xref: /openbmc/linux/fs/ocfs2/file.c (revision e2942062)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * file.c
4  *
5  * File open, close, extend, truncate
6  *
7  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/fs.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/uio.h>
17 #include <linux/sched.h>
18 #include <linux/splice.h>
19 #include <linux/mount.h>
20 #include <linux/writeback.h>
21 #include <linux/falloc.h>
22 #include <linux/quotaops.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 
26 #include <cluster/masklog.h>
27 
28 #include "ocfs2.h"
29 
30 #include "alloc.h"
31 #include "aops.h"
32 #include "dir.h"
33 #include "dlmglue.h"
34 #include "extent_map.h"
35 #include "file.h"
36 #include "sysfile.h"
37 #include "inode.h"
38 #include "ioctl.h"
39 #include "journal.h"
40 #include "locks.h"
41 #include "mmap.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "quota.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49 
50 #include "buffer_head_io.h"
51 
52 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
53 {
54 	struct ocfs2_file_private *fp;
55 
56 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
57 	if (!fp)
58 		return -ENOMEM;
59 
60 	fp->fp_file = file;
61 	mutex_init(&fp->fp_mutex);
62 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
63 	file->private_data = fp;
64 
65 	return 0;
66 }
67 
68 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
69 {
70 	struct ocfs2_file_private *fp = file->private_data;
71 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
72 
73 	if (fp) {
74 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
75 		ocfs2_lock_res_free(&fp->fp_flock);
76 		kfree(fp);
77 		file->private_data = NULL;
78 	}
79 }
80 
81 static int ocfs2_file_open(struct inode *inode, struct file *file)
82 {
83 	int status;
84 	int mode = file->f_flags;
85 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
86 
87 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
88 			      (unsigned long long)oi->ip_blkno,
89 			      file->f_path.dentry->d_name.len,
90 			      file->f_path.dentry->d_name.name, mode);
91 
92 	if (file->f_mode & FMODE_WRITE) {
93 		status = dquot_initialize(inode);
94 		if (status)
95 			goto leave;
96 	}
97 
98 	spin_lock(&oi->ip_lock);
99 
100 	/* Check that the inode hasn't been wiped from disk by another
101 	 * node. If it hasn't then we're safe as long as we hold the
102 	 * spin lock until our increment of open count. */
103 	if (oi->ip_flags & OCFS2_INODE_DELETED) {
104 		spin_unlock(&oi->ip_lock);
105 
106 		status = -ENOENT;
107 		goto leave;
108 	}
109 
110 	if (mode & O_DIRECT)
111 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
112 
113 	oi->ip_open_count++;
114 	spin_unlock(&oi->ip_lock);
115 
116 	status = ocfs2_init_file_private(inode, file);
117 	if (status) {
118 		/*
119 		 * We want to set open count back if we're failing the
120 		 * open.
121 		 */
122 		spin_lock(&oi->ip_lock);
123 		oi->ip_open_count--;
124 		spin_unlock(&oi->ip_lock);
125 	}
126 
127 	file->f_mode |= FMODE_NOWAIT;
128 
129 leave:
130 	return status;
131 }
132 
133 static int ocfs2_file_release(struct inode *inode, struct file *file)
134 {
135 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
136 
137 	spin_lock(&oi->ip_lock);
138 	if (!--oi->ip_open_count)
139 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
140 
141 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
142 				 oi->ip_blkno,
143 				 file->f_path.dentry->d_name.len,
144 				 file->f_path.dentry->d_name.name,
145 				 oi->ip_open_count);
146 	spin_unlock(&oi->ip_lock);
147 
148 	ocfs2_free_file_private(inode, file);
149 
150 	return 0;
151 }
152 
153 static int ocfs2_dir_open(struct inode *inode, struct file *file)
154 {
155 	return ocfs2_init_file_private(inode, file);
156 }
157 
158 static int ocfs2_dir_release(struct inode *inode, struct file *file)
159 {
160 	ocfs2_free_file_private(inode, file);
161 	return 0;
162 }
163 
164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
165 			   int datasync)
166 {
167 	int err = 0;
168 	struct inode *inode = file->f_mapping->host;
169 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
170 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
171 	journal_t *journal = osb->journal->j_journal;
172 	int ret;
173 	tid_t commit_tid;
174 	bool needs_barrier = false;
175 
176 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
177 			      oi->ip_blkno,
178 			      file->f_path.dentry->d_name.len,
179 			      file->f_path.dentry->d_name.name,
180 			      (unsigned long long)datasync);
181 
182 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
183 		return -EROFS;
184 
185 	err = file_write_and_wait_range(file, start, end);
186 	if (err)
187 		return err;
188 
189 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
190 	if (journal->j_flags & JBD2_BARRIER &&
191 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
192 		needs_barrier = true;
193 	err = jbd2_complete_transaction(journal, commit_tid);
194 	if (needs_barrier) {
195 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
196 		if (!err)
197 			err = ret;
198 	}
199 
200 	if (err)
201 		mlog_errno(err);
202 
203 	return (err < 0) ? -EIO : 0;
204 }
205 
206 int ocfs2_should_update_atime(struct inode *inode,
207 			      struct vfsmount *vfsmnt)
208 {
209 	struct timespec64 now;
210 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
211 
212 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
213 		return 0;
214 
215 	if ((inode->i_flags & S_NOATIME) ||
216 	    ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
217 		return 0;
218 
219 	/*
220 	 * We can be called with no vfsmnt structure - NFSD will
221 	 * sometimes do this.
222 	 *
223 	 * Note that our action here is different than touch_atime() -
224 	 * if we can't tell whether this is a noatime mount, then we
225 	 * don't know whether to trust the value of s_atime_quantum.
226 	 */
227 	if (vfsmnt == NULL)
228 		return 0;
229 
230 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
231 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
232 		return 0;
233 
234 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
235 		if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
236 		    (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
237 			return 1;
238 
239 		return 0;
240 	}
241 
242 	now = current_time(inode);
243 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
244 		return 0;
245 	else
246 		return 1;
247 }
248 
249 int ocfs2_update_inode_atime(struct inode *inode,
250 			     struct buffer_head *bh)
251 {
252 	int ret;
253 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
254 	handle_t *handle;
255 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
256 
257 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
258 	if (IS_ERR(handle)) {
259 		ret = PTR_ERR(handle);
260 		mlog_errno(ret);
261 		goto out;
262 	}
263 
264 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
265 				      OCFS2_JOURNAL_ACCESS_WRITE);
266 	if (ret) {
267 		mlog_errno(ret);
268 		goto out_commit;
269 	}
270 
271 	/*
272 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
273 	 * have i_rwsem to guard against concurrent changes to other
274 	 * inode fields.
275 	 */
276 	inode->i_atime = current_time(inode);
277 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
278 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
279 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
280 	ocfs2_journal_dirty(handle, bh);
281 
282 out_commit:
283 	ocfs2_commit_trans(osb, handle);
284 out:
285 	return ret;
286 }
287 
288 int ocfs2_set_inode_size(handle_t *handle,
289 				struct inode *inode,
290 				struct buffer_head *fe_bh,
291 				u64 new_i_size)
292 {
293 	int status;
294 
295 	i_size_write(inode, new_i_size);
296 	inode->i_blocks = ocfs2_inode_sector_count(inode);
297 	inode->i_ctime = inode->i_mtime = current_time(inode);
298 
299 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
300 	if (status < 0) {
301 		mlog_errno(status);
302 		goto bail;
303 	}
304 
305 bail:
306 	return status;
307 }
308 
309 int ocfs2_simple_size_update(struct inode *inode,
310 			     struct buffer_head *di_bh,
311 			     u64 new_i_size)
312 {
313 	int ret;
314 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
315 	handle_t *handle = NULL;
316 
317 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
318 	if (IS_ERR(handle)) {
319 		ret = PTR_ERR(handle);
320 		mlog_errno(ret);
321 		goto out;
322 	}
323 
324 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
325 				   new_i_size);
326 	if (ret < 0)
327 		mlog_errno(ret);
328 
329 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
330 	ocfs2_commit_trans(osb, handle);
331 out:
332 	return ret;
333 }
334 
335 static int ocfs2_cow_file_pos(struct inode *inode,
336 			      struct buffer_head *fe_bh,
337 			      u64 offset)
338 {
339 	int status;
340 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
341 	unsigned int num_clusters = 0;
342 	unsigned int ext_flags = 0;
343 
344 	/*
345 	 * If the new offset is aligned to the range of the cluster, there is
346 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
347 	 * CoW either.
348 	 */
349 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
350 		return 0;
351 
352 	status = ocfs2_get_clusters(inode, cpos, &phys,
353 				    &num_clusters, &ext_flags);
354 	if (status) {
355 		mlog_errno(status);
356 		goto out;
357 	}
358 
359 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
360 		goto out;
361 
362 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
363 
364 out:
365 	return status;
366 }
367 
368 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
369 				     struct inode *inode,
370 				     struct buffer_head *fe_bh,
371 				     u64 new_i_size)
372 {
373 	int status;
374 	handle_t *handle;
375 	struct ocfs2_dinode *di;
376 	u64 cluster_bytes;
377 
378 	/*
379 	 * We need to CoW the cluster contains the offset if it is reflinked
380 	 * since we will call ocfs2_zero_range_for_truncate later which will
381 	 * write "0" from offset to the end of the cluster.
382 	 */
383 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
384 	if (status) {
385 		mlog_errno(status);
386 		return status;
387 	}
388 
389 	/* TODO: This needs to actually orphan the inode in this
390 	 * transaction. */
391 
392 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
393 	if (IS_ERR(handle)) {
394 		status = PTR_ERR(handle);
395 		mlog_errno(status);
396 		goto out;
397 	}
398 
399 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
400 					 OCFS2_JOURNAL_ACCESS_WRITE);
401 	if (status < 0) {
402 		mlog_errno(status);
403 		goto out_commit;
404 	}
405 
406 	/*
407 	 * Do this before setting i_size.
408 	 */
409 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
410 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
411 					       cluster_bytes);
412 	if (status) {
413 		mlog_errno(status);
414 		goto out_commit;
415 	}
416 
417 	i_size_write(inode, new_i_size);
418 	inode->i_ctime = inode->i_mtime = current_time(inode);
419 
420 	di = (struct ocfs2_dinode *) fe_bh->b_data;
421 	di->i_size = cpu_to_le64(new_i_size);
422 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
423 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
424 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
425 
426 	ocfs2_journal_dirty(handle, fe_bh);
427 
428 out_commit:
429 	ocfs2_commit_trans(osb, handle);
430 out:
431 	return status;
432 }
433 
434 int ocfs2_truncate_file(struct inode *inode,
435 			       struct buffer_head *di_bh,
436 			       u64 new_i_size)
437 {
438 	int status = 0;
439 	struct ocfs2_dinode *fe = NULL;
440 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
441 
442 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
443 	 * already validated it */
444 	fe = (struct ocfs2_dinode *) di_bh->b_data;
445 
446 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
447 				  (unsigned long long)le64_to_cpu(fe->i_size),
448 				  (unsigned long long)new_i_size);
449 
450 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
451 			"Inode %llu, inode i_size = %lld != di "
452 			"i_size = %llu, i_flags = 0x%x\n",
453 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
454 			i_size_read(inode),
455 			(unsigned long long)le64_to_cpu(fe->i_size),
456 			le32_to_cpu(fe->i_flags));
457 
458 	if (new_i_size > le64_to_cpu(fe->i_size)) {
459 		trace_ocfs2_truncate_file_error(
460 			(unsigned long long)le64_to_cpu(fe->i_size),
461 			(unsigned long long)new_i_size);
462 		status = -EINVAL;
463 		mlog_errno(status);
464 		goto bail;
465 	}
466 
467 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
468 
469 	ocfs2_resv_discard(&osb->osb_la_resmap,
470 			   &OCFS2_I(inode)->ip_la_data_resv);
471 
472 	/*
473 	 * The inode lock forced other nodes to sync and drop their
474 	 * pages, which (correctly) happens even if we have a truncate
475 	 * without allocation change - ocfs2 cluster sizes can be much
476 	 * greater than page size, so we have to truncate them
477 	 * anyway.
478 	 */
479 
480 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
481 		unmap_mapping_range(inode->i_mapping,
482 				    new_i_size + PAGE_SIZE - 1, 0, 1);
483 		truncate_inode_pages(inode->i_mapping, new_i_size);
484 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
485 					       i_size_read(inode), 1);
486 		if (status)
487 			mlog_errno(status);
488 
489 		goto bail_unlock_sem;
490 	}
491 
492 	/* alright, we're going to need to do a full blown alloc size
493 	 * change. Orphan the inode so that recovery can complete the
494 	 * truncate if necessary. This does the task of marking
495 	 * i_size. */
496 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
497 	if (status < 0) {
498 		mlog_errno(status);
499 		goto bail_unlock_sem;
500 	}
501 
502 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
503 	truncate_inode_pages(inode->i_mapping, new_i_size);
504 
505 	status = ocfs2_commit_truncate(osb, inode, di_bh);
506 	if (status < 0) {
507 		mlog_errno(status);
508 		goto bail_unlock_sem;
509 	}
510 
511 	/* TODO: orphan dir cleanup here. */
512 bail_unlock_sem:
513 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
514 
515 bail:
516 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
517 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
518 
519 	return status;
520 }
521 
522 /*
523  * extend file allocation only here.
524  * we'll update all the disk stuff, and oip->alloc_size
525  *
526  * expect stuff to be locked, a transaction started and enough data /
527  * metadata reservations in the contexts.
528  *
529  * Will return -EAGAIN, and a reason if a restart is needed.
530  * If passed in, *reason will always be set, even in error.
531  */
532 int ocfs2_add_inode_data(struct ocfs2_super *osb,
533 			 struct inode *inode,
534 			 u32 *logical_offset,
535 			 u32 clusters_to_add,
536 			 int mark_unwritten,
537 			 struct buffer_head *fe_bh,
538 			 handle_t *handle,
539 			 struct ocfs2_alloc_context *data_ac,
540 			 struct ocfs2_alloc_context *meta_ac,
541 			 enum ocfs2_alloc_restarted *reason_ret)
542 {
543 	struct ocfs2_extent_tree et;
544 
545 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
546 	return ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
547 					   clusters_to_add, mark_unwritten,
548 					   data_ac, meta_ac, reason_ret);
549 }
550 
551 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
552 				   u32 clusters_to_add, int mark_unwritten)
553 {
554 	int status = 0;
555 	int restart_func = 0;
556 	int credits;
557 	u32 prev_clusters;
558 	struct buffer_head *bh = NULL;
559 	struct ocfs2_dinode *fe = NULL;
560 	handle_t *handle = NULL;
561 	struct ocfs2_alloc_context *data_ac = NULL;
562 	struct ocfs2_alloc_context *meta_ac = NULL;
563 	enum ocfs2_alloc_restarted why = RESTART_NONE;
564 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
565 	struct ocfs2_extent_tree et;
566 	int did_quota = 0;
567 
568 	/*
569 	 * Unwritten extent only exists for file systems which
570 	 * support holes.
571 	 */
572 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
573 
574 	status = ocfs2_read_inode_block(inode, &bh);
575 	if (status < 0) {
576 		mlog_errno(status);
577 		goto leave;
578 	}
579 	fe = (struct ocfs2_dinode *) bh->b_data;
580 
581 restart_all:
582 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
583 
584 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
585 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
586 				       &data_ac, &meta_ac);
587 	if (status) {
588 		mlog_errno(status);
589 		goto leave;
590 	}
591 
592 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
593 	handle = ocfs2_start_trans(osb, credits);
594 	if (IS_ERR(handle)) {
595 		status = PTR_ERR(handle);
596 		handle = NULL;
597 		mlog_errno(status);
598 		goto leave;
599 	}
600 
601 restarted_transaction:
602 	trace_ocfs2_extend_allocation(
603 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
604 		(unsigned long long)i_size_read(inode),
605 		le32_to_cpu(fe->i_clusters), clusters_to_add,
606 		why, restart_func);
607 
608 	status = dquot_alloc_space_nodirty(inode,
609 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
610 	if (status)
611 		goto leave;
612 	did_quota = 1;
613 
614 	/* reserve a write to the file entry early on - that we if we
615 	 * run out of credits in the allocation path, we can still
616 	 * update i_size. */
617 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
618 					 OCFS2_JOURNAL_ACCESS_WRITE);
619 	if (status < 0) {
620 		mlog_errno(status);
621 		goto leave;
622 	}
623 
624 	prev_clusters = OCFS2_I(inode)->ip_clusters;
625 
626 	status = ocfs2_add_inode_data(osb,
627 				      inode,
628 				      &logical_start,
629 				      clusters_to_add,
630 				      mark_unwritten,
631 				      bh,
632 				      handle,
633 				      data_ac,
634 				      meta_ac,
635 				      &why);
636 	if ((status < 0) && (status != -EAGAIN)) {
637 		if (status != -ENOSPC)
638 			mlog_errno(status);
639 		goto leave;
640 	}
641 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
642 	ocfs2_journal_dirty(handle, bh);
643 
644 	spin_lock(&OCFS2_I(inode)->ip_lock);
645 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
646 	spin_unlock(&OCFS2_I(inode)->ip_lock);
647 	/* Release unused quota reservation */
648 	dquot_free_space(inode,
649 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
650 	did_quota = 0;
651 
652 	if (why != RESTART_NONE && clusters_to_add) {
653 		if (why == RESTART_META) {
654 			restart_func = 1;
655 			status = 0;
656 		} else {
657 			BUG_ON(why != RESTART_TRANS);
658 
659 			status = ocfs2_allocate_extend_trans(handle, 1);
660 			if (status < 0) {
661 				/* handle still has to be committed at
662 				 * this point. */
663 				status = -ENOMEM;
664 				mlog_errno(status);
665 				goto leave;
666 			}
667 			goto restarted_transaction;
668 		}
669 	}
670 
671 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
672 	     le32_to_cpu(fe->i_clusters),
673 	     (unsigned long long)le64_to_cpu(fe->i_size),
674 	     OCFS2_I(inode)->ip_clusters,
675 	     (unsigned long long)i_size_read(inode));
676 
677 leave:
678 	if (status < 0 && did_quota)
679 		dquot_free_space(inode,
680 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
681 	if (handle) {
682 		ocfs2_commit_trans(osb, handle);
683 		handle = NULL;
684 	}
685 	if (data_ac) {
686 		ocfs2_free_alloc_context(data_ac);
687 		data_ac = NULL;
688 	}
689 	if (meta_ac) {
690 		ocfs2_free_alloc_context(meta_ac);
691 		meta_ac = NULL;
692 	}
693 	if ((!status) && restart_func) {
694 		restart_func = 0;
695 		goto restart_all;
696 	}
697 	brelse(bh);
698 	bh = NULL;
699 
700 	return status;
701 }
702 
703 /*
704  * While a write will already be ordering the data, a truncate will not.
705  * Thus, we need to explicitly order the zeroed pages.
706  */
707 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
708 						      struct buffer_head *di_bh,
709 						      loff_t start_byte,
710 						      loff_t length)
711 {
712 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
713 	handle_t *handle = NULL;
714 	int ret = 0;
715 
716 	if (!ocfs2_should_order_data(inode))
717 		goto out;
718 
719 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
720 	if (IS_ERR(handle)) {
721 		ret = -ENOMEM;
722 		mlog_errno(ret);
723 		goto out;
724 	}
725 
726 	ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
727 	if (ret < 0) {
728 		mlog_errno(ret);
729 		goto out;
730 	}
731 
732 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
733 				      OCFS2_JOURNAL_ACCESS_WRITE);
734 	if (ret)
735 		mlog_errno(ret);
736 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
737 
738 out:
739 	if (ret) {
740 		if (!IS_ERR(handle))
741 			ocfs2_commit_trans(osb, handle);
742 		handle = ERR_PTR(ret);
743 	}
744 	return handle;
745 }
746 
747 /* Some parts of this taken from generic_cont_expand, which turned out
748  * to be too fragile to do exactly what we need without us having to
749  * worry about recursive locking in ->write_begin() and ->write_end(). */
750 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
751 				 u64 abs_to, struct buffer_head *di_bh)
752 {
753 	struct address_space *mapping = inode->i_mapping;
754 	struct page *page;
755 	unsigned long index = abs_from >> PAGE_SHIFT;
756 	handle_t *handle;
757 	int ret = 0;
758 	unsigned zero_from, zero_to, block_start, block_end;
759 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
760 
761 	BUG_ON(abs_from >= abs_to);
762 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
763 	BUG_ON(abs_from & (inode->i_blkbits - 1));
764 
765 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
766 						      abs_from,
767 						      abs_to - abs_from);
768 	if (IS_ERR(handle)) {
769 		ret = PTR_ERR(handle);
770 		goto out;
771 	}
772 
773 	page = find_or_create_page(mapping, index, GFP_NOFS);
774 	if (!page) {
775 		ret = -ENOMEM;
776 		mlog_errno(ret);
777 		goto out_commit_trans;
778 	}
779 
780 	/* Get the offsets within the page that we want to zero */
781 	zero_from = abs_from & (PAGE_SIZE - 1);
782 	zero_to = abs_to & (PAGE_SIZE - 1);
783 	if (!zero_to)
784 		zero_to = PAGE_SIZE;
785 
786 	trace_ocfs2_write_zero_page(
787 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
788 			(unsigned long long)abs_from,
789 			(unsigned long long)abs_to,
790 			index, zero_from, zero_to);
791 
792 	/* We know that zero_from is block aligned */
793 	for (block_start = zero_from; block_start < zero_to;
794 	     block_start = block_end) {
795 		block_end = block_start + i_blocksize(inode);
796 
797 		/*
798 		 * block_start is block-aligned.  Bump it by one to force
799 		 * __block_write_begin and block_commit_write to zero the
800 		 * whole block.
801 		 */
802 		ret = __block_write_begin(page, block_start + 1, 0,
803 					  ocfs2_get_block);
804 		if (ret < 0) {
805 			mlog_errno(ret);
806 			goto out_unlock;
807 		}
808 
809 
810 		/* must not update i_size! */
811 		block_commit_write(page, block_start + 1, block_start + 1);
812 	}
813 
814 	/*
815 	 * fs-writeback will release the dirty pages without page lock
816 	 * whose offset are over inode size, the release happens at
817 	 * block_write_full_page().
818 	 */
819 	i_size_write(inode, abs_to);
820 	inode->i_blocks = ocfs2_inode_sector_count(inode);
821 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
822 	inode->i_mtime = inode->i_ctime = current_time(inode);
823 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
824 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
825 	di->i_mtime_nsec = di->i_ctime_nsec;
826 	if (handle) {
827 		ocfs2_journal_dirty(handle, di_bh);
828 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
829 	}
830 
831 out_unlock:
832 	unlock_page(page);
833 	put_page(page);
834 out_commit_trans:
835 	if (handle)
836 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
837 out:
838 	return ret;
839 }
840 
841 /*
842  * Find the next range to zero.  We do this in terms of bytes because
843  * that's what ocfs2_zero_extend() wants, and it is dealing with the
844  * pagecache.  We may return multiple extents.
845  *
846  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
847  * needs to be zeroed.  range_start and range_end return the next zeroing
848  * range.  A subsequent call should pass the previous range_end as its
849  * zero_start.  If range_end is 0, there's nothing to do.
850  *
851  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
852  */
853 static int ocfs2_zero_extend_get_range(struct inode *inode,
854 				       struct buffer_head *di_bh,
855 				       u64 zero_start, u64 zero_end,
856 				       u64 *range_start, u64 *range_end)
857 {
858 	int rc = 0, needs_cow = 0;
859 	u32 p_cpos, zero_clusters = 0;
860 	u32 zero_cpos =
861 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
862 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
863 	unsigned int num_clusters = 0;
864 	unsigned int ext_flags = 0;
865 
866 	while (zero_cpos < last_cpos) {
867 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
868 					&num_clusters, &ext_flags);
869 		if (rc) {
870 			mlog_errno(rc);
871 			goto out;
872 		}
873 
874 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
875 			zero_clusters = num_clusters;
876 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
877 				needs_cow = 1;
878 			break;
879 		}
880 
881 		zero_cpos += num_clusters;
882 	}
883 	if (!zero_clusters) {
884 		*range_end = 0;
885 		goto out;
886 	}
887 
888 	while ((zero_cpos + zero_clusters) < last_cpos) {
889 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
890 					&p_cpos, &num_clusters,
891 					&ext_flags);
892 		if (rc) {
893 			mlog_errno(rc);
894 			goto out;
895 		}
896 
897 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
898 			break;
899 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
900 			needs_cow = 1;
901 		zero_clusters += num_clusters;
902 	}
903 	if ((zero_cpos + zero_clusters) > last_cpos)
904 		zero_clusters = last_cpos - zero_cpos;
905 
906 	if (needs_cow) {
907 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
908 					zero_clusters, UINT_MAX);
909 		if (rc) {
910 			mlog_errno(rc);
911 			goto out;
912 		}
913 	}
914 
915 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
916 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
917 					     zero_cpos + zero_clusters);
918 
919 out:
920 	return rc;
921 }
922 
923 /*
924  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
925  * has made sure that the entire range needs zeroing.
926  */
927 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
928 				   u64 range_end, struct buffer_head *di_bh)
929 {
930 	int rc = 0;
931 	u64 next_pos;
932 	u64 zero_pos = range_start;
933 
934 	trace_ocfs2_zero_extend_range(
935 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
936 			(unsigned long long)range_start,
937 			(unsigned long long)range_end);
938 	BUG_ON(range_start >= range_end);
939 
940 	while (zero_pos < range_end) {
941 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
942 		if (next_pos > range_end)
943 			next_pos = range_end;
944 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
945 		if (rc < 0) {
946 			mlog_errno(rc);
947 			break;
948 		}
949 		zero_pos = next_pos;
950 
951 		/*
952 		 * Very large extends have the potential to lock up
953 		 * the cpu for extended periods of time.
954 		 */
955 		cond_resched();
956 	}
957 
958 	return rc;
959 }
960 
961 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
962 		      loff_t zero_to_size)
963 {
964 	int ret = 0;
965 	u64 zero_start, range_start = 0, range_end = 0;
966 	struct super_block *sb = inode->i_sb;
967 
968 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
969 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
970 				(unsigned long long)zero_start,
971 				(unsigned long long)i_size_read(inode));
972 	while (zero_start < zero_to_size) {
973 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
974 						  zero_to_size,
975 						  &range_start,
976 						  &range_end);
977 		if (ret) {
978 			mlog_errno(ret);
979 			break;
980 		}
981 		if (!range_end)
982 			break;
983 		/* Trim the ends */
984 		if (range_start < zero_start)
985 			range_start = zero_start;
986 		if (range_end > zero_to_size)
987 			range_end = zero_to_size;
988 
989 		ret = ocfs2_zero_extend_range(inode, range_start,
990 					      range_end, di_bh);
991 		if (ret) {
992 			mlog_errno(ret);
993 			break;
994 		}
995 		zero_start = range_end;
996 	}
997 
998 	return ret;
999 }
1000 
1001 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1002 			  u64 new_i_size, u64 zero_to)
1003 {
1004 	int ret;
1005 	u32 clusters_to_add;
1006 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1007 
1008 	/*
1009 	 * Only quota files call this without a bh, and they can't be
1010 	 * refcounted.
1011 	 */
1012 	BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1013 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1014 
1015 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1016 	if (clusters_to_add < oi->ip_clusters)
1017 		clusters_to_add = 0;
1018 	else
1019 		clusters_to_add -= oi->ip_clusters;
1020 
1021 	if (clusters_to_add) {
1022 		ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1023 					      clusters_to_add, 0);
1024 		if (ret) {
1025 			mlog_errno(ret);
1026 			goto out;
1027 		}
1028 	}
1029 
1030 	/*
1031 	 * Call this even if we don't add any clusters to the tree. We
1032 	 * still need to zero the area between the old i_size and the
1033 	 * new i_size.
1034 	 */
1035 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1036 	if (ret < 0)
1037 		mlog_errno(ret);
1038 
1039 out:
1040 	return ret;
1041 }
1042 
1043 static int ocfs2_extend_file(struct inode *inode,
1044 			     struct buffer_head *di_bh,
1045 			     u64 new_i_size)
1046 {
1047 	int ret = 0;
1048 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1049 
1050 	BUG_ON(!di_bh);
1051 
1052 	/* setattr sometimes calls us like this. */
1053 	if (new_i_size == 0)
1054 		goto out;
1055 
1056 	if (i_size_read(inode) == new_i_size)
1057 		goto out;
1058 	BUG_ON(new_i_size < i_size_read(inode));
1059 
1060 	/*
1061 	 * The alloc sem blocks people in read/write from reading our
1062 	 * allocation until we're done changing it. We depend on
1063 	 * i_rwsem to block other extend/truncate calls while we're
1064 	 * here.  We even have to hold it for sparse files because there
1065 	 * might be some tail zeroing.
1066 	 */
1067 	down_write(&oi->ip_alloc_sem);
1068 
1069 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1070 		/*
1071 		 * We can optimize small extends by keeping the inodes
1072 		 * inline data.
1073 		 */
1074 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1075 			up_write(&oi->ip_alloc_sem);
1076 			goto out_update_size;
1077 		}
1078 
1079 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1080 		if (ret) {
1081 			up_write(&oi->ip_alloc_sem);
1082 			mlog_errno(ret);
1083 			goto out;
1084 		}
1085 	}
1086 
1087 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1088 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1089 	else
1090 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1091 					    new_i_size);
1092 
1093 	up_write(&oi->ip_alloc_sem);
1094 
1095 	if (ret < 0) {
1096 		mlog_errno(ret);
1097 		goto out;
1098 	}
1099 
1100 out_update_size:
1101 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1102 	if (ret < 0)
1103 		mlog_errno(ret);
1104 
1105 out:
1106 	return ret;
1107 }
1108 
1109 int ocfs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1110 		  struct iattr *attr)
1111 {
1112 	int status = 0, size_change;
1113 	int inode_locked = 0;
1114 	struct inode *inode = d_inode(dentry);
1115 	struct super_block *sb = inode->i_sb;
1116 	struct ocfs2_super *osb = OCFS2_SB(sb);
1117 	struct buffer_head *bh = NULL;
1118 	handle_t *handle = NULL;
1119 	struct dquot *transfer_to[MAXQUOTAS] = { };
1120 	int qtype;
1121 	int had_lock;
1122 	struct ocfs2_lock_holder oh;
1123 
1124 	trace_ocfs2_setattr(inode, dentry,
1125 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1126 			    dentry->d_name.len, dentry->d_name.name,
1127 			    attr->ia_valid, attr->ia_mode,
1128 			    from_kuid(&init_user_ns, attr->ia_uid),
1129 			    from_kgid(&init_user_ns, attr->ia_gid));
1130 
1131 	/* ensuring we don't even attempt to truncate a symlink */
1132 	if (S_ISLNK(inode->i_mode))
1133 		attr->ia_valid &= ~ATTR_SIZE;
1134 
1135 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1136 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1137 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1138 		return 0;
1139 
1140 	status = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1141 	if (status)
1142 		return status;
1143 
1144 	if (is_quota_modification(&nop_mnt_idmap, inode, attr)) {
1145 		status = dquot_initialize(inode);
1146 		if (status)
1147 			return status;
1148 	}
1149 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1150 	if (size_change) {
1151 		/*
1152 		 * Here we should wait dio to finish before inode lock
1153 		 * to avoid a deadlock between ocfs2_setattr() and
1154 		 * ocfs2_dio_end_io_write()
1155 		 */
1156 		inode_dio_wait(inode);
1157 
1158 		status = ocfs2_rw_lock(inode, 1);
1159 		if (status < 0) {
1160 			mlog_errno(status);
1161 			goto bail;
1162 		}
1163 	}
1164 
1165 	had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1166 	if (had_lock < 0) {
1167 		status = had_lock;
1168 		goto bail_unlock_rw;
1169 	} else if (had_lock) {
1170 		/*
1171 		 * As far as we know, ocfs2_setattr() could only be the first
1172 		 * VFS entry point in the call chain of recursive cluster
1173 		 * locking issue.
1174 		 *
1175 		 * For instance:
1176 		 * chmod_common()
1177 		 *  notify_change()
1178 		 *   ocfs2_setattr()
1179 		 *    posix_acl_chmod()
1180 		 *     ocfs2_iop_get_acl()
1181 		 *
1182 		 * But, we're not 100% sure if it's always true, because the
1183 		 * ordering of the VFS entry points in the call chain is out
1184 		 * of our control. So, we'd better dump the stack here to
1185 		 * catch the other cases of recursive locking.
1186 		 */
1187 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1188 		dump_stack();
1189 	}
1190 	inode_locked = 1;
1191 
1192 	if (size_change) {
1193 		status = inode_newsize_ok(inode, attr->ia_size);
1194 		if (status)
1195 			goto bail_unlock;
1196 
1197 		if (i_size_read(inode) >= attr->ia_size) {
1198 			if (ocfs2_should_order_data(inode)) {
1199 				status = ocfs2_begin_ordered_truncate(inode,
1200 								      attr->ia_size);
1201 				if (status)
1202 					goto bail_unlock;
1203 			}
1204 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1205 		} else
1206 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1207 		if (status < 0) {
1208 			if (status != -ENOSPC)
1209 				mlog_errno(status);
1210 			status = -ENOSPC;
1211 			goto bail_unlock;
1212 		}
1213 	}
1214 
1215 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1216 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1217 		/*
1218 		 * Gather pointers to quota structures so that allocation /
1219 		 * freeing of quota structures happens here and not inside
1220 		 * dquot_transfer() where we have problems with lock ordering
1221 		 */
1222 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1223 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1224 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1225 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1226 			if (IS_ERR(transfer_to[USRQUOTA])) {
1227 				status = PTR_ERR(transfer_to[USRQUOTA]);
1228 				transfer_to[USRQUOTA] = NULL;
1229 				goto bail_unlock;
1230 			}
1231 		}
1232 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1233 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1234 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1235 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1236 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1237 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1238 				transfer_to[GRPQUOTA] = NULL;
1239 				goto bail_unlock;
1240 			}
1241 		}
1242 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1243 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1244 					   2 * ocfs2_quota_trans_credits(sb));
1245 		if (IS_ERR(handle)) {
1246 			status = PTR_ERR(handle);
1247 			mlog_errno(status);
1248 			goto bail_unlock_alloc;
1249 		}
1250 		status = __dquot_transfer(inode, transfer_to);
1251 		if (status < 0)
1252 			goto bail_commit;
1253 	} else {
1254 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1255 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1256 		if (IS_ERR(handle)) {
1257 			status = PTR_ERR(handle);
1258 			mlog_errno(status);
1259 			goto bail_unlock_alloc;
1260 		}
1261 	}
1262 
1263 	setattr_copy(&nop_mnt_idmap, inode, attr);
1264 	mark_inode_dirty(inode);
1265 
1266 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1267 	if (status < 0)
1268 		mlog_errno(status);
1269 
1270 bail_commit:
1271 	ocfs2_commit_trans(osb, handle);
1272 bail_unlock_alloc:
1273 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1274 bail_unlock:
1275 	if (status && inode_locked) {
1276 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1277 		inode_locked = 0;
1278 	}
1279 bail_unlock_rw:
1280 	if (size_change)
1281 		ocfs2_rw_unlock(inode, 1);
1282 bail:
1283 
1284 	/* Release quota pointers in case we acquired them */
1285 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1286 		dqput(transfer_to[qtype]);
1287 
1288 	if (!status && attr->ia_valid & ATTR_MODE) {
1289 		status = ocfs2_acl_chmod(inode, bh);
1290 		if (status < 0)
1291 			mlog_errno(status);
1292 	}
1293 	if (inode_locked)
1294 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1295 
1296 	brelse(bh);
1297 	return status;
1298 }
1299 
1300 int ocfs2_getattr(struct mnt_idmap *idmap, const struct path *path,
1301 		  struct kstat *stat, u32 request_mask, unsigned int flags)
1302 {
1303 	struct inode *inode = d_inode(path->dentry);
1304 	struct super_block *sb = path->dentry->d_sb;
1305 	struct ocfs2_super *osb = sb->s_fs_info;
1306 	int err;
1307 
1308 	err = ocfs2_inode_revalidate(path->dentry);
1309 	if (err) {
1310 		if (err != -ENOENT)
1311 			mlog_errno(err);
1312 		goto bail;
1313 	}
1314 
1315 	generic_fillattr(&nop_mnt_idmap, inode, stat);
1316 	/*
1317 	 * If there is inline data in the inode, the inode will normally not
1318 	 * have data blocks allocated (it may have an external xattr block).
1319 	 * Report at least one sector for such files, so tools like tar, rsync,
1320 	 * others don't incorrectly think the file is completely sparse.
1321 	 */
1322 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1323 		stat->blocks += (stat->size + 511)>>9;
1324 
1325 	/* We set the blksize from the cluster size for performance */
1326 	stat->blksize = osb->s_clustersize;
1327 
1328 bail:
1329 	return err;
1330 }
1331 
1332 int ocfs2_permission(struct mnt_idmap *idmap, struct inode *inode,
1333 		     int mask)
1334 {
1335 	int ret, had_lock;
1336 	struct ocfs2_lock_holder oh;
1337 
1338 	if (mask & MAY_NOT_BLOCK)
1339 		return -ECHILD;
1340 
1341 	had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1342 	if (had_lock < 0) {
1343 		ret = had_lock;
1344 		goto out;
1345 	} else if (had_lock) {
1346 		/* See comments in ocfs2_setattr() for details.
1347 		 * The call chain of this case could be:
1348 		 * do_sys_open()
1349 		 *  may_open()
1350 		 *   inode_permission()
1351 		 *    ocfs2_permission()
1352 		 *     ocfs2_iop_get_acl()
1353 		 */
1354 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1355 		dump_stack();
1356 	}
1357 
1358 	ret = generic_permission(&nop_mnt_idmap, inode, mask);
1359 
1360 	ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1361 out:
1362 	return ret;
1363 }
1364 
1365 static int __ocfs2_write_remove_suid(struct inode *inode,
1366 				     struct buffer_head *bh)
1367 {
1368 	int ret;
1369 	handle_t *handle;
1370 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1371 	struct ocfs2_dinode *di;
1372 
1373 	trace_ocfs2_write_remove_suid(
1374 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1375 			inode->i_mode);
1376 
1377 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1378 	if (IS_ERR(handle)) {
1379 		ret = PTR_ERR(handle);
1380 		mlog_errno(ret);
1381 		goto out;
1382 	}
1383 
1384 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1385 				      OCFS2_JOURNAL_ACCESS_WRITE);
1386 	if (ret < 0) {
1387 		mlog_errno(ret);
1388 		goto out_trans;
1389 	}
1390 
1391 	inode->i_mode &= ~S_ISUID;
1392 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1393 		inode->i_mode &= ~S_ISGID;
1394 
1395 	di = (struct ocfs2_dinode *) bh->b_data;
1396 	di->i_mode = cpu_to_le16(inode->i_mode);
1397 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1398 
1399 	ocfs2_journal_dirty(handle, bh);
1400 
1401 out_trans:
1402 	ocfs2_commit_trans(osb, handle);
1403 out:
1404 	return ret;
1405 }
1406 
1407 static int ocfs2_write_remove_suid(struct inode *inode)
1408 {
1409 	int ret;
1410 	struct buffer_head *bh = NULL;
1411 
1412 	ret = ocfs2_read_inode_block(inode, &bh);
1413 	if (ret < 0) {
1414 		mlog_errno(ret);
1415 		goto out;
1416 	}
1417 
1418 	ret =  __ocfs2_write_remove_suid(inode, bh);
1419 out:
1420 	brelse(bh);
1421 	return ret;
1422 }
1423 
1424 /*
1425  * Allocate enough extents to cover the region starting at byte offset
1426  * start for len bytes. Existing extents are skipped, any extents
1427  * added are marked as "unwritten".
1428  */
1429 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1430 					    u64 start, u64 len)
1431 {
1432 	int ret;
1433 	u32 cpos, phys_cpos, clusters, alloc_size;
1434 	u64 end = start + len;
1435 	struct buffer_head *di_bh = NULL;
1436 
1437 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1438 		ret = ocfs2_read_inode_block(inode, &di_bh);
1439 		if (ret) {
1440 			mlog_errno(ret);
1441 			goto out;
1442 		}
1443 
1444 		/*
1445 		 * Nothing to do if the requested reservation range
1446 		 * fits within the inode.
1447 		 */
1448 		if (ocfs2_size_fits_inline_data(di_bh, end))
1449 			goto out;
1450 
1451 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1452 		if (ret) {
1453 			mlog_errno(ret);
1454 			goto out;
1455 		}
1456 	}
1457 
1458 	/*
1459 	 * We consider both start and len to be inclusive.
1460 	 */
1461 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1462 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1463 	clusters -= cpos;
1464 
1465 	while (clusters) {
1466 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1467 					 &alloc_size, NULL);
1468 		if (ret) {
1469 			mlog_errno(ret);
1470 			goto out;
1471 		}
1472 
1473 		/*
1474 		 * Hole or existing extent len can be arbitrary, so
1475 		 * cap it to our own allocation request.
1476 		 */
1477 		if (alloc_size > clusters)
1478 			alloc_size = clusters;
1479 
1480 		if (phys_cpos) {
1481 			/*
1482 			 * We already have an allocation at this
1483 			 * region so we can safely skip it.
1484 			 */
1485 			goto next;
1486 		}
1487 
1488 		ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1489 		if (ret) {
1490 			if (ret != -ENOSPC)
1491 				mlog_errno(ret);
1492 			goto out;
1493 		}
1494 
1495 next:
1496 		cpos += alloc_size;
1497 		clusters -= alloc_size;
1498 	}
1499 
1500 	ret = 0;
1501 out:
1502 
1503 	brelse(di_bh);
1504 	return ret;
1505 }
1506 
1507 /*
1508  * Truncate a byte range, avoiding pages within partial clusters. This
1509  * preserves those pages for the zeroing code to write to.
1510  */
1511 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1512 					 u64 byte_len)
1513 {
1514 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1515 	loff_t start, end;
1516 	struct address_space *mapping = inode->i_mapping;
1517 
1518 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1519 	end = byte_start + byte_len;
1520 	end = end & ~(osb->s_clustersize - 1);
1521 
1522 	if (start < end) {
1523 		unmap_mapping_range(mapping, start, end - start, 0);
1524 		truncate_inode_pages_range(mapping, start, end - 1);
1525 	}
1526 }
1527 
1528 /*
1529  * zero out partial blocks of one cluster.
1530  *
1531  * start: file offset where zero starts, will be made upper block aligned.
1532  * len: it will be trimmed to the end of current cluster if "start + len"
1533  *      is bigger than it.
1534  */
1535 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1536 					u64 start, u64 len)
1537 {
1538 	int ret;
1539 	u64 start_block, end_block, nr_blocks;
1540 	u64 p_block, offset;
1541 	u32 cluster, p_cluster, nr_clusters;
1542 	struct super_block *sb = inode->i_sb;
1543 	u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1544 
1545 	if (start + len < end)
1546 		end = start + len;
1547 
1548 	start_block = ocfs2_blocks_for_bytes(sb, start);
1549 	end_block = ocfs2_blocks_for_bytes(sb, end);
1550 	nr_blocks = end_block - start_block;
1551 	if (!nr_blocks)
1552 		return 0;
1553 
1554 	cluster = ocfs2_bytes_to_clusters(sb, start);
1555 	ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1556 				&nr_clusters, NULL);
1557 	if (ret)
1558 		return ret;
1559 	if (!p_cluster)
1560 		return 0;
1561 
1562 	offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1563 	p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1564 	return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1565 }
1566 
1567 static int ocfs2_zero_partial_clusters(struct inode *inode,
1568 				       u64 start, u64 len)
1569 {
1570 	int ret = 0;
1571 	u64 tmpend = 0;
1572 	u64 end = start + len;
1573 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1574 	unsigned int csize = osb->s_clustersize;
1575 	handle_t *handle;
1576 	loff_t isize = i_size_read(inode);
1577 
1578 	/*
1579 	 * The "start" and "end" values are NOT necessarily part of
1580 	 * the range whose allocation is being deleted. Rather, this
1581 	 * is what the user passed in with the request. We must zero
1582 	 * partial clusters here. There's no need to worry about
1583 	 * physical allocation - the zeroing code knows to skip holes.
1584 	 */
1585 	trace_ocfs2_zero_partial_clusters(
1586 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1587 		(unsigned long long)start, (unsigned long long)end);
1588 
1589 	/*
1590 	 * If both edges are on a cluster boundary then there's no
1591 	 * zeroing required as the region is part of the allocation to
1592 	 * be truncated.
1593 	 */
1594 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1595 		goto out;
1596 
1597 	/* No page cache for EOF blocks, issue zero out to disk. */
1598 	if (end > isize) {
1599 		/*
1600 		 * zeroout eof blocks in last cluster starting from
1601 		 * "isize" even "start" > "isize" because it is
1602 		 * complicated to zeroout just at "start" as "start"
1603 		 * may be not aligned with block size, buffer write
1604 		 * would be required to do that, but out of eof buffer
1605 		 * write is not supported.
1606 		 */
1607 		ret = ocfs2_zeroout_partial_cluster(inode, isize,
1608 					end - isize);
1609 		if (ret) {
1610 			mlog_errno(ret);
1611 			goto out;
1612 		}
1613 		if (start >= isize)
1614 			goto out;
1615 		end = isize;
1616 	}
1617 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1618 	if (IS_ERR(handle)) {
1619 		ret = PTR_ERR(handle);
1620 		mlog_errno(ret);
1621 		goto out;
1622 	}
1623 
1624 	/*
1625 	 * If start is on a cluster boundary and end is somewhere in another
1626 	 * cluster, we have not COWed the cluster starting at start, unless
1627 	 * end is also within the same cluster. So, in this case, we skip this
1628 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1629 	 * to the next one.
1630 	 */
1631 	if ((start & (csize - 1)) != 0) {
1632 		/*
1633 		 * We want to get the byte offset of the end of the 1st
1634 		 * cluster.
1635 		 */
1636 		tmpend = (u64)osb->s_clustersize +
1637 			(start & ~(osb->s_clustersize - 1));
1638 		if (tmpend > end)
1639 			tmpend = end;
1640 
1641 		trace_ocfs2_zero_partial_clusters_range1(
1642 			(unsigned long long)start,
1643 			(unsigned long long)tmpend);
1644 
1645 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1646 						    tmpend);
1647 		if (ret)
1648 			mlog_errno(ret);
1649 	}
1650 
1651 	if (tmpend < end) {
1652 		/*
1653 		 * This may make start and end equal, but the zeroing
1654 		 * code will skip any work in that case so there's no
1655 		 * need to catch it up here.
1656 		 */
1657 		start = end & ~(osb->s_clustersize - 1);
1658 
1659 		trace_ocfs2_zero_partial_clusters_range2(
1660 			(unsigned long long)start, (unsigned long long)end);
1661 
1662 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1663 		if (ret)
1664 			mlog_errno(ret);
1665 	}
1666 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1667 
1668 	ocfs2_commit_trans(osb, handle);
1669 out:
1670 	return ret;
1671 }
1672 
1673 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1674 {
1675 	int i;
1676 	struct ocfs2_extent_rec *rec = NULL;
1677 
1678 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1679 
1680 		rec = &el->l_recs[i];
1681 
1682 		if (le32_to_cpu(rec->e_cpos) < pos)
1683 			break;
1684 	}
1685 
1686 	return i;
1687 }
1688 
1689 /*
1690  * Helper to calculate the punching pos and length in one run, we handle the
1691  * following three cases in order:
1692  *
1693  * - remove the entire record
1694  * - remove a partial record
1695  * - no record needs to be removed (hole-punching completed)
1696 */
1697 static void ocfs2_calc_trunc_pos(struct inode *inode,
1698 				 struct ocfs2_extent_list *el,
1699 				 struct ocfs2_extent_rec *rec,
1700 				 u32 trunc_start, u32 *trunc_cpos,
1701 				 u32 *trunc_len, u32 *trunc_end,
1702 				 u64 *blkno, int *done)
1703 {
1704 	int ret = 0;
1705 	u32 coff, range;
1706 
1707 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1708 
1709 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1710 		/*
1711 		 * remove an entire extent record.
1712 		 */
1713 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1714 		/*
1715 		 * Skip holes if any.
1716 		 */
1717 		if (range < *trunc_end)
1718 			*trunc_end = range;
1719 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1720 		*blkno = le64_to_cpu(rec->e_blkno);
1721 		*trunc_end = le32_to_cpu(rec->e_cpos);
1722 	} else if (range > trunc_start) {
1723 		/*
1724 		 * remove a partial extent record, which means we're
1725 		 * removing the last extent record.
1726 		 */
1727 		*trunc_cpos = trunc_start;
1728 		/*
1729 		 * skip hole if any.
1730 		 */
1731 		if (range < *trunc_end)
1732 			*trunc_end = range;
1733 		*trunc_len = *trunc_end - trunc_start;
1734 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1735 		*blkno = le64_to_cpu(rec->e_blkno) +
1736 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1737 		*trunc_end = trunc_start;
1738 	} else {
1739 		/*
1740 		 * It may have two following possibilities:
1741 		 *
1742 		 * - last record has been removed
1743 		 * - trunc_start was within a hole
1744 		 *
1745 		 * both two cases mean the completion of hole punching.
1746 		 */
1747 		ret = 1;
1748 	}
1749 
1750 	*done = ret;
1751 }
1752 
1753 int ocfs2_remove_inode_range(struct inode *inode,
1754 			     struct buffer_head *di_bh, u64 byte_start,
1755 			     u64 byte_len)
1756 {
1757 	int ret = 0, flags = 0, done = 0, i;
1758 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1759 	u32 cluster_in_el;
1760 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1761 	struct ocfs2_cached_dealloc_ctxt dealloc;
1762 	struct address_space *mapping = inode->i_mapping;
1763 	struct ocfs2_extent_tree et;
1764 	struct ocfs2_path *path = NULL;
1765 	struct ocfs2_extent_list *el = NULL;
1766 	struct ocfs2_extent_rec *rec = NULL;
1767 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1768 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1769 
1770 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1771 	ocfs2_init_dealloc_ctxt(&dealloc);
1772 
1773 	trace_ocfs2_remove_inode_range(
1774 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1775 			(unsigned long long)byte_start,
1776 			(unsigned long long)byte_len);
1777 
1778 	if (byte_len == 0)
1779 		return 0;
1780 
1781 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1782 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1783 					    byte_start + byte_len, 0);
1784 		if (ret) {
1785 			mlog_errno(ret);
1786 			goto out;
1787 		}
1788 		/*
1789 		 * There's no need to get fancy with the page cache
1790 		 * truncate of an inline-data inode. We're talking
1791 		 * about less than a page here, which will be cached
1792 		 * in the dinode buffer anyway.
1793 		 */
1794 		unmap_mapping_range(mapping, 0, 0, 0);
1795 		truncate_inode_pages(mapping, 0);
1796 		goto out;
1797 	}
1798 
1799 	/*
1800 	 * For reflinks, we may need to CoW 2 clusters which might be
1801 	 * partially zero'd later, if hole's start and end offset were
1802 	 * within one cluster(means is not exactly aligned to clustersize).
1803 	 */
1804 
1805 	if (ocfs2_is_refcount_inode(inode)) {
1806 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1807 		if (ret) {
1808 			mlog_errno(ret);
1809 			goto out;
1810 		}
1811 
1812 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1813 		if (ret) {
1814 			mlog_errno(ret);
1815 			goto out;
1816 		}
1817 	}
1818 
1819 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1820 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1821 	cluster_in_el = trunc_end;
1822 
1823 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1824 	if (ret) {
1825 		mlog_errno(ret);
1826 		goto out;
1827 	}
1828 
1829 	path = ocfs2_new_path_from_et(&et);
1830 	if (!path) {
1831 		ret = -ENOMEM;
1832 		mlog_errno(ret);
1833 		goto out;
1834 	}
1835 
1836 	while (trunc_end > trunc_start) {
1837 
1838 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1839 				      cluster_in_el);
1840 		if (ret) {
1841 			mlog_errno(ret);
1842 			goto out;
1843 		}
1844 
1845 		el = path_leaf_el(path);
1846 
1847 		i = ocfs2_find_rec(el, trunc_end);
1848 		/*
1849 		 * Need to go to previous extent block.
1850 		 */
1851 		if (i < 0) {
1852 			if (path->p_tree_depth == 0)
1853 				break;
1854 
1855 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1856 							    path,
1857 							    &cluster_in_el);
1858 			if (ret) {
1859 				mlog_errno(ret);
1860 				goto out;
1861 			}
1862 
1863 			/*
1864 			 * We've reached the leftmost extent block,
1865 			 * it's safe to leave.
1866 			 */
1867 			if (cluster_in_el == 0)
1868 				break;
1869 
1870 			/*
1871 			 * The 'pos' searched for previous extent block is
1872 			 * always one cluster less than actual trunc_end.
1873 			 */
1874 			trunc_end = cluster_in_el + 1;
1875 
1876 			ocfs2_reinit_path(path, 1);
1877 
1878 			continue;
1879 
1880 		} else
1881 			rec = &el->l_recs[i];
1882 
1883 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1884 				     &trunc_len, &trunc_end, &blkno, &done);
1885 		if (done)
1886 			break;
1887 
1888 		flags = rec->e_flags;
1889 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1890 
1891 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1892 					       phys_cpos, trunc_len, flags,
1893 					       &dealloc, refcount_loc, false);
1894 		if (ret < 0) {
1895 			mlog_errno(ret);
1896 			goto out;
1897 		}
1898 
1899 		cluster_in_el = trunc_end;
1900 
1901 		ocfs2_reinit_path(path, 1);
1902 	}
1903 
1904 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1905 
1906 out:
1907 	ocfs2_free_path(path);
1908 	ocfs2_schedule_truncate_log_flush(osb, 1);
1909 	ocfs2_run_deallocs(osb, &dealloc);
1910 
1911 	return ret;
1912 }
1913 
1914 /*
1915  * Parts of this function taken from xfs_change_file_space()
1916  */
1917 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1918 				     loff_t f_pos, unsigned int cmd,
1919 				     struct ocfs2_space_resv *sr,
1920 				     int change_size)
1921 {
1922 	int ret;
1923 	s64 llen;
1924 	loff_t size, orig_isize;
1925 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1926 	struct buffer_head *di_bh = NULL;
1927 	handle_t *handle;
1928 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1929 
1930 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1931 		return -EROFS;
1932 
1933 	inode_lock(inode);
1934 
1935 	/*
1936 	 * This prevents concurrent writes on other nodes
1937 	 */
1938 	ret = ocfs2_rw_lock(inode, 1);
1939 	if (ret) {
1940 		mlog_errno(ret);
1941 		goto out;
1942 	}
1943 
1944 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1945 	if (ret) {
1946 		mlog_errno(ret);
1947 		goto out_rw_unlock;
1948 	}
1949 
1950 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1951 		ret = -EPERM;
1952 		goto out_inode_unlock;
1953 	}
1954 
1955 	switch (sr->l_whence) {
1956 	case 0: /*SEEK_SET*/
1957 		break;
1958 	case 1: /*SEEK_CUR*/
1959 		sr->l_start += f_pos;
1960 		break;
1961 	case 2: /*SEEK_END*/
1962 		sr->l_start += i_size_read(inode);
1963 		break;
1964 	default:
1965 		ret = -EINVAL;
1966 		goto out_inode_unlock;
1967 	}
1968 	sr->l_whence = 0;
1969 
1970 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1971 
1972 	if (sr->l_start < 0
1973 	    || sr->l_start > max_off
1974 	    || (sr->l_start + llen) < 0
1975 	    || (sr->l_start + llen) > max_off) {
1976 		ret = -EINVAL;
1977 		goto out_inode_unlock;
1978 	}
1979 	size = sr->l_start + sr->l_len;
1980 
1981 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1982 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1983 		if (sr->l_len <= 0) {
1984 			ret = -EINVAL;
1985 			goto out_inode_unlock;
1986 		}
1987 	}
1988 
1989 	if (file && setattr_should_drop_suidgid(&nop_mnt_idmap, file_inode(file))) {
1990 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1991 		if (ret) {
1992 			mlog_errno(ret);
1993 			goto out_inode_unlock;
1994 		}
1995 	}
1996 
1997 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1998 	switch (cmd) {
1999 	case OCFS2_IOC_RESVSP:
2000 	case OCFS2_IOC_RESVSP64:
2001 		/*
2002 		 * This takes unsigned offsets, but the signed ones we
2003 		 * pass have been checked against overflow above.
2004 		 */
2005 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2006 						       sr->l_len);
2007 		break;
2008 	case OCFS2_IOC_UNRESVSP:
2009 	case OCFS2_IOC_UNRESVSP64:
2010 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2011 					       sr->l_len);
2012 		break;
2013 	default:
2014 		ret = -EINVAL;
2015 	}
2016 
2017 	orig_isize = i_size_read(inode);
2018 	/* zeroout eof blocks in the cluster. */
2019 	if (!ret && change_size && orig_isize < size) {
2020 		ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2021 					size - orig_isize);
2022 		if (!ret)
2023 			i_size_write(inode, size);
2024 	}
2025 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2026 	if (ret) {
2027 		mlog_errno(ret);
2028 		goto out_inode_unlock;
2029 	}
2030 
2031 	/*
2032 	 * We update c/mtime for these changes
2033 	 */
2034 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2035 	if (IS_ERR(handle)) {
2036 		ret = PTR_ERR(handle);
2037 		mlog_errno(ret);
2038 		goto out_inode_unlock;
2039 	}
2040 
2041 	inode->i_ctime = inode->i_mtime = current_time(inode);
2042 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2043 	if (ret < 0)
2044 		mlog_errno(ret);
2045 
2046 	if (file && (file->f_flags & O_SYNC))
2047 		handle->h_sync = 1;
2048 
2049 	ocfs2_commit_trans(osb, handle);
2050 
2051 out_inode_unlock:
2052 	brelse(di_bh);
2053 	ocfs2_inode_unlock(inode, 1);
2054 out_rw_unlock:
2055 	ocfs2_rw_unlock(inode, 1);
2056 
2057 out:
2058 	inode_unlock(inode);
2059 	return ret;
2060 }
2061 
2062 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2063 			    struct ocfs2_space_resv *sr)
2064 {
2065 	struct inode *inode = file_inode(file);
2066 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2067 	int ret;
2068 
2069 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2070 	    !ocfs2_writes_unwritten_extents(osb))
2071 		return -ENOTTY;
2072 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2073 		 !ocfs2_sparse_alloc(osb))
2074 		return -ENOTTY;
2075 
2076 	if (!S_ISREG(inode->i_mode))
2077 		return -EINVAL;
2078 
2079 	if (!(file->f_mode & FMODE_WRITE))
2080 		return -EBADF;
2081 
2082 	ret = mnt_want_write_file(file);
2083 	if (ret)
2084 		return ret;
2085 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2086 	mnt_drop_write_file(file);
2087 	return ret;
2088 }
2089 
2090 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2091 			    loff_t len)
2092 {
2093 	struct inode *inode = file_inode(file);
2094 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2095 	struct ocfs2_space_resv sr;
2096 	int change_size = 1;
2097 	int cmd = OCFS2_IOC_RESVSP64;
2098 	int ret = 0;
2099 
2100 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2101 		return -EOPNOTSUPP;
2102 	if (!ocfs2_writes_unwritten_extents(osb))
2103 		return -EOPNOTSUPP;
2104 
2105 	if (mode & FALLOC_FL_KEEP_SIZE) {
2106 		change_size = 0;
2107 	} else {
2108 		ret = inode_newsize_ok(inode, offset + len);
2109 		if (ret)
2110 			return ret;
2111 	}
2112 
2113 	if (mode & FALLOC_FL_PUNCH_HOLE)
2114 		cmd = OCFS2_IOC_UNRESVSP64;
2115 
2116 	sr.l_whence = 0;
2117 	sr.l_start = (s64)offset;
2118 	sr.l_len = (s64)len;
2119 
2120 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2121 					 change_size);
2122 }
2123 
2124 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2125 				   size_t count)
2126 {
2127 	int ret = 0;
2128 	unsigned int extent_flags;
2129 	u32 cpos, clusters, extent_len, phys_cpos;
2130 	struct super_block *sb = inode->i_sb;
2131 
2132 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2133 	    !ocfs2_is_refcount_inode(inode) ||
2134 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2135 		return 0;
2136 
2137 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2138 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2139 
2140 	while (clusters) {
2141 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2142 					 &extent_flags);
2143 		if (ret < 0) {
2144 			mlog_errno(ret);
2145 			goto out;
2146 		}
2147 
2148 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2149 			ret = 1;
2150 			break;
2151 		}
2152 
2153 		if (extent_len > clusters)
2154 			extent_len = clusters;
2155 
2156 		clusters -= extent_len;
2157 		cpos += extent_len;
2158 	}
2159 out:
2160 	return ret;
2161 }
2162 
2163 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2164 {
2165 	int blockmask = inode->i_sb->s_blocksize - 1;
2166 	loff_t final_size = pos + count;
2167 
2168 	if ((pos & blockmask) || (final_size & blockmask))
2169 		return 1;
2170 	return 0;
2171 }
2172 
2173 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2174 					    struct buffer_head **di_bh,
2175 					    int meta_level,
2176 					    int write_sem,
2177 					    int wait)
2178 {
2179 	int ret = 0;
2180 
2181 	if (wait)
2182 		ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2183 	else
2184 		ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2185 	if (ret < 0)
2186 		goto out;
2187 
2188 	if (wait) {
2189 		if (write_sem)
2190 			down_write(&OCFS2_I(inode)->ip_alloc_sem);
2191 		else
2192 			down_read(&OCFS2_I(inode)->ip_alloc_sem);
2193 	} else {
2194 		if (write_sem)
2195 			ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2196 		else
2197 			ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2198 
2199 		if (!ret) {
2200 			ret = -EAGAIN;
2201 			goto out_unlock;
2202 		}
2203 	}
2204 
2205 	return ret;
2206 
2207 out_unlock:
2208 	brelse(*di_bh);
2209 	*di_bh = NULL;
2210 	ocfs2_inode_unlock(inode, meta_level);
2211 out:
2212 	return ret;
2213 }
2214 
2215 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2216 					       struct buffer_head **di_bh,
2217 					       int meta_level,
2218 					       int write_sem)
2219 {
2220 	if (write_sem)
2221 		up_write(&OCFS2_I(inode)->ip_alloc_sem);
2222 	else
2223 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
2224 
2225 	brelse(*di_bh);
2226 	*di_bh = NULL;
2227 
2228 	if (meta_level >= 0)
2229 		ocfs2_inode_unlock(inode, meta_level);
2230 }
2231 
2232 static int ocfs2_prepare_inode_for_write(struct file *file,
2233 					 loff_t pos, size_t count, int wait)
2234 {
2235 	int ret = 0, meta_level = 0, overwrite_io = 0;
2236 	int write_sem = 0;
2237 	struct dentry *dentry = file->f_path.dentry;
2238 	struct inode *inode = d_inode(dentry);
2239 	struct buffer_head *di_bh = NULL;
2240 	u32 cpos;
2241 	u32 clusters;
2242 
2243 	/*
2244 	 * We start with a read level meta lock and only jump to an ex
2245 	 * if we need to make modifications here.
2246 	 */
2247 	for(;;) {
2248 		ret = ocfs2_inode_lock_for_extent_tree(inode,
2249 						       &di_bh,
2250 						       meta_level,
2251 						       write_sem,
2252 						       wait);
2253 		if (ret < 0) {
2254 			if (ret != -EAGAIN)
2255 				mlog_errno(ret);
2256 			goto out;
2257 		}
2258 
2259 		/*
2260 		 * Check if IO will overwrite allocated blocks in case
2261 		 * IOCB_NOWAIT flag is set.
2262 		 */
2263 		if (!wait && !overwrite_io) {
2264 			overwrite_io = 1;
2265 
2266 			ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2267 			if (ret < 0) {
2268 				if (ret != -EAGAIN)
2269 					mlog_errno(ret);
2270 				goto out_unlock;
2271 			}
2272 		}
2273 
2274 		/* Clear suid / sgid if necessary. We do this here
2275 		 * instead of later in the write path because
2276 		 * remove_suid() calls ->setattr without any hint that
2277 		 * we may have already done our cluster locking. Since
2278 		 * ocfs2_setattr() *must* take cluster locks to
2279 		 * proceed, this will lead us to recursively lock the
2280 		 * inode. There's also the dinode i_size state which
2281 		 * can be lost via setattr during extending writes (we
2282 		 * set inode->i_size at the end of a write. */
2283 		if (setattr_should_drop_suidgid(&nop_mnt_idmap, inode)) {
2284 			if (meta_level == 0) {
2285 				ocfs2_inode_unlock_for_extent_tree(inode,
2286 								   &di_bh,
2287 								   meta_level,
2288 								   write_sem);
2289 				meta_level = 1;
2290 				continue;
2291 			}
2292 
2293 			ret = ocfs2_write_remove_suid(inode);
2294 			if (ret < 0) {
2295 				mlog_errno(ret);
2296 				goto out_unlock;
2297 			}
2298 		}
2299 
2300 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2301 		if (ret == 1) {
2302 			ocfs2_inode_unlock_for_extent_tree(inode,
2303 							   &di_bh,
2304 							   meta_level,
2305 							   write_sem);
2306 			meta_level = 1;
2307 			write_sem = 1;
2308 			ret = ocfs2_inode_lock_for_extent_tree(inode,
2309 							       &di_bh,
2310 							       meta_level,
2311 							       write_sem,
2312 							       wait);
2313 			if (ret < 0) {
2314 				if (ret != -EAGAIN)
2315 					mlog_errno(ret);
2316 				goto out;
2317 			}
2318 
2319 			cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2320 			clusters =
2321 				ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2322 			ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2323 		}
2324 
2325 		if (ret < 0) {
2326 			if (ret != -EAGAIN)
2327 				mlog_errno(ret);
2328 			goto out_unlock;
2329 		}
2330 
2331 		break;
2332 	}
2333 
2334 out_unlock:
2335 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2336 					    pos, count, wait);
2337 
2338 	ocfs2_inode_unlock_for_extent_tree(inode,
2339 					   &di_bh,
2340 					   meta_level,
2341 					   write_sem);
2342 
2343 out:
2344 	return ret;
2345 }
2346 
2347 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2348 				    struct iov_iter *from)
2349 {
2350 	int rw_level;
2351 	ssize_t written = 0;
2352 	ssize_t ret;
2353 	size_t count = iov_iter_count(from);
2354 	struct file *file = iocb->ki_filp;
2355 	struct inode *inode = file_inode(file);
2356 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2357 	int full_coherency = !(osb->s_mount_opt &
2358 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2359 	void *saved_ki_complete = NULL;
2360 	int append_write = ((iocb->ki_pos + count) >=
2361 			i_size_read(inode) ? 1 : 0);
2362 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2363 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2364 
2365 	trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2366 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2367 		file->f_path.dentry->d_name.len,
2368 		file->f_path.dentry->d_name.name,
2369 		(unsigned int)from->nr_segs);	/* GRRRRR */
2370 
2371 	if (!direct_io && nowait)
2372 		return -EOPNOTSUPP;
2373 
2374 	if (count == 0)
2375 		return 0;
2376 
2377 	if (nowait) {
2378 		if (!inode_trylock(inode))
2379 			return -EAGAIN;
2380 	} else
2381 		inode_lock(inode);
2382 
2383 	/*
2384 	 * Concurrent O_DIRECT writes are allowed with
2385 	 * mount_option "coherency=buffered".
2386 	 * For append write, we must take rw EX.
2387 	 */
2388 	rw_level = (!direct_io || full_coherency || append_write);
2389 
2390 	if (nowait)
2391 		ret = ocfs2_try_rw_lock(inode, rw_level);
2392 	else
2393 		ret = ocfs2_rw_lock(inode, rw_level);
2394 	if (ret < 0) {
2395 		if (ret != -EAGAIN)
2396 			mlog_errno(ret);
2397 		goto out_mutex;
2398 	}
2399 
2400 	/*
2401 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2402 	 * inode_lock to guarantee coherency.
2403 	 */
2404 	if (direct_io && full_coherency) {
2405 		/*
2406 		 * We need to take and drop the inode lock to force
2407 		 * other nodes to drop their caches.  Buffered I/O
2408 		 * already does this in write_begin().
2409 		 */
2410 		if (nowait)
2411 			ret = ocfs2_try_inode_lock(inode, NULL, 1);
2412 		else
2413 			ret = ocfs2_inode_lock(inode, NULL, 1);
2414 		if (ret < 0) {
2415 			if (ret != -EAGAIN)
2416 				mlog_errno(ret);
2417 			goto out;
2418 		}
2419 
2420 		ocfs2_inode_unlock(inode, 1);
2421 	}
2422 
2423 	ret = generic_write_checks(iocb, from);
2424 	if (ret <= 0) {
2425 		if (ret)
2426 			mlog_errno(ret);
2427 		goto out;
2428 	}
2429 	count = ret;
2430 
2431 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2432 	if (ret < 0) {
2433 		if (ret != -EAGAIN)
2434 			mlog_errno(ret);
2435 		goto out;
2436 	}
2437 
2438 	if (direct_io && !is_sync_kiocb(iocb) &&
2439 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2440 		/*
2441 		 * Make it a sync io if it's an unaligned aio.
2442 		 */
2443 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2444 	}
2445 
2446 	/* communicate with ocfs2_dio_end_io */
2447 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2448 
2449 	written = __generic_file_write_iter(iocb, from);
2450 	/* buffered aio wouldn't have proper lock coverage today */
2451 	BUG_ON(written == -EIOCBQUEUED && !direct_io);
2452 
2453 	/*
2454 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2455 	 * function pointer which is called when o_direct io completes so that
2456 	 * it can unlock our rw lock.
2457 	 * Unfortunately there are error cases which call end_io and others
2458 	 * that don't.  so we don't have to unlock the rw_lock if either an
2459 	 * async dio is going to do it in the future or an end_io after an
2460 	 * error has already done it.
2461 	 */
2462 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2463 		rw_level = -1;
2464 	}
2465 
2466 	if (unlikely(written <= 0))
2467 		goto out;
2468 
2469 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2470 	    IS_SYNC(inode)) {
2471 		ret = filemap_fdatawrite_range(file->f_mapping,
2472 					       iocb->ki_pos - written,
2473 					       iocb->ki_pos - 1);
2474 		if (ret < 0)
2475 			written = ret;
2476 
2477 		if (!ret) {
2478 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2479 			if (ret < 0)
2480 				written = ret;
2481 		}
2482 
2483 		if (!ret)
2484 			ret = filemap_fdatawait_range(file->f_mapping,
2485 						      iocb->ki_pos - written,
2486 						      iocb->ki_pos - 1);
2487 	}
2488 
2489 out:
2490 	if (saved_ki_complete)
2491 		xchg(&iocb->ki_complete, saved_ki_complete);
2492 
2493 	if (rw_level != -1)
2494 		ocfs2_rw_unlock(inode, rw_level);
2495 
2496 out_mutex:
2497 	inode_unlock(inode);
2498 
2499 	if (written)
2500 		ret = written;
2501 	return ret;
2502 }
2503 
2504 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2505 				   struct iov_iter *to)
2506 {
2507 	int ret = 0, rw_level = -1, lock_level = 0;
2508 	struct file *filp = iocb->ki_filp;
2509 	struct inode *inode = file_inode(filp);
2510 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2511 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2512 
2513 	trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2514 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2515 			filp->f_path.dentry->d_name.len,
2516 			filp->f_path.dentry->d_name.name,
2517 			to->nr_segs);	/* GRRRRR */
2518 
2519 
2520 	if (!inode) {
2521 		ret = -EINVAL;
2522 		mlog_errno(ret);
2523 		goto bail;
2524 	}
2525 
2526 	if (!direct_io && nowait)
2527 		return -EOPNOTSUPP;
2528 
2529 	/*
2530 	 * buffered reads protect themselves in ->read_folio().  O_DIRECT reads
2531 	 * need locks to protect pending reads from racing with truncate.
2532 	 */
2533 	if (direct_io) {
2534 		if (nowait)
2535 			ret = ocfs2_try_rw_lock(inode, 0);
2536 		else
2537 			ret = ocfs2_rw_lock(inode, 0);
2538 
2539 		if (ret < 0) {
2540 			if (ret != -EAGAIN)
2541 				mlog_errno(ret);
2542 			goto bail;
2543 		}
2544 		rw_level = 0;
2545 		/* communicate with ocfs2_dio_end_io */
2546 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2547 	}
2548 
2549 	/*
2550 	 * We're fine letting folks race truncates and extending
2551 	 * writes with read across the cluster, just like they can
2552 	 * locally. Hence no rw_lock during read.
2553 	 *
2554 	 * Take and drop the meta data lock to update inode fields
2555 	 * like i_size. This allows the checks down below
2556 	 * copy_splice_read() a chance of actually working.
2557 	 */
2558 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2559 				     !nowait);
2560 	if (ret < 0) {
2561 		if (ret != -EAGAIN)
2562 			mlog_errno(ret);
2563 		goto bail;
2564 	}
2565 	ocfs2_inode_unlock(inode, lock_level);
2566 
2567 	ret = generic_file_read_iter(iocb, to);
2568 	trace_generic_file_read_iter_ret(ret);
2569 
2570 	/* buffered aio wouldn't have proper lock coverage today */
2571 	BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2572 
2573 	/* see ocfs2_file_write_iter */
2574 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2575 		rw_level = -1;
2576 	}
2577 
2578 bail:
2579 	if (rw_level != -1)
2580 		ocfs2_rw_unlock(inode, rw_level);
2581 
2582 	return ret;
2583 }
2584 
2585 static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos,
2586 				      struct pipe_inode_info *pipe,
2587 				      size_t len, unsigned int flags)
2588 {
2589 	struct inode *inode = file_inode(in);
2590 	ssize_t ret = 0;
2591 	int lock_level = 0;
2592 
2593 	trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2594 				     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2595 				     in->f_path.dentry->d_name.len,
2596 				     in->f_path.dentry->d_name.name,
2597 				     flags);
2598 
2599 	/*
2600 	 * We're fine letting folks race truncates and extending writes with
2601 	 * read across the cluster, just like they can locally.  Hence no
2602 	 * rw_lock during read.
2603 	 *
2604 	 * Take and drop the meta data lock to update inode fields like i_size.
2605 	 * This allows the checks down below filemap_splice_read() a chance of
2606 	 * actually working.
2607 	 */
2608 	ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level, 1);
2609 	if (ret < 0) {
2610 		if (ret != -EAGAIN)
2611 			mlog_errno(ret);
2612 		goto bail;
2613 	}
2614 	ocfs2_inode_unlock(inode, lock_level);
2615 
2616 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
2617 	trace_filemap_splice_read_ret(ret);
2618 bail:
2619 	return ret;
2620 }
2621 
2622 /* Refer generic_file_llseek_unlocked() */
2623 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2624 {
2625 	struct inode *inode = file->f_mapping->host;
2626 	int ret = 0;
2627 
2628 	inode_lock(inode);
2629 
2630 	switch (whence) {
2631 	case SEEK_SET:
2632 		break;
2633 	case SEEK_END:
2634 		/* SEEK_END requires the OCFS2 inode lock for the file
2635 		 * because it references the file's size.
2636 		 */
2637 		ret = ocfs2_inode_lock(inode, NULL, 0);
2638 		if (ret < 0) {
2639 			mlog_errno(ret);
2640 			goto out;
2641 		}
2642 		offset += i_size_read(inode);
2643 		ocfs2_inode_unlock(inode, 0);
2644 		break;
2645 	case SEEK_CUR:
2646 		if (offset == 0) {
2647 			offset = file->f_pos;
2648 			goto out;
2649 		}
2650 		offset += file->f_pos;
2651 		break;
2652 	case SEEK_DATA:
2653 	case SEEK_HOLE:
2654 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2655 		if (ret)
2656 			goto out;
2657 		break;
2658 	default:
2659 		ret = -EINVAL;
2660 		goto out;
2661 	}
2662 
2663 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2664 
2665 out:
2666 	inode_unlock(inode);
2667 	if (ret)
2668 		return ret;
2669 	return offset;
2670 }
2671 
2672 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2673 				     struct file *file_out, loff_t pos_out,
2674 				     loff_t len, unsigned int remap_flags)
2675 {
2676 	struct inode *inode_in = file_inode(file_in);
2677 	struct inode *inode_out = file_inode(file_out);
2678 	struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2679 	struct buffer_head *in_bh = NULL, *out_bh = NULL;
2680 	bool same_inode = (inode_in == inode_out);
2681 	loff_t remapped = 0;
2682 	ssize_t ret;
2683 
2684 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2685 		return -EINVAL;
2686 	if (!ocfs2_refcount_tree(osb))
2687 		return -EOPNOTSUPP;
2688 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2689 		return -EROFS;
2690 
2691 	/* Lock both files against IO */
2692 	ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2693 	if (ret)
2694 		return ret;
2695 
2696 	/* Check file eligibility and prepare for block sharing. */
2697 	ret = -EINVAL;
2698 	if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2699 	    (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2700 		goto out_unlock;
2701 
2702 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2703 			&len, remap_flags);
2704 	if (ret < 0 || len == 0)
2705 		goto out_unlock;
2706 
2707 	/* Lock out changes to the allocation maps and remap. */
2708 	down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2709 	if (!same_inode)
2710 		down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2711 				  SINGLE_DEPTH_NESTING);
2712 
2713 	/* Zap any page cache for the destination file's range. */
2714 	truncate_inode_pages_range(&inode_out->i_data,
2715 				   round_down(pos_out, PAGE_SIZE),
2716 				   round_up(pos_out + len, PAGE_SIZE) - 1);
2717 
2718 	remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2719 			inode_out, out_bh, pos_out, len);
2720 	up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2721 	if (!same_inode)
2722 		up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2723 	if (remapped < 0) {
2724 		ret = remapped;
2725 		mlog_errno(ret);
2726 		goto out_unlock;
2727 	}
2728 
2729 	/*
2730 	 * Empty the extent map so that we may get the right extent
2731 	 * record from the disk.
2732 	 */
2733 	ocfs2_extent_map_trunc(inode_in, 0);
2734 	ocfs2_extent_map_trunc(inode_out, 0);
2735 
2736 	ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2737 	if (ret) {
2738 		mlog_errno(ret);
2739 		goto out_unlock;
2740 	}
2741 
2742 out_unlock:
2743 	ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2744 	return remapped > 0 ? remapped : ret;
2745 }
2746 
2747 const struct inode_operations ocfs2_file_iops = {
2748 	.setattr	= ocfs2_setattr,
2749 	.getattr	= ocfs2_getattr,
2750 	.permission	= ocfs2_permission,
2751 	.listxattr	= ocfs2_listxattr,
2752 	.fiemap		= ocfs2_fiemap,
2753 	.get_inode_acl	= ocfs2_iop_get_acl,
2754 	.set_acl	= ocfs2_iop_set_acl,
2755 	.fileattr_get	= ocfs2_fileattr_get,
2756 	.fileattr_set	= ocfs2_fileattr_set,
2757 };
2758 
2759 const struct inode_operations ocfs2_special_file_iops = {
2760 	.setattr	= ocfs2_setattr,
2761 	.getattr	= ocfs2_getattr,
2762 	.permission	= ocfs2_permission,
2763 	.get_inode_acl	= ocfs2_iop_get_acl,
2764 	.set_acl	= ocfs2_iop_set_acl,
2765 };
2766 
2767 /*
2768  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2769  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2770  */
2771 const struct file_operations ocfs2_fops = {
2772 	.llseek		= ocfs2_file_llseek,
2773 	.mmap		= ocfs2_mmap,
2774 	.fsync		= ocfs2_sync_file,
2775 	.release	= ocfs2_file_release,
2776 	.open		= ocfs2_file_open,
2777 	.read_iter	= ocfs2_file_read_iter,
2778 	.write_iter	= ocfs2_file_write_iter,
2779 	.unlocked_ioctl	= ocfs2_ioctl,
2780 #ifdef CONFIG_COMPAT
2781 	.compat_ioctl   = ocfs2_compat_ioctl,
2782 #endif
2783 	.lock		= ocfs2_lock,
2784 	.flock		= ocfs2_flock,
2785 	.splice_read	= ocfs2_file_splice_read,
2786 	.splice_write	= iter_file_splice_write,
2787 	.fallocate	= ocfs2_fallocate,
2788 	.remap_file_range = ocfs2_remap_file_range,
2789 };
2790 
2791 const struct file_operations ocfs2_dops = {
2792 	.llseek		= generic_file_llseek,
2793 	.read		= generic_read_dir,
2794 	.iterate	= ocfs2_readdir,
2795 	.fsync		= ocfs2_sync_file,
2796 	.release	= ocfs2_dir_release,
2797 	.open		= ocfs2_dir_open,
2798 	.unlocked_ioctl	= ocfs2_ioctl,
2799 #ifdef CONFIG_COMPAT
2800 	.compat_ioctl   = ocfs2_compat_ioctl,
2801 #endif
2802 	.lock		= ocfs2_lock,
2803 	.flock		= ocfs2_flock,
2804 };
2805 
2806 /*
2807  * POSIX-lockless variants of our file_operations.
2808  *
2809  * These will be used if the underlying cluster stack does not support
2810  * posix file locking, if the user passes the "localflocks" mount
2811  * option, or if we have a local-only fs.
2812  *
2813  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2814  * so we still want it in the case of no stack support for
2815  * plocks. Internally, it will do the right thing when asked to ignore
2816  * the cluster.
2817  */
2818 const struct file_operations ocfs2_fops_no_plocks = {
2819 	.llseek		= ocfs2_file_llseek,
2820 	.mmap		= ocfs2_mmap,
2821 	.fsync		= ocfs2_sync_file,
2822 	.release	= ocfs2_file_release,
2823 	.open		= ocfs2_file_open,
2824 	.read_iter	= ocfs2_file_read_iter,
2825 	.write_iter	= ocfs2_file_write_iter,
2826 	.unlocked_ioctl	= ocfs2_ioctl,
2827 #ifdef CONFIG_COMPAT
2828 	.compat_ioctl   = ocfs2_compat_ioctl,
2829 #endif
2830 	.flock		= ocfs2_flock,
2831 	.splice_read	= filemap_splice_read,
2832 	.splice_write	= iter_file_splice_write,
2833 	.fallocate	= ocfs2_fallocate,
2834 	.remap_file_range = ocfs2_remap_file_range,
2835 };
2836 
2837 const struct file_operations ocfs2_dops_no_plocks = {
2838 	.llseek		= generic_file_llseek,
2839 	.read		= generic_read_dir,
2840 	.iterate	= ocfs2_readdir,
2841 	.fsync		= ocfs2_sync_file,
2842 	.release	= ocfs2_dir_release,
2843 	.open		= ocfs2_dir_open,
2844 	.unlocked_ioctl	= ocfs2_ioctl,
2845 #ifdef CONFIG_COMPAT
2846 	.compat_ioctl   = ocfs2_compat_ioctl,
2847 #endif
2848 	.flock		= ocfs2_flock,
2849 };
2850