1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * file.c 4 * 5 * File open, close, extend, truncate 6 * 7 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/capability.h> 11 #include <linux/fs.h> 12 #include <linux/types.h> 13 #include <linux/slab.h> 14 #include <linux/highmem.h> 15 #include <linux/pagemap.h> 16 #include <linux/uio.h> 17 #include <linux/sched.h> 18 #include <linux/splice.h> 19 #include <linux/mount.h> 20 #include <linux/writeback.h> 21 #include <linux/falloc.h> 22 #include <linux/quotaops.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 26 #include <cluster/masklog.h> 27 28 #include "ocfs2.h" 29 30 #include "alloc.h" 31 #include "aops.h" 32 #include "dir.h" 33 #include "dlmglue.h" 34 #include "extent_map.h" 35 #include "file.h" 36 #include "sysfile.h" 37 #include "inode.h" 38 #include "ioctl.h" 39 #include "journal.h" 40 #include "locks.h" 41 #include "mmap.h" 42 #include "suballoc.h" 43 #include "super.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "quota.h" 47 #include "refcounttree.h" 48 #include "ocfs2_trace.h" 49 50 #include "buffer_head_io.h" 51 52 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 53 { 54 struct ocfs2_file_private *fp; 55 56 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 57 if (!fp) 58 return -ENOMEM; 59 60 fp->fp_file = file; 61 mutex_init(&fp->fp_mutex); 62 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 63 file->private_data = fp; 64 65 return 0; 66 } 67 68 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 69 { 70 struct ocfs2_file_private *fp = file->private_data; 71 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 72 73 if (fp) { 74 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 75 ocfs2_lock_res_free(&fp->fp_flock); 76 kfree(fp); 77 file->private_data = NULL; 78 } 79 } 80 81 static int ocfs2_file_open(struct inode *inode, struct file *file) 82 { 83 int status; 84 int mode = file->f_flags; 85 struct ocfs2_inode_info *oi = OCFS2_I(inode); 86 87 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 88 (unsigned long long)oi->ip_blkno, 89 file->f_path.dentry->d_name.len, 90 file->f_path.dentry->d_name.name, mode); 91 92 if (file->f_mode & FMODE_WRITE) { 93 status = dquot_initialize(inode); 94 if (status) 95 goto leave; 96 } 97 98 spin_lock(&oi->ip_lock); 99 100 /* Check that the inode hasn't been wiped from disk by another 101 * node. If it hasn't then we're safe as long as we hold the 102 * spin lock until our increment of open count. */ 103 if (oi->ip_flags & OCFS2_INODE_DELETED) { 104 spin_unlock(&oi->ip_lock); 105 106 status = -ENOENT; 107 goto leave; 108 } 109 110 if (mode & O_DIRECT) 111 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 112 113 oi->ip_open_count++; 114 spin_unlock(&oi->ip_lock); 115 116 status = ocfs2_init_file_private(inode, file); 117 if (status) { 118 /* 119 * We want to set open count back if we're failing the 120 * open. 121 */ 122 spin_lock(&oi->ip_lock); 123 oi->ip_open_count--; 124 spin_unlock(&oi->ip_lock); 125 } 126 127 file->f_mode |= FMODE_NOWAIT; 128 129 leave: 130 return status; 131 } 132 133 static int ocfs2_file_release(struct inode *inode, struct file *file) 134 { 135 struct ocfs2_inode_info *oi = OCFS2_I(inode); 136 137 spin_lock(&oi->ip_lock); 138 if (!--oi->ip_open_count) 139 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 140 141 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 142 oi->ip_blkno, 143 file->f_path.dentry->d_name.len, 144 file->f_path.dentry->d_name.name, 145 oi->ip_open_count); 146 spin_unlock(&oi->ip_lock); 147 148 ocfs2_free_file_private(inode, file); 149 150 return 0; 151 } 152 153 static int ocfs2_dir_open(struct inode *inode, struct file *file) 154 { 155 return ocfs2_init_file_private(inode, file); 156 } 157 158 static int ocfs2_dir_release(struct inode *inode, struct file *file) 159 { 160 ocfs2_free_file_private(inode, file); 161 return 0; 162 } 163 164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 165 int datasync) 166 { 167 int err = 0; 168 struct inode *inode = file->f_mapping->host; 169 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 170 struct ocfs2_inode_info *oi = OCFS2_I(inode); 171 journal_t *journal = osb->journal->j_journal; 172 int ret; 173 tid_t commit_tid; 174 bool needs_barrier = false; 175 176 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 177 oi->ip_blkno, 178 file->f_path.dentry->d_name.len, 179 file->f_path.dentry->d_name.name, 180 (unsigned long long)datasync); 181 182 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 183 return -EROFS; 184 185 err = file_write_and_wait_range(file, start, end); 186 if (err) 187 return err; 188 189 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 190 if (journal->j_flags & JBD2_BARRIER && 191 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 192 needs_barrier = true; 193 err = jbd2_complete_transaction(journal, commit_tid); 194 if (needs_barrier) { 195 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 196 if (!err) 197 err = ret; 198 } 199 200 if (err) 201 mlog_errno(err); 202 203 return (err < 0) ? -EIO : 0; 204 } 205 206 int ocfs2_should_update_atime(struct inode *inode, 207 struct vfsmount *vfsmnt) 208 { 209 struct timespec64 now; 210 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 211 212 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 213 return 0; 214 215 if ((inode->i_flags & S_NOATIME) || 216 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) 217 return 0; 218 219 /* 220 * We can be called with no vfsmnt structure - NFSD will 221 * sometimes do this. 222 * 223 * Note that our action here is different than touch_atime() - 224 * if we can't tell whether this is a noatime mount, then we 225 * don't know whether to trust the value of s_atime_quantum. 226 */ 227 if (vfsmnt == NULL) 228 return 0; 229 230 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 231 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 232 return 0; 233 234 if (vfsmnt->mnt_flags & MNT_RELATIME) { 235 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 236 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 237 return 1; 238 239 return 0; 240 } 241 242 now = current_time(inode); 243 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 244 return 0; 245 else 246 return 1; 247 } 248 249 int ocfs2_update_inode_atime(struct inode *inode, 250 struct buffer_head *bh) 251 { 252 int ret; 253 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 254 handle_t *handle; 255 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 256 257 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 258 if (IS_ERR(handle)) { 259 ret = PTR_ERR(handle); 260 mlog_errno(ret); 261 goto out; 262 } 263 264 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 265 OCFS2_JOURNAL_ACCESS_WRITE); 266 if (ret) { 267 mlog_errno(ret); 268 goto out_commit; 269 } 270 271 /* 272 * Don't use ocfs2_mark_inode_dirty() here as we don't always 273 * have i_rwsem to guard against concurrent changes to other 274 * inode fields. 275 */ 276 inode->i_atime = current_time(inode); 277 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 278 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 279 ocfs2_update_inode_fsync_trans(handle, inode, 0); 280 ocfs2_journal_dirty(handle, bh); 281 282 out_commit: 283 ocfs2_commit_trans(osb, handle); 284 out: 285 return ret; 286 } 287 288 int ocfs2_set_inode_size(handle_t *handle, 289 struct inode *inode, 290 struct buffer_head *fe_bh, 291 u64 new_i_size) 292 { 293 int status; 294 295 i_size_write(inode, new_i_size); 296 inode->i_blocks = ocfs2_inode_sector_count(inode); 297 inode->i_ctime = inode->i_mtime = current_time(inode); 298 299 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 300 if (status < 0) { 301 mlog_errno(status); 302 goto bail; 303 } 304 305 bail: 306 return status; 307 } 308 309 int ocfs2_simple_size_update(struct inode *inode, 310 struct buffer_head *di_bh, 311 u64 new_i_size) 312 { 313 int ret; 314 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 315 handle_t *handle = NULL; 316 317 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 318 if (IS_ERR(handle)) { 319 ret = PTR_ERR(handle); 320 mlog_errno(ret); 321 goto out; 322 } 323 324 ret = ocfs2_set_inode_size(handle, inode, di_bh, 325 new_i_size); 326 if (ret < 0) 327 mlog_errno(ret); 328 329 ocfs2_update_inode_fsync_trans(handle, inode, 0); 330 ocfs2_commit_trans(osb, handle); 331 out: 332 return ret; 333 } 334 335 static int ocfs2_cow_file_pos(struct inode *inode, 336 struct buffer_head *fe_bh, 337 u64 offset) 338 { 339 int status; 340 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 341 unsigned int num_clusters = 0; 342 unsigned int ext_flags = 0; 343 344 /* 345 * If the new offset is aligned to the range of the cluster, there is 346 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 347 * CoW either. 348 */ 349 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 350 return 0; 351 352 status = ocfs2_get_clusters(inode, cpos, &phys, 353 &num_clusters, &ext_flags); 354 if (status) { 355 mlog_errno(status); 356 goto out; 357 } 358 359 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 360 goto out; 361 362 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 363 364 out: 365 return status; 366 } 367 368 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 369 struct inode *inode, 370 struct buffer_head *fe_bh, 371 u64 new_i_size) 372 { 373 int status; 374 handle_t *handle; 375 struct ocfs2_dinode *di; 376 u64 cluster_bytes; 377 378 /* 379 * We need to CoW the cluster contains the offset if it is reflinked 380 * since we will call ocfs2_zero_range_for_truncate later which will 381 * write "0" from offset to the end of the cluster. 382 */ 383 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 384 if (status) { 385 mlog_errno(status); 386 return status; 387 } 388 389 /* TODO: This needs to actually orphan the inode in this 390 * transaction. */ 391 392 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 393 if (IS_ERR(handle)) { 394 status = PTR_ERR(handle); 395 mlog_errno(status); 396 goto out; 397 } 398 399 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 400 OCFS2_JOURNAL_ACCESS_WRITE); 401 if (status < 0) { 402 mlog_errno(status); 403 goto out_commit; 404 } 405 406 /* 407 * Do this before setting i_size. 408 */ 409 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 410 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 411 cluster_bytes); 412 if (status) { 413 mlog_errno(status); 414 goto out_commit; 415 } 416 417 i_size_write(inode, new_i_size); 418 inode->i_ctime = inode->i_mtime = current_time(inode); 419 420 di = (struct ocfs2_dinode *) fe_bh->b_data; 421 di->i_size = cpu_to_le64(new_i_size); 422 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 423 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 424 ocfs2_update_inode_fsync_trans(handle, inode, 0); 425 426 ocfs2_journal_dirty(handle, fe_bh); 427 428 out_commit: 429 ocfs2_commit_trans(osb, handle); 430 out: 431 return status; 432 } 433 434 int ocfs2_truncate_file(struct inode *inode, 435 struct buffer_head *di_bh, 436 u64 new_i_size) 437 { 438 int status = 0; 439 struct ocfs2_dinode *fe = NULL; 440 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 441 442 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 443 * already validated it */ 444 fe = (struct ocfs2_dinode *) di_bh->b_data; 445 446 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 447 (unsigned long long)le64_to_cpu(fe->i_size), 448 (unsigned long long)new_i_size); 449 450 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 451 "Inode %llu, inode i_size = %lld != di " 452 "i_size = %llu, i_flags = 0x%x\n", 453 (unsigned long long)OCFS2_I(inode)->ip_blkno, 454 i_size_read(inode), 455 (unsigned long long)le64_to_cpu(fe->i_size), 456 le32_to_cpu(fe->i_flags)); 457 458 if (new_i_size > le64_to_cpu(fe->i_size)) { 459 trace_ocfs2_truncate_file_error( 460 (unsigned long long)le64_to_cpu(fe->i_size), 461 (unsigned long long)new_i_size); 462 status = -EINVAL; 463 mlog_errno(status); 464 goto bail; 465 } 466 467 down_write(&OCFS2_I(inode)->ip_alloc_sem); 468 469 ocfs2_resv_discard(&osb->osb_la_resmap, 470 &OCFS2_I(inode)->ip_la_data_resv); 471 472 /* 473 * The inode lock forced other nodes to sync and drop their 474 * pages, which (correctly) happens even if we have a truncate 475 * without allocation change - ocfs2 cluster sizes can be much 476 * greater than page size, so we have to truncate them 477 * anyway. 478 */ 479 480 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 481 unmap_mapping_range(inode->i_mapping, 482 new_i_size + PAGE_SIZE - 1, 0, 1); 483 truncate_inode_pages(inode->i_mapping, new_i_size); 484 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 485 i_size_read(inode), 1); 486 if (status) 487 mlog_errno(status); 488 489 goto bail_unlock_sem; 490 } 491 492 /* alright, we're going to need to do a full blown alloc size 493 * change. Orphan the inode so that recovery can complete the 494 * truncate if necessary. This does the task of marking 495 * i_size. */ 496 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 497 if (status < 0) { 498 mlog_errno(status); 499 goto bail_unlock_sem; 500 } 501 502 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 503 truncate_inode_pages(inode->i_mapping, new_i_size); 504 505 status = ocfs2_commit_truncate(osb, inode, di_bh); 506 if (status < 0) { 507 mlog_errno(status); 508 goto bail_unlock_sem; 509 } 510 511 /* TODO: orphan dir cleanup here. */ 512 bail_unlock_sem: 513 up_write(&OCFS2_I(inode)->ip_alloc_sem); 514 515 bail: 516 if (!status && OCFS2_I(inode)->ip_clusters == 0) 517 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 518 519 return status; 520 } 521 522 /* 523 * extend file allocation only here. 524 * we'll update all the disk stuff, and oip->alloc_size 525 * 526 * expect stuff to be locked, a transaction started and enough data / 527 * metadata reservations in the contexts. 528 * 529 * Will return -EAGAIN, and a reason if a restart is needed. 530 * If passed in, *reason will always be set, even in error. 531 */ 532 int ocfs2_add_inode_data(struct ocfs2_super *osb, 533 struct inode *inode, 534 u32 *logical_offset, 535 u32 clusters_to_add, 536 int mark_unwritten, 537 struct buffer_head *fe_bh, 538 handle_t *handle, 539 struct ocfs2_alloc_context *data_ac, 540 struct ocfs2_alloc_context *meta_ac, 541 enum ocfs2_alloc_restarted *reason_ret) 542 { 543 struct ocfs2_extent_tree et; 544 545 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 546 return ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 547 clusters_to_add, mark_unwritten, 548 data_ac, meta_ac, reason_ret); 549 } 550 551 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 552 u32 clusters_to_add, int mark_unwritten) 553 { 554 int status = 0; 555 int restart_func = 0; 556 int credits; 557 u32 prev_clusters; 558 struct buffer_head *bh = NULL; 559 struct ocfs2_dinode *fe = NULL; 560 handle_t *handle = NULL; 561 struct ocfs2_alloc_context *data_ac = NULL; 562 struct ocfs2_alloc_context *meta_ac = NULL; 563 enum ocfs2_alloc_restarted why = RESTART_NONE; 564 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 565 struct ocfs2_extent_tree et; 566 int did_quota = 0; 567 568 /* 569 * Unwritten extent only exists for file systems which 570 * support holes. 571 */ 572 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 573 574 status = ocfs2_read_inode_block(inode, &bh); 575 if (status < 0) { 576 mlog_errno(status); 577 goto leave; 578 } 579 fe = (struct ocfs2_dinode *) bh->b_data; 580 581 restart_all: 582 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 583 584 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 585 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 586 &data_ac, &meta_ac); 587 if (status) { 588 mlog_errno(status); 589 goto leave; 590 } 591 592 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 593 handle = ocfs2_start_trans(osb, credits); 594 if (IS_ERR(handle)) { 595 status = PTR_ERR(handle); 596 handle = NULL; 597 mlog_errno(status); 598 goto leave; 599 } 600 601 restarted_transaction: 602 trace_ocfs2_extend_allocation( 603 (unsigned long long)OCFS2_I(inode)->ip_blkno, 604 (unsigned long long)i_size_read(inode), 605 le32_to_cpu(fe->i_clusters), clusters_to_add, 606 why, restart_func); 607 608 status = dquot_alloc_space_nodirty(inode, 609 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 610 if (status) 611 goto leave; 612 did_quota = 1; 613 614 /* reserve a write to the file entry early on - that we if we 615 * run out of credits in the allocation path, we can still 616 * update i_size. */ 617 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 618 OCFS2_JOURNAL_ACCESS_WRITE); 619 if (status < 0) { 620 mlog_errno(status); 621 goto leave; 622 } 623 624 prev_clusters = OCFS2_I(inode)->ip_clusters; 625 626 status = ocfs2_add_inode_data(osb, 627 inode, 628 &logical_start, 629 clusters_to_add, 630 mark_unwritten, 631 bh, 632 handle, 633 data_ac, 634 meta_ac, 635 &why); 636 if ((status < 0) && (status != -EAGAIN)) { 637 if (status != -ENOSPC) 638 mlog_errno(status); 639 goto leave; 640 } 641 ocfs2_update_inode_fsync_trans(handle, inode, 1); 642 ocfs2_journal_dirty(handle, bh); 643 644 spin_lock(&OCFS2_I(inode)->ip_lock); 645 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 646 spin_unlock(&OCFS2_I(inode)->ip_lock); 647 /* Release unused quota reservation */ 648 dquot_free_space(inode, 649 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 650 did_quota = 0; 651 652 if (why != RESTART_NONE && clusters_to_add) { 653 if (why == RESTART_META) { 654 restart_func = 1; 655 status = 0; 656 } else { 657 BUG_ON(why != RESTART_TRANS); 658 659 status = ocfs2_allocate_extend_trans(handle, 1); 660 if (status < 0) { 661 /* handle still has to be committed at 662 * this point. */ 663 status = -ENOMEM; 664 mlog_errno(status); 665 goto leave; 666 } 667 goto restarted_transaction; 668 } 669 } 670 671 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 672 le32_to_cpu(fe->i_clusters), 673 (unsigned long long)le64_to_cpu(fe->i_size), 674 OCFS2_I(inode)->ip_clusters, 675 (unsigned long long)i_size_read(inode)); 676 677 leave: 678 if (status < 0 && did_quota) 679 dquot_free_space(inode, 680 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 681 if (handle) { 682 ocfs2_commit_trans(osb, handle); 683 handle = NULL; 684 } 685 if (data_ac) { 686 ocfs2_free_alloc_context(data_ac); 687 data_ac = NULL; 688 } 689 if (meta_ac) { 690 ocfs2_free_alloc_context(meta_ac); 691 meta_ac = NULL; 692 } 693 if ((!status) && restart_func) { 694 restart_func = 0; 695 goto restart_all; 696 } 697 brelse(bh); 698 bh = NULL; 699 700 return status; 701 } 702 703 /* 704 * While a write will already be ordering the data, a truncate will not. 705 * Thus, we need to explicitly order the zeroed pages. 706 */ 707 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 708 struct buffer_head *di_bh, 709 loff_t start_byte, 710 loff_t length) 711 { 712 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 713 handle_t *handle = NULL; 714 int ret = 0; 715 716 if (!ocfs2_should_order_data(inode)) 717 goto out; 718 719 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 720 if (IS_ERR(handle)) { 721 ret = -ENOMEM; 722 mlog_errno(ret); 723 goto out; 724 } 725 726 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); 727 if (ret < 0) { 728 mlog_errno(ret); 729 goto out; 730 } 731 732 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 733 OCFS2_JOURNAL_ACCESS_WRITE); 734 if (ret) 735 mlog_errno(ret); 736 ocfs2_update_inode_fsync_trans(handle, inode, 1); 737 738 out: 739 if (ret) { 740 if (!IS_ERR(handle)) 741 ocfs2_commit_trans(osb, handle); 742 handle = ERR_PTR(ret); 743 } 744 return handle; 745 } 746 747 /* Some parts of this taken from generic_cont_expand, which turned out 748 * to be too fragile to do exactly what we need without us having to 749 * worry about recursive locking in ->write_begin() and ->write_end(). */ 750 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 751 u64 abs_to, struct buffer_head *di_bh) 752 { 753 struct address_space *mapping = inode->i_mapping; 754 struct page *page; 755 unsigned long index = abs_from >> PAGE_SHIFT; 756 handle_t *handle; 757 int ret = 0; 758 unsigned zero_from, zero_to, block_start, block_end; 759 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 760 761 BUG_ON(abs_from >= abs_to); 762 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); 763 BUG_ON(abs_from & (inode->i_blkbits - 1)); 764 765 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh, 766 abs_from, 767 abs_to - abs_from); 768 if (IS_ERR(handle)) { 769 ret = PTR_ERR(handle); 770 goto out; 771 } 772 773 page = find_or_create_page(mapping, index, GFP_NOFS); 774 if (!page) { 775 ret = -ENOMEM; 776 mlog_errno(ret); 777 goto out_commit_trans; 778 } 779 780 /* Get the offsets within the page that we want to zero */ 781 zero_from = abs_from & (PAGE_SIZE - 1); 782 zero_to = abs_to & (PAGE_SIZE - 1); 783 if (!zero_to) 784 zero_to = PAGE_SIZE; 785 786 trace_ocfs2_write_zero_page( 787 (unsigned long long)OCFS2_I(inode)->ip_blkno, 788 (unsigned long long)abs_from, 789 (unsigned long long)abs_to, 790 index, zero_from, zero_to); 791 792 /* We know that zero_from is block aligned */ 793 for (block_start = zero_from; block_start < zero_to; 794 block_start = block_end) { 795 block_end = block_start + i_blocksize(inode); 796 797 /* 798 * block_start is block-aligned. Bump it by one to force 799 * __block_write_begin and block_commit_write to zero the 800 * whole block. 801 */ 802 ret = __block_write_begin(page, block_start + 1, 0, 803 ocfs2_get_block); 804 if (ret < 0) { 805 mlog_errno(ret); 806 goto out_unlock; 807 } 808 809 810 /* must not update i_size! */ 811 block_commit_write(page, block_start + 1, block_start + 1); 812 } 813 814 /* 815 * fs-writeback will release the dirty pages without page lock 816 * whose offset are over inode size, the release happens at 817 * block_write_full_page(). 818 */ 819 i_size_write(inode, abs_to); 820 inode->i_blocks = ocfs2_inode_sector_count(inode); 821 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 822 inode->i_mtime = inode->i_ctime = current_time(inode); 823 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 824 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 825 di->i_mtime_nsec = di->i_ctime_nsec; 826 if (handle) { 827 ocfs2_journal_dirty(handle, di_bh); 828 ocfs2_update_inode_fsync_trans(handle, inode, 1); 829 } 830 831 out_unlock: 832 unlock_page(page); 833 put_page(page); 834 out_commit_trans: 835 if (handle) 836 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 837 out: 838 return ret; 839 } 840 841 /* 842 * Find the next range to zero. We do this in terms of bytes because 843 * that's what ocfs2_zero_extend() wants, and it is dealing with the 844 * pagecache. We may return multiple extents. 845 * 846 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 847 * needs to be zeroed. range_start and range_end return the next zeroing 848 * range. A subsequent call should pass the previous range_end as its 849 * zero_start. If range_end is 0, there's nothing to do. 850 * 851 * Unwritten extents are skipped over. Refcounted extents are CoWd. 852 */ 853 static int ocfs2_zero_extend_get_range(struct inode *inode, 854 struct buffer_head *di_bh, 855 u64 zero_start, u64 zero_end, 856 u64 *range_start, u64 *range_end) 857 { 858 int rc = 0, needs_cow = 0; 859 u32 p_cpos, zero_clusters = 0; 860 u32 zero_cpos = 861 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 862 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 863 unsigned int num_clusters = 0; 864 unsigned int ext_flags = 0; 865 866 while (zero_cpos < last_cpos) { 867 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 868 &num_clusters, &ext_flags); 869 if (rc) { 870 mlog_errno(rc); 871 goto out; 872 } 873 874 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 875 zero_clusters = num_clusters; 876 if (ext_flags & OCFS2_EXT_REFCOUNTED) 877 needs_cow = 1; 878 break; 879 } 880 881 zero_cpos += num_clusters; 882 } 883 if (!zero_clusters) { 884 *range_end = 0; 885 goto out; 886 } 887 888 while ((zero_cpos + zero_clusters) < last_cpos) { 889 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 890 &p_cpos, &num_clusters, 891 &ext_flags); 892 if (rc) { 893 mlog_errno(rc); 894 goto out; 895 } 896 897 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 898 break; 899 if (ext_flags & OCFS2_EXT_REFCOUNTED) 900 needs_cow = 1; 901 zero_clusters += num_clusters; 902 } 903 if ((zero_cpos + zero_clusters) > last_cpos) 904 zero_clusters = last_cpos - zero_cpos; 905 906 if (needs_cow) { 907 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 908 zero_clusters, UINT_MAX); 909 if (rc) { 910 mlog_errno(rc); 911 goto out; 912 } 913 } 914 915 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 916 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 917 zero_cpos + zero_clusters); 918 919 out: 920 return rc; 921 } 922 923 /* 924 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 925 * has made sure that the entire range needs zeroing. 926 */ 927 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 928 u64 range_end, struct buffer_head *di_bh) 929 { 930 int rc = 0; 931 u64 next_pos; 932 u64 zero_pos = range_start; 933 934 trace_ocfs2_zero_extend_range( 935 (unsigned long long)OCFS2_I(inode)->ip_blkno, 936 (unsigned long long)range_start, 937 (unsigned long long)range_end); 938 BUG_ON(range_start >= range_end); 939 940 while (zero_pos < range_end) { 941 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; 942 if (next_pos > range_end) 943 next_pos = range_end; 944 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 945 if (rc < 0) { 946 mlog_errno(rc); 947 break; 948 } 949 zero_pos = next_pos; 950 951 /* 952 * Very large extends have the potential to lock up 953 * the cpu for extended periods of time. 954 */ 955 cond_resched(); 956 } 957 958 return rc; 959 } 960 961 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 962 loff_t zero_to_size) 963 { 964 int ret = 0; 965 u64 zero_start, range_start = 0, range_end = 0; 966 struct super_block *sb = inode->i_sb; 967 968 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 969 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 970 (unsigned long long)zero_start, 971 (unsigned long long)i_size_read(inode)); 972 while (zero_start < zero_to_size) { 973 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 974 zero_to_size, 975 &range_start, 976 &range_end); 977 if (ret) { 978 mlog_errno(ret); 979 break; 980 } 981 if (!range_end) 982 break; 983 /* Trim the ends */ 984 if (range_start < zero_start) 985 range_start = zero_start; 986 if (range_end > zero_to_size) 987 range_end = zero_to_size; 988 989 ret = ocfs2_zero_extend_range(inode, range_start, 990 range_end, di_bh); 991 if (ret) { 992 mlog_errno(ret); 993 break; 994 } 995 zero_start = range_end; 996 } 997 998 return ret; 999 } 1000 1001 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1002 u64 new_i_size, u64 zero_to) 1003 { 1004 int ret; 1005 u32 clusters_to_add; 1006 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1007 1008 /* 1009 * Only quota files call this without a bh, and they can't be 1010 * refcounted. 1011 */ 1012 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); 1013 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1014 1015 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1016 if (clusters_to_add < oi->ip_clusters) 1017 clusters_to_add = 0; 1018 else 1019 clusters_to_add -= oi->ip_clusters; 1020 1021 if (clusters_to_add) { 1022 ret = ocfs2_extend_allocation(inode, oi->ip_clusters, 1023 clusters_to_add, 0); 1024 if (ret) { 1025 mlog_errno(ret); 1026 goto out; 1027 } 1028 } 1029 1030 /* 1031 * Call this even if we don't add any clusters to the tree. We 1032 * still need to zero the area between the old i_size and the 1033 * new i_size. 1034 */ 1035 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1036 if (ret < 0) 1037 mlog_errno(ret); 1038 1039 out: 1040 return ret; 1041 } 1042 1043 static int ocfs2_extend_file(struct inode *inode, 1044 struct buffer_head *di_bh, 1045 u64 new_i_size) 1046 { 1047 int ret = 0; 1048 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1049 1050 BUG_ON(!di_bh); 1051 1052 /* setattr sometimes calls us like this. */ 1053 if (new_i_size == 0) 1054 goto out; 1055 1056 if (i_size_read(inode) == new_i_size) 1057 goto out; 1058 BUG_ON(new_i_size < i_size_read(inode)); 1059 1060 /* 1061 * The alloc sem blocks people in read/write from reading our 1062 * allocation until we're done changing it. We depend on 1063 * i_rwsem to block other extend/truncate calls while we're 1064 * here. We even have to hold it for sparse files because there 1065 * might be some tail zeroing. 1066 */ 1067 down_write(&oi->ip_alloc_sem); 1068 1069 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1070 /* 1071 * We can optimize small extends by keeping the inodes 1072 * inline data. 1073 */ 1074 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1075 up_write(&oi->ip_alloc_sem); 1076 goto out_update_size; 1077 } 1078 1079 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1080 if (ret) { 1081 up_write(&oi->ip_alloc_sem); 1082 mlog_errno(ret); 1083 goto out; 1084 } 1085 } 1086 1087 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1088 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1089 else 1090 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1091 new_i_size); 1092 1093 up_write(&oi->ip_alloc_sem); 1094 1095 if (ret < 0) { 1096 mlog_errno(ret); 1097 goto out; 1098 } 1099 1100 out_update_size: 1101 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1102 if (ret < 0) 1103 mlog_errno(ret); 1104 1105 out: 1106 return ret; 1107 } 1108 1109 int ocfs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1110 struct iattr *attr) 1111 { 1112 int status = 0, size_change; 1113 int inode_locked = 0; 1114 struct inode *inode = d_inode(dentry); 1115 struct super_block *sb = inode->i_sb; 1116 struct ocfs2_super *osb = OCFS2_SB(sb); 1117 struct buffer_head *bh = NULL; 1118 handle_t *handle = NULL; 1119 struct dquot *transfer_to[MAXQUOTAS] = { }; 1120 int qtype; 1121 int had_lock; 1122 struct ocfs2_lock_holder oh; 1123 1124 trace_ocfs2_setattr(inode, dentry, 1125 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1126 dentry->d_name.len, dentry->d_name.name, 1127 attr->ia_valid, attr->ia_mode, 1128 from_kuid(&init_user_ns, attr->ia_uid), 1129 from_kgid(&init_user_ns, attr->ia_gid)); 1130 1131 /* ensuring we don't even attempt to truncate a symlink */ 1132 if (S_ISLNK(inode->i_mode)) 1133 attr->ia_valid &= ~ATTR_SIZE; 1134 1135 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1136 | ATTR_GID | ATTR_UID | ATTR_MODE) 1137 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1138 return 0; 1139 1140 status = setattr_prepare(&nop_mnt_idmap, dentry, attr); 1141 if (status) 1142 return status; 1143 1144 if (is_quota_modification(&nop_mnt_idmap, inode, attr)) { 1145 status = dquot_initialize(inode); 1146 if (status) 1147 return status; 1148 } 1149 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1150 if (size_change) { 1151 /* 1152 * Here we should wait dio to finish before inode lock 1153 * to avoid a deadlock between ocfs2_setattr() and 1154 * ocfs2_dio_end_io_write() 1155 */ 1156 inode_dio_wait(inode); 1157 1158 status = ocfs2_rw_lock(inode, 1); 1159 if (status < 0) { 1160 mlog_errno(status); 1161 goto bail; 1162 } 1163 } 1164 1165 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); 1166 if (had_lock < 0) { 1167 status = had_lock; 1168 goto bail_unlock_rw; 1169 } else if (had_lock) { 1170 /* 1171 * As far as we know, ocfs2_setattr() could only be the first 1172 * VFS entry point in the call chain of recursive cluster 1173 * locking issue. 1174 * 1175 * For instance: 1176 * chmod_common() 1177 * notify_change() 1178 * ocfs2_setattr() 1179 * posix_acl_chmod() 1180 * ocfs2_iop_get_acl() 1181 * 1182 * But, we're not 100% sure if it's always true, because the 1183 * ordering of the VFS entry points in the call chain is out 1184 * of our control. So, we'd better dump the stack here to 1185 * catch the other cases of recursive locking. 1186 */ 1187 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1188 dump_stack(); 1189 } 1190 inode_locked = 1; 1191 1192 if (size_change) { 1193 status = inode_newsize_ok(inode, attr->ia_size); 1194 if (status) 1195 goto bail_unlock; 1196 1197 if (i_size_read(inode) >= attr->ia_size) { 1198 if (ocfs2_should_order_data(inode)) { 1199 status = ocfs2_begin_ordered_truncate(inode, 1200 attr->ia_size); 1201 if (status) 1202 goto bail_unlock; 1203 } 1204 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1205 } else 1206 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1207 if (status < 0) { 1208 if (status != -ENOSPC) 1209 mlog_errno(status); 1210 status = -ENOSPC; 1211 goto bail_unlock; 1212 } 1213 } 1214 1215 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1216 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1217 /* 1218 * Gather pointers to quota structures so that allocation / 1219 * freeing of quota structures happens here and not inside 1220 * dquot_transfer() where we have problems with lock ordering 1221 */ 1222 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1223 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1224 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1225 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1226 if (IS_ERR(transfer_to[USRQUOTA])) { 1227 status = PTR_ERR(transfer_to[USRQUOTA]); 1228 transfer_to[USRQUOTA] = NULL; 1229 goto bail_unlock; 1230 } 1231 } 1232 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1233 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1234 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1235 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1236 if (IS_ERR(transfer_to[GRPQUOTA])) { 1237 status = PTR_ERR(transfer_to[GRPQUOTA]); 1238 transfer_to[GRPQUOTA] = NULL; 1239 goto bail_unlock; 1240 } 1241 } 1242 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1243 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1244 2 * ocfs2_quota_trans_credits(sb)); 1245 if (IS_ERR(handle)) { 1246 status = PTR_ERR(handle); 1247 mlog_errno(status); 1248 goto bail_unlock_alloc; 1249 } 1250 status = __dquot_transfer(inode, transfer_to); 1251 if (status < 0) 1252 goto bail_commit; 1253 } else { 1254 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1255 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1256 if (IS_ERR(handle)) { 1257 status = PTR_ERR(handle); 1258 mlog_errno(status); 1259 goto bail_unlock_alloc; 1260 } 1261 } 1262 1263 setattr_copy(&nop_mnt_idmap, inode, attr); 1264 mark_inode_dirty(inode); 1265 1266 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1267 if (status < 0) 1268 mlog_errno(status); 1269 1270 bail_commit: 1271 ocfs2_commit_trans(osb, handle); 1272 bail_unlock_alloc: 1273 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1274 bail_unlock: 1275 if (status && inode_locked) { 1276 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1277 inode_locked = 0; 1278 } 1279 bail_unlock_rw: 1280 if (size_change) 1281 ocfs2_rw_unlock(inode, 1); 1282 bail: 1283 1284 /* Release quota pointers in case we acquired them */ 1285 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1286 dqput(transfer_to[qtype]); 1287 1288 if (!status && attr->ia_valid & ATTR_MODE) { 1289 status = ocfs2_acl_chmod(inode, bh); 1290 if (status < 0) 1291 mlog_errno(status); 1292 } 1293 if (inode_locked) 1294 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1295 1296 brelse(bh); 1297 return status; 1298 } 1299 1300 int ocfs2_getattr(struct mnt_idmap *idmap, const struct path *path, 1301 struct kstat *stat, u32 request_mask, unsigned int flags) 1302 { 1303 struct inode *inode = d_inode(path->dentry); 1304 struct super_block *sb = path->dentry->d_sb; 1305 struct ocfs2_super *osb = sb->s_fs_info; 1306 int err; 1307 1308 err = ocfs2_inode_revalidate(path->dentry); 1309 if (err) { 1310 if (err != -ENOENT) 1311 mlog_errno(err); 1312 goto bail; 1313 } 1314 1315 generic_fillattr(&nop_mnt_idmap, inode, stat); 1316 /* 1317 * If there is inline data in the inode, the inode will normally not 1318 * have data blocks allocated (it may have an external xattr block). 1319 * Report at least one sector for such files, so tools like tar, rsync, 1320 * others don't incorrectly think the file is completely sparse. 1321 */ 1322 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1323 stat->blocks += (stat->size + 511)>>9; 1324 1325 /* We set the blksize from the cluster size for performance */ 1326 stat->blksize = osb->s_clustersize; 1327 1328 bail: 1329 return err; 1330 } 1331 1332 int ocfs2_permission(struct mnt_idmap *idmap, struct inode *inode, 1333 int mask) 1334 { 1335 int ret, had_lock; 1336 struct ocfs2_lock_holder oh; 1337 1338 if (mask & MAY_NOT_BLOCK) 1339 return -ECHILD; 1340 1341 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); 1342 if (had_lock < 0) { 1343 ret = had_lock; 1344 goto out; 1345 } else if (had_lock) { 1346 /* See comments in ocfs2_setattr() for details. 1347 * The call chain of this case could be: 1348 * do_sys_open() 1349 * may_open() 1350 * inode_permission() 1351 * ocfs2_permission() 1352 * ocfs2_iop_get_acl() 1353 */ 1354 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1355 dump_stack(); 1356 } 1357 1358 ret = generic_permission(&nop_mnt_idmap, inode, mask); 1359 1360 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); 1361 out: 1362 return ret; 1363 } 1364 1365 static int __ocfs2_write_remove_suid(struct inode *inode, 1366 struct buffer_head *bh) 1367 { 1368 int ret; 1369 handle_t *handle; 1370 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1371 struct ocfs2_dinode *di; 1372 1373 trace_ocfs2_write_remove_suid( 1374 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1375 inode->i_mode); 1376 1377 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1378 if (IS_ERR(handle)) { 1379 ret = PTR_ERR(handle); 1380 mlog_errno(ret); 1381 goto out; 1382 } 1383 1384 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1385 OCFS2_JOURNAL_ACCESS_WRITE); 1386 if (ret < 0) { 1387 mlog_errno(ret); 1388 goto out_trans; 1389 } 1390 1391 inode->i_mode &= ~S_ISUID; 1392 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1393 inode->i_mode &= ~S_ISGID; 1394 1395 di = (struct ocfs2_dinode *) bh->b_data; 1396 di->i_mode = cpu_to_le16(inode->i_mode); 1397 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1398 1399 ocfs2_journal_dirty(handle, bh); 1400 1401 out_trans: 1402 ocfs2_commit_trans(osb, handle); 1403 out: 1404 return ret; 1405 } 1406 1407 static int ocfs2_write_remove_suid(struct inode *inode) 1408 { 1409 int ret; 1410 struct buffer_head *bh = NULL; 1411 1412 ret = ocfs2_read_inode_block(inode, &bh); 1413 if (ret < 0) { 1414 mlog_errno(ret); 1415 goto out; 1416 } 1417 1418 ret = __ocfs2_write_remove_suid(inode, bh); 1419 out: 1420 brelse(bh); 1421 return ret; 1422 } 1423 1424 /* 1425 * Allocate enough extents to cover the region starting at byte offset 1426 * start for len bytes. Existing extents are skipped, any extents 1427 * added are marked as "unwritten". 1428 */ 1429 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1430 u64 start, u64 len) 1431 { 1432 int ret; 1433 u32 cpos, phys_cpos, clusters, alloc_size; 1434 u64 end = start + len; 1435 struct buffer_head *di_bh = NULL; 1436 1437 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1438 ret = ocfs2_read_inode_block(inode, &di_bh); 1439 if (ret) { 1440 mlog_errno(ret); 1441 goto out; 1442 } 1443 1444 /* 1445 * Nothing to do if the requested reservation range 1446 * fits within the inode. 1447 */ 1448 if (ocfs2_size_fits_inline_data(di_bh, end)) 1449 goto out; 1450 1451 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1452 if (ret) { 1453 mlog_errno(ret); 1454 goto out; 1455 } 1456 } 1457 1458 /* 1459 * We consider both start and len to be inclusive. 1460 */ 1461 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1462 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1463 clusters -= cpos; 1464 1465 while (clusters) { 1466 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1467 &alloc_size, NULL); 1468 if (ret) { 1469 mlog_errno(ret); 1470 goto out; 1471 } 1472 1473 /* 1474 * Hole or existing extent len can be arbitrary, so 1475 * cap it to our own allocation request. 1476 */ 1477 if (alloc_size > clusters) 1478 alloc_size = clusters; 1479 1480 if (phys_cpos) { 1481 /* 1482 * We already have an allocation at this 1483 * region so we can safely skip it. 1484 */ 1485 goto next; 1486 } 1487 1488 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1489 if (ret) { 1490 if (ret != -ENOSPC) 1491 mlog_errno(ret); 1492 goto out; 1493 } 1494 1495 next: 1496 cpos += alloc_size; 1497 clusters -= alloc_size; 1498 } 1499 1500 ret = 0; 1501 out: 1502 1503 brelse(di_bh); 1504 return ret; 1505 } 1506 1507 /* 1508 * Truncate a byte range, avoiding pages within partial clusters. This 1509 * preserves those pages for the zeroing code to write to. 1510 */ 1511 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1512 u64 byte_len) 1513 { 1514 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1515 loff_t start, end; 1516 struct address_space *mapping = inode->i_mapping; 1517 1518 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1519 end = byte_start + byte_len; 1520 end = end & ~(osb->s_clustersize - 1); 1521 1522 if (start < end) { 1523 unmap_mapping_range(mapping, start, end - start, 0); 1524 truncate_inode_pages_range(mapping, start, end - 1); 1525 } 1526 } 1527 1528 /* 1529 * zero out partial blocks of one cluster. 1530 * 1531 * start: file offset where zero starts, will be made upper block aligned. 1532 * len: it will be trimmed to the end of current cluster if "start + len" 1533 * is bigger than it. 1534 */ 1535 static int ocfs2_zeroout_partial_cluster(struct inode *inode, 1536 u64 start, u64 len) 1537 { 1538 int ret; 1539 u64 start_block, end_block, nr_blocks; 1540 u64 p_block, offset; 1541 u32 cluster, p_cluster, nr_clusters; 1542 struct super_block *sb = inode->i_sb; 1543 u64 end = ocfs2_align_bytes_to_clusters(sb, start); 1544 1545 if (start + len < end) 1546 end = start + len; 1547 1548 start_block = ocfs2_blocks_for_bytes(sb, start); 1549 end_block = ocfs2_blocks_for_bytes(sb, end); 1550 nr_blocks = end_block - start_block; 1551 if (!nr_blocks) 1552 return 0; 1553 1554 cluster = ocfs2_bytes_to_clusters(sb, start); 1555 ret = ocfs2_get_clusters(inode, cluster, &p_cluster, 1556 &nr_clusters, NULL); 1557 if (ret) 1558 return ret; 1559 if (!p_cluster) 1560 return 0; 1561 1562 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster); 1563 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset; 1564 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS); 1565 } 1566 1567 static int ocfs2_zero_partial_clusters(struct inode *inode, 1568 u64 start, u64 len) 1569 { 1570 int ret = 0; 1571 u64 tmpend = 0; 1572 u64 end = start + len; 1573 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1574 unsigned int csize = osb->s_clustersize; 1575 handle_t *handle; 1576 loff_t isize = i_size_read(inode); 1577 1578 /* 1579 * The "start" and "end" values are NOT necessarily part of 1580 * the range whose allocation is being deleted. Rather, this 1581 * is what the user passed in with the request. We must zero 1582 * partial clusters here. There's no need to worry about 1583 * physical allocation - the zeroing code knows to skip holes. 1584 */ 1585 trace_ocfs2_zero_partial_clusters( 1586 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1587 (unsigned long long)start, (unsigned long long)end); 1588 1589 /* 1590 * If both edges are on a cluster boundary then there's no 1591 * zeroing required as the region is part of the allocation to 1592 * be truncated. 1593 */ 1594 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1595 goto out; 1596 1597 /* No page cache for EOF blocks, issue zero out to disk. */ 1598 if (end > isize) { 1599 /* 1600 * zeroout eof blocks in last cluster starting from 1601 * "isize" even "start" > "isize" because it is 1602 * complicated to zeroout just at "start" as "start" 1603 * may be not aligned with block size, buffer write 1604 * would be required to do that, but out of eof buffer 1605 * write is not supported. 1606 */ 1607 ret = ocfs2_zeroout_partial_cluster(inode, isize, 1608 end - isize); 1609 if (ret) { 1610 mlog_errno(ret); 1611 goto out; 1612 } 1613 if (start >= isize) 1614 goto out; 1615 end = isize; 1616 } 1617 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1618 if (IS_ERR(handle)) { 1619 ret = PTR_ERR(handle); 1620 mlog_errno(ret); 1621 goto out; 1622 } 1623 1624 /* 1625 * If start is on a cluster boundary and end is somewhere in another 1626 * cluster, we have not COWed the cluster starting at start, unless 1627 * end is also within the same cluster. So, in this case, we skip this 1628 * first call to ocfs2_zero_range_for_truncate() truncate and move on 1629 * to the next one. 1630 */ 1631 if ((start & (csize - 1)) != 0) { 1632 /* 1633 * We want to get the byte offset of the end of the 1st 1634 * cluster. 1635 */ 1636 tmpend = (u64)osb->s_clustersize + 1637 (start & ~(osb->s_clustersize - 1)); 1638 if (tmpend > end) 1639 tmpend = end; 1640 1641 trace_ocfs2_zero_partial_clusters_range1( 1642 (unsigned long long)start, 1643 (unsigned long long)tmpend); 1644 1645 ret = ocfs2_zero_range_for_truncate(inode, handle, start, 1646 tmpend); 1647 if (ret) 1648 mlog_errno(ret); 1649 } 1650 1651 if (tmpend < end) { 1652 /* 1653 * This may make start and end equal, but the zeroing 1654 * code will skip any work in that case so there's no 1655 * need to catch it up here. 1656 */ 1657 start = end & ~(osb->s_clustersize - 1); 1658 1659 trace_ocfs2_zero_partial_clusters_range2( 1660 (unsigned long long)start, (unsigned long long)end); 1661 1662 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1663 if (ret) 1664 mlog_errno(ret); 1665 } 1666 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1667 1668 ocfs2_commit_trans(osb, handle); 1669 out: 1670 return ret; 1671 } 1672 1673 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1674 { 1675 int i; 1676 struct ocfs2_extent_rec *rec = NULL; 1677 1678 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1679 1680 rec = &el->l_recs[i]; 1681 1682 if (le32_to_cpu(rec->e_cpos) < pos) 1683 break; 1684 } 1685 1686 return i; 1687 } 1688 1689 /* 1690 * Helper to calculate the punching pos and length in one run, we handle the 1691 * following three cases in order: 1692 * 1693 * - remove the entire record 1694 * - remove a partial record 1695 * - no record needs to be removed (hole-punching completed) 1696 */ 1697 static void ocfs2_calc_trunc_pos(struct inode *inode, 1698 struct ocfs2_extent_list *el, 1699 struct ocfs2_extent_rec *rec, 1700 u32 trunc_start, u32 *trunc_cpos, 1701 u32 *trunc_len, u32 *trunc_end, 1702 u64 *blkno, int *done) 1703 { 1704 int ret = 0; 1705 u32 coff, range; 1706 1707 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1708 1709 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1710 /* 1711 * remove an entire extent record. 1712 */ 1713 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1714 /* 1715 * Skip holes if any. 1716 */ 1717 if (range < *trunc_end) 1718 *trunc_end = range; 1719 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1720 *blkno = le64_to_cpu(rec->e_blkno); 1721 *trunc_end = le32_to_cpu(rec->e_cpos); 1722 } else if (range > trunc_start) { 1723 /* 1724 * remove a partial extent record, which means we're 1725 * removing the last extent record. 1726 */ 1727 *trunc_cpos = trunc_start; 1728 /* 1729 * skip hole if any. 1730 */ 1731 if (range < *trunc_end) 1732 *trunc_end = range; 1733 *trunc_len = *trunc_end - trunc_start; 1734 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1735 *blkno = le64_to_cpu(rec->e_blkno) + 1736 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1737 *trunc_end = trunc_start; 1738 } else { 1739 /* 1740 * It may have two following possibilities: 1741 * 1742 * - last record has been removed 1743 * - trunc_start was within a hole 1744 * 1745 * both two cases mean the completion of hole punching. 1746 */ 1747 ret = 1; 1748 } 1749 1750 *done = ret; 1751 } 1752 1753 int ocfs2_remove_inode_range(struct inode *inode, 1754 struct buffer_head *di_bh, u64 byte_start, 1755 u64 byte_len) 1756 { 1757 int ret = 0, flags = 0, done = 0, i; 1758 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1759 u32 cluster_in_el; 1760 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1761 struct ocfs2_cached_dealloc_ctxt dealloc; 1762 struct address_space *mapping = inode->i_mapping; 1763 struct ocfs2_extent_tree et; 1764 struct ocfs2_path *path = NULL; 1765 struct ocfs2_extent_list *el = NULL; 1766 struct ocfs2_extent_rec *rec = NULL; 1767 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1768 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1769 1770 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1771 ocfs2_init_dealloc_ctxt(&dealloc); 1772 1773 trace_ocfs2_remove_inode_range( 1774 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1775 (unsigned long long)byte_start, 1776 (unsigned long long)byte_len); 1777 1778 if (byte_len == 0) 1779 return 0; 1780 1781 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1782 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1783 byte_start + byte_len, 0); 1784 if (ret) { 1785 mlog_errno(ret); 1786 goto out; 1787 } 1788 /* 1789 * There's no need to get fancy with the page cache 1790 * truncate of an inline-data inode. We're talking 1791 * about less than a page here, which will be cached 1792 * in the dinode buffer anyway. 1793 */ 1794 unmap_mapping_range(mapping, 0, 0, 0); 1795 truncate_inode_pages(mapping, 0); 1796 goto out; 1797 } 1798 1799 /* 1800 * For reflinks, we may need to CoW 2 clusters which might be 1801 * partially zero'd later, if hole's start and end offset were 1802 * within one cluster(means is not exactly aligned to clustersize). 1803 */ 1804 1805 if (ocfs2_is_refcount_inode(inode)) { 1806 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1807 if (ret) { 1808 mlog_errno(ret); 1809 goto out; 1810 } 1811 1812 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1813 if (ret) { 1814 mlog_errno(ret); 1815 goto out; 1816 } 1817 } 1818 1819 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1820 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1821 cluster_in_el = trunc_end; 1822 1823 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1824 if (ret) { 1825 mlog_errno(ret); 1826 goto out; 1827 } 1828 1829 path = ocfs2_new_path_from_et(&et); 1830 if (!path) { 1831 ret = -ENOMEM; 1832 mlog_errno(ret); 1833 goto out; 1834 } 1835 1836 while (trunc_end > trunc_start) { 1837 1838 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1839 cluster_in_el); 1840 if (ret) { 1841 mlog_errno(ret); 1842 goto out; 1843 } 1844 1845 el = path_leaf_el(path); 1846 1847 i = ocfs2_find_rec(el, trunc_end); 1848 /* 1849 * Need to go to previous extent block. 1850 */ 1851 if (i < 0) { 1852 if (path->p_tree_depth == 0) 1853 break; 1854 1855 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1856 path, 1857 &cluster_in_el); 1858 if (ret) { 1859 mlog_errno(ret); 1860 goto out; 1861 } 1862 1863 /* 1864 * We've reached the leftmost extent block, 1865 * it's safe to leave. 1866 */ 1867 if (cluster_in_el == 0) 1868 break; 1869 1870 /* 1871 * The 'pos' searched for previous extent block is 1872 * always one cluster less than actual trunc_end. 1873 */ 1874 trunc_end = cluster_in_el + 1; 1875 1876 ocfs2_reinit_path(path, 1); 1877 1878 continue; 1879 1880 } else 1881 rec = &el->l_recs[i]; 1882 1883 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1884 &trunc_len, &trunc_end, &blkno, &done); 1885 if (done) 1886 break; 1887 1888 flags = rec->e_flags; 1889 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1890 1891 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1892 phys_cpos, trunc_len, flags, 1893 &dealloc, refcount_loc, false); 1894 if (ret < 0) { 1895 mlog_errno(ret); 1896 goto out; 1897 } 1898 1899 cluster_in_el = trunc_end; 1900 1901 ocfs2_reinit_path(path, 1); 1902 } 1903 1904 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1905 1906 out: 1907 ocfs2_free_path(path); 1908 ocfs2_schedule_truncate_log_flush(osb, 1); 1909 ocfs2_run_deallocs(osb, &dealloc); 1910 1911 return ret; 1912 } 1913 1914 /* 1915 * Parts of this function taken from xfs_change_file_space() 1916 */ 1917 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1918 loff_t f_pos, unsigned int cmd, 1919 struct ocfs2_space_resv *sr, 1920 int change_size) 1921 { 1922 int ret; 1923 s64 llen; 1924 loff_t size, orig_isize; 1925 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1926 struct buffer_head *di_bh = NULL; 1927 handle_t *handle; 1928 unsigned long long max_off = inode->i_sb->s_maxbytes; 1929 1930 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1931 return -EROFS; 1932 1933 inode_lock(inode); 1934 1935 /* 1936 * This prevents concurrent writes on other nodes 1937 */ 1938 ret = ocfs2_rw_lock(inode, 1); 1939 if (ret) { 1940 mlog_errno(ret); 1941 goto out; 1942 } 1943 1944 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1945 if (ret) { 1946 mlog_errno(ret); 1947 goto out_rw_unlock; 1948 } 1949 1950 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1951 ret = -EPERM; 1952 goto out_inode_unlock; 1953 } 1954 1955 switch (sr->l_whence) { 1956 case 0: /*SEEK_SET*/ 1957 break; 1958 case 1: /*SEEK_CUR*/ 1959 sr->l_start += f_pos; 1960 break; 1961 case 2: /*SEEK_END*/ 1962 sr->l_start += i_size_read(inode); 1963 break; 1964 default: 1965 ret = -EINVAL; 1966 goto out_inode_unlock; 1967 } 1968 sr->l_whence = 0; 1969 1970 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1971 1972 if (sr->l_start < 0 1973 || sr->l_start > max_off 1974 || (sr->l_start + llen) < 0 1975 || (sr->l_start + llen) > max_off) { 1976 ret = -EINVAL; 1977 goto out_inode_unlock; 1978 } 1979 size = sr->l_start + sr->l_len; 1980 1981 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1982 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1983 if (sr->l_len <= 0) { 1984 ret = -EINVAL; 1985 goto out_inode_unlock; 1986 } 1987 } 1988 1989 if (file && setattr_should_drop_suidgid(&nop_mnt_idmap, file_inode(file))) { 1990 ret = __ocfs2_write_remove_suid(inode, di_bh); 1991 if (ret) { 1992 mlog_errno(ret); 1993 goto out_inode_unlock; 1994 } 1995 } 1996 1997 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1998 switch (cmd) { 1999 case OCFS2_IOC_RESVSP: 2000 case OCFS2_IOC_RESVSP64: 2001 /* 2002 * This takes unsigned offsets, but the signed ones we 2003 * pass have been checked against overflow above. 2004 */ 2005 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 2006 sr->l_len); 2007 break; 2008 case OCFS2_IOC_UNRESVSP: 2009 case OCFS2_IOC_UNRESVSP64: 2010 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 2011 sr->l_len); 2012 break; 2013 default: 2014 ret = -EINVAL; 2015 } 2016 2017 orig_isize = i_size_read(inode); 2018 /* zeroout eof blocks in the cluster. */ 2019 if (!ret && change_size && orig_isize < size) { 2020 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize, 2021 size - orig_isize); 2022 if (!ret) 2023 i_size_write(inode, size); 2024 } 2025 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2026 if (ret) { 2027 mlog_errno(ret); 2028 goto out_inode_unlock; 2029 } 2030 2031 /* 2032 * We update c/mtime for these changes 2033 */ 2034 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 2035 if (IS_ERR(handle)) { 2036 ret = PTR_ERR(handle); 2037 mlog_errno(ret); 2038 goto out_inode_unlock; 2039 } 2040 2041 inode->i_ctime = inode->i_mtime = current_time(inode); 2042 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 2043 if (ret < 0) 2044 mlog_errno(ret); 2045 2046 if (file && (file->f_flags & O_SYNC)) 2047 handle->h_sync = 1; 2048 2049 ocfs2_commit_trans(osb, handle); 2050 2051 out_inode_unlock: 2052 brelse(di_bh); 2053 ocfs2_inode_unlock(inode, 1); 2054 out_rw_unlock: 2055 ocfs2_rw_unlock(inode, 1); 2056 2057 out: 2058 inode_unlock(inode); 2059 return ret; 2060 } 2061 2062 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 2063 struct ocfs2_space_resv *sr) 2064 { 2065 struct inode *inode = file_inode(file); 2066 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2067 int ret; 2068 2069 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 2070 !ocfs2_writes_unwritten_extents(osb)) 2071 return -ENOTTY; 2072 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 2073 !ocfs2_sparse_alloc(osb)) 2074 return -ENOTTY; 2075 2076 if (!S_ISREG(inode->i_mode)) 2077 return -EINVAL; 2078 2079 if (!(file->f_mode & FMODE_WRITE)) 2080 return -EBADF; 2081 2082 ret = mnt_want_write_file(file); 2083 if (ret) 2084 return ret; 2085 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2086 mnt_drop_write_file(file); 2087 return ret; 2088 } 2089 2090 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2091 loff_t len) 2092 { 2093 struct inode *inode = file_inode(file); 2094 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2095 struct ocfs2_space_resv sr; 2096 int change_size = 1; 2097 int cmd = OCFS2_IOC_RESVSP64; 2098 int ret = 0; 2099 2100 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2101 return -EOPNOTSUPP; 2102 if (!ocfs2_writes_unwritten_extents(osb)) 2103 return -EOPNOTSUPP; 2104 2105 if (mode & FALLOC_FL_KEEP_SIZE) { 2106 change_size = 0; 2107 } else { 2108 ret = inode_newsize_ok(inode, offset + len); 2109 if (ret) 2110 return ret; 2111 } 2112 2113 if (mode & FALLOC_FL_PUNCH_HOLE) 2114 cmd = OCFS2_IOC_UNRESVSP64; 2115 2116 sr.l_whence = 0; 2117 sr.l_start = (s64)offset; 2118 sr.l_len = (s64)len; 2119 2120 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2121 change_size); 2122 } 2123 2124 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2125 size_t count) 2126 { 2127 int ret = 0; 2128 unsigned int extent_flags; 2129 u32 cpos, clusters, extent_len, phys_cpos; 2130 struct super_block *sb = inode->i_sb; 2131 2132 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2133 !ocfs2_is_refcount_inode(inode) || 2134 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2135 return 0; 2136 2137 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2138 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2139 2140 while (clusters) { 2141 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2142 &extent_flags); 2143 if (ret < 0) { 2144 mlog_errno(ret); 2145 goto out; 2146 } 2147 2148 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2149 ret = 1; 2150 break; 2151 } 2152 2153 if (extent_len > clusters) 2154 extent_len = clusters; 2155 2156 clusters -= extent_len; 2157 cpos += extent_len; 2158 } 2159 out: 2160 return ret; 2161 } 2162 2163 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2164 { 2165 int blockmask = inode->i_sb->s_blocksize - 1; 2166 loff_t final_size = pos + count; 2167 2168 if ((pos & blockmask) || (final_size & blockmask)) 2169 return 1; 2170 return 0; 2171 } 2172 2173 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode, 2174 struct buffer_head **di_bh, 2175 int meta_level, 2176 int write_sem, 2177 int wait) 2178 { 2179 int ret = 0; 2180 2181 if (wait) 2182 ret = ocfs2_inode_lock(inode, di_bh, meta_level); 2183 else 2184 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level); 2185 if (ret < 0) 2186 goto out; 2187 2188 if (wait) { 2189 if (write_sem) 2190 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2191 else 2192 down_read(&OCFS2_I(inode)->ip_alloc_sem); 2193 } else { 2194 if (write_sem) 2195 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2196 else 2197 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2198 2199 if (!ret) { 2200 ret = -EAGAIN; 2201 goto out_unlock; 2202 } 2203 } 2204 2205 return ret; 2206 2207 out_unlock: 2208 brelse(*di_bh); 2209 *di_bh = NULL; 2210 ocfs2_inode_unlock(inode, meta_level); 2211 out: 2212 return ret; 2213 } 2214 2215 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode, 2216 struct buffer_head **di_bh, 2217 int meta_level, 2218 int write_sem) 2219 { 2220 if (write_sem) 2221 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2222 else 2223 up_read(&OCFS2_I(inode)->ip_alloc_sem); 2224 2225 brelse(*di_bh); 2226 *di_bh = NULL; 2227 2228 if (meta_level >= 0) 2229 ocfs2_inode_unlock(inode, meta_level); 2230 } 2231 2232 static int ocfs2_prepare_inode_for_write(struct file *file, 2233 loff_t pos, size_t count, int wait) 2234 { 2235 int ret = 0, meta_level = 0, overwrite_io = 0; 2236 int write_sem = 0; 2237 struct dentry *dentry = file->f_path.dentry; 2238 struct inode *inode = d_inode(dentry); 2239 struct buffer_head *di_bh = NULL; 2240 u32 cpos; 2241 u32 clusters; 2242 2243 /* 2244 * We start with a read level meta lock and only jump to an ex 2245 * if we need to make modifications here. 2246 */ 2247 for(;;) { 2248 ret = ocfs2_inode_lock_for_extent_tree(inode, 2249 &di_bh, 2250 meta_level, 2251 write_sem, 2252 wait); 2253 if (ret < 0) { 2254 if (ret != -EAGAIN) 2255 mlog_errno(ret); 2256 goto out; 2257 } 2258 2259 /* 2260 * Check if IO will overwrite allocated blocks in case 2261 * IOCB_NOWAIT flag is set. 2262 */ 2263 if (!wait && !overwrite_io) { 2264 overwrite_io = 1; 2265 2266 ret = ocfs2_overwrite_io(inode, di_bh, pos, count); 2267 if (ret < 0) { 2268 if (ret != -EAGAIN) 2269 mlog_errno(ret); 2270 goto out_unlock; 2271 } 2272 } 2273 2274 /* Clear suid / sgid if necessary. We do this here 2275 * instead of later in the write path because 2276 * remove_suid() calls ->setattr without any hint that 2277 * we may have already done our cluster locking. Since 2278 * ocfs2_setattr() *must* take cluster locks to 2279 * proceed, this will lead us to recursively lock the 2280 * inode. There's also the dinode i_size state which 2281 * can be lost via setattr during extending writes (we 2282 * set inode->i_size at the end of a write. */ 2283 if (setattr_should_drop_suidgid(&nop_mnt_idmap, inode)) { 2284 if (meta_level == 0) { 2285 ocfs2_inode_unlock_for_extent_tree(inode, 2286 &di_bh, 2287 meta_level, 2288 write_sem); 2289 meta_level = 1; 2290 continue; 2291 } 2292 2293 ret = ocfs2_write_remove_suid(inode); 2294 if (ret < 0) { 2295 mlog_errno(ret); 2296 goto out_unlock; 2297 } 2298 } 2299 2300 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2301 if (ret == 1) { 2302 ocfs2_inode_unlock_for_extent_tree(inode, 2303 &di_bh, 2304 meta_level, 2305 write_sem); 2306 meta_level = 1; 2307 write_sem = 1; 2308 ret = ocfs2_inode_lock_for_extent_tree(inode, 2309 &di_bh, 2310 meta_level, 2311 write_sem, 2312 wait); 2313 if (ret < 0) { 2314 if (ret != -EAGAIN) 2315 mlog_errno(ret); 2316 goto out; 2317 } 2318 2319 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2320 clusters = 2321 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2322 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2323 } 2324 2325 if (ret < 0) { 2326 if (ret != -EAGAIN) 2327 mlog_errno(ret); 2328 goto out_unlock; 2329 } 2330 2331 break; 2332 } 2333 2334 out_unlock: 2335 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2336 pos, count, wait); 2337 2338 ocfs2_inode_unlock_for_extent_tree(inode, 2339 &di_bh, 2340 meta_level, 2341 write_sem); 2342 2343 out: 2344 return ret; 2345 } 2346 2347 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2348 struct iov_iter *from) 2349 { 2350 int rw_level; 2351 ssize_t written = 0; 2352 ssize_t ret; 2353 size_t count = iov_iter_count(from); 2354 struct file *file = iocb->ki_filp; 2355 struct inode *inode = file_inode(file); 2356 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2357 int full_coherency = !(osb->s_mount_opt & 2358 OCFS2_MOUNT_COHERENCY_BUFFERED); 2359 void *saved_ki_complete = NULL; 2360 int append_write = ((iocb->ki_pos + count) >= 2361 i_size_read(inode) ? 1 : 0); 2362 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2363 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2364 2365 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, 2366 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2367 file->f_path.dentry->d_name.len, 2368 file->f_path.dentry->d_name.name, 2369 (unsigned int)from->nr_segs); /* GRRRRR */ 2370 2371 if (!direct_io && nowait) 2372 return -EOPNOTSUPP; 2373 2374 if (count == 0) 2375 return 0; 2376 2377 if (nowait) { 2378 if (!inode_trylock(inode)) 2379 return -EAGAIN; 2380 } else 2381 inode_lock(inode); 2382 2383 /* 2384 * Concurrent O_DIRECT writes are allowed with 2385 * mount_option "coherency=buffered". 2386 * For append write, we must take rw EX. 2387 */ 2388 rw_level = (!direct_io || full_coherency || append_write); 2389 2390 if (nowait) 2391 ret = ocfs2_try_rw_lock(inode, rw_level); 2392 else 2393 ret = ocfs2_rw_lock(inode, rw_level); 2394 if (ret < 0) { 2395 if (ret != -EAGAIN) 2396 mlog_errno(ret); 2397 goto out_mutex; 2398 } 2399 2400 /* 2401 * O_DIRECT writes with "coherency=full" need to take EX cluster 2402 * inode_lock to guarantee coherency. 2403 */ 2404 if (direct_io && full_coherency) { 2405 /* 2406 * We need to take and drop the inode lock to force 2407 * other nodes to drop their caches. Buffered I/O 2408 * already does this in write_begin(). 2409 */ 2410 if (nowait) 2411 ret = ocfs2_try_inode_lock(inode, NULL, 1); 2412 else 2413 ret = ocfs2_inode_lock(inode, NULL, 1); 2414 if (ret < 0) { 2415 if (ret != -EAGAIN) 2416 mlog_errno(ret); 2417 goto out; 2418 } 2419 2420 ocfs2_inode_unlock(inode, 1); 2421 } 2422 2423 ret = generic_write_checks(iocb, from); 2424 if (ret <= 0) { 2425 if (ret) 2426 mlog_errno(ret); 2427 goto out; 2428 } 2429 count = ret; 2430 2431 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); 2432 if (ret < 0) { 2433 if (ret != -EAGAIN) 2434 mlog_errno(ret); 2435 goto out; 2436 } 2437 2438 if (direct_io && !is_sync_kiocb(iocb) && 2439 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { 2440 /* 2441 * Make it a sync io if it's an unaligned aio. 2442 */ 2443 saved_ki_complete = xchg(&iocb->ki_complete, NULL); 2444 } 2445 2446 /* communicate with ocfs2_dio_end_io */ 2447 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2448 2449 written = __generic_file_write_iter(iocb, from); 2450 /* buffered aio wouldn't have proper lock coverage today */ 2451 BUG_ON(written == -EIOCBQUEUED && !direct_io); 2452 2453 /* 2454 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2455 * function pointer which is called when o_direct io completes so that 2456 * it can unlock our rw lock. 2457 * Unfortunately there are error cases which call end_io and others 2458 * that don't. so we don't have to unlock the rw_lock if either an 2459 * async dio is going to do it in the future or an end_io after an 2460 * error has already done it. 2461 */ 2462 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2463 rw_level = -1; 2464 } 2465 2466 if (unlikely(written <= 0)) 2467 goto out; 2468 2469 if (((file->f_flags & O_DSYNC) && !direct_io) || 2470 IS_SYNC(inode)) { 2471 ret = filemap_fdatawrite_range(file->f_mapping, 2472 iocb->ki_pos - written, 2473 iocb->ki_pos - 1); 2474 if (ret < 0) 2475 written = ret; 2476 2477 if (!ret) { 2478 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2479 if (ret < 0) 2480 written = ret; 2481 } 2482 2483 if (!ret) 2484 ret = filemap_fdatawait_range(file->f_mapping, 2485 iocb->ki_pos - written, 2486 iocb->ki_pos - 1); 2487 } 2488 2489 out: 2490 if (saved_ki_complete) 2491 xchg(&iocb->ki_complete, saved_ki_complete); 2492 2493 if (rw_level != -1) 2494 ocfs2_rw_unlock(inode, rw_level); 2495 2496 out_mutex: 2497 inode_unlock(inode); 2498 2499 if (written) 2500 ret = written; 2501 return ret; 2502 } 2503 2504 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2505 struct iov_iter *to) 2506 { 2507 int ret = 0, rw_level = -1, lock_level = 0; 2508 struct file *filp = iocb->ki_filp; 2509 struct inode *inode = file_inode(filp); 2510 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2511 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2512 2513 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, 2514 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2515 filp->f_path.dentry->d_name.len, 2516 filp->f_path.dentry->d_name.name, 2517 to->nr_segs); /* GRRRRR */ 2518 2519 2520 if (!inode) { 2521 ret = -EINVAL; 2522 mlog_errno(ret); 2523 goto bail; 2524 } 2525 2526 if (!direct_io && nowait) 2527 return -EOPNOTSUPP; 2528 2529 /* 2530 * buffered reads protect themselves in ->read_folio(). O_DIRECT reads 2531 * need locks to protect pending reads from racing with truncate. 2532 */ 2533 if (direct_io) { 2534 if (nowait) 2535 ret = ocfs2_try_rw_lock(inode, 0); 2536 else 2537 ret = ocfs2_rw_lock(inode, 0); 2538 2539 if (ret < 0) { 2540 if (ret != -EAGAIN) 2541 mlog_errno(ret); 2542 goto bail; 2543 } 2544 rw_level = 0; 2545 /* communicate with ocfs2_dio_end_io */ 2546 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2547 } 2548 2549 /* 2550 * We're fine letting folks race truncates and extending 2551 * writes with read across the cluster, just like they can 2552 * locally. Hence no rw_lock during read. 2553 * 2554 * Take and drop the meta data lock to update inode fields 2555 * like i_size. This allows the checks down below 2556 * copy_splice_read() a chance of actually working. 2557 */ 2558 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, 2559 !nowait); 2560 if (ret < 0) { 2561 if (ret != -EAGAIN) 2562 mlog_errno(ret); 2563 goto bail; 2564 } 2565 ocfs2_inode_unlock(inode, lock_level); 2566 2567 ret = generic_file_read_iter(iocb, to); 2568 trace_generic_file_read_iter_ret(ret); 2569 2570 /* buffered aio wouldn't have proper lock coverage today */ 2571 BUG_ON(ret == -EIOCBQUEUED && !direct_io); 2572 2573 /* see ocfs2_file_write_iter */ 2574 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2575 rw_level = -1; 2576 } 2577 2578 bail: 2579 if (rw_level != -1) 2580 ocfs2_rw_unlock(inode, rw_level); 2581 2582 return ret; 2583 } 2584 2585 static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos, 2586 struct pipe_inode_info *pipe, 2587 size_t len, unsigned int flags) 2588 { 2589 struct inode *inode = file_inode(in); 2590 ssize_t ret = 0; 2591 int lock_level = 0; 2592 2593 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, 2594 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2595 in->f_path.dentry->d_name.len, 2596 in->f_path.dentry->d_name.name, 2597 flags); 2598 2599 /* 2600 * We're fine letting folks race truncates and extending writes with 2601 * read across the cluster, just like they can locally. Hence no 2602 * rw_lock during read. 2603 * 2604 * Take and drop the meta data lock to update inode fields like i_size. 2605 * This allows the checks down below filemap_splice_read() a chance of 2606 * actually working. 2607 */ 2608 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level, 1); 2609 if (ret < 0) { 2610 if (ret != -EAGAIN) 2611 mlog_errno(ret); 2612 goto bail; 2613 } 2614 ocfs2_inode_unlock(inode, lock_level); 2615 2616 ret = filemap_splice_read(in, ppos, pipe, len, flags); 2617 trace_filemap_splice_read_ret(ret); 2618 bail: 2619 return ret; 2620 } 2621 2622 /* Refer generic_file_llseek_unlocked() */ 2623 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2624 { 2625 struct inode *inode = file->f_mapping->host; 2626 int ret = 0; 2627 2628 inode_lock(inode); 2629 2630 switch (whence) { 2631 case SEEK_SET: 2632 break; 2633 case SEEK_END: 2634 /* SEEK_END requires the OCFS2 inode lock for the file 2635 * because it references the file's size. 2636 */ 2637 ret = ocfs2_inode_lock(inode, NULL, 0); 2638 if (ret < 0) { 2639 mlog_errno(ret); 2640 goto out; 2641 } 2642 offset += i_size_read(inode); 2643 ocfs2_inode_unlock(inode, 0); 2644 break; 2645 case SEEK_CUR: 2646 if (offset == 0) { 2647 offset = file->f_pos; 2648 goto out; 2649 } 2650 offset += file->f_pos; 2651 break; 2652 case SEEK_DATA: 2653 case SEEK_HOLE: 2654 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2655 if (ret) 2656 goto out; 2657 break; 2658 default: 2659 ret = -EINVAL; 2660 goto out; 2661 } 2662 2663 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2664 2665 out: 2666 inode_unlock(inode); 2667 if (ret) 2668 return ret; 2669 return offset; 2670 } 2671 2672 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, 2673 struct file *file_out, loff_t pos_out, 2674 loff_t len, unsigned int remap_flags) 2675 { 2676 struct inode *inode_in = file_inode(file_in); 2677 struct inode *inode_out = file_inode(file_out); 2678 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); 2679 struct buffer_head *in_bh = NULL, *out_bh = NULL; 2680 bool same_inode = (inode_in == inode_out); 2681 loff_t remapped = 0; 2682 ssize_t ret; 2683 2684 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 2685 return -EINVAL; 2686 if (!ocfs2_refcount_tree(osb)) 2687 return -EOPNOTSUPP; 2688 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 2689 return -EROFS; 2690 2691 /* Lock both files against IO */ 2692 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); 2693 if (ret) 2694 return ret; 2695 2696 /* Check file eligibility and prepare for block sharing. */ 2697 ret = -EINVAL; 2698 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || 2699 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) 2700 goto out_unlock; 2701 2702 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 2703 &len, remap_flags); 2704 if (ret < 0 || len == 0) 2705 goto out_unlock; 2706 2707 /* Lock out changes to the allocation maps and remap. */ 2708 down_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2709 if (!same_inode) 2710 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, 2711 SINGLE_DEPTH_NESTING); 2712 2713 /* Zap any page cache for the destination file's range. */ 2714 truncate_inode_pages_range(&inode_out->i_data, 2715 round_down(pos_out, PAGE_SIZE), 2716 round_up(pos_out + len, PAGE_SIZE) - 1); 2717 2718 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, 2719 inode_out, out_bh, pos_out, len); 2720 up_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2721 if (!same_inode) 2722 up_write(&OCFS2_I(inode_out)->ip_alloc_sem); 2723 if (remapped < 0) { 2724 ret = remapped; 2725 mlog_errno(ret); 2726 goto out_unlock; 2727 } 2728 2729 /* 2730 * Empty the extent map so that we may get the right extent 2731 * record from the disk. 2732 */ 2733 ocfs2_extent_map_trunc(inode_in, 0); 2734 ocfs2_extent_map_trunc(inode_out, 0); 2735 2736 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); 2737 if (ret) { 2738 mlog_errno(ret); 2739 goto out_unlock; 2740 } 2741 2742 out_unlock: 2743 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); 2744 return remapped > 0 ? remapped : ret; 2745 } 2746 2747 const struct inode_operations ocfs2_file_iops = { 2748 .setattr = ocfs2_setattr, 2749 .getattr = ocfs2_getattr, 2750 .permission = ocfs2_permission, 2751 .listxattr = ocfs2_listxattr, 2752 .fiemap = ocfs2_fiemap, 2753 .get_inode_acl = ocfs2_iop_get_acl, 2754 .set_acl = ocfs2_iop_set_acl, 2755 .fileattr_get = ocfs2_fileattr_get, 2756 .fileattr_set = ocfs2_fileattr_set, 2757 }; 2758 2759 const struct inode_operations ocfs2_special_file_iops = { 2760 .setattr = ocfs2_setattr, 2761 .getattr = ocfs2_getattr, 2762 .permission = ocfs2_permission, 2763 .get_inode_acl = ocfs2_iop_get_acl, 2764 .set_acl = ocfs2_iop_set_acl, 2765 }; 2766 2767 /* 2768 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2769 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2770 */ 2771 const struct file_operations ocfs2_fops = { 2772 .llseek = ocfs2_file_llseek, 2773 .mmap = ocfs2_mmap, 2774 .fsync = ocfs2_sync_file, 2775 .release = ocfs2_file_release, 2776 .open = ocfs2_file_open, 2777 .read_iter = ocfs2_file_read_iter, 2778 .write_iter = ocfs2_file_write_iter, 2779 .unlocked_ioctl = ocfs2_ioctl, 2780 #ifdef CONFIG_COMPAT 2781 .compat_ioctl = ocfs2_compat_ioctl, 2782 #endif 2783 .lock = ocfs2_lock, 2784 .flock = ocfs2_flock, 2785 .splice_read = ocfs2_file_splice_read, 2786 .splice_write = iter_file_splice_write, 2787 .fallocate = ocfs2_fallocate, 2788 .remap_file_range = ocfs2_remap_file_range, 2789 }; 2790 2791 const struct file_operations ocfs2_dops = { 2792 .llseek = generic_file_llseek, 2793 .read = generic_read_dir, 2794 .iterate = ocfs2_readdir, 2795 .fsync = ocfs2_sync_file, 2796 .release = ocfs2_dir_release, 2797 .open = ocfs2_dir_open, 2798 .unlocked_ioctl = ocfs2_ioctl, 2799 #ifdef CONFIG_COMPAT 2800 .compat_ioctl = ocfs2_compat_ioctl, 2801 #endif 2802 .lock = ocfs2_lock, 2803 .flock = ocfs2_flock, 2804 }; 2805 2806 /* 2807 * POSIX-lockless variants of our file_operations. 2808 * 2809 * These will be used if the underlying cluster stack does not support 2810 * posix file locking, if the user passes the "localflocks" mount 2811 * option, or if we have a local-only fs. 2812 * 2813 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2814 * so we still want it in the case of no stack support for 2815 * plocks. Internally, it will do the right thing when asked to ignore 2816 * the cluster. 2817 */ 2818 const struct file_operations ocfs2_fops_no_plocks = { 2819 .llseek = ocfs2_file_llseek, 2820 .mmap = ocfs2_mmap, 2821 .fsync = ocfs2_sync_file, 2822 .release = ocfs2_file_release, 2823 .open = ocfs2_file_open, 2824 .read_iter = ocfs2_file_read_iter, 2825 .write_iter = ocfs2_file_write_iter, 2826 .unlocked_ioctl = ocfs2_ioctl, 2827 #ifdef CONFIG_COMPAT 2828 .compat_ioctl = ocfs2_compat_ioctl, 2829 #endif 2830 .flock = ocfs2_flock, 2831 .splice_read = filemap_splice_read, 2832 .splice_write = iter_file_splice_write, 2833 .fallocate = ocfs2_fallocate, 2834 .remap_file_range = ocfs2_remap_file_range, 2835 }; 2836 2837 const struct file_operations ocfs2_dops_no_plocks = { 2838 .llseek = generic_file_llseek, 2839 .read = generic_read_dir, 2840 .iterate = ocfs2_readdir, 2841 .fsync = ocfs2_sync_file, 2842 .release = ocfs2_dir_release, 2843 .open = ocfs2_dir_open, 2844 .unlocked_ioctl = ocfs2_ioctl, 2845 #ifdef CONFIG_COMPAT 2846 .compat_ioctl = ocfs2_compat_ioctl, 2847 #endif 2848 .flock = ocfs2_flock, 2849 }; 2850