 2681 .release = ocfs2_dir_release, 2682 .open = ocfs2_dir_open, 2683 .unlocked_ioctl = ocfs2_ioctl, 2684 #ifdef CONFIG_COMPAT 2685 .compat_ioctl = ocfs2_compat_ioctl, 2686 #endif 2687 .flock = ocfs2_flock, 2688 }; 2689