xref: /openbmc/linux/fs/ocfs2/file.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 
41 #include <cluster/masklog.h>
42 
43 #include "ocfs2.h"
44 
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64 
65 #include "buffer_head_io.h"
66 
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 	struct ocfs2_file_private *fp;
70 
71 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 	if (!fp)
73 		return -ENOMEM;
74 
75 	fp->fp_file = file;
76 	mutex_init(&fp->fp_mutex);
77 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 	file->private_data = fp;
79 
80 	return 0;
81 }
82 
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 	struct ocfs2_file_private *fp = file->private_data;
86 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87 
88 	if (fp) {
89 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 		ocfs2_lock_res_free(&fp->fp_flock);
91 		kfree(fp);
92 		file->private_data = NULL;
93 	}
94 }
95 
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 	int status;
99 	int mode = file->f_flags;
100 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
101 
102 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 			      (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 			      file->f_path.dentry->d_name.len,
105 			      file->f_path.dentry->d_name.name, mode);
106 
107 	if (file->f_mode & FMODE_WRITE)
108 		dquot_initialize(inode);
109 
110 	spin_lock(&oi->ip_lock);
111 
112 	/* Check that the inode hasn't been wiped from disk by another
113 	 * node. If it hasn't then we're safe as long as we hold the
114 	 * spin lock until our increment of open count. */
115 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 		spin_unlock(&oi->ip_lock);
117 
118 		status = -ENOENT;
119 		goto leave;
120 	}
121 
122 	if (mode & O_DIRECT)
123 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124 
125 	oi->ip_open_count++;
126 	spin_unlock(&oi->ip_lock);
127 
128 	status = ocfs2_init_file_private(inode, file);
129 	if (status) {
130 		/*
131 		 * We want to set open count back if we're failing the
132 		 * open.
133 		 */
134 		spin_lock(&oi->ip_lock);
135 		oi->ip_open_count--;
136 		spin_unlock(&oi->ip_lock);
137 	}
138 
139 leave:
140 	return status;
141 }
142 
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
146 
147 	spin_lock(&oi->ip_lock);
148 	if (!--oi->ip_open_count)
149 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150 
151 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152 				 oi->ip_blkno,
153 				 file->f_path.dentry->d_name.len,
154 				 file->f_path.dentry->d_name.name,
155 				 oi->ip_open_count);
156 	spin_unlock(&oi->ip_lock);
157 
158 	ocfs2_free_file_private(inode, file);
159 
160 	return 0;
161 }
162 
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165 	return ocfs2_init_file_private(inode, file);
166 }
167 
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170 	ocfs2_free_file_private(inode, file);
171 	return 0;
172 }
173 
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175 			   int datasync)
176 {
177 	int err = 0;
178 	struct inode *inode = file->f_mapping->host;
179 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
180 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
181 	journal_t *journal = osb->journal->j_journal;
182 	int ret;
183 	tid_t commit_tid;
184 	bool needs_barrier = false;
185 
186 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
187 			      OCFS2_I(inode)->ip_blkno,
188 			      file->f_path.dentry->d_name.len,
189 			      file->f_path.dentry->d_name.name,
190 			      (unsigned long long)datasync);
191 
192 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
193 		return -EROFS;
194 
195 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
196 	if (err)
197 		return err;
198 
199 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
200 	if (journal->j_flags & JBD2_BARRIER &&
201 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
202 		needs_barrier = true;
203 	err = jbd2_complete_transaction(journal, commit_tid);
204 	if (needs_barrier) {
205 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
206 		if (!err)
207 			err = ret;
208 	}
209 
210 	if (err)
211 		mlog_errno(err);
212 
213 	return (err < 0) ? -EIO : 0;
214 }
215 
216 int ocfs2_should_update_atime(struct inode *inode,
217 			      struct vfsmount *vfsmnt)
218 {
219 	struct timespec now;
220 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
221 
222 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
223 		return 0;
224 
225 	if ((inode->i_flags & S_NOATIME) ||
226 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
227 		return 0;
228 
229 	/*
230 	 * We can be called with no vfsmnt structure - NFSD will
231 	 * sometimes do this.
232 	 *
233 	 * Note that our action here is different than touch_atime() -
234 	 * if we can't tell whether this is a noatime mount, then we
235 	 * don't know whether to trust the value of s_atime_quantum.
236 	 */
237 	if (vfsmnt == NULL)
238 		return 0;
239 
240 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
241 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
242 		return 0;
243 
244 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
245 		if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
246 		    (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
247 			return 1;
248 
249 		return 0;
250 	}
251 
252 	now = CURRENT_TIME;
253 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
254 		return 0;
255 	else
256 		return 1;
257 }
258 
259 int ocfs2_update_inode_atime(struct inode *inode,
260 			     struct buffer_head *bh)
261 {
262 	int ret;
263 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
264 	handle_t *handle;
265 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
266 
267 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
268 	if (IS_ERR(handle)) {
269 		ret = PTR_ERR(handle);
270 		mlog_errno(ret);
271 		goto out;
272 	}
273 
274 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
275 				      OCFS2_JOURNAL_ACCESS_WRITE);
276 	if (ret) {
277 		mlog_errno(ret);
278 		goto out_commit;
279 	}
280 
281 	/*
282 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
283 	 * have i_mutex to guard against concurrent changes to other
284 	 * inode fields.
285 	 */
286 	inode->i_atime = CURRENT_TIME;
287 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
288 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
289 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
290 	ocfs2_journal_dirty(handle, bh);
291 
292 out_commit:
293 	ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
294 out:
295 	return ret;
296 }
297 
298 int ocfs2_set_inode_size(handle_t *handle,
299 				struct inode *inode,
300 				struct buffer_head *fe_bh,
301 				u64 new_i_size)
302 {
303 	int status;
304 
305 	i_size_write(inode, new_i_size);
306 	inode->i_blocks = ocfs2_inode_sector_count(inode);
307 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
308 
309 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
310 	if (status < 0) {
311 		mlog_errno(status);
312 		goto bail;
313 	}
314 
315 bail:
316 	return status;
317 }
318 
319 int ocfs2_simple_size_update(struct inode *inode,
320 			     struct buffer_head *di_bh,
321 			     u64 new_i_size)
322 {
323 	int ret;
324 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
325 	handle_t *handle = NULL;
326 
327 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
328 	if (IS_ERR(handle)) {
329 		ret = PTR_ERR(handle);
330 		mlog_errno(ret);
331 		goto out;
332 	}
333 
334 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
335 				   new_i_size);
336 	if (ret < 0)
337 		mlog_errno(ret);
338 
339 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
340 	ocfs2_commit_trans(osb, handle);
341 out:
342 	return ret;
343 }
344 
345 static int ocfs2_cow_file_pos(struct inode *inode,
346 			      struct buffer_head *fe_bh,
347 			      u64 offset)
348 {
349 	int status;
350 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
351 	unsigned int num_clusters = 0;
352 	unsigned int ext_flags = 0;
353 
354 	/*
355 	 * If the new offset is aligned to the range of the cluster, there is
356 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
357 	 * CoW either.
358 	 */
359 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
360 		return 0;
361 
362 	status = ocfs2_get_clusters(inode, cpos, &phys,
363 				    &num_clusters, &ext_flags);
364 	if (status) {
365 		mlog_errno(status);
366 		goto out;
367 	}
368 
369 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
370 		goto out;
371 
372 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
373 
374 out:
375 	return status;
376 }
377 
378 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
379 				     struct inode *inode,
380 				     struct buffer_head *fe_bh,
381 				     u64 new_i_size)
382 {
383 	int status;
384 	handle_t *handle;
385 	struct ocfs2_dinode *di;
386 	u64 cluster_bytes;
387 
388 	/*
389 	 * We need to CoW the cluster contains the offset if it is reflinked
390 	 * since we will call ocfs2_zero_range_for_truncate later which will
391 	 * write "0" from offset to the end of the cluster.
392 	 */
393 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
394 	if (status) {
395 		mlog_errno(status);
396 		return status;
397 	}
398 
399 	/* TODO: This needs to actually orphan the inode in this
400 	 * transaction. */
401 
402 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
403 	if (IS_ERR(handle)) {
404 		status = PTR_ERR(handle);
405 		mlog_errno(status);
406 		goto out;
407 	}
408 
409 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
410 					 OCFS2_JOURNAL_ACCESS_WRITE);
411 	if (status < 0) {
412 		mlog_errno(status);
413 		goto out_commit;
414 	}
415 
416 	/*
417 	 * Do this before setting i_size.
418 	 */
419 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
420 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
421 					       cluster_bytes);
422 	if (status) {
423 		mlog_errno(status);
424 		goto out_commit;
425 	}
426 
427 	i_size_write(inode, new_i_size);
428 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
429 
430 	di = (struct ocfs2_dinode *) fe_bh->b_data;
431 	di->i_size = cpu_to_le64(new_i_size);
432 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
433 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
434 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
435 
436 	ocfs2_journal_dirty(handle, fe_bh);
437 
438 out_commit:
439 	ocfs2_commit_trans(osb, handle);
440 out:
441 	return status;
442 }
443 
444 int ocfs2_truncate_file(struct inode *inode,
445 			       struct buffer_head *di_bh,
446 			       u64 new_i_size)
447 {
448 	int status = 0;
449 	struct ocfs2_dinode *fe = NULL;
450 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
451 
452 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
453 	 * already validated it */
454 	fe = (struct ocfs2_dinode *) di_bh->b_data;
455 
456 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457 				  (unsigned long long)le64_to_cpu(fe->i_size),
458 				  (unsigned long long)new_i_size);
459 
460 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461 			"Inode %llu, inode i_size = %lld != di "
462 			"i_size = %llu, i_flags = 0x%x\n",
463 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
464 			i_size_read(inode),
465 			(unsigned long long)le64_to_cpu(fe->i_size),
466 			le32_to_cpu(fe->i_flags));
467 
468 	if (new_i_size > le64_to_cpu(fe->i_size)) {
469 		trace_ocfs2_truncate_file_error(
470 			(unsigned long long)le64_to_cpu(fe->i_size),
471 			(unsigned long long)new_i_size);
472 		status = -EINVAL;
473 		mlog_errno(status);
474 		goto bail;
475 	}
476 
477 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
478 
479 	ocfs2_resv_discard(&osb->osb_la_resmap,
480 			   &OCFS2_I(inode)->ip_la_data_resv);
481 
482 	/*
483 	 * The inode lock forced other nodes to sync and drop their
484 	 * pages, which (correctly) happens even if we have a truncate
485 	 * without allocation change - ocfs2 cluster sizes can be much
486 	 * greater than page size, so we have to truncate them
487 	 * anyway.
488 	 */
489 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
490 	truncate_inode_pages(inode->i_mapping, new_i_size);
491 
492 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
493 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
494 					       i_size_read(inode), 1);
495 		if (status)
496 			mlog_errno(status);
497 
498 		goto bail_unlock_sem;
499 	}
500 
501 	/* alright, we're going to need to do a full blown alloc size
502 	 * change. Orphan the inode so that recovery can complete the
503 	 * truncate if necessary. This does the task of marking
504 	 * i_size. */
505 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
506 	if (status < 0) {
507 		mlog_errno(status);
508 		goto bail_unlock_sem;
509 	}
510 
511 	status = ocfs2_commit_truncate(osb, inode, di_bh);
512 	if (status < 0) {
513 		mlog_errno(status);
514 		goto bail_unlock_sem;
515 	}
516 
517 	/* TODO: orphan dir cleanup here. */
518 bail_unlock_sem:
519 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
520 
521 bail:
522 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
523 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
524 
525 	return status;
526 }
527 
528 /*
529  * extend file allocation only here.
530  * we'll update all the disk stuff, and oip->alloc_size
531  *
532  * expect stuff to be locked, a transaction started and enough data /
533  * metadata reservations in the contexts.
534  *
535  * Will return -EAGAIN, and a reason if a restart is needed.
536  * If passed in, *reason will always be set, even in error.
537  */
538 int ocfs2_add_inode_data(struct ocfs2_super *osb,
539 			 struct inode *inode,
540 			 u32 *logical_offset,
541 			 u32 clusters_to_add,
542 			 int mark_unwritten,
543 			 struct buffer_head *fe_bh,
544 			 handle_t *handle,
545 			 struct ocfs2_alloc_context *data_ac,
546 			 struct ocfs2_alloc_context *meta_ac,
547 			 enum ocfs2_alloc_restarted *reason_ret)
548 {
549 	int ret;
550 	struct ocfs2_extent_tree et;
551 
552 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
553 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
554 					  clusters_to_add, mark_unwritten,
555 					  data_ac, meta_ac, reason_ret);
556 
557 	return ret;
558 }
559 
560 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
561 				     u32 clusters_to_add, int mark_unwritten)
562 {
563 	int status = 0;
564 	int restart_func = 0;
565 	int credits;
566 	u32 prev_clusters;
567 	struct buffer_head *bh = NULL;
568 	struct ocfs2_dinode *fe = NULL;
569 	handle_t *handle = NULL;
570 	struct ocfs2_alloc_context *data_ac = NULL;
571 	struct ocfs2_alloc_context *meta_ac = NULL;
572 	enum ocfs2_alloc_restarted why = RESTART_NONE;
573 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
574 	struct ocfs2_extent_tree et;
575 	int did_quota = 0;
576 
577 	/*
578 	 * Unwritten extent only exists for file systems which
579 	 * support holes.
580 	 */
581 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
582 
583 	status = ocfs2_read_inode_block(inode, &bh);
584 	if (status < 0) {
585 		mlog_errno(status);
586 		goto leave;
587 	}
588 	fe = (struct ocfs2_dinode *) bh->b_data;
589 
590 restart_all:
591 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
592 
593 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
594 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
595 				       &data_ac, &meta_ac);
596 	if (status) {
597 		mlog_errno(status);
598 		goto leave;
599 	}
600 
601 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
602 	handle = ocfs2_start_trans(osb, credits);
603 	if (IS_ERR(handle)) {
604 		status = PTR_ERR(handle);
605 		handle = NULL;
606 		mlog_errno(status);
607 		goto leave;
608 	}
609 
610 restarted_transaction:
611 	trace_ocfs2_extend_allocation(
612 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
613 		(unsigned long long)i_size_read(inode),
614 		le32_to_cpu(fe->i_clusters), clusters_to_add,
615 		why, restart_func);
616 
617 	status = dquot_alloc_space_nodirty(inode,
618 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
619 	if (status)
620 		goto leave;
621 	did_quota = 1;
622 
623 	/* reserve a write to the file entry early on - that we if we
624 	 * run out of credits in the allocation path, we can still
625 	 * update i_size. */
626 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
627 					 OCFS2_JOURNAL_ACCESS_WRITE);
628 	if (status < 0) {
629 		mlog_errno(status);
630 		goto leave;
631 	}
632 
633 	prev_clusters = OCFS2_I(inode)->ip_clusters;
634 
635 	status = ocfs2_add_inode_data(osb,
636 				      inode,
637 				      &logical_start,
638 				      clusters_to_add,
639 				      mark_unwritten,
640 				      bh,
641 				      handle,
642 				      data_ac,
643 				      meta_ac,
644 				      &why);
645 	if ((status < 0) && (status != -EAGAIN)) {
646 		if (status != -ENOSPC)
647 			mlog_errno(status);
648 		goto leave;
649 	}
650 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
651 	ocfs2_journal_dirty(handle, bh);
652 
653 	spin_lock(&OCFS2_I(inode)->ip_lock);
654 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
655 	spin_unlock(&OCFS2_I(inode)->ip_lock);
656 	/* Release unused quota reservation */
657 	dquot_free_space(inode,
658 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
659 	did_quota = 0;
660 
661 	if (why != RESTART_NONE && clusters_to_add) {
662 		if (why == RESTART_META) {
663 			restart_func = 1;
664 			status = 0;
665 		} else {
666 			BUG_ON(why != RESTART_TRANS);
667 
668 			status = ocfs2_allocate_extend_trans(handle, 1);
669 			if (status < 0) {
670 				/* handle still has to be committed at
671 				 * this point. */
672 				status = -ENOMEM;
673 				mlog_errno(status);
674 				goto leave;
675 			}
676 			goto restarted_transaction;
677 		}
678 	}
679 
680 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
681 	     le32_to_cpu(fe->i_clusters),
682 	     (unsigned long long)le64_to_cpu(fe->i_size),
683 	     OCFS2_I(inode)->ip_clusters,
684 	     (unsigned long long)i_size_read(inode));
685 
686 leave:
687 	if (status < 0 && did_quota)
688 		dquot_free_space(inode,
689 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
690 	if (handle) {
691 		ocfs2_commit_trans(osb, handle);
692 		handle = NULL;
693 	}
694 	if (data_ac) {
695 		ocfs2_free_alloc_context(data_ac);
696 		data_ac = NULL;
697 	}
698 	if (meta_ac) {
699 		ocfs2_free_alloc_context(meta_ac);
700 		meta_ac = NULL;
701 	}
702 	if ((!status) && restart_func) {
703 		restart_func = 0;
704 		goto restart_all;
705 	}
706 	brelse(bh);
707 	bh = NULL;
708 
709 	return status;
710 }
711 
712 int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
713 		u32 clusters_to_add, int mark_unwritten)
714 {
715 	return __ocfs2_extend_allocation(inode, logical_start,
716 			clusters_to_add, mark_unwritten);
717 }
718 
719 /*
720  * While a write will already be ordering the data, a truncate will not.
721  * Thus, we need to explicitly order the zeroed pages.
722  */
723 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
724 						struct buffer_head *di_bh)
725 {
726 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
727 	handle_t *handle = NULL;
728 	int ret = 0;
729 
730 	if (!ocfs2_should_order_data(inode))
731 		goto out;
732 
733 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
734 	if (IS_ERR(handle)) {
735 		ret = -ENOMEM;
736 		mlog_errno(ret);
737 		goto out;
738 	}
739 
740 	ret = ocfs2_jbd2_file_inode(handle, inode);
741 	if (ret < 0) {
742 		mlog_errno(ret);
743 		goto out;
744 	}
745 
746 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
747 				      OCFS2_JOURNAL_ACCESS_WRITE);
748 	if (ret)
749 		mlog_errno(ret);
750 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
751 
752 out:
753 	if (ret) {
754 		if (!IS_ERR(handle))
755 			ocfs2_commit_trans(osb, handle);
756 		handle = ERR_PTR(ret);
757 	}
758 	return handle;
759 }
760 
761 /* Some parts of this taken from generic_cont_expand, which turned out
762  * to be too fragile to do exactly what we need without us having to
763  * worry about recursive locking in ->write_begin() and ->write_end(). */
764 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
765 				 u64 abs_to, struct buffer_head *di_bh)
766 {
767 	struct address_space *mapping = inode->i_mapping;
768 	struct page *page;
769 	unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
770 	handle_t *handle;
771 	int ret = 0;
772 	unsigned zero_from, zero_to, block_start, block_end;
773 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
774 
775 	BUG_ON(abs_from >= abs_to);
776 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
777 	BUG_ON(abs_from & (inode->i_blkbits - 1));
778 
779 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
780 	if (IS_ERR(handle)) {
781 		ret = PTR_ERR(handle);
782 		goto out;
783 	}
784 
785 	page = find_or_create_page(mapping, index, GFP_NOFS);
786 	if (!page) {
787 		ret = -ENOMEM;
788 		mlog_errno(ret);
789 		goto out_commit_trans;
790 	}
791 
792 	/* Get the offsets within the page that we want to zero */
793 	zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
794 	zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
795 	if (!zero_to)
796 		zero_to = PAGE_CACHE_SIZE;
797 
798 	trace_ocfs2_write_zero_page(
799 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
800 			(unsigned long long)abs_from,
801 			(unsigned long long)abs_to,
802 			index, zero_from, zero_to);
803 
804 	/* We know that zero_from is block aligned */
805 	for (block_start = zero_from; block_start < zero_to;
806 	     block_start = block_end) {
807 		block_end = block_start + (1 << inode->i_blkbits);
808 
809 		/*
810 		 * block_start is block-aligned.  Bump it by one to force
811 		 * __block_write_begin and block_commit_write to zero the
812 		 * whole block.
813 		 */
814 		ret = __block_write_begin(page, block_start + 1, 0,
815 					  ocfs2_get_block);
816 		if (ret < 0) {
817 			mlog_errno(ret);
818 			goto out_unlock;
819 		}
820 
821 
822 		/* must not update i_size! */
823 		ret = block_commit_write(page, block_start + 1,
824 					 block_start + 1);
825 		if (ret < 0)
826 			mlog_errno(ret);
827 		else
828 			ret = 0;
829 	}
830 
831 	/*
832 	 * fs-writeback will release the dirty pages without page lock
833 	 * whose offset are over inode size, the release happens at
834 	 * block_write_full_page().
835 	 */
836 	i_size_write(inode, abs_to);
837 	inode->i_blocks = ocfs2_inode_sector_count(inode);
838 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
839 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
840 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
841 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
842 	di->i_mtime_nsec = di->i_ctime_nsec;
843 	if (handle) {
844 		ocfs2_journal_dirty(handle, di_bh);
845 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
846 	}
847 
848 out_unlock:
849 	unlock_page(page);
850 	page_cache_release(page);
851 out_commit_trans:
852 	if (handle)
853 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
854 out:
855 	return ret;
856 }
857 
858 /*
859  * Find the next range to zero.  We do this in terms of bytes because
860  * that's what ocfs2_zero_extend() wants, and it is dealing with the
861  * pagecache.  We may return multiple extents.
862  *
863  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
864  * needs to be zeroed.  range_start and range_end return the next zeroing
865  * range.  A subsequent call should pass the previous range_end as its
866  * zero_start.  If range_end is 0, there's nothing to do.
867  *
868  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
869  */
870 static int ocfs2_zero_extend_get_range(struct inode *inode,
871 				       struct buffer_head *di_bh,
872 				       u64 zero_start, u64 zero_end,
873 				       u64 *range_start, u64 *range_end)
874 {
875 	int rc = 0, needs_cow = 0;
876 	u32 p_cpos, zero_clusters = 0;
877 	u32 zero_cpos =
878 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
879 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
880 	unsigned int num_clusters = 0;
881 	unsigned int ext_flags = 0;
882 
883 	while (zero_cpos < last_cpos) {
884 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
885 					&num_clusters, &ext_flags);
886 		if (rc) {
887 			mlog_errno(rc);
888 			goto out;
889 		}
890 
891 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
892 			zero_clusters = num_clusters;
893 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
894 				needs_cow = 1;
895 			break;
896 		}
897 
898 		zero_cpos += num_clusters;
899 	}
900 	if (!zero_clusters) {
901 		*range_end = 0;
902 		goto out;
903 	}
904 
905 	while ((zero_cpos + zero_clusters) < last_cpos) {
906 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
907 					&p_cpos, &num_clusters,
908 					&ext_flags);
909 		if (rc) {
910 			mlog_errno(rc);
911 			goto out;
912 		}
913 
914 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
915 			break;
916 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
917 			needs_cow = 1;
918 		zero_clusters += num_clusters;
919 	}
920 	if ((zero_cpos + zero_clusters) > last_cpos)
921 		zero_clusters = last_cpos - zero_cpos;
922 
923 	if (needs_cow) {
924 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
925 					zero_clusters, UINT_MAX);
926 		if (rc) {
927 			mlog_errno(rc);
928 			goto out;
929 		}
930 	}
931 
932 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
933 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
934 					     zero_cpos + zero_clusters);
935 
936 out:
937 	return rc;
938 }
939 
940 /*
941  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
942  * has made sure that the entire range needs zeroing.
943  */
944 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
945 				   u64 range_end, struct buffer_head *di_bh)
946 {
947 	int rc = 0;
948 	u64 next_pos;
949 	u64 zero_pos = range_start;
950 
951 	trace_ocfs2_zero_extend_range(
952 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
953 			(unsigned long long)range_start,
954 			(unsigned long long)range_end);
955 	BUG_ON(range_start >= range_end);
956 
957 	while (zero_pos < range_end) {
958 		next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
959 		if (next_pos > range_end)
960 			next_pos = range_end;
961 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
962 		if (rc < 0) {
963 			mlog_errno(rc);
964 			break;
965 		}
966 		zero_pos = next_pos;
967 
968 		/*
969 		 * Very large extends have the potential to lock up
970 		 * the cpu for extended periods of time.
971 		 */
972 		cond_resched();
973 	}
974 
975 	return rc;
976 }
977 
978 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
979 		      loff_t zero_to_size)
980 {
981 	int ret = 0;
982 	u64 zero_start, range_start = 0, range_end = 0;
983 	struct super_block *sb = inode->i_sb;
984 
985 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
986 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
987 				(unsigned long long)zero_start,
988 				(unsigned long long)i_size_read(inode));
989 	while (zero_start < zero_to_size) {
990 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
991 						  zero_to_size,
992 						  &range_start,
993 						  &range_end);
994 		if (ret) {
995 			mlog_errno(ret);
996 			break;
997 		}
998 		if (!range_end)
999 			break;
1000 		/* Trim the ends */
1001 		if (range_start < zero_start)
1002 			range_start = zero_start;
1003 		if (range_end > zero_to_size)
1004 			range_end = zero_to_size;
1005 
1006 		ret = ocfs2_zero_extend_range(inode, range_start,
1007 					      range_end, di_bh);
1008 		if (ret) {
1009 			mlog_errno(ret);
1010 			break;
1011 		}
1012 		zero_start = range_end;
1013 	}
1014 
1015 	return ret;
1016 }
1017 
1018 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1019 			  u64 new_i_size, u64 zero_to)
1020 {
1021 	int ret;
1022 	u32 clusters_to_add;
1023 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1024 
1025 	/*
1026 	 * Only quota files call this without a bh, and they can't be
1027 	 * refcounted.
1028 	 */
1029 	BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1030 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1031 
1032 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1033 	if (clusters_to_add < oi->ip_clusters)
1034 		clusters_to_add = 0;
1035 	else
1036 		clusters_to_add -= oi->ip_clusters;
1037 
1038 	if (clusters_to_add) {
1039 		ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1040 						clusters_to_add, 0);
1041 		if (ret) {
1042 			mlog_errno(ret);
1043 			goto out;
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * Call this even if we don't add any clusters to the tree. We
1049 	 * still need to zero the area between the old i_size and the
1050 	 * new i_size.
1051 	 */
1052 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1053 	if (ret < 0)
1054 		mlog_errno(ret);
1055 
1056 out:
1057 	return ret;
1058 }
1059 
1060 static int ocfs2_extend_file(struct inode *inode,
1061 			     struct buffer_head *di_bh,
1062 			     u64 new_i_size)
1063 {
1064 	int ret = 0;
1065 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1066 
1067 	BUG_ON(!di_bh);
1068 
1069 	/* setattr sometimes calls us like this. */
1070 	if (new_i_size == 0)
1071 		goto out;
1072 
1073 	if (i_size_read(inode) == new_i_size)
1074 		goto out;
1075 	BUG_ON(new_i_size < i_size_read(inode));
1076 
1077 	/*
1078 	 * The alloc sem blocks people in read/write from reading our
1079 	 * allocation until we're done changing it. We depend on
1080 	 * i_mutex to block other extend/truncate calls while we're
1081 	 * here.  We even have to hold it for sparse files because there
1082 	 * might be some tail zeroing.
1083 	 */
1084 	down_write(&oi->ip_alloc_sem);
1085 
1086 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1087 		/*
1088 		 * We can optimize small extends by keeping the inodes
1089 		 * inline data.
1090 		 */
1091 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1092 			up_write(&oi->ip_alloc_sem);
1093 			goto out_update_size;
1094 		}
1095 
1096 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1097 		if (ret) {
1098 			up_write(&oi->ip_alloc_sem);
1099 			mlog_errno(ret);
1100 			goto out;
1101 		}
1102 	}
1103 
1104 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1105 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1106 	else
1107 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1108 					    new_i_size);
1109 
1110 	up_write(&oi->ip_alloc_sem);
1111 
1112 	if (ret < 0) {
1113 		mlog_errno(ret);
1114 		goto out;
1115 	}
1116 
1117 out_update_size:
1118 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1119 	if (ret < 0)
1120 		mlog_errno(ret);
1121 
1122 out:
1123 	return ret;
1124 }
1125 
1126 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1127 {
1128 	int status = 0, size_change;
1129 	struct inode *inode = dentry->d_inode;
1130 	struct super_block *sb = inode->i_sb;
1131 	struct ocfs2_super *osb = OCFS2_SB(sb);
1132 	struct buffer_head *bh = NULL;
1133 	handle_t *handle = NULL;
1134 	struct dquot *transfer_to[MAXQUOTAS] = { };
1135 	int qtype;
1136 
1137 	trace_ocfs2_setattr(inode, dentry,
1138 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1139 			    dentry->d_name.len, dentry->d_name.name,
1140 			    attr->ia_valid, attr->ia_mode,
1141 			    from_kuid(&init_user_ns, attr->ia_uid),
1142 			    from_kgid(&init_user_ns, attr->ia_gid));
1143 
1144 	/* ensuring we don't even attempt to truncate a symlink */
1145 	if (S_ISLNK(inode->i_mode))
1146 		attr->ia_valid &= ~ATTR_SIZE;
1147 
1148 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1149 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1150 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1151 		return 0;
1152 
1153 	status = inode_change_ok(inode, attr);
1154 	if (status)
1155 		return status;
1156 
1157 	if (is_quota_modification(inode, attr))
1158 		dquot_initialize(inode);
1159 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1160 	if (size_change) {
1161 		status = ocfs2_rw_lock(inode, 1);
1162 		if (status < 0) {
1163 			mlog_errno(status);
1164 			goto bail;
1165 		}
1166 	}
1167 
1168 	status = ocfs2_inode_lock(inode, &bh, 1);
1169 	if (status < 0) {
1170 		if (status != -ENOENT)
1171 			mlog_errno(status);
1172 		goto bail_unlock_rw;
1173 	}
1174 
1175 	if (size_change) {
1176 		status = inode_newsize_ok(inode, attr->ia_size);
1177 		if (status)
1178 			goto bail_unlock;
1179 
1180 		inode_dio_wait(inode);
1181 
1182 		if (i_size_read(inode) >= attr->ia_size) {
1183 			if (ocfs2_should_order_data(inode)) {
1184 				status = ocfs2_begin_ordered_truncate(inode,
1185 								      attr->ia_size);
1186 				if (status)
1187 					goto bail_unlock;
1188 			}
1189 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1190 		} else
1191 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1192 		if (status < 0) {
1193 			if (status != -ENOSPC)
1194 				mlog_errno(status);
1195 			status = -ENOSPC;
1196 			goto bail_unlock;
1197 		}
1198 	}
1199 
1200 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1201 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1202 		/*
1203 		 * Gather pointers to quota structures so that allocation /
1204 		 * freeing of quota structures happens here and not inside
1205 		 * dquot_transfer() where we have problems with lock ordering
1206 		 */
1207 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1208 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1209 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1210 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1211 			if (!transfer_to[USRQUOTA]) {
1212 				status = -ESRCH;
1213 				goto bail_unlock;
1214 			}
1215 		}
1216 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1217 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1218 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1219 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1220 			if (!transfer_to[GRPQUOTA]) {
1221 				status = -ESRCH;
1222 				goto bail_unlock;
1223 			}
1224 		}
1225 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1226 					   2 * ocfs2_quota_trans_credits(sb));
1227 		if (IS_ERR(handle)) {
1228 			status = PTR_ERR(handle);
1229 			mlog_errno(status);
1230 			goto bail_unlock;
1231 		}
1232 		status = __dquot_transfer(inode, transfer_to);
1233 		if (status < 0)
1234 			goto bail_commit;
1235 	} else {
1236 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1237 		if (IS_ERR(handle)) {
1238 			status = PTR_ERR(handle);
1239 			mlog_errno(status);
1240 			goto bail_unlock;
1241 		}
1242 	}
1243 
1244 	setattr_copy(inode, attr);
1245 	mark_inode_dirty(inode);
1246 
1247 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1248 	if (status < 0)
1249 		mlog_errno(status);
1250 
1251 bail_commit:
1252 	ocfs2_commit_trans(osb, handle);
1253 bail_unlock:
1254 	ocfs2_inode_unlock(inode, 1);
1255 bail_unlock_rw:
1256 	if (size_change)
1257 		ocfs2_rw_unlock(inode, 1);
1258 bail:
1259 	brelse(bh);
1260 
1261 	/* Release quota pointers in case we acquired them */
1262 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1263 		dqput(transfer_to[qtype]);
1264 
1265 	if (!status && attr->ia_valid & ATTR_MODE) {
1266 		status = posix_acl_chmod(inode, inode->i_mode);
1267 		if (status < 0)
1268 			mlog_errno(status);
1269 	}
1270 
1271 	return status;
1272 }
1273 
1274 int ocfs2_getattr(struct vfsmount *mnt,
1275 		  struct dentry *dentry,
1276 		  struct kstat *stat)
1277 {
1278 	struct inode *inode = dentry->d_inode;
1279 	struct super_block *sb = dentry->d_inode->i_sb;
1280 	struct ocfs2_super *osb = sb->s_fs_info;
1281 	int err;
1282 
1283 	err = ocfs2_inode_revalidate(dentry);
1284 	if (err) {
1285 		if (err != -ENOENT)
1286 			mlog_errno(err);
1287 		goto bail;
1288 	}
1289 
1290 	generic_fillattr(inode, stat);
1291 
1292 	/* We set the blksize from the cluster size for performance */
1293 	stat->blksize = osb->s_clustersize;
1294 
1295 bail:
1296 	return err;
1297 }
1298 
1299 int ocfs2_permission(struct inode *inode, int mask)
1300 {
1301 	int ret;
1302 
1303 	if (mask & MAY_NOT_BLOCK)
1304 		return -ECHILD;
1305 
1306 	ret = ocfs2_inode_lock(inode, NULL, 0);
1307 	if (ret) {
1308 		if (ret != -ENOENT)
1309 			mlog_errno(ret);
1310 		goto out;
1311 	}
1312 
1313 	ret = generic_permission(inode, mask);
1314 
1315 	ocfs2_inode_unlock(inode, 0);
1316 out:
1317 	return ret;
1318 }
1319 
1320 static int __ocfs2_write_remove_suid(struct inode *inode,
1321 				     struct buffer_head *bh)
1322 {
1323 	int ret;
1324 	handle_t *handle;
1325 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1326 	struct ocfs2_dinode *di;
1327 
1328 	trace_ocfs2_write_remove_suid(
1329 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1330 			inode->i_mode);
1331 
1332 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1333 	if (IS_ERR(handle)) {
1334 		ret = PTR_ERR(handle);
1335 		mlog_errno(ret);
1336 		goto out;
1337 	}
1338 
1339 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1340 				      OCFS2_JOURNAL_ACCESS_WRITE);
1341 	if (ret < 0) {
1342 		mlog_errno(ret);
1343 		goto out_trans;
1344 	}
1345 
1346 	inode->i_mode &= ~S_ISUID;
1347 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1348 		inode->i_mode &= ~S_ISGID;
1349 
1350 	di = (struct ocfs2_dinode *) bh->b_data;
1351 	di->i_mode = cpu_to_le16(inode->i_mode);
1352 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1353 
1354 	ocfs2_journal_dirty(handle, bh);
1355 
1356 out_trans:
1357 	ocfs2_commit_trans(osb, handle);
1358 out:
1359 	return ret;
1360 }
1361 
1362 /*
1363  * Will look for holes and unwritten extents in the range starting at
1364  * pos for count bytes (inclusive).
1365  */
1366 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1367 				       size_t count)
1368 {
1369 	int ret = 0;
1370 	unsigned int extent_flags;
1371 	u32 cpos, clusters, extent_len, phys_cpos;
1372 	struct super_block *sb = inode->i_sb;
1373 
1374 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1375 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1376 
1377 	while (clusters) {
1378 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1379 					 &extent_flags);
1380 		if (ret < 0) {
1381 			mlog_errno(ret);
1382 			goto out;
1383 		}
1384 
1385 		if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1386 			ret = 1;
1387 			break;
1388 		}
1389 
1390 		if (extent_len > clusters)
1391 			extent_len = clusters;
1392 
1393 		clusters -= extent_len;
1394 		cpos += extent_len;
1395 	}
1396 out:
1397 	return ret;
1398 }
1399 
1400 static int ocfs2_write_remove_suid(struct inode *inode)
1401 {
1402 	int ret;
1403 	struct buffer_head *bh = NULL;
1404 
1405 	ret = ocfs2_read_inode_block(inode, &bh);
1406 	if (ret < 0) {
1407 		mlog_errno(ret);
1408 		goto out;
1409 	}
1410 
1411 	ret =  __ocfs2_write_remove_suid(inode, bh);
1412 out:
1413 	brelse(bh);
1414 	return ret;
1415 }
1416 
1417 /*
1418  * Allocate enough extents to cover the region starting at byte offset
1419  * start for len bytes. Existing extents are skipped, any extents
1420  * added are marked as "unwritten".
1421  */
1422 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1423 					    u64 start, u64 len)
1424 {
1425 	int ret;
1426 	u32 cpos, phys_cpos, clusters, alloc_size;
1427 	u64 end = start + len;
1428 	struct buffer_head *di_bh = NULL;
1429 
1430 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1431 		ret = ocfs2_read_inode_block(inode, &di_bh);
1432 		if (ret) {
1433 			mlog_errno(ret);
1434 			goto out;
1435 		}
1436 
1437 		/*
1438 		 * Nothing to do if the requested reservation range
1439 		 * fits within the inode.
1440 		 */
1441 		if (ocfs2_size_fits_inline_data(di_bh, end))
1442 			goto out;
1443 
1444 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1445 		if (ret) {
1446 			mlog_errno(ret);
1447 			goto out;
1448 		}
1449 	}
1450 
1451 	/*
1452 	 * We consider both start and len to be inclusive.
1453 	 */
1454 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1455 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1456 	clusters -= cpos;
1457 
1458 	while (clusters) {
1459 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1460 					 &alloc_size, NULL);
1461 		if (ret) {
1462 			mlog_errno(ret);
1463 			goto out;
1464 		}
1465 
1466 		/*
1467 		 * Hole or existing extent len can be arbitrary, so
1468 		 * cap it to our own allocation request.
1469 		 */
1470 		if (alloc_size > clusters)
1471 			alloc_size = clusters;
1472 
1473 		if (phys_cpos) {
1474 			/*
1475 			 * We already have an allocation at this
1476 			 * region so we can safely skip it.
1477 			 */
1478 			goto next;
1479 		}
1480 
1481 		ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1482 		if (ret) {
1483 			if (ret != -ENOSPC)
1484 				mlog_errno(ret);
1485 			goto out;
1486 		}
1487 
1488 next:
1489 		cpos += alloc_size;
1490 		clusters -= alloc_size;
1491 	}
1492 
1493 	ret = 0;
1494 out:
1495 
1496 	brelse(di_bh);
1497 	return ret;
1498 }
1499 
1500 /*
1501  * Truncate a byte range, avoiding pages within partial clusters. This
1502  * preserves those pages for the zeroing code to write to.
1503  */
1504 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1505 					 u64 byte_len)
1506 {
1507 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1508 	loff_t start, end;
1509 	struct address_space *mapping = inode->i_mapping;
1510 
1511 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1512 	end = byte_start + byte_len;
1513 	end = end & ~(osb->s_clustersize - 1);
1514 
1515 	if (start < end) {
1516 		unmap_mapping_range(mapping, start, end - start, 0);
1517 		truncate_inode_pages_range(mapping, start, end - 1);
1518 	}
1519 }
1520 
1521 static int ocfs2_zero_partial_clusters(struct inode *inode,
1522 				       u64 start, u64 len)
1523 {
1524 	int ret = 0;
1525 	u64 tmpend, end = start + len;
1526 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1527 	unsigned int csize = osb->s_clustersize;
1528 	handle_t *handle;
1529 
1530 	/*
1531 	 * The "start" and "end" values are NOT necessarily part of
1532 	 * the range whose allocation is being deleted. Rather, this
1533 	 * is what the user passed in with the request. We must zero
1534 	 * partial clusters here. There's no need to worry about
1535 	 * physical allocation - the zeroing code knows to skip holes.
1536 	 */
1537 	trace_ocfs2_zero_partial_clusters(
1538 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1539 		(unsigned long long)start, (unsigned long long)end);
1540 
1541 	/*
1542 	 * If both edges are on a cluster boundary then there's no
1543 	 * zeroing required as the region is part of the allocation to
1544 	 * be truncated.
1545 	 */
1546 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1547 		goto out;
1548 
1549 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1550 	if (IS_ERR(handle)) {
1551 		ret = PTR_ERR(handle);
1552 		mlog_errno(ret);
1553 		goto out;
1554 	}
1555 
1556 	/*
1557 	 * We want to get the byte offset of the end of the 1st cluster.
1558 	 */
1559 	tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1560 	if (tmpend > end)
1561 		tmpend = end;
1562 
1563 	trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1564 						 (unsigned long long)tmpend);
1565 
1566 	ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1567 	if (ret)
1568 		mlog_errno(ret);
1569 
1570 	if (tmpend < end) {
1571 		/*
1572 		 * This may make start and end equal, but the zeroing
1573 		 * code will skip any work in that case so there's no
1574 		 * need to catch it up here.
1575 		 */
1576 		start = end & ~(osb->s_clustersize - 1);
1577 
1578 		trace_ocfs2_zero_partial_clusters_range2(
1579 			(unsigned long long)start, (unsigned long long)end);
1580 
1581 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1582 		if (ret)
1583 			mlog_errno(ret);
1584 	}
1585 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1586 
1587 	ocfs2_commit_trans(osb, handle);
1588 out:
1589 	return ret;
1590 }
1591 
1592 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1593 {
1594 	int i;
1595 	struct ocfs2_extent_rec *rec = NULL;
1596 
1597 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1598 
1599 		rec = &el->l_recs[i];
1600 
1601 		if (le32_to_cpu(rec->e_cpos) < pos)
1602 			break;
1603 	}
1604 
1605 	return i;
1606 }
1607 
1608 /*
1609  * Helper to calculate the punching pos and length in one run, we handle the
1610  * following three cases in order:
1611  *
1612  * - remove the entire record
1613  * - remove a partial record
1614  * - no record needs to be removed (hole-punching completed)
1615 */
1616 static void ocfs2_calc_trunc_pos(struct inode *inode,
1617 				 struct ocfs2_extent_list *el,
1618 				 struct ocfs2_extent_rec *rec,
1619 				 u32 trunc_start, u32 *trunc_cpos,
1620 				 u32 *trunc_len, u32 *trunc_end,
1621 				 u64 *blkno, int *done)
1622 {
1623 	int ret = 0;
1624 	u32 coff, range;
1625 
1626 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1627 
1628 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1629 		/*
1630 		 * remove an entire extent record.
1631 		 */
1632 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1633 		/*
1634 		 * Skip holes if any.
1635 		 */
1636 		if (range < *trunc_end)
1637 			*trunc_end = range;
1638 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1639 		*blkno = le64_to_cpu(rec->e_blkno);
1640 		*trunc_end = le32_to_cpu(rec->e_cpos);
1641 	} else if (range > trunc_start) {
1642 		/*
1643 		 * remove a partial extent record, which means we're
1644 		 * removing the last extent record.
1645 		 */
1646 		*trunc_cpos = trunc_start;
1647 		/*
1648 		 * skip hole if any.
1649 		 */
1650 		if (range < *trunc_end)
1651 			*trunc_end = range;
1652 		*trunc_len = *trunc_end - trunc_start;
1653 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1654 		*blkno = le64_to_cpu(rec->e_blkno) +
1655 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1656 		*trunc_end = trunc_start;
1657 	} else {
1658 		/*
1659 		 * It may have two following possibilities:
1660 		 *
1661 		 * - last record has been removed
1662 		 * - trunc_start was within a hole
1663 		 *
1664 		 * both two cases mean the completion of hole punching.
1665 		 */
1666 		ret = 1;
1667 	}
1668 
1669 	*done = ret;
1670 }
1671 
1672 static int ocfs2_remove_inode_range(struct inode *inode,
1673 				    struct buffer_head *di_bh, u64 byte_start,
1674 				    u64 byte_len)
1675 {
1676 	int ret = 0, flags = 0, done = 0, i;
1677 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1678 	u32 cluster_in_el;
1679 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1680 	struct ocfs2_cached_dealloc_ctxt dealloc;
1681 	struct address_space *mapping = inode->i_mapping;
1682 	struct ocfs2_extent_tree et;
1683 	struct ocfs2_path *path = NULL;
1684 	struct ocfs2_extent_list *el = NULL;
1685 	struct ocfs2_extent_rec *rec = NULL;
1686 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1687 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1688 
1689 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1690 	ocfs2_init_dealloc_ctxt(&dealloc);
1691 
1692 	trace_ocfs2_remove_inode_range(
1693 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1694 			(unsigned long long)byte_start,
1695 			(unsigned long long)byte_len);
1696 
1697 	if (byte_len == 0)
1698 		return 0;
1699 
1700 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1701 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1702 					    byte_start + byte_len, 0);
1703 		if (ret) {
1704 			mlog_errno(ret);
1705 			goto out;
1706 		}
1707 		/*
1708 		 * There's no need to get fancy with the page cache
1709 		 * truncate of an inline-data inode. We're talking
1710 		 * about less than a page here, which will be cached
1711 		 * in the dinode buffer anyway.
1712 		 */
1713 		unmap_mapping_range(mapping, 0, 0, 0);
1714 		truncate_inode_pages(mapping, 0);
1715 		goto out;
1716 	}
1717 
1718 	/*
1719 	 * For reflinks, we may need to CoW 2 clusters which might be
1720 	 * partially zero'd later, if hole's start and end offset were
1721 	 * within one cluster(means is not exactly aligned to clustersize).
1722 	 */
1723 
1724 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1725 
1726 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1727 		if (ret) {
1728 			mlog_errno(ret);
1729 			goto out;
1730 		}
1731 
1732 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1733 		if (ret) {
1734 			mlog_errno(ret);
1735 			goto out;
1736 		}
1737 	}
1738 
1739 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1740 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1741 	cluster_in_el = trunc_end;
1742 
1743 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1744 	if (ret) {
1745 		mlog_errno(ret);
1746 		goto out;
1747 	}
1748 
1749 	path = ocfs2_new_path_from_et(&et);
1750 	if (!path) {
1751 		ret = -ENOMEM;
1752 		mlog_errno(ret);
1753 		goto out;
1754 	}
1755 
1756 	while (trunc_end > trunc_start) {
1757 
1758 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1759 				      cluster_in_el);
1760 		if (ret) {
1761 			mlog_errno(ret);
1762 			goto out;
1763 		}
1764 
1765 		el = path_leaf_el(path);
1766 
1767 		i = ocfs2_find_rec(el, trunc_end);
1768 		/*
1769 		 * Need to go to previous extent block.
1770 		 */
1771 		if (i < 0) {
1772 			if (path->p_tree_depth == 0)
1773 				break;
1774 
1775 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1776 							    path,
1777 							    &cluster_in_el);
1778 			if (ret) {
1779 				mlog_errno(ret);
1780 				goto out;
1781 			}
1782 
1783 			/*
1784 			 * We've reached the leftmost extent block,
1785 			 * it's safe to leave.
1786 			 */
1787 			if (cluster_in_el == 0)
1788 				break;
1789 
1790 			/*
1791 			 * The 'pos' searched for previous extent block is
1792 			 * always one cluster less than actual trunc_end.
1793 			 */
1794 			trunc_end = cluster_in_el + 1;
1795 
1796 			ocfs2_reinit_path(path, 1);
1797 
1798 			continue;
1799 
1800 		} else
1801 			rec = &el->l_recs[i];
1802 
1803 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1804 				     &trunc_len, &trunc_end, &blkno, &done);
1805 		if (done)
1806 			break;
1807 
1808 		flags = rec->e_flags;
1809 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1810 
1811 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1812 					       phys_cpos, trunc_len, flags,
1813 					       &dealloc, refcount_loc, false);
1814 		if (ret < 0) {
1815 			mlog_errno(ret);
1816 			goto out;
1817 		}
1818 
1819 		cluster_in_el = trunc_end;
1820 
1821 		ocfs2_reinit_path(path, 1);
1822 	}
1823 
1824 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1825 
1826 out:
1827 	ocfs2_free_path(path);
1828 	ocfs2_schedule_truncate_log_flush(osb, 1);
1829 	ocfs2_run_deallocs(osb, &dealloc);
1830 
1831 	return ret;
1832 }
1833 
1834 /*
1835  * Parts of this function taken from xfs_change_file_space()
1836  */
1837 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1838 				     loff_t f_pos, unsigned int cmd,
1839 				     struct ocfs2_space_resv *sr,
1840 				     int change_size)
1841 {
1842 	int ret;
1843 	s64 llen;
1844 	loff_t size;
1845 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1846 	struct buffer_head *di_bh = NULL;
1847 	handle_t *handle;
1848 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1849 
1850 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1851 		return -EROFS;
1852 
1853 	mutex_lock(&inode->i_mutex);
1854 
1855 	/*
1856 	 * This prevents concurrent writes on other nodes
1857 	 */
1858 	ret = ocfs2_rw_lock(inode, 1);
1859 	if (ret) {
1860 		mlog_errno(ret);
1861 		goto out;
1862 	}
1863 
1864 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1865 	if (ret) {
1866 		mlog_errno(ret);
1867 		goto out_rw_unlock;
1868 	}
1869 
1870 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1871 		ret = -EPERM;
1872 		goto out_inode_unlock;
1873 	}
1874 
1875 	switch (sr->l_whence) {
1876 	case 0: /*SEEK_SET*/
1877 		break;
1878 	case 1: /*SEEK_CUR*/
1879 		sr->l_start += f_pos;
1880 		break;
1881 	case 2: /*SEEK_END*/
1882 		sr->l_start += i_size_read(inode);
1883 		break;
1884 	default:
1885 		ret = -EINVAL;
1886 		goto out_inode_unlock;
1887 	}
1888 	sr->l_whence = 0;
1889 
1890 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1891 
1892 	if (sr->l_start < 0
1893 	    || sr->l_start > max_off
1894 	    || (sr->l_start + llen) < 0
1895 	    || (sr->l_start + llen) > max_off) {
1896 		ret = -EINVAL;
1897 		goto out_inode_unlock;
1898 	}
1899 	size = sr->l_start + sr->l_len;
1900 
1901 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1902 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1903 		if (sr->l_len <= 0) {
1904 			ret = -EINVAL;
1905 			goto out_inode_unlock;
1906 		}
1907 	}
1908 
1909 	if (file && should_remove_suid(file->f_path.dentry)) {
1910 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1911 		if (ret) {
1912 			mlog_errno(ret);
1913 			goto out_inode_unlock;
1914 		}
1915 	}
1916 
1917 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1918 	switch (cmd) {
1919 	case OCFS2_IOC_RESVSP:
1920 	case OCFS2_IOC_RESVSP64:
1921 		/*
1922 		 * This takes unsigned offsets, but the signed ones we
1923 		 * pass have been checked against overflow above.
1924 		 */
1925 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1926 						       sr->l_len);
1927 		break;
1928 	case OCFS2_IOC_UNRESVSP:
1929 	case OCFS2_IOC_UNRESVSP64:
1930 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1931 					       sr->l_len);
1932 		break;
1933 	default:
1934 		ret = -EINVAL;
1935 	}
1936 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1937 	if (ret) {
1938 		mlog_errno(ret);
1939 		goto out_inode_unlock;
1940 	}
1941 
1942 	/*
1943 	 * We update c/mtime for these changes
1944 	 */
1945 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1946 	if (IS_ERR(handle)) {
1947 		ret = PTR_ERR(handle);
1948 		mlog_errno(ret);
1949 		goto out_inode_unlock;
1950 	}
1951 
1952 	if (change_size && i_size_read(inode) < size)
1953 		i_size_write(inode, size);
1954 
1955 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1956 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1957 	if (ret < 0)
1958 		mlog_errno(ret);
1959 
1960 	if (file && (file->f_flags & O_SYNC))
1961 		handle->h_sync = 1;
1962 
1963 	ocfs2_commit_trans(osb, handle);
1964 
1965 out_inode_unlock:
1966 	brelse(di_bh);
1967 	ocfs2_inode_unlock(inode, 1);
1968 out_rw_unlock:
1969 	ocfs2_rw_unlock(inode, 1);
1970 
1971 out:
1972 	mutex_unlock(&inode->i_mutex);
1973 	return ret;
1974 }
1975 
1976 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1977 			    struct ocfs2_space_resv *sr)
1978 {
1979 	struct inode *inode = file_inode(file);
1980 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1981 	int ret;
1982 
1983 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1984 	    !ocfs2_writes_unwritten_extents(osb))
1985 		return -ENOTTY;
1986 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1987 		 !ocfs2_sparse_alloc(osb))
1988 		return -ENOTTY;
1989 
1990 	if (!S_ISREG(inode->i_mode))
1991 		return -EINVAL;
1992 
1993 	if (!(file->f_mode & FMODE_WRITE))
1994 		return -EBADF;
1995 
1996 	ret = mnt_want_write_file(file);
1997 	if (ret)
1998 		return ret;
1999 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2000 	mnt_drop_write_file(file);
2001 	return ret;
2002 }
2003 
2004 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2005 			    loff_t len)
2006 {
2007 	struct inode *inode = file_inode(file);
2008 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2009 	struct ocfs2_space_resv sr;
2010 	int change_size = 1;
2011 	int cmd = OCFS2_IOC_RESVSP64;
2012 
2013 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2014 		return -EOPNOTSUPP;
2015 	if (!ocfs2_writes_unwritten_extents(osb))
2016 		return -EOPNOTSUPP;
2017 
2018 	if (mode & FALLOC_FL_KEEP_SIZE)
2019 		change_size = 0;
2020 
2021 	if (mode & FALLOC_FL_PUNCH_HOLE)
2022 		cmd = OCFS2_IOC_UNRESVSP64;
2023 
2024 	sr.l_whence = 0;
2025 	sr.l_start = (s64)offset;
2026 	sr.l_len = (s64)len;
2027 
2028 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2029 					 change_size);
2030 }
2031 
2032 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2033 				   size_t count)
2034 {
2035 	int ret = 0;
2036 	unsigned int extent_flags;
2037 	u32 cpos, clusters, extent_len, phys_cpos;
2038 	struct super_block *sb = inode->i_sb;
2039 
2040 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2041 	    !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2042 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2043 		return 0;
2044 
2045 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2046 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2047 
2048 	while (clusters) {
2049 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2050 					 &extent_flags);
2051 		if (ret < 0) {
2052 			mlog_errno(ret);
2053 			goto out;
2054 		}
2055 
2056 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2057 			ret = 1;
2058 			break;
2059 		}
2060 
2061 		if (extent_len > clusters)
2062 			extent_len = clusters;
2063 
2064 		clusters -= extent_len;
2065 		cpos += extent_len;
2066 	}
2067 out:
2068 	return ret;
2069 }
2070 
2071 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2072 {
2073 	int blockmask = inode->i_sb->s_blocksize - 1;
2074 	loff_t final_size = pos + count;
2075 
2076 	if ((pos & blockmask) || (final_size & blockmask))
2077 		return 1;
2078 	return 0;
2079 }
2080 
2081 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2082 					    struct file *file,
2083 					    loff_t pos, size_t count,
2084 					    int *meta_level)
2085 {
2086 	int ret;
2087 	struct buffer_head *di_bh = NULL;
2088 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2089 	u32 clusters =
2090 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2091 
2092 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2093 	if (ret) {
2094 		mlog_errno(ret);
2095 		goto out;
2096 	}
2097 
2098 	*meta_level = 1;
2099 
2100 	ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2101 	if (ret)
2102 		mlog_errno(ret);
2103 out:
2104 	brelse(di_bh);
2105 	return ret;
2106 }
2107 
2108 static int ocfs2_prepare_inode_for_write(struct file *file,
2109 					 loff_t *ppos,
2110 					 size_t count,
2111 					 int appending,
2112 					 int *direct_io,
2113 					 int *has_refcount)
2114 {
2115 	int ret = 0, meta_level = 0;
2116 	struct dentry *dentry = file->f_path.dentry;
2117 	struct inode *inode = dentry->d_inode;
2118 	loff_t saved_pos = 0, end;
2119 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2120 	int full_coherency = !(osb->s_mount_opt &
2121 		OCFS2_MOUNT_COHERENCY_BUFFERED);
2122 
2123 	/*
2124 	 * We start with a read level meta lock and only jump to an ex
2125 	 * if we need to make modifications here.
2126 	 */
2127 	for(;;) {
2128 		ret = ocfs2_inode_lock(inode, NULL, meta_level);
2129 		if (ret < 0) {
2130 			meta_level = -1;
2131 			mlog_errno(ret);
2132 			goto out;
2133 		}
2134 
2135 		/* Clear suid / sgid if necessary. We do this here
2136 		 * instead of later in the write path because
2137 		 * remove_suid() calls ->setattr without any hint that
2138 		 * we may have already done our cluster locking. Since
2139 		 * ocfs2_setattr() *must* take cluster locks to
2140 		 * proceed, this will lead us to recursively lock the
2141 		 * inode. There's also the dinode i_size state which
2142 		 * can be lost via setattr during extending writes (we
2143 		 * set inode->i_size at the end of a write. */
2144 		if (should_remove_suid(dentry)) {
2145 			if (meta_level == 0) {
2146 				ocfs2_inode_unlock(inode, meta_level);
2147 				meta_level = 1;
2148 				continue;
2149 			}
2150 
2151 			ret = ocfs2_write_remove_suid(inode);
2152 			if (ret < 0) {
2153 				mlog_errno(ret);
2154 				goto out_unlock;
2155 			}
2156 		}
2157 
2158 		/* work on a copy of ppos until we're sure that we won't have
2159 		 * to recalculate it due to relocking. */
2160 		if (appending)
2161 			saved_pos = i_size_read(inode);
2162 		else
2163 			saved_pos = *ppos;
2164 
2165 		end = saved_pos + count;
2166 
2167 		ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2168 		if (ret == 1) {
2169 			ocfs2_inode_unlock(inode, meta_level);
2170 			meta_level = -1;
2171 
2172 			ret = ocfs2_prepare_inode_for_refcount(inode,
2173 							       file,
2174 							       saved_pos,
2175 							       count,
2176 							       &meta_level);
2177 			if (has_refcount)
2178 				*has_refcount = 1;
2179 			if (direct_io)
2180 				*direct_io = 0;
2181 		}
2182 
2183 		if (ret < 0) {
2184 			mlog_errno(ret);
2185 			goto out_unlock;
2186 		}
2187 
2188 		/*
2189 		 * Skip the O_DIRECT checks if we don't need
2190 		 * them.
2191 		 */
2192 		if (!direct_io || !(*direct_io))
2193 			break;
2194 
2195 		/*
2196 		 * There's no sane way to do direct writes to an inode
2197 		 * with inline data.
2198 		 */
2199 		if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2200 			*direct_io = 0;
2201 			break;
2202 		}
2203 
2204 		/*
2205 		 * Allowing concurrent direct writes means
2206 		 * i_size changes wouldn't be synchronized, so
2207 		 * one node could wind up truncating another
2208 		 * nodes writes.
2209 		 */
2210 		if (end > i_size_read(inode) && !full_coherency) {
2211 			*direct_io = 0;
2212 			break;
2213 		}
2214 
2215 		/*
2216 		 * Fallback to old way if the feature bit is not set.
2217 		 */
2218 		if (end > i_size_read(inode) &&
2219 				!ocfs2_supports_append_dio(osb)) {
2220 			*direct_io = 0;
2221 			break;
2222 		}
2223 
2224 		/*
2225 		 * We don't fill holes during direct io, so
2226 		 * check for them here. If any are found, the
2227 		 * caller will have to retake some cluster
2228 		 * locks and initiate the io as buffered.
2229 		 */
2230 		ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2231 		if (ret == 1) {
2232 			/*
2233 			 * Fallback to old way if the feature bit is not set.
2234 			 * Otherwise try dio first and then complete the rest
2235 			 * request through buffer io.
2236 			 */
2237 			if (!ocfs2_supports_append_dio(osb))
2238 				*direct_io = 0;
2239 			ret = 0;
2240 		} else if (ret < 0)
2241 			mlog_errno(ret);
2242 		break;
2243 	}
2244 
2245 	if (appending)
2246 		*ppos = saved_pos;
2247 
2248 out_unlock:
2249 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2250 					    saved_pos, appending, count,
2251 					    direct_io, has_refcount);
2252 
2253 	if (meta_level >= 0)
2254 		ocfs2_inode_unlock(inode, meta_level);
2255 
2256 out:
2257 	return ret;
2258 }
2259 
2260 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2261 				    struct iov_iter *from)
2262 {
2263 	int ret, direct_io, appending, rw_level, have_alloc_sem  = 0;
2264 	int can_do_direct, has_refcount = 0;
2265 	ssize_t written = 0;
2266 	size_t count = iov_iter_count(from);
2267 	loff_t old_size, *ppos = &iocb->ki_pos;
2268 	u32 old_clusters;
2269 	struct file *file = iocb->ki_filp;
2270 	struct inode *inode = file_inode(file);
2271 	struct address_space *mapping = file->f_mapping;
2272 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2273 	int full_coherency = !(osb->s_mount_opt &
2274 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2275 	int unaligned_dio = 0;
2276 
2277 	trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2278 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2279 		file->f_path.dentry->d_name.len,
2280 		file->f_path.dentry->d_name.name,
2281 		(unsigned int)from->nr_segs);	/* GRRRRR */
2282 
2283 	if (iocb->ki_nbytes == 0)
2284 		return 0;
2285 
2286 	appending = file->f_flags & O_APPEND ? 1 : 0;
2287 	direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2288 
2289 	mutex_lock(&inode->i_mutex);
2290 
2291 	ocfs2_iocb_clear_sem_locked(iocb);
2292 
2293 relock:
2294 	/* to match setattr's i_mutex -> rw_lock ordering */
2295 	if (direct_io) {
2296 		have_alloc_sem = 1;
2297 		/* communicate with ocfs2_dio_end_io */
2298 		ocfs2_iocb_set_sem_locked(iocb);
2299 	}
2300 
2301 	/*
2302 	 * Concurrent O_DIRECT writes are allowed with
2303 	 * mount_option "coherency=buffered".
2304 	 */
2305 	rw_level = (!direct_io || full_coherency);
2306 
2307 	ret = ocfs2_rw_lock(inode, rw_level);
2308 	if (ret < 0) {
2309 		mlog_errno(ret);
2310 		goto out_sems;
2311 	}
2312 
2313 	/*
2314 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2315 	 * inode_lock to guarantee coherency.
2316 	 */
2317 	if (direct_io && full_coherency) {
2318 		/*
2319 		 * We need to take and drop the inode lock to force
2320 		 * other nodes to drop their caches.  Buffered I/O
2321 		 * already does this in write_begin().
2322 		 */
2323 		ret = ocfs2_inode_lock(inode, NULL, 1);
2324 		if (ret < 0) {
2325 			mlog_errno(ret);
2326 			goto out;
2327 		}
2328 
2329 		ocfs2_inode_unlock(inode, 1);
2330 	}
2331 
2332 	can_do_direct = direct_io;
2333 	ret = ocfs2_prepare_inode_for_write(file, ppos,
2334 					    iocb->ki_nbytes, appending,
2335 					    &can_do_direct, &has_refcount);
2336 	if (ret < 0) {
2337 		mlog_errno(ret);
2338 		goto out;
2339 	}
2340 
2341 	if (direct_io && !is_sync_kiocb(iocb))
2342 		unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_nbytes,
2343 						      *ppos);
2344 
2345 	/*
2346 	 * We can't complete the direct I/O as requested, fall back to
2347 	 * buffered I/O.
2348 	 */
2349 	if (direct_io && !can_do_direct) {
2350 		ocfs2_rw_unlock(inode, rw_level);
2351 
2352 		have_alloc_sem = 0;
2353 		rw_level = -1;
2354 
2355 		direct_io = 0;
2356 		goto relock;
2357 	}
2358 
2359 	if (unaligned_dio) {
2360 		/*
2361 		 * Wait on previous unaligned aio to complete before
2362 		 * proceeding.
2363 		 */
2364 		mutex_lock(&OCFS2_I(inode)->ip_unaligned_aio);
2365 		/* Mark the iocb as needing an unlock in ocfs2_dio_end_io */
2366 		ocfs2_iocb_set_unaligned_aio(iocb);
2367 	}
2368 
2369 	/*
2370 	 * To later detect whether a journal commit for sync writes is
2371 	 * necessary, we sample i_size, and cluster count here.
2372 	 */
2373 	old_size = i_size_read(inode);
2374 	old_clusters = OCFS2_I(inode)->ip_clusters;
2375 
2376 	/* communicate with ocfs2_dio_end_io */
2377 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2378 
2379 	ret = generic_write_checks(file, ppos, &count,
2380 				   S_ISBLK(inode->i_mode));
2381 	if (ret)
2382 		goto out_dio;
2383 
2384 	iov_iter_truncate(from, count);
2385 	if (direct_io) {
2386 		loff_t endbyte;
2387 		ssize_t written_buffered;
2388 		written = generic_file_direct_write(iocb, from, *ppos);
2389 		if (written < 0 || written == count) {
2390 			ret = written;
2391 			goto out_dio;
2392 		}
2393 
2394 		/*
2395 		 * for completing the rest of the request.
2396 		 */
2397 		*ppos += written;
2398 		count -= written;
2399 		written_buffered = generic_perform_write(file, from, *ppos);
2400 		/*
2401 		 * If generic_file_buffered_write() returned a synchronous error
2402 		 * then we want to return the number of bytes which were
2403 		 * direct-written, or the error code if that was zero. Note
2404 		 * that this differs from normal direct-io semantics, which
2405 		 * will return -EFOO even if some bytes were written.
2406 		 */
2407 		if (written_buffered < 0) {
2408 			ret = written_buffered;
2409 			goto out_dio;
2410 		}
2411 
2412 		iocb->ki_pos = *ppos + written_buffered;
2413 		/* We need to ensure that the page cache pages are written to
2414 		 * disk and invalidated to preserve the expected O_DIRECT
2415 		 * semantics.
2416 		 */
2417 		endbyte = *ppos + written_buffered - 1;
2418 		ret = filemap_write_and_wait_range(file->f_mapping, *ppos,
2419 				endbyte);
2420 		if (ret == 0) {
2421 			written += written_buffered;
2422 			invalidate_mapping_pages(mapping,
2423 					*ppos >> PAGE_CACHE_SHIFT,
2424 					endbyte >> PAGE_CACHE_SHIFT);
2425 		} else {
2426 			/*
2427 			 * We don't know how much we wrote, so just return
2428 			 * the number of bytes which were direct-written
2429 			 */
2430 		}
2431 	} else {
2432 		current->backing_dev_info = inode_to_bdi(inode);
2433 		written = generic_perform_write(file, from, *ppos);
2434 		if (likely(written >= 0))
2435 			iocb->ki_pos = *ppos + written;
2436 		current->backing_dev_info = NULL;
2437 	}
2438 
2439 out_dio:
2440 	/* buffered aio wouldn't have proper lock coverage today */
2441 	BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2442 
2443 	if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2444 	    ((file->f_flags & O_DIRECT) && !direct_io)) {
2445 		ret = filemap_fdatawrite_range(file->f_mapping, *ppos,
2446 					       *ppos + count - 1);
2447 		if (ret < 0)
2448 			written = ret;
2449 
2450 		if (!ret) {
2451 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2452 			if (ret < 0)
2453 				written = ret;
2454 		}
2455 
2456 		if (!ret)
2457 			ret = filemap_fdatawait_range(file->f_mapping, *ppos,
2458 						      *ppos + count - 1);
2459 	}
2460 
2461 	/*
2462 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2463 	 * function pointer which is called when o_direct io completes so that
2464 	 * it can unlock our rw lock.
2465 	 * Unfortunately there are error cases which call end_io and others
2466 	 * that don't.  so we don't have to unlock the rw_lock if either an
2467 	 * async dio is going to do it in the future or an end_io after an
2468 	 * error has already done it.
2469 	 */
2470 	if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2471 		rw_level = -1;
2472 		have_alloc_sem = 0;
2473 		unaligned_dio = 0;
2474 	}
2475 
2476 	if (unaligned_dio) {
2477 		ocfs2_iocb_clear_unaligned_aio(iocb);
2478 		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
2479 	}
2480 
2481 out:
2482 	if (rw_level != -1)
2483 		ocfs2_rw_unlock(inode, rw_level);
2484 
2485 out_sems:
2486 	if (have_alloc_sem)
2487 		ocfs2_iocb_clear_sem_locked(iocb);
2488 
2489 	mutex_unlock(&inode->i_mutex);
2490 
2491 	if (written)
2492 		ret = written;
2493 	return ret;
2494 }
2495 
2496 static ssize_t ocfs2_file_splice_read(struct file *in,
2497 				      loff_t *ppos,
2498 				      struct pipe_inode_info *pipe,
2499 				      size_t len,
2500 				      unsigned int flags)
2501 {
2502 	int ret = 0, lock_level = 0;
2503 	struct inode *inode = file_inode(in);
2504 
2505 	trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2506 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2507 			in->f_path.dentry->d_name.len,
2508 			in->f_path.dentry->d_name.name, len);
2509 
2510 	/*
2511 	 * See the comment in ocfs2_file_read_iter()
2512 	 */
2513 	ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level);
2514 	if (ret < 0) {
2515 		mlog_errno(ret);
2516 		goto bail;
2517 	}
2518 	ocfs2_inode_unlock(inode, lock_level);
2519 
2520 	ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2521 
2522 bail:
2523 	return ret;
2524 }
2525 
2526 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2527 				   struct iov_iter *to)
2528 {
2529 	int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2530 	struct file *filp = iocb->ki_filp;
2531 	struct inode *inode = file_inode(filp);
2532 
2533 	trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2534 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2535 			filp->f_path.dentry->d_name.len,
2536 			filp->f_path.dentry->d_name.name,
2537 			to->nr_segs);	/* GRRRRR */
2538 
2539 
2540 	if (!inode) {
2541 		ret = -EINVAL;
2542 		mlog_errno(ret);
2543 		goto bail;
2544 	}
2545 
2546 	ocfs2_iocb_clear_sem_locked(iocb);
2547 
2548 	/*
2549 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2550 	 * need locks to protect pending reads from racing with truncate.
2551 	 */
2552 	if (filp->f_flags & O_DIRECT) {
2553 		have_alloc_sem = 1;
2554 		ocfs2_iocb_set_sem_locked(iocb);
2555 
2556 		ret = ocfs2_rw_lock(inode, 0);
2557 		if (ret < 0) {
2558 			mlog_errno(ret);
2559 			goto bail;
2560 		}
2561 		rw_level = 0;
2562 		/* communicate with ocfs2_dio_end_io */
2563 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2564 	}
2565 
2566 	/*
2567 	 * We're fine letting folks race truncates and extending
2568 	 * writes with read across the cluster, just like they can
2569 	 * locally. Hence no rw_lock during read.
2570 	 *
2571 	 * Take and drop the meta data lock to update inode fields
2572 	 * like i_size. This allows the checks down below
2573 	 * generic_file_aio_read() a chance of actually working.
2574 	 */
2575 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2576 	if (ret < 0) {
2577 		mlog_errno(ret);
2578 		goto bail;
2579 	}
2580 	ocfs2_inode_unlock(inode, lock_level);
2581 
2582 	ret = generic_file_read_iter(iocb, to);
2583 	trace_generic_file_aio_read_ret(ret);
2584 
2585 	/* buffered aio wouldn't have proper lock coverage today */
2586 	BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2587 
2588 	/* see ocfs2_file_write_iter */
2589 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2590 		rw_level = -1;
2591 		have_alloc_sem = 0;
2592 	}
2593 
2594 bail:
2595 	if (have_alloc_sem)
2596 		ocfs2_iocb_clear_sem_locked(iocb);
2597 
2598 	if (rw_level != -1)
2599 		ocfs2_rw_unlock(inode, rw_level);
2600 
2601 	return ret;
2602 }
2603 
2604 /* Refer generic_file_llseek_unlocked() */
2605 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2606 {
2607 	struct inode *inode = file->f_mapping->host;
2608 	int ret = 0;
2609 
2610 	mutex_lock(&inode->i_mutex);
2611 
2612 	switch (whence) {
2613 	case SEEK_SET:
2614 		break;
2615 	case SEEK_END:
2616 		/* SEEK_END requires the OCFS2 inode lock for the file
2617 		 * because it references the file's size.
2618 		 */
2619 		ret = ocfs2_inode_lock(inode, NULL, 0);
2620 		if (ret < 0) {
2621 			mlog_errno(ret);
2622 			goto out;
2623 		}
2624 		offset += i_size_read(inode);
2625 		ocfs2_inode_unlock(inode, 0);
2626 		break;
2627 	case SEEK_CUR:
2628 		if (offset == 0) {
2629 			offset = file->f_pos;
2630 			goto out;
2631 		}
2632 		offset += file->f_pos;
2633 		break;
2634 	case SEEK_DATA:
2635 	case SEEK_HOLE:
2636 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2637 		if (ret)
2638 			goto out;
2639 		break;
2640 	default:
2641 		ret = -EINVAL;
2642 		goto out;
2643 	}
2644 
2645 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2646 
2647 out:
2648 	mutex_unlock(&inode->i_mutex);
2649 	if (ret)
2650 		return ret;
2651 	return offset;
2652 }
2653 
2654 const struct inode_operations ocfs2_file_iops = {
2655 	.setattr	= ocfs2_setattr,
2656 	.getattr	= ocfs2_getattr,
2657 	.permission	= ocfs2_permission,
2658 	.setxattr	= generic_setxattr,
2659 	.getxattr	= generic_getxattr,
2660 	.listxattr	= ocfs2_listxattr,
2661 	.removexattr	= generic_removexattr,
2662 	.fiemap		= ocfs2_fiemap,
2663 	.get_acl	= ocfs2_iop_get_acl,
2664 	.set_acl	= ocfs2_iop_set_acl,
2665 };
2666 
2667 const struct inode_operations ocfs2_special_file_iops = {
2668 	.setattr	= ocfs2_setattr,
2669 	.getattr	= ocfs2_getattr,
2670 	.permission	= ocfs2_permission,
2671 	.get_acl	= ocfs2_iop_get_acl,
2672 	.set_acl	= ocfs2_iop_set_acl,
2673 };
2674 
2675 /*
2676  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2677  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2678  */
2679 const struct file_operations ocfs2_fops = {
2680 	.llseek		= ocfs2_file_llseek,
2681 	.read		= new_sync_read,
2682 	.write		= new_sync_write,
2683 	.mmap		= ocfs2_mmap,
2684 	.fsync		= ocfs2_sync_file,
2685 	.release	= ocfs2_file_release,
2686 	.open		= ocfs2_file_open,
2687 	.read_iter	= ocfs2_file_read_iter,
2688 	.write_iter	= ocfs2_file_write_iter,
2689 	.unlocked_ioctl	= ocfs2_ioctl,
2690 #ifdef CONFIG_COMPAT
2691 	.compat_ioctl   = ocfs2_compat_ioctl,
2692 #endif
2693 	.lock		= ocfs2_lock,
2694 	.flock		= ocfs2_flock,
2695 	.splice_read	= ocfs2_file_splice_read,
2696 	.splice_write	= iter_file_splice_write,
2697 	.fallocate	= ocfs2_fallocate,
2698 };
2699 
2700 const struct file_operations ocfs2_dops = {
2701 	.llseek		= generic_file_llseek,
2702 	.read		= generic_read_dir,
2703 	.iterate	= ocfs2_readdir,
2704 	.fsync		= ocfs2_sync_file,
2705 	.release	= ocfs2_dir_release,
2706 	.open		= ocfs2_dir_open,
2707 	.unlocked_ioctl	= ocfs2_ioctl,
2708 #ifdef CONFIG_COMPAT
2709 	.compat_ioctl   = ocfs2_compat_ioctl,
2710 #endif
2711 	.lock		= ocfs2_lock,
2712 	.flock		= ocfs2_flock,
2713 };
2714 
2715 /*
2716  * POSIX-lockless variants of our file_operations.
2717  *
2718  * These will be used if the underlying cluster stack does not support
2719  * posix file locking, if the user passes the "localflocks" mount
2720  * option, or if we have a local-only fs.
2721  *
2722  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2723  * so we still want it in the case of no stack support for
2724  * plocks. Internally, it will do the right thing when asked to ignore
2725  * the cluster.
2726  */
2727 const struct file_operations ocfs2_fops_no_plocks = {
2728 	.llseek		= ocfs2_file_llseek,
2729 	.read		= new_sync_read,
2730 	.write		= new_sync_write,
2731 	.mmap		= ocfs2_mmap,
2732 	.fsync		= ocfs2_sync_file,
2733 	.release	= ocfs2_file_release,
2734 	.open		= ocfs2_file_open,
2735 	.read_iter	= ocfs2_file_read_iter,
2736 	.write_iter	= ocfs2_file_write_iter,
2737 	.unlocked_ioctl	= ocfs2_ioctl,
2738 #ifdef CONFIG_COMPAT
2739 	.compat_ioctl   = ocfs2_compat_ioctl,
2740 #endif
2741 	.flock		= ocfs2_flock,
2742 	.splice_read	= ocfs2_file_splice_read,
2743 	.splice_write	= iter_file_splice_write,
2744 	.fallocate	= ocfs2_fallocate,
2745 };
2746 
2747 const struct file_operations ocfs2_dops_no_plocks = {
2748 	.llseek		= generic_file_llseek,
2749 	.read		= generic_read_dir,
2750 	.iterate	= ocfs2_readdir,
2751 	.fsync		= ocfs2_sync_file,
2752 	.release	= ocfs2_dir_release,
2753 	.open		= ocfs2_dir_open,
2754 	.unlocked_ioctl	= ocfs2_ioctl,
2755 #ifdef CONFIG_COMPAT
2756 	.compat_ioctl   = ocfs2_compat_ioctl,
2757 #endif
2758 	.flock		= ocfs2_flock,
2759 };
2760