1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * file.c 6 * 7 * File open, close, extend, truncate 8 * 9 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 10 */ 11 12 #include <linux/capability.h> 13 #include <linux/fs.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/highmem.h> 17 #include <linux/pagemap.h> 18 #include <linux/uio.h> 19 #include <linux/sched.h> 20 #include <linux/splice.h> 21 #include <linux/mount.h> 22 #include <linux/writeback.h> 23 #include <linux/falloc.h> 24 #include <linux/quotaops.h> 25 #include <linux/blkdev.h> 26 #include <linux/backing-dev.h> 27 28 #include <cluster/masklog.h> 29 30 #include "ocfs2.h" 31 32 #include "alloc.h" 33 #include "aops.h" 34 #include "dir.h" 35 #include "dlmglue.h" 36 #include "extent_map.h" 37 #include "file.h" 38 #include "sysfile.h" 39 #include "inode.h" 40 #include "ioctl.h" 41 #include "journal.h" 42 #include "locks.h" 43 #include "mmap.h" 44 #include "suballoc.h" 45 #include "super.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "quota.h" 49 #include "refcounttree.h" 50 #include "ocfs2_trace.h" 51 52 #include "buffer_head_io.h" 53 54 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 55 { 56 struct ocfs2_file_private *fp; 57 58 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 59 if (!fp) 60 return -ENOMEM; 61 62 fp->fp_file = file; 63 mutex_init(&fp->fp_mutex); 64 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 65 file->private_data = fp; 66 67 return 0; 68 } 69 70 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 71 { 72 struct ocfs2_file_private *fp = file->private_data; 73 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 74 75 if (fp) { 76 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 77 ocfs2_lock_res_free(&fp->fp_flock); 78 kfree(fp); 79 file->private_data = NULL; 80 } 81 } 82 83 static int ocfs2_file_open(struct inode *inode, struct file *file) 84 { 85 int status; 86 int mode = file->f_flags; 87 struct ocfs2_inode_info *oi = OCFS2_I(inode); 88 89 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 90 (unsigned long long)oi->ip_blkno, 91 file->f_path.dentry->d_name.len, 92 file->f_path.dentry->d_name.name, mode); 93 94 if (file->f_mode & FMODE_WRITE) { 95 status = dquot_initialize(inode); 96 if (status) 97 goto leave; 98 } 99 100 spin_lock(&oi->ip_lock); 101 102 /* Check that the inode hasn't been wiped from disk by another 103 * node. If it hasn't then we're safe as long as we hold the 104 * spin lock until our increment of open count. */ 105 if (oi->ip_flags & OCFS2_INODE_DELETED) { 106 spin_unlock(&oi->ip_lock); 107 108 status = -ENOENT; 109 goto leave; 110 } 111 112 if (mode & O_DIRECT) 113 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 114 115 oi->ip_open_count++; 116 spin_unlock(&oi->ip_lock); 117 118 status = ocfs2_init_file_private(inode, file); 119 if (status) { 120 /* 121 * We want to set open count back if we're failing the 122 * open. 123 */ 124 spin_lock(&oi->ip_lock); 125 oi->ip_open_count--; 126 spin_unlock(&oi->ip_lock); 127 } 128 129 file->f_mode |= FMODE_NOWAIT; 130 131 leave: 132 return status; 133 } 134 135 static int ocfs2_file_release(struct inode *inode, struct file *file) 136 { 137 struct ocfs2_inode_info *oi = OCFS2_I(inode); 138 139 spin_lock(&oi->ip_lock); 140 if (!--oi->ip_open_count) 141 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 142 143 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 144 oi->ip_blkno, 145 file->f_path.dentry->d_name.len, 146 file->f_path.dentry->d_name.name, 147 oi->ip_open_count); 148 spin_unlock(&oi->ip_lock); 149 150 ocfs2_free_file_private(inode, file); 151 152 return 0; 153 } 154 155 static int ocfs2_dir_open(struct inode *inode, struct file *file) 156 { 157 return ocfs2_init_file_private(inode, file); 158 } 159 160 static int ocfs2_dir_release(struct inode *inode, struct file *file) 161 { 162 ocfs2_free_file_private(inode, file); 163 return 0; 164 } 165 166 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 167 int datasync) 168 { 169 int err = 0; 170 struct inode *inode = file->f_mapping->host; 171 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 172 struct ocfs2_inode_info *oi = OCFS2_I(inode); 173 journal_t *journal = osb->journal->j_journal; 174 int ret; 175 tid_t commit_tid; 176 bool needs_barrier = false; 177 178 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 179 oi->ip_blkno, 180 file->f_path.dentry->d_name.len, 181 file->f_path.dentry->d_name.name, 182 (unsigned long long)datasync); 183 184 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 185 return -EROFS; 186 187 err = file_write_and_wait_range(file, start, end); 188 if (err) 189 return err; 190 191 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 192 if (journal->j_flags & JBD2_BARRIER && 193 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 194 needs_barrier = true; 195 err = jbd2_complete_transaction(journal, commit_tid); 196 if (needs_barrier) { 197 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 198 if (!err) 199 err = ret; 200 } 201 202 if (err) 203 mlog_errno(err); 204 205 return (err < 0) ? -EIO : 0; 206 } 207 208 int ocfs2_should_update_atime(struct inode *inode, 209 struct vfsmount *vfsmnt) 210 { 211 struct timespec64 now; 212 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 213 214 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 215 return 0; 216 217 if ((inode->i_flags & S_NOATIME) || 218 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) 219 return 0; 220 221 /* 222 * We can be called with no vfsmnt structure - NFSD will 223 * sometimes do this. 224 * 225 * Note that our action here is different than touch_atime() - 226 * if we can't tell whether this is a noatime mount, then we 227 * don't know whether to trust the value of s_atime_quantum. 228 */ 229 if (vfsmnt == NULL) 230 return 0; 231 232 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 233 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 234 return 0; 235 236 if (vfsmnt->mnt_flags & MNT_RELATIME) { 237 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 238 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 239 return 1; 240 241 return 0; 242 } 243 244 now = current_time(inode); 245 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 246 return 0; 247 else 248 return 1; 249 } 250 251 int ocfs2_update_inode_atime(struct inode *inode, 252 struct buffer_head *bh) 253 { 254 int ret; 255 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 256 handle_t *handle; 257 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 258 259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 260 if (IS_ERR(handle)) { 261 ret = PTR_ERR(handle); 262 mlog_errno(ret); 263 goto out; 264 } 265 266 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 267 OCFS2_JOURNAL_ACCESS_WRITE); 268 if (ret) { 269 mlog_errno(ret); 270 goto out_commit; 271 } 272 273 /* 274 * Don't use ocfs2_mark_inode_dirty() here as we don't always 275 * have i_mutex to guard against concurrent changes to other 276 * inode fields. 277 */ 278 inode->i_atime = current_time(inode); 279 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 280 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 281 ocfs2_update_inode_fsync_trans(handle, inode, 0); 282 ocfs2_journal_dirty(handle, bh); 283 284 out_commit: 285 ocfs2_commit_trans(osb, handle); 286 out: 287 return ret; 288 } 289 290 int ocfs2_set_inode_size(handle_t *handle, 291 struct inode *inode, 292 struct buffer_head *fe_bh, 293 u64 new_i_size) 294 { 295 int status; 296 297 i_size_write(inode, new_i_size); 298 inode->i_blocks = ocfs2_inode_sector_count(inode); 299 inode->i_ctime = inode->i_mtime = current_time(inode); 300 301 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 302 if (status < 0) { 303 mlog_errno(status); 304 goto bail; 305 } 306 307 bail: 308 return status; 309 } 310 311 int ocfs2_simple_size_update(struct inode *inode, 312 struct buffer_head *di_bh, 313 u64 new_i_size) 314 { 315 int ret; 316 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 317 handle_t *handle = NULL; 318 319 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 320 if (IS_ERR(handle)) { 321 ret = PTR_ERR(handle); 322 mlog_errno(ret); 323 goto out; 324 } 325 326 ret = ocfs2_set_inode_size(handle, inode, di_bh, 327 new_i_size); 328 if (ret < 0) 329 mlog_errno(ret); 330 331 ocfs2_update_inode_fsync_trans(handle, inode, 0); 332 ocfs2_commit_trans(osb, handle); 333 out: 334 return ret; 335 } 336 337 static int ocfs2_cow_file_pos(struct inode *inode, 338 struct buffer_head *fe_bh, 339 u64 offset) 340 { 341 int status; 342 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 343 unsigned int num_clusters = 0; 344 unsigned int ext_flags = 0; 345 346 /* 347 * If the new offset is aligned to the range of the cluster, there is 348 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 349 * CoW either. 350 */ 351 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 352 return 0; 353 354 status = ocfs2_get_clusters(inode, cpos, &phys, 355 &num_clusters, &ext_flags); 356 if (status) { 357 mlog_errno(status); 358 goto out; 359 } 360 361 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 362 goto out; 363 364 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 365 366 out: 367 return status; 368 } 369 370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 371 struct inode *inode, 372 struct buffer_head *fe_bh, 373 u64 new_i_size) 374 { 375 int status; 376 handle_t *handle; 377 struct ocfs2_dinode *di; 378 u64 cluster_bytes; 379 380 /* 381 * We need to CoW the cluster contains the offset if it is reflinked 382 * since we will call ocfs2_zero_range_for_truncate later which will 383 * write "0" from offset to the end of the cluster. 384 */ 385 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 386 if (status) { 387 mlog_errno(status); 388 return status; 389 } 390 391 /* TODO: This needs to actually orphan the inode in this 392 * transaction. */ 393 394 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 395 if (IS_ERR(handle)) { 396 status = PTR_ERR(handle); 397 mlog_errno(status); 398 goto out; 399 } 400 401 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 402 OCFS2_JOURNAL_ACCESS_WRITE); 403 if (status < 0) { 404 mlog_errno(status); 405 goto out_commit; 406 } 407 408 /* 409 * Do this before setting i_size. 410 */ 411 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 412 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 413 cluster_bytes); 414 if (status) { 415 mlog_errno(status); 416 goto out_commit; 417 } 418 419 i_size_write(inode, new_i_size); 420 inode->i_ctime = inode->i_mtime = current_time(inode); 421 422 di = (struct ocfs2_dinode *) fe_bh->b_data; 423 di->i_size = cpu_to_le64(new_i_size); 424 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 425 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 426 ocfs2_update_inode_fsync_trans(handle, inode, 0); 427 428 ocfs2_journal_dirty(handle, fe_bh); 429 430 out_commit: 431 ocfs2_commit_trans(osb, handle); 432 out: 433 return status; 434 } 435 436 int ocfs2_truncate_file(struct inode *inode, 437 struct buffer_head *di_bh, 438 u64 new_i_size) 439 { 440 int status = 0; 441 struct ocfs2_dinode *fe = NULL; 442 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 443 444 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 445 * already validated it */ 446 fe = (struct ocfs2_dinode *) di_bh->b_data; 447 448 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 449 (unsigned long long)le64_to_cpu(fe->i_size), 450 (unsigned long long)new_i_size); 451 452 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 453 "Inode %llu, inode i_size = %lld != di " 454 "i_size = %llu, i_flags = 0x%x\n", 455 (unsigned long long)OCFS2_I(inode)->ip_blkno, 456 i_size_read(inode), 457 (unsigned long long)le64_to_cpu(fe->i_size), 458 le32_to_cpu(fe->i_flags)); 459 460 if (new_i_size > le64_to_cpu(fe->i_size)) { 461 trace_ocfs2_truncate_file_error( 462 (unsigned long long)le64_to_cpu(fe->i_size), 463 (unsigned long long)new_i_size); 464 status = -EINVAL; 465 mlog_errno(status); 466 goto bail; 467 } 468 469 down_write(&OCFS2_I(inode)->ip_alloc_sem); 470 471 ocfs2_resv_discard(&osb->osb_la_resmap, 472 &OCFS2_I(inode)->ip_la_data_resv); 473 474 /* 475 * The inode lock forced other nodes to sync and drop their 476 * pages, which (correctly) happens even if we have a truncate 477 * without allocation change - ocfs2 cluster sizes can be much 478 * greater than page size, so we have to truncate them 479 * anyway. 480 */ 481 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 482 truncate_inode_pages(inode->i_mapping, new_i_size); 483 484 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 485 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 486 i_size_read(inode), 1); 487 if (status) 488 mlog_errno(status); 489 490 goto bail_unlock_sem; 491 } 492 493 /* alright, we're going to need to do a full blown alloc size 494 * change. Orphan the inode so that recovery can complete the 495 * truncate if necessary. This does the task of marking 496 * i_size. */ 497 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 498 if (status < 0) { 499 mlog_errno(status); 500 goto bail_unlock_sem; 501 } 502 503 status = ocfs2_commit_truncate(osb, inode, di_bh); 504 if (status < 0) { 505 mlog_errno(status); 506 goto bail_unlock_sem; 507 } 508 509 /* TODO: orphan dir cleanup here. */ 510 bail_unlock_sem: 511 up_write(&OCFS2_I(inode)->ip_alloc_sem); 512 513 bail: 514 if (!status && OCFS2_I(inode)->ip_clusters == 0) 515 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 516 517 return status; 518 } 519 520 /* 521 * extend file allocation only here. 522 * we'll update all the disk stuff, and oip->alloc_size 523 * 524 * expect stuff to be locked, a transaction started and enough data / 525 * metadata reservations in the contexts. 526 * 527 * Will return -EAGAIN, and a reason if a restart is needed. 528 * If passed in, *reason will always be set, even in error. 529 */ 530 int ocfs2_add_inode_data(struct ocfs2_super *osb, 531 struct inode *inode, 532 u32 *logical_offset, 533 u32 clusters_to_add, 534 int mark_unwritten, 535 struct buffer_head *fe_bh, 536 handle_t *handle, 537 struct ocfs2_alloc_context *data_ac, 538 struct ocfs2_alloc_context *meta_ac, 539 enum ocfs2_alloc_restarted *reason_ret) 540 { 541 int ret; 542 struct ocfs2_extent_tree et; 543 544 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 545 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 546 clusters_to_add, mark_unwritten, 547 data_ac, meta_ac, reason_ret); 548 549 return ret; 550 } 551 552 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 553 u32 clusters_to_add, int mark_unwritten) 554 { 555 int status = 0; 556 int restart_func = 0; 557 int credits; 558 u32 prev_clusters; 559 struct buffer_head *bh = NULL; 560 struct ocfs2_dinode *fe = NULL; 561 handle_t *handle = NULL; 562 struct ocfs2_alloc_context *data_ac = NULL; 563 struct ocfs2_alloc_context *meta_ac = NULL; 564 enum ocfs2_alloc_restarted why = RESTART_NONE; 565 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 566 struct ocfs2_extent_tree et; 567 int did_quota = 0; 568 569 /* 570 * Unwritten extent only exists for file systems which 571 * support holes. 572 */ 573 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 574 575 status = ocfs2_read_inode_block(inode, &bh); 576 if (status < 0) { 577 mlog_errno(status); 578 goto leave; 579 } 580 fe = (struct ocfs2_dinode *) bh->b_data; 581 582 restart_all: 583 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 584 585 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 586 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 587 &data_ac, &meta_ac); 588 if (status) { 589 mlog_errno(status); 590 goto leave; 591 } 592 593 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 594 handle = ocfs2_start_trans(osb, credits); 595 if (IS_ERR(handle)) { 596 status = PTR_ERR(handle); 597 handle = NULL; 598 mlog_errno(status); 599 goto leave; 600 } 601 602 restarted_transaction: 603 trace_ocfs2_extend_allocation( 604 (unsigned long long)OCFS2_I(inode)->ip_blkno, 605 (unsigned long long)i_size_read(inode), 606 le32_to_cpu(fe->i_clusters), clusters_to_add, 607 why, restart_func); 608 609 status = dquot_alloc_space_nodirty(inode, 610 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 611 if (status) 612 goto leave; 613 did_quota = 1; 614 615 /* reserve a write to the file entry early on - that we if we 616 * run out of credits in the allocation path, we can still 617 * update i_size. */ 618 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 619 OCFS2_JOURNAL_ACCESS_WRITE); 620 if (status < 0) { 621 mlog_errno(status); 622 goto leave; 623 } 624 625 prev_clusters = OCFS2_I(inode)->ip_clusters; 626 627 status = ocfs2_add_inode_data(osb, 628 inode, 629 &logical_start, 630 clusters_to_add, 631 mark_unwritten, 632 bh, 633 handle, 634 data_ac, 635 meta_ac, 636 &why); 637 if ((status < 0) && (status != -EAGAIN)) { 638 if (status != -ENOSPC) 639 mlog_errno(status); 640 goto leave; 641 } 642 ocfs2_update_inode_fsync_trans(handle, inode, 1); 643 ocfs2_journal_dirty(handle, bh); 644 645 spin_lock(&OCFS2_I(inode)->ip_lock); 646 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 647 spin_unlock(&OCFS2_I(inode)->ip_lock); 648 /* Release unused quota reservation */ 649 dquot_free_space(inode, 650 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 651 did_quota = 0; 652 653 if (why != RESTART_NONE && clusters_to_add) { 654 if (why == RESTART_META) { 655 restart_func = 1; 656 status = 0; 657 } else { 658 BUG_ON(why != RESTART_TRANS); 659 660 status = ocfs2_allocate_extend_trans(handle, 1); 661 if (status < 0) { 662 /* handle still has to be committed at 663 * this point. */ 664 status = -ENOMEM; 665 mlog_errno(status); 666 goto leave; 667 } 668 goto restarted_transaction; 669 } 670 } 671 672 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 673 le32_to_cpu(fe->i_clusters), 674 (unsigned long long)le64_to_cpu(fe->i_size), 675 OCFS2_I(inode)->ip_clusters, 676 (unsigned long long)i_size_read(inode)); 677 678 leave: 679 if (status < 0 && did_quota) 680 dquot_free_space(inode, 681 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 682 if (handle) { 683 ocfs2_commit_trans(osb, handle); 684 handle = NULL; 685 } 686 if (data_ac) { 687 ocfs2_free_alloc_context(data_ac); 688 data_ac = NULL; 689 } 690 if (meta_ac) { 691 ocfs2_free_alloc_context(meta_ac); 692 meta_ac = NULL; 693 } 694 if ((!status) && restart_func) { 695 restart_func = 0; 696 goto restart_all; 697 } 698 brelse(bh); 699 bh = NULL; 700 701 return status; 702 } 703 704 /* 705 * While a write will already be ordering the data, a truncate will not. 706 * Thus, we need to explicitly order the zeroed pages. 707 */ 708 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 709 struct buffer_head *di_bh, 710 loff_t start_byte, 711 loff_t length) 712 { 713 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 714 handle_t *handle = NULL; 715 int ret = 0; 716 717 if (!ocfs2_should_order_data(inode)) 718 goto out; 719 720 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 721 if (IS_ERR(handle)) { 722 ret = -ENOMEM; 723 mlog_errno(ret); 724 goto out; 725 } 726 727 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); 728 if (ret < 0) { 729 mlog_errno(ret); 730 goto out; 731 } 732 733 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 734 OCFS2_JOURNAL_ACCESS_WRITE); 735 if (ret) 736 mlog_errno(ret); 737 ocfs2_update_inode_fsync_trans(handle, inode, 1); 738 739 out: 740 if (ret) { 741 if (!IS_ERR(handle)) 742 ocfs2_commit_trans(osb, handle); 743 handle = ERR_PTR(ret); 744 } 745 return handle; 746 } 747 748 /* Some parts of this taken from generic_cont_expand, which turned out 749 * to be too fragile to do exactly what we need without us having to 750 * worry about recursive locking in ->write_begin() and ->write_end(). */ 751 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 752 u64 abs_to, struct buffer_head *di_bh) 753 { 754 struct address_space *mapping = inode->i_mapping; 755 struct page *page; 756 unsigned long index = abs_from >> PAGE_SHIFT; 757 handle_t *handle; 758 int ret = 0; 759 unsigned zero_from, zero_to, block_start, block_end; 760 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 761 762 BUG_ON(abs_from >= abs_to); 763 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); 764 BUG_ON(abs_from & (inode->i_blkbits - 1)); 765 766 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh, 767 abs_from, 768 abs_to - abs_from); 769 if (IS_ERR(handle)) { 770 ret = PTR_ERR(handle); 771 goto out; 772 } 773 774 page = find_or_create_page(mapping, index, GFP_NOFS); 775 if (!page) { 776 ret = -ENOMEM; 777 mlog_errno(ret); 778 goto out_commit_trans; 779 } 780 781 /* Get the offsets within the page that we want to zero */ 782 zero_from = abs_from & (PAGE_SIZE - 1); 783 zero_to = abs_to & (PAGE_SIZE - 1); 784 if (!zero_to) 785 zero_to = PAGE_SIZE; 786 787 trace_ocfs2_write_zero_page( 788 (unsigned long long)OCFS2_I(inode)->ip_blkno, 789 (unsigned long long)abs_from, 790 (unsigned long long)abs_to, 791 index, zero_from, zero_to); 792 793 /* We know that zero_from is block aligned */ 794 for (block_start = zero_from; block_start < zero_to; 795 block_start = block_end) { 796 block_end = block_start + i_blocksize(inode); 797 798 /* 799 * block_start is block-aligned. Bump it by one to force 800 * __block_write_begin and block_commit_write to zero the 801 * whole block. 802 */ 803 ret = __block_write_begin(page, block_start + 1, 0, 804 ocfs2_get_block); 805 if (ret < 0) { 806 mlog_errno(ret); 807 goto out_unlock; 808 } 809 810 811 /* must not update i_size! */ 812 ret = block_commit_write(page, block_start + 1, 813 block_start + 1); 814 if (ret < 0) 815 mlog_errno(ret); 816 else 817 ret = 0; 818 } 819 820 /* 821 * fs-writeback will release the dirty pages without page lock 822 * whose offset are over inode size, the release happens at 823 * block_write_full_page(). 824 */ 825 i_size_write(inode, abs_to); 826 inode->i_blocks = ocfs2_inode_sector_count(inode); 827 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 828 inode->i_mtime = inode->i_ctime = current_time(inode); 829 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 830 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 831 di->i_mtime_nsec = di->i_ctime_nsec; 832 if (handle) { 833 ocfs2_journal_dirty(handle, di_bh); 834 ocfs2_update_inode_fsync_trans(handle, inode, 1); 835 } 836 837 out_unlock: 838 unlock_page(page); 839 put_page(page); 840 out_commit_trans: 841 if (handle) 842 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 843 out: 844 return ret; 845 } 846 847 /* 848 * Find the next range to zero. We do this in terms of bytes because 849 * that's what ocfs2_zero_extend() wants, and it is dealing with the 850 * pagecache. We may return multiple extents. 851 * 852 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 853 * needs to be zeroed. range_start and range_end return the next zeroing 854 * range. A subsequent call should pass the previous range_end as its 855 * zero_start. If range_end is 0, there's nothing to do. 856 * 857 * Unwritten extents are skipped over. Refcounted extents are CoWd. 858 */ 859 static int ocfs2_zero_extend_get_range(struct inode *inode, 860 struct buffer_head *di_bh, 861 u64 zero_start, u64 zero_end, 862 u64 *range_start, u64 *range_end) 863 { 864 int rc = 0, needs_cow = 0; 865 u32 p_cpos, zero_clusters = 0; 866 u32 zero_cpos = 867 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 868 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 869 unsigned int num_clusters = 0; 870 unsigned int ext_flags = 0; 871 872 while (zero_cpos < last_cpos) { 873 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 874 &num_clusters, &ext_flags); 875 if (rc) { 876 mlog_errno(rc); 877 goto out; 878 } 879 880 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 881 zero_clusters = num_clusters; 882 if (ext_flags & OCFS2_EXT_REFCOUNTED) 883 needs_cow = 1; 884 break; 885 } 886 887 zero_cpos += num_clusters; 888 } 889 if (!zero_clusters) { 890 *range_end = 0; 891 goto out; 892 } 893 894 while ((zero_cpos + zero_clusters) < last_cpos) { 895 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 896 &p_cpos, &num_clusters, 897 &ext_flags); 898 if (rc) { 899 mlog_errno(rc); 900 goto out; 901 } 902 903 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 904 break; 905 if (ext_flags & OCFS2_EXT_REFCOUNTED) 906 needs_cow = 1; 907 zero_clusters += num_clusters; 908 } 909 if ((zero_cpos + zero_clusters) > last_cpos) 910 zero_clusters = last_cpos - zero_cpos; 911 912 if (needs_cow) { 913 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 914 zero_clusters, UINT_MAX); 915 if (rc) { 916 mlog_errno(rc); 917 goto out; 918 } 919 } 920 921 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 922 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 923 zero_cpos + zero_clusters); 924 925 out: 926 return rc; 927 } 928 929 /* 930 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 931 * has made sure that the entire range needs zeroing. 932 */ 933 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 934 u64 range_end, struct buffer_head *di_bh) 935 { 936 int rc = 0; 937 u64 next_pos; 938 u64 zero_pos = range_start; 939 940 trace_ocfs2_zero_extend_range( 941 (unsigned long long)OCFS2_I(inode)->ip_blkno, 942 (unsigned long long)range_start, 943 (unsigned long long)range_end); 944 BUG_ON(range_start >= range_end); 945 946 while (zero_pos < range_end) { 947 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; 948 if (next_pos > range_end) 949 next_pos = range_end; 950 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 951 if (rc < 0) { 952 mlog_errno(rc); 953 break; 954 } 955 zero_pos = next_pos; 956 957 /* 958 * Very large extends have the potential to lock up 959 * the cpu for extended periods of time. 960 */ 961 cond_resched(); 962 } 963 964 return rc; 965 } 966 967 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 968 loff_t zero_to_size) 969 { 970 int ret = 0; 971 u64 zero_start, range_start = 0, range_end = 0; 972 struct super_block *sb = inode->i_sb; 973 974 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 975 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 976 (unsigned long long)zero_start, 977 (unsigned long long)i_size_read(inode)); 978 while (zero_start < zero_to_size) { 979 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 980 zero_to_size, 981 &range_start, 982 &range_end); 983 if (ret) { 984 mlog_errno(ret); 985 break; 986 } 987 if (!range_end) 988 break; 989 /* Trim the ends */ 990 if (range_start < zero_start) 991 range_start = zero_start; 992 if (range_end > zero_to_size) 993 range_end = zero_to_size; 994 995 ret = ocfs2_zero_extend_range(inode, range_start, 996 range_end, di_bh); 997 if (ret) { 998 mlog_errno(ret); 999 break; 1000 } 1001 zero_start = range_end; 1002 } 1003 1004 return ret; 1005 } 1006 1007 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1008 u64 new_i_size, u64 zero_to) 1009 { 1010 int ret; 1011 u32 clusters_to_add; 1012 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1013 1014 /* 1015 * Only quota files call this without a bh, and they can't be 1016 * refcounted. 1017 */ 1018 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); 1019 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1020 1021 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1022 if (clusters_to_add < oi->ip_clusters) 1023 clusters_to_add = 0; 1024 else 1025 clusters_to_add -= oi->ip_clusters; 1026 1027 if (clusters_to_add) { 1028 ret = ocfs2_extend_allocation(inode, oi->ip_clusters, 1029 clusters_to_add, 0); 1030 if (ret) { 1031 mlog_errno(ret); 1032 goto out; 1033 } 1034 } 1035 1036 /* 1037 * Call this even if we don't add any clusters to the tree. We 1038 * still need to zero the area between the old i_size and the 1039 * new i_size. 1040 */ 1041 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1042 if (ret < 0) 1043 mlog_errno(ret); 1044 1045 out: 1046 return ret; 1047 } 1048 1049 static int ocfs2_extend_file(struct inode *inode, 1050 struct buffer_head *di_bh, 1051 u64 new_i_size) 1052 { 1053 int ret = 0; 1054 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1055 1056 BUG_ON(!di_bh); 1057 1058 /* setattr sometimes calls us like this. */ 1059 if (new_i_size == 0) 1060 goto out; 1061 1062 if (i_size_read(inode) == new_i_size) 1063 goto out; 1064 BUG_ON(new_i_size < i_size_read(inode)); 1065 1066 /* 1067 * The alloc sem blocks people in read/write from reading our 1068 * allocation until we're done changing it. We depend on 1069 * i_mutex to block other extend/truncate calls while we're 1070 * here. We even have to hold it for sparse files because there 1071 * might be some tail zeroing. 1072 */ 1073 down_write(&oi->ip_alloc_sem); 1074 1075 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1076 /* 1077 * We can optimize small extends by keeping the inodes 1078 * inline data. 1079 */ 1080 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1081 up_write(&oi->ip_alloc_sem); 1082 goto out_update_size; 1083 } 1084 1085 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1086 if (ret) { 1087 up_write(&oi->ip_alloc_sem); 1088 mlog_errno(ret); 1089 goto out; 1090 } 1091 } 1092 1093 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1094 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1095 else 1096 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1097 new_i_size); 1098 1099 up_write(&oi->ip_alloc_sem); 1100 1101 if (ret < 0) { 1102 mlog_errno(ret); 1103 goto out; 1104 } 1105 1106 out_update_size: 1107 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1108 if (ret < 0) 1109 mlog_errno(ret); 1110 1111 out: 1112 return ret; 1113 } 1114 1115 int ocfs2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 1116 struct iattr *attr) 1117 { 1118 int status = 0, size_change; 1119 int inode_locked = 0; 1120 struct inode *inode = d_inode(dentry); 1121 struct super_block *sb = inode->i_sb; 1122 struct ocfs2_super *osb = OCFS2_SB(sb); 1123 struct buffer_head *bh = NULL; 1124 handle_t *handle = NULL; 1125 struct dquot *transfer_to[MAXQUOTAS] = { }; 1126 int qtype; 1127 int had_lock; 1128 struct ocfs2_lock_holder oh; 1129 1130 trace_ocfs2_setattr(inode, dentry, 1131 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1132 dentry->d_name.len, dentry->d_name.name, 1133 attr->ia_valid, attr->ia_mode, 1134 from_kuid(&init_user_ns, attr->ia_uid), 1135 from_kgid(&init_user_ns, attr->ia_gid)); 1136 1137 /* ensuring we don't even attempt to truncate a symlink */ 1138 if (S_ISLNK(inode->i_mode)) 1139 attr->ia_valid &= ~ATTR_SIZE; 1140 1141 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1142 | ATTR_GID | ATTR_UID | ATTR_MODE) 1143 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1144 return 0; 1145 1146 status = setattr_prepare(&init_user_ns, dentry, attr); 1147 if (status) 1148 return status; 1149 1150 if (is_quota_modification(inode, attr)) { 1151 status = dquot_initialize(inode); 1152 if (status) 1153 return status; 1154 } 1155 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1156 if (size_change) { 1157 /* 1158 * Here we should wait dio to finish before inode lock 1159 * to avoid a deadlock between ocfs2_setattr() and 1160 * ocfs2_dio_end_io_write() 1161 */ 1162 inode_dio_wait(inode); 1163 1164 status = ocfs2_rw_lock(inode, 1); 1165 if (status < 0) { 1166 mlog_errno(status); 1167 goto bail; 1168 } 1169 } 1170 1171 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); 1172 if (had_lock < 0) { 1173 status = had_lock; 1174 goto bail_unlock_rw; 1175 } else if (had_lock) { 1176 /* 1177 * As far as we know, ocfs2_setattr() could only be the first 1178 * VFS entry point in the call chain of recursive cluster 1179 * locking issue. 1180 * 1181 * For instance: 1182 * chmod_common() 1183 * notify_change() 1184 * ocfs2_setattr() 1185 * posix_acl_chmod() 1186 * ocfs2_iop_get_acl() 1187 * 1188 * But, we're not 100% sure if it's always true, because the 1189 * ordering of the VFS entry points in the call chain is out 1190 * of our control. So, we'd better dump the stack here to 1191 * catch the other cases of recursive locking. 1192 */ 1193 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1194 dump_stack(); 1195 } 1196 inode_locked = 1; 1197 1198 if (size_change) { 1199 status = inode_newsize_ok(inode, attr->ia_size); 1200 if (status) 1201 goto bail_unlock; 1202 1203 if (i_size_read(inode) >= attr->ia_size) { 1204 if (ocfs2_should_order_data(inode)) { 1205 status = ocfs2_begin_ordered_truncate(inode, 1206 attr->ia_size); 1207 if (status) 1208 goto bail_unlock; 1209 } 1210 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1211 } else 1212 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1213 if (status < 0) { 1214 if (status != -ENOSPC) 1215 mlog_errno(status); 1216 status = -ENOSPC; 1217 goto bail_unlock; 1218 } 1219 } 1220 1221 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1222 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1223 /* 1224 * Gather pointers to quota structures so that allocation / 1225 * freeing of quota structures happens here and not inside 1226 * dquot_transfer() where we have problems with lock ordering 1227 */ 1228 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1229 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1230 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1231 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1232 if (IS_ERR(transfer_to[USRQUOTA])) { 1233 status = PTR_ERR(transfer_to[USRQUOTA]); 1234 transfer_to[USRQUOTA] = NULL; 1235 goto bail_unlock; 1236 } 1237 } 1238 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1239 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1240 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1241 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1242 if (IS_ERR(transfer_to[GRPQUOTA])) { 1243 status = PTR_ERR(transfer_to[GRPQUOTA]); 1244 transfer_to[GRPQUOTA] = NULL; 1245 goto bail_unlock; 1246 } 1247 } 1248 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1249 2 * ocfs2_quota_trans_credits(sb)); 1250 if (IS_ERR(handle)) { 1251 status = PTR_ERR(handle); 1252 mlog_errno(status); 1253 goto bail_unlock; 1254 } 1255 status = __dquot_transfer(inode, transfer_to); 1256 if (status < 0) 1257 goto bail_commit; 1258 } else { 1259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1260 if (IS_ERR(handle)) { 1261 status = PTR_ERR(handle); 1262 mlog_errno(status); 1263 goto bail_unlock; 1264 } 1265 } 1266 1267 setattr_copy(&init_user_ns, inode, attr); 1268 mark_inode_dirty(inode); 1269 1270 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1271 if (status < 0) 1272 mlog_errno(status); 1273 1274 bail_commit: 1275 ocfs2_commit_trans(osb, handle); 1276 bail_unlock: 1277 if (status && inode_locked) { 1278 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1279 inode_locked = 0; 1280 } 1281 bail_unlock_rw: 1282 if (size_change) 1283 ocfs2_rw_unlock(inode, 1); 1284 bail: 1285 1286 /* Release quota pointers in case we acquired them */ 1287 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1288 dqput(transfer_to[qtype]); 1289 1290 if (!status && attr->ia_valid & ATTR_MODE) { 1291 status = ocfs2_acl_chmod(inode, bh); 1292 if (status < 0) 1293 mlog_errno(status); 1294 } 1295 if (inode_locked) 1296 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1297 1298 brelse(bh); 1299 return status; 1300 } 1301 1302 int ocfs2_getattr(struct user_namespace *mnt_userns, const struct path *path, 1303 struct kstat *stat, u32 request_mask, unsigned int flags) 1304 { 1305 struct inode *inode = d_inode(path->dentry); 1306 struct super_block *sb = path->dentry->d_sb; 1307 struct ocfs2_super *osb = sb->s_fs_info; 1308 int err; 1309 1310 err = ocfs2_inode_revalidate(path->dentry); 1311 if (err) { 1312 if (err != -ENOENT) 1313 mlog_errno(err); 1314 goto bail; 1315 } 1316 1317 generic_fillattr(&init_user_ns, inode, stat); 1318 /* 1319 * If there is inline data in the inode, the inode will normally not 1320 * have data blocks allocated (it may have an external xattr block). 1321 * Report at least one sector for such files, so tools like tar, rsync, 1322 * others don't incorrectly think the file is completely sparse. 1323 */ 1324 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1325 stat->blocks += (stat->size + 511)>>9; 1326 1327 /* We set the blksize from the cluster size for performance */ 1328 stat->blksize = osb->s_clustersize; 1329 1330 bail: 1331 return err; 1332 } 1333 1334 int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode, 1335 int mask) 1336 { 1337 int ret, had_lock; 1338 struct ocfs2_lock_holder oh; 1339 1340 if (mask & MAY_NOT_BLOCK) 1341 return -ECHILD; 1342 1343 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); 1344 if (had_lock < 0) { 1345 ret = had_lock; 1346 goto out; 1347 } else if (had_lock) { 1348 /* See comments in ocfs2_setattr() for details. 1349 * The call chain of this case could be: 1350 * do_sys_open() 1351 * may_open() 1352 * inode_permission() 1353 * ocfs2_permission() 1354 * ocfs2_iop_get_acl() 1355 */ 1356 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1357 dump_stack(); 1358 } 1359 1360 ret = generic_permission(&init_user_ns, inode, mask); 1361 1362 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); 1363 out: 1364 return ret; 1365 } 1366 1367 static int __ocfs2_write_remove_suid(struct inode *inode, 1368 struct buffer_head *bh) 1369 { 1370 int ret; 1371 handle_t *handle; 1372 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1373 struct ocfs2_dinode *di; 1374 1375 trace_ocfs2_write_remove_suid( 1376 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1377 inode->i_mode); 1378 1379 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1380 if (IS_ERR(handle)) { 1381 ret = PTR_ERR(handle); 1382 mlog_errno(ret); 1383 goto out; 1384 } 1385 1386 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1387 OCFS2_JOURNAL_ACCESS_WRITE); 1388 if (ret < 0) { 1389 mlog_errno(ret); 1390 goto out_trans; 1391 } 1392 1393 inode->i_mode &= ~S_ISUID; 1394 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1395 inode->i_mode &= ~S_ISGID; 1396 1397 di = (struct ocfs2_dinode *) bh->b_data; 1398 di->i_mode = cpu_to_le16(inode->i_mode); 1399 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1400 1401 ocfs2_journal_dirty(handle, bh); 1402 1403 out_trans: 1404 ocfs2_commit_trans(osb, handle); 1405 out: 1406 return ret; 1407 } 1408 1409 static int ocfs2_write_remove_suid(struct inode *inode) 1410 { 1411 int ret; 1412 struct buffer_head *bh = NULL; 1413 1414 ret = ocfs2_read_inode_block(inode, &bh); 1415 if (ret < 0) { 1416 mlog_errno(ret); 1417 goto out; 1418 } 1419 1420 ret = __ocfs2_write_remove_suid(inode, bh); 1421 out: 1422 brelse(bh); 1423 return ret; 1424 } 1425 1426 /* 1427 * Allocate enough extents to cover the region starting at byte offset 1428 * start for len bytes. Existing extents are skipped, any extents 1429 * added are marked as "unwritten". 1430 */ 1431 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1432 u64 start, u64 len) 1433 { 1434 int ret; 1435 u32 cpos, phys_cpos, clusters, alloc_size; 1436 u64 end = start + len; 1437 struct buffer_head *di_bh = NULL; 1438 1439 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1440 ret = ocfs2_read_inode_block(inode, &di_bh); 1441 if (ret) { 1442 mlog_errno(ret); 1443 goto out; 1444 } 1445 1446 /* 1447 * Nothing to do if the requested reservation range 1448 * fits within the inode. 1449 */ 1450 if (ocfs2_size_fits_inline_data(di_bh, end)) 1451 goto out; 1452 1453 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1454 if (ret) { 1455 mlog_errno(ret); 1456 goto out; 1457 } 1458 } 1459 1460 /* 1461 * We consider both start and len to be inclusive. 1462 */ 1463 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1464 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1465 clusters -= cpos; 1466 1467 while (clusters) { 1468 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1469 &alloc_size, NULL); 1470 if (ret) { 1471 mlog_errno(ret); 1472 goto out; 1473 } 1474 1475 /* 1476 * Hole or existing extent len can be arbitrary, so 1477 * cap it to our own allocation request. 1478 */ 1479 if (alloc_size > clusters) 1480 alloc_size = clusters; 1481 1482 if (phys_cpos) { 1483 /* 1484 * We already have an allocation at this 1485 * region so we can safely skip it. 1486 */ 1487 goto next; 1488 } 1489 1490 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1491 if (ret) { 1492 if (ret != -ENOSPC) 1493 mlog_errno(ret); 1494 goto out; 1495 } 1496 1497 next: 1498 cpos += alloc_size; 1499 clusters -= alloc_size; 1500 } 1501 1502 ret = 0; 1503 out: 1504 1505 brelse(di_bh); 1506 return ret; 1507 } 1508 1509 /* 1510 * Truncate a byte range, avoiding pages within partial clusters. This 1511 * preserves those pages for the zeroing code to write to. 1512 */ 1513 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1514 u64 byte_len) 1515 { 1516 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1517 loff_t start, end; 1518 struct address_space *mapping = inode->i_mapping; 1519 1520 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1521 end = byte_start + byte_len; 1522 end = end & ~(osb->s_clustersize - 1); 1523 1524 if (start < end) { 1525 unmap_mapping_range(mapping, start, end - start, 0); 1526 truncate_inode_pages_range(mapping, start, end - 1); 1527 } 1528 } 1529 1530 static int ocfs2_zero_partial_clusters(struct inode *inode, 1531 u64 start, u64 len) 1532 { 1533 int ret = 0; 1534 u64 tmpend = 0; 1535 u64 end = start + len; 1536 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1537 unsigned int csize = osb->s_clustersize; 1538 handle_t *handle; 1539 1540 /* 1541 * The "start" and "end" values are NOT necessarily part of 1542 * the range whose allocation is being deleted. Rather, this 1543 * is what the user passed in with the request. We must zero 1544 * partial clusters here. There's no need to worry about 1545 * physical allocation - the zeroing code knows to skip holes. 1546 */ 1547 trace_ocfs2_zero_partial_clusters( 1548 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1549 (unsigned long long)start, (unsigned long long)end); 1550 1551 /* 1552 * If both edges are on a cluster boundary then there's no 1553 * zeroing required as the region is part of the allocation to 1554 * be truncated. 1555 */ 1556 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1557 goto out; 1558 1559 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1560 if (IS_ERR(handle)) { 1561 ret = PTR_ERR(handle); 1562 mlog_errno(ret); 1563 goto out; 1564 } 1565 1566 /* 1567 * If start is on a cluster boundary and end is somewhere in another 1568 * cluster, we have not COWed the cluster starting at start, unless 1569 * end is also within the same cluster. So, in this case, we skip this 1570 * first call to ocfs2_zero_range_for_truncate() truncate and move on 1571 * to the next one. 1572 */ 1573 if ((start & (csize - 1)) != 0) { 1574 /* 1575 * We want to get the byte offset of the end of the 1st 1576 * cluster. 1577 */ 1578 tmpend = (u64)osb->s_clustersize + 1579 (start & ~(osb->s_clustersize - 1)); 1580 if (tmpend > end) 1581 tmpend = end; 1582 1583 trace_ocfs2_zero_partial_clusters_range1( 1584 (unsigned long long)start, 1585 (unsigned long long)tmpend); 1586 1587 ret = ocfs2_zero_range_for_truncate(inode, handle, start, 1588 tmpend); 1589 if (ret) 1590 mlog_errno(ret); 1591 } 1592 1593 if (tmpend < end) { 1594 /* 1595 * This may make start and end equal, but the zeroing 1596 * code will skip any work in that case so there's no 1597 * need to catch it up here. 1598 */ 1599 start = end & ~(osb->s_clustersize - 1); 1600 1601 trace_ocfs2_zero_partial_clusters_range2( 1602 (unsigned long long)start, (unsigned long long)end); 1603 1604 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1605 if (ret) 1606 mlog_errno(ret); 1607 } 1608 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1609 1610 ocfs2_commit_trans(osb, handle); 1611 out: 1612 return ret; 1613 } 1614 1615 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1616 { 1617 int i; 1618 struct ocfs2_extent_rec *rec = NULL; 1619 1620 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1621 1622 rec = &el->l_recs[i]; 1623 1624 if (le32_to_cpu(rec->e_cpos) < pos) 1625 break; 1626 } 1627 1628 return i; 1629 } 1630 1631 /* 1632 * Helper to calculate the punching pos and length in one run, we handle the 1633 * following three cases in order: 1634 * 1635 * - remove the entire record 1636 * - remove a partial record 1637 * - no record needs to be removed (hole-punching completed) 1638 */ 1639 static void ocfs2_calc_trunc_pos(struct inode *inode, 1640 struct ocfs2_extent_list *el, 1641 struct ocfs2_extent_rec *rec, 1642 u32 trunc_start, u32 *trunc_cpos, 1643 u32 *trunc_len, u32 *trunc_end, 1644 u64 *blkno, int *done) 1645 { 1646 int ret = 0; 1647 u32 coff, range; 1648 1649 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1650 1651 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1652 /* 1653 * remove an entire extent record. 1654 */ 1655 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1656 /* 1657 * Skip holes if any. 1658 */ 1659 if (range < *trunc_end) 1660 *trunc_end = range; 1661 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1662 *blkno = le64_to_cpu(rec->e_blkno); 1663 *trunc_end = le32_to_cpu(rec->e_cpos); 1664 } else if (range > trunc_start) { 1665 /* 1666 * remove a partial extent record, which means we're 1667 * removing the last extent record. 1668 */ 1669 *trunc_cpos = trunc_start; 1670 /* 1671 * skip hole if any. 1672 */ 1673 if (range < *trunc_end) 1674 *trunc_end = range; 1675 *trunc_len = *trunc_end - trunc_start; 1676 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1677 *blkno = le64_to_cpu(rec->e_blkno) + 1678 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1679 *trunc_end = trunc_start; 1680 } else { 1681 /* 1682 * It may have two following possibilities: 1683 * 1684 * - last record has been removed 1685 * - trunc_start was within a hole 1686 * 1687 * both two cases mean the completion of hole punching. 1688 */ 1689 ret = 1; 1690 } 1691 1692 *done = ret; 1693 } 1694 1695 int ocfs2_remove_inode_range(struct inode *inode, 1696 struct buffer_head *di_bh, u64 byte_start, 1697 u64 byte_len) 1698 { 1699 int ret = 0, flags = 0, done = 0, i; 1700 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1701 u32 cluster_in_el; 1702 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1703 struct ocfs2_cached_dealloc_ctxt dealloc; 1704 struct address_space *mapping = inode->i_mapping; 1705 struct ocfs2_extent_tree et; 1706 struct ocfs2_path *path = NULL; 1707 struct ocfs2_extent_list *el = NULL; 1708 struct ocfs2_extent_rec *rec = NULL; 1709 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1710 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1711 1712 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1713 ocfs2_init_dealloc_ctxt(&dealloc); 1714 1715 trace_ocfs2_remove_inode_range( 1716 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1717 (unsigned long long)byte_start, 1718 (unsigned long long)byte_len); 1719 1720 if (byte_len == 0) 1721 return 0; 1722 1723 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1724 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1725 byte_start + byte_len, 0); 1726 if (ret) { 1727 mlog_errno(ret); 1728 goto out; 1729 } 1730 /* 1731 * There's no need to get fancy with the page cache 1732 * truncate of an inline-data inode. We're talking 1733 * about less than a page here, which will be cached 1734 * in the dinode buffer anyway. 1735 */ 1736 unmap_mapping_range(mapping, 0, 0, 0); 1737 truncate_inode_pages(mapping, 0); 1738 goto out; 1739 } 1740 1741 /* 1742 * For reflinks, we may need to CoW 2 clusters which might be 1743 * partially zero'd later, if hole's start and end offset were 1744 * within one cluster(means is not exactly aligned to clustersize). 1745 */ 1746 1747 if (ocfs2_is_refcount_inode(inode)) { 1748 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1749 if (ret) { 1750 mlog_errno(ret); 1751 goto out; 1752 } 1753 1754 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1755 if (ret) { 1756 mlog_errno(ret); 1757 goto out; 1758 } 1759 } 1760 1761 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1762 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1763 cluster_in_el = trunc_end; 1764 1765 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1766 if (ret) { 1767 mlog_errno(ret); 1768 goto out; 1769 } 1770 1771 path = ocfs2_new_path_from_et(&et); 1772 if (!path) { 1773 ret = -ENOMEM; 1774 mlog_errno(ret); 1775 goto out; 1776 } 1777 1778 while (trunc_end > trunc_start) { 1779 1780 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1781 cluster_in_el); 1782 if (ret) { 1783 mlog_errno(ret); 1784 goto out; 1785 } 1786 1787 el = path_leaf_el(path); 1788 1789 i = ocfs2_find_rec(el, trunc_end); 1790 /* 1791 * Need to go to previous extent block. 1792 */ 1793 if (i < 0) { 1794 if (path->p_tree_depth == 0) 1795 break; 1796 1797 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1798 path, 1799 &cluster_in_el); 1800 if (ret) { 1801 mlog_errno(ret); 1802 goto out; 1803 } 1804 1805 /* 1806 * We've reached the leftmost extent block, 1807 * it's safe to leave. 1808 */ 1809 if (cluster_in_el == 0) 1810 break; 1811 1812 /* 1813 * The 'pos' searched for previous extent block is 1814 * always one cluster less than actual trunc_end. 1815 */ 1816 trunc_end = cluster_in_el + 1; 1817 1818 ocfs2_reinit_path(path, 1); 1819 1820 continue; 1821 1822 } else 1823 rec = &el->l_recs[i]; 1824 1825 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1826 &trunc_len, &trunc_end, &blkno, &done); 1827 if (done) 1828 break; 1829 1830 flags = rec->e_flags; 1831 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1832 1833 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1834 phys_cpos, trunc_len, flags, 1835 &dealloc, refcount_loc, false); 1836 if (ret < 0) { 1837 mlog_errno(ret); 1838 goto out; 1839 } 1840 1841 cluster_in_el = trunc_end; 1842 1843 ocfs2_reinit_path(path, 1); 1844 } 1845 1846 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1847 1848 out: 1849 ocfs2_free_path(path); 1850 ocfs2_schedule_truncate_log_flush(osb, 1); 1851 ocfs2_run_deallocs(osb, &dealloc); 1852 1853 return ret; 1854 } 1855 1856 /* 1857 * Parts of this function taken from xfs_change_file_space() 1858 */ 1859 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1860 loff_t f_pos, unsigned int cmd, 1861 struct ocfs2_space_resv *sr, 1862 int change_size) 1863 { 1864 int ret; 1865 s64 llen; 1866 loff_t size; 1867 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1868 struct buffer_head *di_bh = NULL; 1869 handle_t *handle; 1870 unsigned long long max_off = inode->i_sb->s_maxbytes; 1871 1872 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1873 return -EROFS; 1874 1875 inode_lock(inode); 1876 1877 /* 1878 * This prevents concurrent writes on other nodes 1879 */ 1880 ret = ocfs2_rw_lock(inode, 1); 1881 if (ret) { 1882 mlog_errno(ret); 1883 goto out; 1884 } 1885 1886 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1887 if (ret) { 1888 mlog_errno(ret); 1889 goto out_rw_unlock; 1890 } 1891 1892 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1893 ret = -EPERM; 1894 goto out_inode_unlock; 1895 } 1896 1897 switch (sr->l_whence) { 1898 case 0: /*SEEK_SET*/ 1899 break; 1900 case 1: /*SEEK_CUR*/ 1901 sr->l_start += f_pos; 1902 break; 1903 case 2: /*SEEK_END*/ 1904 sr->l_start += i_size_read(inode); 1905 break; 1906 default: 1907 ret = -EINVAL; 1908 goto out_inode_unlock; 1909 } 1910 sr->l_whence = 0; 1911 1912 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1913 1914 if (sr->l_start < 0 1915 || sr->l_start > max_off 1916 || (sr->l_start + llen) < 0 1917 || (sr->l_start + llen) > max_off) { 1918 ret = -EINVAL; 1919 goto out_inode_unlock; 1920 } 1921 size = sr->l_start + sr->l_len; 1922 1923 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1924 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1925 if (sr->l_len <= 0) { 1926 ret = -EINVAL; 1927 goto out_inode_unlock; 1928 } 1929 } 1930 1931 if (file && should_remove_suid(file->f_path.dentry)) { 1932 ret = __ocfs2_write_remove_suid(inode, di_bh); 1933 if (ret) { 1934 mlog_errno(ret); 1935 goto out_inode_unlock; 1936 } 1937 } 1938 1939 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1940 switch (cmd) { 1941 case OCFS2_IOC_RESVSP: 1942 case OCFS2_IOC_RESVSP64: 1943 /* 1944 * This takes unsigned offsets, but the signed ones we 1945 * pass have been checked against overflow above. 1946 */ 1947 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1948 sr->l_len); 1949 break; 1950 case OCFS2_IOC_UNRESVSP: 1951 case OCFS2_IOC_UNRESVSP64: 1952 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1953 sr->l_len); 1954 break; 1955 default: 1956 ret = -EINVAL; 1957 } 1958 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1959 if (ret) { 1960 mlog_errno(ret); 1961 goto out_inode_unlock; 1962 } 1963 1964 /* 1965 * We update c/mtime for these changes 1966 */ 1967 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1968 if (IS_ERR(handle)) { 1969 ret = PTR_ERR(handle); 1970 mlog_errno(ret); 1971 goto out_inode_unlock; 1972 } 1973 1974 if (change_size && i_size_read(inode) < size) 1975 i_size_write(inode, size); 1976 1977 inode->i_ctime = inode->i_mtime = current_time(inode); 1978 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1979 if (ret < 0) 1980 mlog_errno(ret); 1981 1982 if (file && (file->f_flags & O_SYNC)) 1983 handle->h_sync = 1; 1984 1985 ocfs2_commit_trans(osb, handle); 1986 1987 out_inode_unlock: 1988 brelse(di_bh); 1989 ocfs2_inode_unlock(inode, 1); 1990 out_rw_unlock: 1991 ocfs2_rw_unlock(inode, 1); 1992 1993 out: 1994 inode_unlock(inode); 1995 return ret; 1996 } 1997 1998 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 1999 struct ocfs2_space_resv *sr) 2000 { 2001 struct inode *inode = file_inode(file); 2002 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2003 int ret; 2004 2005 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 2006 !ocfs2_writes_unwritten_extents(osb)) 2007 return -ENOTTY; 2008 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 2009 !ocfs2_sparse_alloc(osb)) 2010 return -ENOTTY; 2011 2012 if (!S_ISREG(inode->i_mode)) 2013 return -EINVAL; 2014 2015 if (!(file->f_mode & FMODE_WRITE)) 2016 return -EBADF; 2017 2018 ret = mnt_want_write_file(file); 2019 if (ret) 2020 return ret; 2021 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2022 mnt_drop_write_file(file); 2023 return ret; 2024 } 2025 2026 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2027 loff_t len) 2028 { 2029 struct inode *inode = file_inode(file); 2030 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2031 struct ocfs2_space_resv sr; 2032 int change_size = 1; 2033 int cmd = OCFS2_IOC_RESVSP64; 2034 2035 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2036 return -EOPNOTSUPP; 2037 if (!ocfs2_writes_unwritten_extents(osb)) 2038 return -EOPNOTSUPP; 2039 2040 if (mode & FALLOC_FL_KEEP_SIZE) 2041 change_size = 0; 2042 2043 if (mode & FALLOC_FL_PUNCH_HOLE) 2044 cmd = OCFS2_IOC_UNRESVSP64; 2045 2046 sr.l_whence = 0; 2047 sr.l_start = (s64)offset; 2048 sr.l_len = (s64)len; 2049 2050 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2051 change_size); 2052 } 2053 2054 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2055 size_t count) 2056 { 2057 int ret = 0; 2058 unsigned int extent_flags; 2059 u32 cpos, clusters, extent_len, phys_cpos; 2060 struct super_block *sb = inode->i_sb; 2061 2062 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2063 !ocfs2_is_refcount_inode(inode) || 2064 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2065 return 0; 2066 2067 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2068 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2069 2070 while (clusters) { 2071 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2072 &extent_flags); 2073 if (ret < 0) { 2074 mlog_errno(ret); 2075 goto out; 2076 } 2077 2078 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2079 ret = 1; 2080 break; 2081 } 2082 2083 if (extent_len > clusters) 2084 extent_len = clusters; 2085 2086 clusters -= extent_len; 2087 cpos += extent_len; 2088 } 2089 out: 2090 return ret; 2091 } 2092 2093 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2094 { 2095 int blockmask = inode->i_sb->s_blocksize - 1; 2096 loff_t final_size = pos + count; 2097 2098 if ((pos & blockmask) || (final_size & blockmask)) 2099 return 1; 2100 return 0; 2101 } 2102 2103 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode, 2104 struct buffer_head **di_bh, 2105 int meta_level, 2106 int write_sem, 2107 int wait) 2108 { 2109 int ret = 0; 2110 2111 if (wait) 2112 ret = ocfs2_inode_lock(inode, di_bh, meta_level); 2113 else 2114 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level); 2115 if (ret < 0) 2116 goto out; 2117 2118 if (wait) { 2119 if (write_sem) 2120 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2121 else 2122 down_read(&OCFS2_I(inode)->ip_alloc_sem); 2123 } else { 2124 if (write_sem) 2125 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2126 else 2127 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2128 2129 if (!ret) { 2130 ret = -EAGAIN; 2131 goto out_unlock; 2132 } 2133 } 2134 2135 return ret; 2136 2137 out_unlock: 2138 brelse(*di_bh); 2139 *di_bh = NULL; 2140 ocfs2_inode_unlock(inode, meta_level); 2141 out: 2142 return ret; 2143 } 2144 2145 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode, 2146 struct buffer_head **di_bh, 2147 int meta_level, 2148 int write_sem) 2149 { 2150 if (write_sem) 2151 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2152 else 2153 up_read(&OCFS2_I(inode)->ip_alloc_sem); 2154 2155 brelse(*di_bh); 2156 *di_bh = NULL; 2157 2158 if (meta_level >= 0) 2159 ocfs2_inode_unlock(inode, meta_level); 2160 } 2161 2162 static int ocfs2_prepare_inode_for_write(struct file *file, 2163 loff_t pos, size_t count, int wait) 2164 { 2165 int ret = 0, meta_level = 0, overwrite_io = 0; 2166 int write_sem = 0; 2167 struct dentry *dentry = file->f_path.dentry; 2168 struct inode *inode = d_inode(dentry); 2169 struct buffer_head *di_bh = NULL; 2170 u32 cpos; 2171 u32 clusters; 2172 2173 /* 2174 * We start with a read level meta lock and only jump to an ex 2175 * if we need to make modifications here. 2176 */ 2177 for(;;) { 2178 ret = ocfs2_inode_lock_for_extent_tree(inode, 2179 &di_bh, 2180 meta_level, 2181 write_sem, 2182 wait); 2183 if (ret < 0) { 2184 if (ret != -EAGAIN) 2185 mlog_errno(ret); 2186 goto out; 2187 } 2188 2189 /* 2190 * Check if IO will overwrite allocated blocks in case 2191 * IOCB_NOWAIT flag is set. 2192 */ 2193 if (!wait && !overwrite_io) { 2194 overwrite_io = 1; 2195 2196 ret = ocfs2_overwrite_io(inode, di_bh, pos, count); 2197 if (ret < 0) { 2198 if (ret != -EAGAIN) 2199 mlog_errno(ret); 2200 goto out_unlock; 2201 } 2202 } 2203 2204 /* Clear suid / sgid if necessary. We do this here 2205 * instead of later in the write path because 2206 * remove_suid() calls ->setattr without any hint that 2207 * we may have already done our cluster locking. Since 2208 * ocfs2_setattr() *must* take cluster locks to 2209 * proceed, this will lead us to recursively lock the 2210 * inode. There's also the dinode i_size state which 2211 * can be lost via setattr during extending writes (we 2212 * set inode->i_size at the end of a write. */ 2213 if (should_remove_suid(dentry)) { 2214 if (meta_level == 0) { 2215 ocfs2_inode_unlock_for_extent_tree(inode, 2216 &di_bh, 2217 meta_level, 2218 write_sem); 2219 meta_level = 1; 2220 continue; 2221 } 2222 2223 ret = ocfs2_write_remove_suid(inode); 2224 if (ret < 0) { 2225 mlog_errno(ret); 2226 goto out_unlock; 2227 } 2228 } 2229 2230 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2231 if (ret == 1) { 2232 ocfs2_inode_unlock_for_extent_tree(inode, 2233 &di_bh, 2234 meta_level, 2235 write_sem); 2236 meta_level = 1; 2237 write_sem = 1; 2238 ret = ocfs2_inode_lock_for_extent_tree(inode, 2239 &di_bh, 2240 meta_level, 2241 write_sem, 2242 wait); 2243 if (ret < 0) { 2244 if (ret != -EAGAIN) 2245 mlog_errno(ret); 2246 goto out; 2247 } 2248 2249 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2250 clusters = 2251 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2252 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2253 } 2254 2255 if (ret < 0) { 2256 if (ret != -EAGAIN) 2257 mlog_errno(ret); 2258 goto out_unlock; 2259 } 2260 2261 break; 2262 } 2263 2264 out_unlock: 2265 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2266 pos, count, wait); 2267 2268 ocfs2_inode_unlock_for_extent_tree(inode, 2269 &di_bh, 2270 meta_level, 2271 write_sem); 2272 2273 out: 2274 return ret; 2275 } 2276 2277 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2278 struct iov_iter *from) 2279 { 2280 int rw_level; 2281 ssize_t written = 0; 2282 ssize_t ret; 2283 size_t count = iov_iter_count(from); 2284 struct file *file = iocb->ki_filp; 2285 struct inode *inode = file_inode(file); 2286 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2287 int full_coherency = !(osb->s_mount_opt & 2288 OCFS2_MOUNT_COHERENCY_BUFFERED); 2289 void *saved_ki_complete = NULL; 2290 int append_write = ((iocb->ki_pos + count) >= 2291 i_size_read(inode) ? 1 : 0); 2292 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2293 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2294 2295 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, 2296 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2297 file->f_path.dentry->d_name.len, 2298 file->f_path.dentry->d_name.name, 2299 (unsigned int)from->nr_segs); /* GRRRRR */ 2300 2301 if (!direct_io && nowait) 2302 return -EOPNOTSUPP; 2303 2304 if (count == 0) 2305 return 0; 2306 2307 if (nowait) { 2308 if (!inode_trylock(inode)) 2309 return -EAGAIN; 2310 } else 2311 inode_lock(inode); 2312 2313 /* 2314 * Concurrent O_DIRECT writes are allowed with 2315 * mount_option "coherency=buffered". 2316 * For append write, we must take rw EX. 2317 */ 2318 rw_level = (!direct_io || full_coherency || append_write); 2319 2320 if (nowait) 2321 ret = ocfs2_try_rw_lock(inode, rw_level); 2322 else 2323 ret = ocfs2_rw_lock(inode, rw_level); 2324 if (ret < 0) { 2325 if (ret != -EAGAIN) 2326 mlog_errno(ret); 2327 goto out_mutex; 2328 } 2329 2330 /* 2331 * O_DIRECT writes with "coherency=full" need to take EX cluster 2332 * inode_lock to guarantee coherency. 2333 */ 2334 if (direct_io && full_coherency) { 2335 /* 2336 * We need to take and drop the inode lock to force 2337 * other nodes to drop their caches. Buffered I/O 2338 * already does this in write_begin(). 2339 */ 2340 if (nowait) 2341 ret = ocfs2_try_inode_lock(inode, NULL, 1); 2342 else 2343 ret = ocfs2_inode_lock(inode, NULL, 1); 2344 if (ret < 0) { 2345 if (ret != -EAGAIN) 2346 mlog_errno(ret); 2347 goto out; 2348 } 2349 2350 ocfs2_inode_unlock(inode, 1); 2351 } 2352 2353 ret = generic_write_checks(iocb, from); 2354 if (ret <= 0) { 2355 if (ret) 2356 mlog_errno(ret); 2357 goto out; 2358 } 2359 count = ret; 2360 2361 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); 2362 if (ret < 0) { 2363 if (ret != -EAGAIN) 2364 mlog_errno(ret); 2365 goto out; 2366 } 2367 2368 if (direct_io && !is_sync_kiocb(iocb) && 2369 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { 2370 /* 2371 * Make it a sync io if it's an unaligned aio. 2372 */ 2373 saved_ki_complete = xchg(&iocb->ki_complete, NULL); 2374 } 2375 2376 /* communicate with ocfs2_dio_end_io */ 2377 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2378 2379 written = __generic_file_write_iter(iocb, from); 2380 /* buffered aio wouldn't have proper lock coverage today */ 2381 BUG_ON(written == -EIOCBQUEUED && !direct_io); 2382 2383 /* 2384 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2385 * function pointer which is called when o_direct io completes so that 2386 * it can unlock our rw lock. 2387 * Unfortunately there are error cases which call end_io and others 2388 * that don't. so we don't have to unlock the rw_lock if either an 2389 * async dio is going to do it in the future or an end_io after an 2390 * error has already done it. 2391 */ 2392 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2393 rw_level = -1; 2394 } 2395 2396 if (unlikely(written <= 0)) 2397 goto out; 2398 2399 if (((file->f_flags & O_DSYNC) && !direct_io) || 2400 IS_SYNC(inode)) { 2401 ret = filemap_fdatawrite_range(file->f_mapping, 2402 iocb->ki_pos - written, 2403 iocb->ki_pos - 1); 2404 if (ret < 0) 2405 written = ret; 2406 2407 if (!ret) { 2408 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2409 if (ret < 0) 2410 written = ret; 2411 } 2412 2413 if (!ret) 2414 ret = filemap_fdatawait_range(file->f_mapping, 2415 iocb->ki_pos - written, 2416 iocb->ki_pos - 1); 2417 } 2418 2419 out: 2420 if (saved_ki_complete) 2421 xchg(&iocb->ki_complete, saved_ki_complete); 2422 2423 if (rw_level != -1) 2424 ocfs2_rw_unlock(inode, rw_level); 2425 2426 out_mutex: 2427 inode_unlock(inode); 2428 2429 if (written) 2430 ret = written; 2431 return ret; 2432 } 2433 2434 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2435 struct iov_iter *to) 2436 { 2437 int ret = 0, rw_level = -1, lock_level = 0; 2438 struct file *filp = iocb->ki_filp; 2439 struct inode *inode = file_inode(filp); 2440 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2441 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2442 2443 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, 2444 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2445 filp->f_path.dentry->d_name.len, 2446 filp->f_path.dentry->d_name.name, 2447 to->nr_segs); /* GRRRRR */ 2448 2449 2450 if (!inode) { 2451 ret = -EINVAL; 2452 mlog_errno(ret); 2453 goto bail; 2454 } 2455 2456 if (!direct_io && nowait) 2457 return -EOPNOTSUPP; 2458 2459 /* 2460 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2461 * need locks to protect pending reads from racing with truncate. 2462 */ 2463 if (direct_io) { 2464 if (nowait) 2465 ret = ocfs2_try_rw_lock(inode, 0); 2466 else 2467 ret = ocfs2_rw_lock(inode, 0); 2468 2469 if (ret < 0) { 2470 if (ret != -EAGAIN) 2471 mlog_errno(ret); 2472 goto bail; 2473 } 2474 rw_level = 0; 2475 /* communicate with ocfs2_dio_end_io */ 2476 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2477 } 2478 2479 /* 2480 * We're fine letting folks race truncates and extending 2481 * writes with read across the cluster, just like they can 2482 * locally. Hence no rw_lock during read. 2483 * 2484 * Take and drop the meta data lock to update inode fields 2485 * like i_size. This allows the checks down below 2486 * generic_file_read_iter() a chance of actually working. 2487 */ 2488 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, 2489 !nowait); 2490 if (ret < 0) { 2491 if (ret != -EAGAIN) 2492 mlog_errno(ret); 2493 goto bail; 2494 } 2495 ocfs2_inode_unlock(inode, lock_level); 2496 2497 ret = generic_file_read_iter(iocb, to); 2498 trace_generic_file_read_iter_ret(ret); 2499 2500 /* buffered aio wouldn't have proper lock coverage today */ 2501 BUG_ON(ret == -EIOCBQUEUED && !direct_io); 2502 2503 /* see ocfs2_file_write_iter */ 2504 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2505 rw_level = -1; 2506 } 2507 2508 bail: 2509 if (rw_level != -1) 2510 ocfs2_rw_unlock(inode, rw_level); 2511 2512 return ret; 2513 } 2514 2515 /* Refer generic_file_llseek_unlocked() */ 2516 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2517 { 2518 struct inode *inode = file->f_mapping->host; 2519 int ret = 0; 2520 2521 inode_lock(inode); 2522 2523 switch (whence) { 2524 case SEEK_SET: 2525 break; 2526 case SEEK_END: 2527 /* SEEK_END requires the OCFS2 inode lock for the file 2528 * because it references the file's size. 2529 */ 2530 ret = ocfs2_inode_lock(inode, NULL, 0); 2531 if (ret < 0) { 2532 mlog_errno(ret); 2533 goto out; 2534 } 2535 offset += i_size_read(inode); 2536 ocfs2_inode_unlock(inode, 0); 2537 break; 2538 case SEEK_CUR: 2539 if (offset == 0) { 2540 offset = file->f_pos; 2541 goto out; 2542 } 2543 offset += file->f_pos; 2544 break; 2545 case SEEK_DATA: 2546 case SEEK_HOLE: 2547 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2548 if (ret) 2549 goto out; 2550 break; 2551 default: 2552 ret = -EINVAL; 2553 goto out; 2554 } 2555 2556 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2557 2558 out: 2559 inode_unlock(inode); 2560 if (ret) 2561 return ret; 2562 return offset; 2563 } 2564 2565 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, 2566 struct file *file_out, loff_t pos_out, 2567 loff_t len, unsigned int remap_flags) 2568 { 2569 struct inode *inode_in = file_inode(file_in); 2570 struct inode *inode_out = file_inode(file_out); 2571 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); 2572 struct buffer_head *in_bh = NULL, *out_bh = NULL; 2573 bool same_inode = (inode_in == inode_out); 2574 loff_t remapped = 0; 2575 ssize_t ret; 2576 2577 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 2578 return -EINVAL; 2579 if (!ocfs2_refcount_tree(osb)) 2580 return -EOPNOTSUPP; 2581 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 2582 return -EROFS; 2583 2584 /* Lock both files against IO */ 2585 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); 2586 if (ret) 2587 return ret; 2588 2589 /* Check file eligibility and prepare for block sharing. */ 2590 ret = -EINVAL; 2591 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || 2592 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) 2593 goto out_unlock; 2594 2595 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 2596 &len, remap_flags); 2597 if (ret < 0 || len == 0) 2598 goto out_unlock; 2599 2600 /* Lock out changes to the allocation maps and remap. */ 2601 down_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2602 if (!same_inode) 2603 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, 2604 SINGLE_DEPTH_NESTING); 2605 2606 /* Zap any page cache for the destination file's range. */ 2607 truncate_inode_pages_range(&inode_out->i_data, 2608 round_down(pos_out, PAGE_SIZE), 2609 round_up(pos_out + len, PAGE_SIZE) - 1); 2610 2611 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, 2612 inode_out, out_bh, pos_out, len); 2613 up_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2614 if (!same_inode) 2615 up_write(&OCFS2_I(inode_out)->ip_alloc_sem); 2616 if (remapped < 0) { 2617 ret = remapped; 2618 mlog_errno(ret); 2619 goto out_unlock; 2620 } 2621 2622 /* 2623 * Empty the extent map so that we may get the right extent 2624 * record from the disk. 2625 */ 2626 ocfs2_extent_map_trunc(inode_in, 0); 2627 ocfs2_extent_map_trunc(inode_out, 0); 2628 2629 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); 2630 if (ret) { 2631 mlog_errno(ret); 2632 goto out_unlock; 2633 } 2634 2635 out_unlock: 2636 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); 2637 return remapped > 0 ? remapped : ret; 2638 } 2639 2640 const struct inode_operations ocfs2_file_iops = { 2641 .setattr = ocfs2_setattr, 2642 .getattr = ocfs2_getattr, 2643 .permission = ocfs2_permission, 2644 .listxattr = ocfs2_listxattr, 2645 .fiemap = ocfs2_fiemap, 2646 .get_acl = ocfs2_iop_get_acl, 2647 .set_acl = ocfs2_iop_set_acl, 2648 }; 2649 2650 const struct inode_operations ocfs2_special_file_iops = { 2651 .setattr = ocfs2_setattr, 2652 .getattr = ocfs2_getattr, 2653 .permission = ocfs2_permission, 2654 .get_acl = ocfs2_iop_get_acl, 2655 .set_acl = ocfs2_iop_set_acl, 2656 }; 2657 2658 /* 2659 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2660 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2661 */ 2662 const struct file_operations ocfs2_fops = { 2663 .llseek = ocfs2_file_llseek, 2664 .mmap = ocfs2_mmap, 2665 .fsync = ocfs2_sync_file, 2666 .release = ocfs2_file_release, 2667 .open = ocfs2_file_open, 2668 .read_iter = ocfs2_file_read_iter, 2669 .write_iter = ocfs2_file_write_iter, 2670 .unlocked_ioctl = ocfs2_ioctl, 2671 #ifdef CONFIG_COMPAT 2672 .compat_ioctl = ocfs2_compat_ioctl, 2673 #endif 2674 .lock = ocfs2_lock, 2675 .flock = ocfs2_flock, 2676 .splice_read = generic_file_splice_read, 2677 .splice_write = iter_file_splice_write, 2678 .fallocate = ocfs2_fallocate, 2679 .remap_file_range = ocfs2_remap_file_range, 2680 }; 2681 2682 const struct file_operations ocfs2_dops = { 2683 .llseek = generic_file_llseek, 2684 .read = generic_read_dir, 2685 .iterate = ocfs2_readdir, 2686 .fsync = ocfs2_sync_file, 2687 .release = ocfs2_dir_release, 2688 .open = ocfs2_dir_open, 2689 .unlocked_ioctl = ocfs2_ioctl, 2690 #ifdef CONFIG_COMPAT 2691 .compat_ioctl = ocfs2_compat_ioctl, 2692 #endif 2693 .lock = ocfs2_lock, 2694 .flock = ocfs2_flock, 2695 }; 2696 2697 /* 2698 * POSIX-lockless variants of our file_operations. 2699 * 2700 * These will be used if the underlying cluster stack does not support 2701 * posix file locking, if the user passes the "localflocks" mount 2702 * option, or if we have a local-only fs. 2703 * 2704 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2705 * so we still want it in the case of no stack support for 2706 * plocks. Internally, it will do the right thing when asked to ignore 2707 * the cluster. 2708 */ 2709 const struct file_operations ocfs2_fops_no_plocks = { 2710 .llseek = ocfs2_file_llseek, 2711 .mmap = ocfs2_mmap, 2712 .fsync = ocfs2_sync_file, 2713 .release = ocfs2_file_release, 2714 .open = ocfs2_file_open, 2715 .read_iter = ocfs2_file_read_iter, 2716 .write_iter = ocfs2_file_write_iter, 2717 .unlocked_ioctl = ocfs2_ioctl, 2718 #ifdef CONFIG_COMPAT 2719 .compat_ioctl = ocfs2_compat_ioctl, 2720 #endif 2721 .flock = ocfs2_flock, 2722 .splice_read = generic_file_splice_read, 2723 .splice_write = iter_file_splice_write, 2724 .fallocate = ocfs2_fallocate, 2725 .remap_file_range = ocfs2_remap_file_range, 2726 }; 2727 2728 const struct file_operations ocfs2_dops_no_plocks = { 2729 .llseek = generic_file_llseek, 2730 .read = generic_read_dir, 2731 .iterate = ocfs2_readdir, 2732 .fsync = ocfs2_sync_file, 2733 .release = ocfs2_dir_release, 2734 .open = ocfs2_dir_open, 2735 .unlocked_ioctl = ocfs2_ioctl, 2736 #ifdef CONFIG_COMPAT 2737 .compat_ioctl = ocfs2_compat_ioctl, 2738 #endif 2739 .flock = ocfs2_flock, 2740 }; 2741