xref: /openbmc/linux/fs/ocfs2/file.c (revision b34e08d5)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 
41 #include <cluster/masklog.h>
42 
43 #include "ocfs2.h"
44 
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64 
65 #include "buffer_head_io.h"
66 
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 	struct ocfs2_file_private *fp;
70 
71 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 	if (!fp)
73 		return -ENOMEM;
74 
75 	fp->fp_file = file;
76 	mutex_init(&fp->fp_mutex);
77 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 	file->private_data = fp;
79 
80 	return 0;
81 }
82 
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 	struct ocfs2_file_private *fp = file->private_data;
86 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87 
88 	if (fp) {
89 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 		ocfs2_lock_res_free(&fp->fp_flock);
91 		kfree(fp);
92 		file->private_data = NULL;
93 	}
94 }
95 
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 	int status;
99 	int mode = file->f_flags;
100 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
101 
102 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 			      (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 			      file->f_path.dentry->d_name.len,
105 			      file->f_path.dentry->d_name.name, mode);
106 
107 	if (file->f_mode & FMODE_WRITE)
108 		dquot_initialize(inode);
109 
110 	spin_lock(&oi->ip_lock);
111 
112 	/* Check that the inode hasn't been wiped from disk by another
113 	 * node. If it hasn't then we're safe as long as we hold the
114 	 * spin lock until our increment of open count. */
115 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 		spin_unlock(&oi->ip_lock);
117 
118 		status = -ENOENT;
119 		goto leave;
120 	}
121 
122 	if (mode & O_DIRECT)
123 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124 
125 	oi->ip_open_count++;
126 	spin_unlock(&oi->ip_lock);
127 
128 	status = ocfs2_init_file_private(inode, file);
129 	if (status) {
130 		/*
131 		 * We want to set open count back if we're failing the
132 		 * open.
133 		 */
134 		spin_lock(&oi->ip_lock);
135 		oi->ip_open_count--;
136 		spin_unlock(&oi->ip_lock);
137 	}
138 
139 leave:
140 	return status;
141 }
142 
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
146 
147 	spin_lock(&oi->ip_lock);
148 	if (!--oi->ip_open_count)
149 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150 
151 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152 				 oi->ip_blkno,
153 				 file->f_path.dentry->d_name.len,
154 				 file->f_path.dentry->d_name.name,
155 				 oi->ip_open_count);
156 	spin_unlock(&oi->ip_lock);
157 
158 	ocfs2_free_file_private(inode, file);
159 
160 	return 0;
161 }
162 
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165 	return ocfs2_init_file_private(inode, file);
166 }
167 
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170 	ocfs2_free_file_private(inode, file);
171 	return 0;
172 }
173 
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175 			   int datasync)
176 {
177 	int err = 0;
178 	struct inode *inode = file->f_mapping->host;
179 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
180 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
181 	journal_t *journal = osb->journal->j_journal;
182 	int ret;
183 	tid_t commit_tid;
184 	bool needs_barrier = false;
185 
186 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
187 			      OCFS2_I(inode)->ip_blkno,
188 			      file->f_path.dentry->d_name.len,
189 			      file->f_path.dentry->d_name.name,
190 			      (unsigned long long)datasync);
191 
192 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
193 		return -EROFS;
194 
195 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
196 	if (err)
197 		return err;
198 
199 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
200 	if (journal->j_flags & JBD2_BARRIER &&
201 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
202 		needs_barrier = true;
203 	err = jbd2_complete_transaction(journal, commit_tid);
204 	if (needs_barrier) {
205 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
206 		if (!err)
207 			err = ret;
208 	}
209 
210 	if (err)
211 		mlog_errno(err);
212 
213 	return (err < 0) ? -EIO : 0;
214 }
215 
216 int ocfs2_should_update_atime(struct inode *inode,
217 			      struct vfsmount *vfsmnt)
218 {
219 	struct timespec now;
220 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
221 
222 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
223 		return 0;
224 
225 	if ((inode->i_flags & S_NOATIME) ||
226 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
227 		return 0;
228 
229 	/*
230 	 * We can be called with no vfsmnt structure - NFSD will
231 	 * sometimes do this.
232 	 *
233 	 * Note that our action here is different than touch_atime() -
234 	 * if we can't tell whether this is a noatime mount, then we
235 	 * don't know whether to trust the value of s_atime_quantum.
236 	 */
237 	if (vfsmnt == NULL)
238 		return 0;
239 
240 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
241 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
242 		return 0;
243 
244 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
245 		if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
246 		    (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
247 			return 1;
248 
249 		return 0;
250 	}
251 
252 	now = CURRENT_TIME;
253 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
254 		return 0;
255 	else
256 		return 1;
257 }
258 
259 int ocfs2_update_inode_atime(struct inode *inode,
260 			     struct buffer_head *bh)
261 {
262 	int ret;
263 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
264 	handle_t *handle;
265 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
266 
267 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
268 	if (IS_ERR(handle)) {
269 		ret = PTR_ERR(handle);
270 		mlog_errno(ret);
271 		goto out;
272 	}
273 
274 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
275 				      OCFS2_JOURNAL_ACCESS_WRITE);
276 	if (ret) {
277 		mlog_errno(ret);
278 		goto out_commit;
279 	}
280 
281 	/*
282 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
283 	 * have i_mutex to guard against concurrent changes to other
284 	 * inode fields.
285 	 */
286 	inode->i_atime = CURRENT_TIME;
287 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
288 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
289 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
290 	ocfs2_journal_dirty(handle, bh);
291 
292 out_commit:
293 	ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
294 out:
295 	return ret;
296 }
297 
298 static int ocfs2_set_inode_size(handle_t *handle,
299 				struct inode *inode,
300 				struct buffer_head *fe_bh,
301 				u64 new_i_size)
302 {
303 	int status;
304 
305 	i_size_write(inode, new_i_size);
306 	inode->i_blocks = ocfs2_inode_sector_count(inode);
307 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
308 
309 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
310 	if (status < 0) {
311 		mlog_errno(status);
312 		goto bail;
313 	}
314 
315 bail:
316 	return status;
317 }
318 
319 int ocfs2_simple_size_update(struct inode *inode,
320 			     struct buffer_head *di_bh,
321 			     u64 new_i_size)
322 {
323 	int ret;
324 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
325 	handle_t *handle = NULL;
326 
327 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
328 	if (IS_ERR(handle)) {
329 		ret = PTR_ERR(handle);
330 		mlog_errno(ret);
331 		goto out;
332 	}
333 
334 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
335 				   new_i_size);
336 	if (ret < 0)
337 		mlog_errno(ret);
338 
339 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
340 	ocfs2_commit_trans(osb, handle);
341 out:
342 	return ret;
343 }
344 
345 static int ocfs2_cow_file_pos(struct inode *inode,
346 			      struct buffer_head *fe_bh,
347 			      u64 offset)
348 {
349 	int status;
350 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
351 	unsigned int num_clusters = 0;
352 	unsigned int ext_flags = 0;
353 
354 	/*
355 	 * If the new offset is aligned to the range of the cluster, there is
356 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
357 	 * CoW either.
358 	 */
359 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
360 		return 0;
361 
362 	status = ocfs2_get_clusters(inode, cpos, &phys,
363 				    &num_clusters, &ext_flags);
364 	if (status) {
365 		mlog_errno(status);
366 		goto out;
367 	}
368 
369 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
370 		goto out;
371 
372 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
373 
374 out:
375 	return status;
376 }
377 
378 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
379 				     struct inode *inode,
380 				     struct buffer_head *fe_bh,
381 				     u64 new_i_size)
382 {
383 	int status;
384 	handle_t *handle;
385 	struct ocfs2_dinode *di;
386 	u64 cluster_bytes;
387 
388 	/*
389 	 * We need to CoW the cluster contains the offset if it is reflinked
390 	 * since we will call ocfs2_zero_range_for_truncate later which will
391 	 * write "0" from offset to the end of the cluster.
392 	 */
393 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
394 	if (status) {
395 		mlog_errno(status);
396 		return status;
397 	}
398 
399 	/* TODO: This needs to actually orphan the inode in this
400 	 * transaction. */
401 
402 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
403 	if (IS_ERR(handle)) {
404 		status = PTR_ERR(handle);
405 		mlog_errno(status);
406 		goto out;
407 	}
408 
409 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
410 					 OCFS2_JOURNAL_ACCESS_WRITE);
411 	if (status < 0) {
412 		mlog_errno(status);
413 		goto out_commit;
414 	}
415 
416 	/*
417 	 * Do this before setting i_size.
418 	 */
419 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
420 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
421 					       cluster_bytes);
422 	if (status) {
423 		mlog_errno(status);
424 		goto out_commit;
425 	}
426 
427 	i_size_write(inode, new_i_size);
428 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
429 
430 	di = (struct ocfs2_dinode *) fe_bh->b_data;
431 	di->i_size = cpu_to_le64(new_i_size);
432 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
433 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
434 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
435 
436 	ocfs2_journal_dirty(handle, fe_bh);
437 
438 out_commit:
439 	ocfs2_commit_trans(osb, handle);
440 out:
441 	return status;
442 }
443 
444 static int ocfs2_truncate_file(struct inode *inode,
445 			       struct buffer_head *di_bh,
446 			       u64 new_i_size)
447 {
448 	int status = 0;
449 	struct ocfs2_dinode *fe = NULL;
450 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
451 
452 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
453 	 * already validated it */
454 	fe = (struct ocfs2_dinode *) di_bh->b_data;
455 
456 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457 				  (unsigned long long)le64_to_cpu(fe->i_size),
458 				  (unsigned long long)new_i_size);
459 
460 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461 			"Inode %llu, inode i_size = %lld != di "
462 			"i_size = %llu, i_flags = 0x%x\n",
463 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
464 			i_size_read(inode),
465 			(unsigned long long)le64_to_cpu(fe->i_size),
466 			le32_to_cpu(fe->i_flags));
467 
468 	if (new_i_size > le64_to_cpu(fe->i_size)) {
469 		trace_ocfs2_truncate_file_error(
470 			(unsigned long long)le64_to_cpu(fe->i_size),
471 			(unsigned long long)new_i_size);
472 		status = -EINVAL;
473 		mlog_errno(status);
474 		goto bail;
475 	}
476 
477 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
478 
479 	ocfs2_resv_discard(&osb->osb_la_resmap,
480 			   &OCFS2_I(inode)->ip_la_data_resv);
481 
482 	/*
483 	 * The inode lock forced other nodes to sync and drop their
484 	 * pages, which (correctly) happens even if we have a truncate
485 	 * without allocation change - ocfs2 cluster sizes can be much
486 	 * greater than page size, so we have to truncate them
487 	 * anyway.
488 	 */
489 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
490 	truncate_inode_pages(inode->i_mapping, new_i_size);
491 
492 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
493 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
494 					       i_size_read(inode), 1);
495 		if (status)
496 			mlog_errno(status);
497 
498 		goto bail_unlock_sem;
499 	}
500 
501 	/* alright, we're going to need to do a full blown alloc size
502 	 * change. Orphan the inode so that recovery can complete the
503 	 * truncate if necessary. This does the task of marking
504 	 * i_size. */
505 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
506 	if (status < 0) {
507 		mlog_errno(status);
508 		goto bail_unlock_sem;
509 	}
510 
511 	status = ocfs2_commit_truncate(osb, inode, di_bh);
512 	if (status < 0) {
513 		mlog_errno(status);
514 		goto bail_unlock_sem;
515 	}
516 
517 	/* TODO: orphan dir cleanup here. */
518 bail_unlock_sem:
519 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
520 
521 bail:
522 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
523 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
524 
525 	return status;
526 }
527 
528 /*
529  * extend file allocation only here.
530  * we'll update all the disk stuff, and oip->alloc_size
531  *
532  * expect stuff to be locked, a transaction started and enough data /
533  * metadata reservations in the contexts.
534  *
535  * Will return -EAGAIN, and a reason if a restart is needed.
536  * If passed in, *reason will always be set, even in error.
537  */
538 int ocfs2_add_inode_data(struct ocfs2_super *osb,
539 			 struct inode *inode,
540 			 u32 *logical_offset,
541 			 u32 clusters_to_add,
542 			 int mark_unwritten,
543 			 struct buffer_head *fe_bh,
544 			 handle_t *handle,
545 			 struct ocfs2_alloc_context *data_ac,
546 			 struct ocfs2_alloc_context *meta_ac,
547 			 enum ocfs2_alloc_restarted *reason_ret)
548 {
549 	int ret;
550 	struct ocfs2_extent_tree et;
551 
552 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
553 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
554 					  clusters_to_add, mark_unwritten,
555 					  data_ac, meta_ac, reason_ret);
556 
557 	return ret;
558 }
559 
560 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
561 				     u32 clusters_to_add, int mark_unwritten)
562 {
563 	int status = 0;
564 	int restart_func = 0;
565 	int credits;
566 	u32 prev_clusters;
567 	struct buffer_head *bh = NULL;
568 	struct ocfs2_dinode *fe = NULL;
569 	handle_t *handle = NULL;
570 	struct ocfs2_alloc_context *data_ac = NULL;
571 	struct ocfs2_alloc_context *meta_ac = NULL;
572 	enum ocfs2_alloc_restarted why;
573 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
574 	struct ocfs2_extent_tree et;
575 	int did_quota = 0;
576 
577 	/*
578 	 * Unwritten extent only exists for file systems which
579 	 * support holes.
580 	 */
581 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
582 
583 	status = ocfs2_read_inode_block(inode, &bh);
584 	if (status < 0) {
585 		mlog_errno(status);
586 		goto leave;
587 	}
588 	fe = (struct ocfs2_dinode *) bh->b_data;
589 
590 restart_all:
591 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
592 
593 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
594 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
595 				       &data_ac, &meta_ac);
596 	if (status) {
597 		mlog_errno(status);
598 		goto leave;
599 	}
600 
601 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
602 	handle = ocfs2_start_trans(osb, credits);
603 	if (IS_ERR(handle)) {
604 		status = PTR_ERR(handle);
605 		handle = NULL;
606 		mlog_errno(status);
607 		goto leave;
608 	}
609 
610 restarted_transaction:
611 	trace_ocfs2_extend_allocation(
612 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
613 		(unsigned long long)i_size_read(inode),
614 		le32_to_cpu(fe->i_clusters), clusters_to_add,
615 		why, restart_func);
616 
617 	status = dquot_alloc_space_nodirty(inode,
618 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
619 	if (status)
620 		goto leave;
621 	did_quota = 1;
622 
623 	/* reserve a write to the file entry early on - that we if we
624 	 * run out of credits in the allocation path, we can still
625 	 * update i_size. */
626 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
627 					 OCFS2_JOURNAL_ACCESS_WRITE);
628 	if (status < 0) {
629 		mlog_errno(status);
630 		goto leave;
631 	}
632 
633 	prev_clusters = OCFS2_I(inode)->ip_clusters;
634 
635 	status = ocfs2_add_inode_data(osb,
636 				      inode,
637 				      &logical_start,
638 				      clusters_to_add,
639 				      mark_unwritten,
640 				      bh,
641 				      handle,
642 				      data_ac,
643 				      meta_ac,
644 				      &why);
645 	if ((status < 0) && (status != -EAGAIN)) {
646 		if (status != -ENOSPC)
647 			mlog_errno(status);
648 		goto leave;
649 	}
650 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
651 	ocfs2_journal_dirty(handle, bh);
652 
653 	spin_lock(&OCFS2_I(inode)->ip_lock);
654 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
655 	spin_unlock(&OCFS2_I(inode)->ip_lock);
656 	/* Release unused quota reservation */
657 	dquot_free_space(inode,
658 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
659 	did_quota = 0;
660 
661 	if (why != RESTART_NONE && clusters_to_add) {
662 		if (why == RESTART_META) {
663 			restart_func = 1;
664 			status = 0;
665 		} else {
666 			BUG_ON(why != RESTART_TRANS);
667 
668 			status = ocfs2_allocate_extend_trans(handle, 1);
669 			if (status < 0) {
670 				/* handle still has to be committed at
671 				 * this point. */
672 				status = -ENOMEM;
673 				mlog_errno(status);
674 				goto leave;
675 			}
676 			goto restarted_transaction;
677 		}
678 	}
679 
680 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
681 	     le32_to_cpu(fe->i_clusters),
682 	     (unsigned long long)le64_to_cpu(fe->i_size),
683 	     OCFS2_I(inode)->ip_clusters,
684 	     (unsigned long long)i_size_read(inode));
685 
686 leave:
687 	if (status < 0 && did_quota)
688 		dquot_free_space(inode,
689 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
690 	if (handle) {
691 		ocfs2_commit_trans(osb, handle);
692 		handle = NULL;
693 	}
694 	if (data_ac) {
695 		ocfs2_free_alloc_context(data_ac);
696 		data_ac = NULL;
697 	}
698 	if (meta_ac) {
699 		ocfs2_free_alloc_context(meta_ac);
700 		meta_ac = NULL;
701 	}
702 	if ((!status) && restart_func) {
703 		restart_func = 0;
704 		goto restart_all;
705 	}
706 	brelse(bh);
707 	bh = NULL;
708 
709 	return status;
710 }
711 
712 /*
713  * While a write will already be ordering the data, a truncate will not.
714  * Thus, we need to explicitly order the zeroed pages.
715  */
716 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
717 						struct buffer_head *di_bh)
718 {
719 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
720 	handle_t *handle = NULL;
721 	int ret = 0;
722 
723 	if (!ocfs2_should_order_data(inode))
724 		goto out;
725 
726 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
727 	if (IS_ERR(handle)) {
728 		ret = -ENOMEM;
729 		mlog_errno(ret);
730 		goto out;
731 	}
732 
733 	ret = ocfs2_jbd2_file_inode(handle, inode);
734 	if (ret < 0) {
735 		mlog_errno(ret);
736 		goto out;
737 	}
738 
739 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
740 				      OCFS2_JOURNAL_ACCESS_WRITE);
741 	if (ret)
742 		mlog_errno(ret);
743 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
744 
745 out:
746 	if (ret) {
747 		if (!IS_ERR(handle))
748 			ocfs2_commit_trans(osb, handle);
749 		handle = ERR_PTR(ret);
750 	}
751 	return handle;
752 }
753 
754 /* Some parts of this taken from generic_cont_expand, which turned out
755  * to be too fragile to do exactly what we need without us having to
756  * worry about recursive locking in ->write_begin() and ->write_end(). */
757 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
758 				 u64 abs_to, struct buffer_head *di_bh)
759 {
760 	struct address_space *mapping = inode->i_mapping;
761 	struct page *page;
762 	unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
763 	handle_t *handle = NULL;
764 	int ret = 0;
765 	unsigned zero_from, zero_to, block_start, block_end;
766 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
767 
768 	BUG_ON(abs_from >= abs_to);
769 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
770 	BUG_ON(abs_from & (inode->i_blkbits - 1));
771 
772 	page = find_or_create_page(mapping, index, GFP_NOFS);
773 	if (!page) {
774 		ret = -ENOMEM;
775 		mlog_errno(ret);
776 		goto out;
777 	}
778 
779 	/* Get the offsets within the page that we want to zero */
780 	zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
781 	zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
782 	if (!zero_to)
783 		zero_to = PAGE_CACHE_SIZE;
784 
785 	trace_ocfs2_write_zero_page(
786 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
787 			(unsigned long long)abs_from,
788 			(unsigned long long)abs_to,
789 			index, zero_from, zero_to);
790 
791 	/* We know that zero_from is block aligned */
792 	for (block_start = zero_from; block_start < zero_to;
793 	     block_start = block_end) {
794 		block_end = block_start + (1 << inode->i_blkbits);
795 
796 		/*
797 		 * block_start is block-aligned.  Bump it by one to force
798 		 * __block_write_begin and block_commit_write to zero the
799 		 * whole block.
800 		 */
801 		ret = __block_write_begin(page, block_start + 1, 0,
802 					  ocfs2_get_block);
803 		if (ret < 0) {
804 			mlog_errno(ret);
805 			goto out_unlock;
806 		}
807 
808 		if (!handle) {
809 			handle = ocfs2_zero_start_ordered_transaction(inode,
810 								      di_bh);
811 			if (IS_ERR(handle)) {
812 				ret = PTR_ERR(handle);
813 				handle = NULL;
814 				break;
815 			}
816 		}
817 
818 		/* must not update i_size! */
819 		ret = block_commit_write(page, block_start + 1,
820 					 block_start + 1);
821 		if (ret < 0)
822 			mlog_errno(ret);
823 		else
824 			ret = 0;
825 	}
826 
827 	if (handle) {
828 		/*
829 		 * fs-writeback will release the dirty pages without page lock
830 		 * whose offset are over inode size, the release happens at
831 		 * block_write_full_page_endio().
832 		 */
833 		i_size_write(inode, abs_to);
834 		inode->i_blocks = ocfs2_inode_sector_count(inode);
835 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
836 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
837 		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
838 		di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
839 		di->i_mtime_nsec = di->i_ctime_nsec;
840 		ocfs2_journal_dirty(handle, di_bh);
841 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
842 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
843 	}
844 
845 out_unlock:
846 	unlock_page(page);
847 	page_cache_release(page);
848 out:
849 	return ret;
850 }
851 
852 /*
853  * Find the next range to zero.  We do this in terms of bytes because
854  * that's what ocfs2_zero_extend() wants, and it is dealing with the
855  * pagecache.  We may return multiple extents.
856  *
857  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
858  * needs to be zeroed.  range_start and range_end return the next zeroing
859  * range.  A subsequent call should pass the previous range_end as its
860  * zero_start.  If range_end is 0, there's nothing to do.
861  *
862  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
863  */
864 static int ocfs2_zero_extend_get_range(struct inode *inode,
865 				       struct buffer_head *di_bh,
866 				       u64 zero_start, u64 zero_end,
867 				       u64 *range_start, u64 *range_end)
868 {
869 	int rc = 0, needs_cow = 0;
870 	u32 p_cpos, zero_clusters = 0;
871 	u32 zero_cpos =
872 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
873 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
874 	unsigned int num_clusters = 0;
875 	unsigned int ext_flags = 0;
876 
877 	while (zero_cpos < last_cpos) {
878 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
879 					&num_clusters, &ext_flags);
880 		if (rc) {
881 			mlog_errno(rc);
882 			goto out;
883 		}
884 
885 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
886 			zero_clusters = num_clusters;
887 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
888 				needs_cow = 1;
889 			break;
890 		}
891 
892 		zero_cpos += num_clusters;
893 	}
894 	if (!zero_clusters) {
895 		*range_end = 0;
896 		goto out;
897 	}
898 
899 	while ((zero_cpos + zero_clusters) < last_cpos) {
900 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
901 					&p_cpos, &num_clusters,
902 					&ext_flags);
903 		if (rc) {
904 			mlog_errno(rc);
905 			goto out;
906 		}
907 
908 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
909 			break;
910 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
911 			needs_cow = 1;
912 		zero_clusters += num_clusters;
913 	}
914 	if ((zero_cpos + zero_clusters) > last_cpos)
915 		zero_clusters = last_cpos - zero_cpos;
916 
917 	if (needs_cow) {
918 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
919 					zero_clusters, UINT_MAX);
920 		if (rc) {
921 			mlog_errno(rc);
922 			goto out;
923 		}
924 	}
925 
926 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
927 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
928 					     zero_cpos + zero_clusters);
929 
930 out:
931 	return rc;
932 }
933 
934 /*
935  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
936  * has made sure that the entire range needs zeroing.
937  */
938 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
939 				   u64 range_end, struct buffer_head *di_bh)
940 {
941 	int rc = 0;
942 	u64 next_pos;
943 	u64 zero_pos = range_start;
944 
945 	trace_ocfs2_zero_extend_range(
946 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
947 			(unsigned long long)range_start,
948 			(unsigned long long)range_end);
949 	BUG_ON(range_start >= range_end);
950 
951 	while (zero_pos < range_end) {
952 		next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
953 		if (next_pos > range_end)
954 			next_pos = range_end;
955 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
956 		if (rc < 0) {
957 			mlog_errno(rc);
958 			break;
959 		}
960 		zero_pos = next_pos;
961 
962 		/*
963 		 * Very large extends have the potential to lock up
964 		 * the cpu for extended periods of time.
965 		 */
966 		cond_resched();
967 	}
968 
969 	return rc;
970 }
971 
972 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
973 		      loff_t zero_to_size)
974 {
975 	int ret = 0;
976 	u64 zero_start, range_start = 0, range_end = 0;
977 	struct super_block *sb = inode->i_sb;
978 
979 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
980 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
981 				(unsigned long long)zero_start,
982 				(unsigned long long)i_size_read(inode));
983 	while (zero_start < zero_to_size) {
984 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
985 						  zero_to_size,
986 						  &range_start,
987 						  &range_end);
988 		if (ret) {
989 			mlog_errno(ret);
990 			break;
991 		}
992 		if (!range_end)
993 			break;
994 		/* Trim the ends */
995 		if (range_start < zero_start)
996 			range_start = zero_start;
997 		if (range_end > zero_to_size)
998 			range_end = zero_to_size;
999 
1000 		ret = ocfs2_zero_extend_range(inode, range_start,
1001 					      range_end, di_bh);
1002 		if (ret) {
1003 			mlog_errno(ret);
1004 			break;
1005 		}
1006 		zero_start = range_end;
1007 	}
1008 
1009 	return ret;
1010 }
1011 
1012 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1013 			  u64 new_i_size, u64 zero_to)
1014 {
1015 	int ret;
1016 	u32 clusters_to_add;
1017 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1018 
1019 	/*
1020 	 * Only quota files call this without a bh, and they can't be
1021 	 * refcounted.
1022 	 */
1023 	BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1024 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1025 
1026 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1027 	if (clusters_to_add < oi->ip_clusters)
1028 		clusters_to_add = 0;
1029 	else
1030 		clusters_to_add -= oi->ip_clusters;
1031 
1032 	if (clusters_to_add) {
1033 		ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1034 						clusters_to_add, 0);
1035 		if (ret) {
1036 			mlog_errno(ret);
1037 			goto out;
1038 		}
1039 	}
1040 
1041 	/*
1042 	 * Call this even if we don't add any clusters to the tree. We
1043 	 * still need to zero the area between the old i_size and the
1044 	 * new i_size.
1045 	 */
1046 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1047 	if (ret < 0)
1048 		mlog_errno(ret);
1049 
1050 out:
1051 	return ret;
1052 }
1053 
1054 static int ocfs2_extend_file(struct inode *inode,
1055 			     struct buffer_head *di_bh,
1056 			     u64 new_i_size)
1057 {
1058 	int ret = 0;
1059 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1060 
1061 	BUG_ON(!di_bh);
1062 
1063 	/* setattr sometimes calls us like this. */
1064 	if (new_i_size == 0)
1065 		goto out;
1066 
1067 	if (i_size_read(inode) == new_i_size)
1068 		goto out;
1069 	BUG_ON(new_i_size < i_size_read(inode));
1070 
1071 	/*
1072 	 * The alloc sem blocks people in read/write from reading our
1073 	 * allocation until we're done changing it. We depend on
1074 	 * i_mutex to block other extend/truncate calls while we're
1075 	 * here.  We even have to hold it for sparse files because there
1076 	 * might be some tail zeroing.
1077 	 */
1078 	down_write(&oi->ip_alloc_sem);
1079 
1080 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1081 		/*
1082 		 * We can optimize small extends by keeping the inodes
1083 		 * inline data.
1084 		 */
1085 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1086 			up_write(&oi->ip_alloc_sem);
1087 			goto out_update_size;
1088 		}
1089 
1090 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1091 		if (ret) {
1092 			up_write(&oi->ip_alloc_sem);
1093 			mlog_errno(ret);
1094 			goto out;
1095 		}
1096 	}
1097 
1098 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1099 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1100 	else
1101 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1102 					    new_i_size);
1103 
1104 	up_write(&oi->ip_alloc_sem);
1105 
1106 	if (ret < 0) {
1107 		mlog_errno(ret);
1108 		goto out;
1109 	}
1110 
1111 out_update_size:
1112 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1113 	if (ret < 0)
1114 		mlog_errno(ret);
1115 
1116 out:
1117 	return ret;
1118 }
1119 
1120 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1121 {
1122 	int status = 0, size_change;
1123 	struct inode *inode = dentry->d_inode;
1124 	struct super_block *sb = inode->i_sb;
1125 	struct ocfs2_super *osb = OCFS2_SB(sb);
1126 	struct buffer_head *bh = NULL;
1127 	handle_t *handle = NULL;
1128 	struct dquot *transfer_to[MAXQUOTAS] = { };
1129 	int qtype;
1130 
1131 	trace_ocfs2_setattr(inode, dentry,
1132 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1133 			    dentry->d_name.len, dentry->d_name.name,
1134 			    attr->ia_valid, attr->ia_mode,
1135 			    from_kuid(&init_user_ns, attr->ia_uid),
1136 			    from_kgid(&init_user_ns, attr->ia_gid));
1137 
1138 	/* ensuring we don't even attempt to truncate a symlink */
1139 	if (S_ISLNK(inode->i_mode))
1140 		attr->ia_valid &= ~ATTR_SIZE;
1141 
1142 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1143 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1144 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1145 		return 0;
1146 
1147 	status = inode_change_ok(inode, attr);
1148 	if (status)
1149 		return status;
1150 
1151 	if (is_quota_modification(inode, attr))
1152 		dquot_initialize(inode);
1153 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1154 	if (size_change) {
1155 		status = ocfs2_rw_lock(inode, 1);
1156 		if (status < 0) {
1157 			mlog_errno(status);
1158 			goto bail;
1159 		}
1160 	}
1161 
1162 	status = ocfs2_inode_lock(inode, &bh, 1);
1163 	if (status < 0) {
1164 		if (status != -ENOENT)
1165 			mlog_errno(status);
1166 		goto bail_unlock_rw;
1167 	}
1168 
1169 	if (size_change) {
1170 		status = inode_newsize_ok(inode, attr->ia_size);
1171 		if (status)
1172 			goto bail_unlock;
1173 
1174 		inode_dio_wait(inode);
1175 
1176 		if (i_size_read(inode) >= attr->ia_size) {
1177 			if (ocfs2_should_order_data(inode)) {
1178 				status = ocfs2_begin_ordered_truncate(inode,
1179 								      attr->ia_size);
1180 				if (status)
1181 					goto bail_unlock;
1182 			}
1183 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1184 		} else
1185 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1186 		if (status < 0) {
1187 			if (status != -ENOSPC)
1188 				mlog_errno(status);
1189 			status = -ENOSPC;
1190 			goto bail_unlock;
1191 		}
1192 	}
1193 
1194 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1195 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1196 		/*
1197 		 * Gather pointers to quota structures so that allocation /
1198 		 * freeing of quota structures happens here and not inside
1199 		 * dquot_transfer() where we have problems with lock ordering
1200 		 */
1201 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1202 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1203 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1204 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1205 			if (!transfer_to[USRQUOTA]) {
1206 				status = -ESRCH;
1207 				goto bail_unlock;
1208 			}
1209 		}
1210 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1211 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1212 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1213 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1214 			if (!transfer_to[GRPQUOTA]) {
1215 				status = -ESRCH;
1216 				goto bail_unlock;
1217 			}
1218 		}
1219 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1220 					   2 * ocfs2_quota_trans_credits(sb));
1221 		if (IS_ERR(handle)) {
1222 			status = PTR_ERR(handle);
1223 			mlog_errno(status);
1224 			goto bail_unlock;
1225 		}
1226 		status = __dquot_transfer(inode, transfer_to);
1227 		if (status < 0)
1228 			goto bail_commit;
1229 	} else {
1230 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1231 		if (IS_ERR(handle)) {
1232 			status = PTR_ERR(handle);
1233 			mlog_errno(status);
1234 			goto bail_unlock;
1235 		}
1236 	}
1237 
1238 	setattr_copy(inode, attr);
1239 	mark_inode_dirty(inode);
1240 
1241 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1242 	if (status < 0)
1243 		mlog_errno(status);
1244 
1245 bail_commit:
1246 	ocfs2_commit_trans(osb, handle);
1247 bail_unlock:
1248 	ocfs2_inode_unlock(inode, 1);
1249 bail_unlock_rw:
1250 	if (size_change)
1251 		ocfs2_rw_unlock(inode, 1);
1252 bail:
1253 	brelse(bh);
1254 
1255 	/* Release quota pointers in case we acquired them */
1256 	for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1257 		dqput(transfer_to[qtype]);
1258 
1259 	if (!status && attr->ia_valid & ATTR_MODE) {
1260 		status = posix_acl_chmod(inode, inode->i_mode);
1261 		if (status < 0)
1262 			mlog_errno(status);
1263 	}
1264 
1265 	return status;
1266 }
1267 
1268 int ocfs2_getattr(struct vfsmount *mnt,
1269 		  struct dentry *dentry,
1270 		  struct kstat *stat)
1271 {
1272 	struct inode *inode = dentry->d_inode;
1273 	struct super_block *sb = dentry->d_inode->i_sb;
1274 	struct ocfs2_super *osb = sb->s_fs_info;
1275 	int err;
1276 
1277 	err = ocfs2_inode_revalidate(dentry);
1278 	if (err) {
1279 		if (err != -ENOENT)
1280 			mlog_errno(err);
1281 		goto bail;
1282 	}
1283 
1284 	generic_fillattr(inode, stat);
1285 
1286 	/* We set the blksize from the cluster size for performance */
1287 	stat->blksize = osb->s_clustersize;
1288 
1289 bail:
1290 	return err;
1291 }
1292 
1293 int ocfs2_permission(struct inode *inode, int mask)
1294 {
1295 	int ret;
1296 
1297 	if (mask & MAY_NOT_BLOCK)
1298 		return -ECHILD;
1299 
1300 	ret = ocfs2_inode_lock(inode, NULL, 0);
1301 	if (ret) {
1302 		if (ret != -ENOENT)
1303 			mlog_errno(ret);
1304 		goto out;
1305 	}
1306 
1307 	ret = generic_permission(inode, mask);
1308 
1309 	ocfs2_inode_unlock(inode, 0);
1310 out:
1311 	return ret;
1312 }
1313 
1314 static int __ocfs2_write_remove_suid(struct inode *inode,
1315 				     struct buffer_head *bh)
1316 {
1317 	int ret;
1318 	handle_t *handle;
1319 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1320 	struct ocfs2_dinode *di;
1321 
1322 	trace_ocfs2_write_remove_suid(
1323 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1324 			inode->i_mode);
1325 
1326 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1327 	if (IS_ERR(handle)) {
1328 		ret = PTR_ERR(handle);
1329 		mlog_errno(ret);
1330 		goto out;
1331 	}
1332 
1333 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1334 				      OCFS2_JOURNAL_ACCESS_WRITE);
1335 	if (ret < 0) {
1336 		mlog_errno(ret);
1337 		goto out_trans;
1338 	}
1339 
1340 	inode->i_mode &= ~S_ISUID;
1341 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1342 		inode->i_mode &= ~S_ISGID;
1343 
1344 	di = (struct ocfs2_dinode *) bh->b_data;
1345 	di->i_mode = cpu_to_le16(inode->i_mode);
1346 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1347 
1348 	ocfs2_journal_dirty(handle, bh);
1349 
1350 out_trans:
1351 	ocfs2_commit_trans(osb, handle);
1352 out:
1353 	return ret;
1354 }
1355 
1356 /*
1357  * Will look for holes and unwritten extents in the range starting at
1358  * pos for count bytes (inclusive).
1359  */
1360 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1361 				       size_t count)
1362 {
1363 	int ret = 0;
1364 	unsigned int extent_flags;
1365 	u32 cpos, clusters, extent_len, phys_cpos;
1366 	struct super_block *sb = inode->i_sb;
1367 
1368 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1369 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1370 
1371 	while (clusters) {
1372 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1373 					 &extent_flags);
1374 		if (ret < 0) {
1375 			mlog_errno(ret);
1376 			goto out;
1377 		}
1378 
1379 		if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1380 			ret = 1;
1381 			break;
1382 		}
1383 
1384 		if (extent_len > clusters)
1385 			extent_len = clusters;
1386 
1387 		clusters -= extent_len;
1388 		cpos += extent_len;
1389 	}
1390 out:
1391 	return ret;
1392 }
1393 
1394 static int ocfs2_write_remove_suid(struct inode *inode)
1395 {
1396 	int ret;
1397 	struct buffer_head *bh = NULL;
1398 
1399 	ret = ocfs2_read_inode_block(inode, &bh);
1400 	if (ret < 0) {
1401 		mlog_errno(ret);
1402 		goto out;
1403 	}
1404 
1405 	ret =  __ocfs2_write_remove_suid(inode, bh);
1406 out:
1407 	brelse(bh);
1408 	return ret;
1409 }
1410 
1411 /*
1412  * Allocate enough extents to cover the region starting at byte offset
1413  * start for len bytes. Existing extents are skipped, any extents
1414  * added are marked as "unwritten".
1415  */
1416 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1417 					    u64 start, u64 len)
1418 {
1419 	int ret;
1420 	u32 cpos, phys_cpos, clusters, alloc_size;
1421 	u64 end = start + len;
1422 	struct buffer_head *di_bh = NULL;
1423 
1424 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1425 		ret = ocfs2_read_inode_block(inode, &di_bh);
1426 		if (ret) {
1427 			mlog_errno(ret);
1428 			goto out;
1429 		}
1430 
1431 		/*
1432 		 * Nothing to do if the requested reservation range
1433 		 * fits within the inode.
1434 		 */
1435 		if (ocfs2_size_fits_inline_data(di_bh, end))
1436 			goto out;
1437 
1438 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1439 		if (ret) {
1440 			mlog_errno(ret);
1441 			goto out;
1442 		}
1443 	}
1444 
1445 	/*
1446 	 * We consider both start and len to be inclusive.
1447 	 */
1448 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1449 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1450 	clusters -= cpos;
1451 
1452 	while (clusters) {
1453 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1454 					 &alloc_size, NULL);
1455 		if (ret) {
1456 			mlog_errno(ret);
1457 			goto out;
1458 		}
1459 
1460 		/*
1461 		 * Hole or existing extent len can be arbitrary, so
1462 		 * cap it to our own allocation request.
1463 		 */
1464 		if (alloc_size > clusters)
1465 			alloc_size = clusters;
1466 
1467 		if (phys_cpos) {
1468 			/*
1469 			 * We already have an allocation at this
1470 			 * region so we can safely skip it.
1471 			 */
1472 			goto next;
1473 		}
1474 
1475 		ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1476 		if (ret) {
1477 			if (ret != -ENOSPC)
1478 				mlog_errno(ret);
1479 			goto out;
1480 		}
1481 
1482 next:
1483 		cpos += alloc_size;
1484 		clusters -= alloc_size;
1485 	}
1486 
1487 	ret = 0;
1488 out:
1489 
1490 	brelse(di_bh);
1491 	return ret;
1492 }
1493 
1494 /*
1495  * Truncate a byte range, avoiding pages within partial clusters. This
1496  * preserves those pages for the zeroing code to write to.
1497  */
1498 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1499 					 u64 byte_len)
1500 {
1501 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1502 	loff_t start, end;
1503 	struct address_space *mapping = inode->i_mapping;
1504 
1505 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1506 	end = byte_start + byte_len;
1507 	end = end & ~(osb->s_clustersize - 1);
1508 
1509 	if (start < end) {
1510 		unmap_mapping_range(mapping, start, end - start, 0);
1511 		truncate_inode_pages_range(mapping, start, end - 1);
1512 	}
1513 }
1514 
1515 static int ocfs2_zero_partial_clusters(struct inode *inode,
1516 				       u64 start, u64 len)
1517 {
1518 	int ret = 0;
1519 	u64 tmpend, end = start + len;
1520 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1521 	unsigned int csize = osb->s_clustersize;
1522 	handle_t *handle;
1523 
1524 	/*
1525 	 * The "start" and "end" values are NOT necessarily part of
1526 	 * the range whose allocation is being deleted. Rather, this
1527 	 * is what the user passed in with the request. We must zero
1528 	 * partial clusters here. There's no need to worry about
1529 	 * physical allocation - the zeroing code knows to skip holes.
1530 	 */
1531 	trace_ocfs2_zero_partial_clusters(
1532 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1533 		(unsigned long long)start, (unsigned long long)end);
1534 
1535 	/*
1536 	 * If both edges are on a cluster boundary then there's no
1537 	 * zeroing required as the region is part of the allocation to
1538 	 * be truncated.
1539 	 */
1540 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1541 		goto out;
1542 
1543 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1544 	if (IS_ERR(handle)) {
1545 		ret = PTR_ERR(handle);
1546 		mlog_errno(ret);
1547 		goto out;
1548 	}
1549 
1550 	/*
1551 	 * We want to get the byte offset of the end of the 1st cluster.
1552 	 */
1553 	tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1554 	if (tmpend > end)
1555 		tmpend = end;
1556 
1557 	trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1558 						 (unsigned long long)tmpend);
1559 
1560 	ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1561 	if (ret)
1562 		mlog_errno(ret);
1563 
1564 	if (tmpend < end) {
1565 		/*
1566 		 * This may make start and end equal, but the zeroing
1567 		 * code will skip any work in that case so there's no
1568 		 * need to catch it up here.
1569 		 */
1570 		start = end & ~(osb->s_clustersize - 1);
1571 
1572 		trace_ocfs2_zero_partial_clusters_range2(
1573 			(unsigned long long)start, (unsigned long long)end);
1574 
1575 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1576 		if (ret)
1577 			mlog_errno(ret);
1578 	}
1579 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1580 
1581 	ocfs2_commit_trans(osb, handle);
1582 out:
1583 	return ret;
1584 }
1585 
1586 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1587 {
1588 	int i;
1589 	struct ocfs2_extent_rec *rec = NULL;
1590 
1591 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1592 
1593 		rec = &el->l_recs[i];
1594 
1595 		if (le32_to_cpu(rec->e_cpos) < pos)
1596 			break;
1597 	}
1598 
1599 	return i;
1600 }
1601 
1602 /*
1603  * Helper to calculate the punching pos and length in one run, we handle the
1604  * following three cases in order:
1605  *
1606  * - remove the entire record
1607  * - remove a partial record
1608  * - no record needs to be removed (hole-punching completed)
1609 */
1610 static void ocfs2_calc_trunc_pos(struct inode *inode,
1611 				 struct ocfs2_extent_list *el,
1612 				 struct ocfs2_extent_rec *rec,
1613 				 u32 trunc_start, u32 *trunc_cpos,
1614 				 u32 *trunc_len, u32 *trunc_end,
1615 				 u64 *blkno, int *done)
1616 {
1617 	int ret = 0;
1618 	u32 coff, range;
1619 
1620 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1621 
1622 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1623 		/*
1624 		 * remove an entire extent record.
1625 		 */
1626 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1627 		/*
1628 		 * Skip holes if any.
1629 		 */
1630 		if (range < *trunc_end)
1631 			*trunc_end = range;
1632 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1633 		*blkno = le64_to_cpu(rec->e_blkno);
1634 		*trunc_end = le32_to_cpu(rec->e_cpos);
1635 	} else if (range > trunc_start) {
1636 		/*
1637 		 * remove a partial extent record, which means we're
1638 		 * removing the last extent record.
1639 		 */
1640 		*trunc_cpos = trunc_start;
1641 		/*
1642 		 * skip hole if any.
1643 		 */
1644 		if (range < *trunc_end)
1645 			*trunc_end = range;
1646 		*trunc_len = *trunc_end - trunc_start;
1647 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1648 		*blkno = le64_to_cpu(rec->e_blkno) +
1649 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1650 		*trunc_end = trunc_start;
1651 	} else {
1652 		/*
1653 		 * It may have two following possibilities:
1654 		 *
1655 		 * - last record has been removed
1656 		 * - trunc_start was within a hole
1657 		 *
1658 		 * both two cases mean the completion of hole punching.
1659 		 */
1660 		ret = 1;
1661 	}
1662 
1663 	*done = ret;
1664 }
1665 
1666 static int ocfs2_remove_inode_range(struct inode *inode,
1667 				    struct buffer_head *di_bh, u64 byte_start,
1668 				    u64 byte_len)
1669 {
1670 	int ret = 0, flags = 0, done = 0, i;
1671 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1672 	u32 cluster_in_el;
1673 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1674 	struct ocfs2_cached_dealloc_ctxt dealloc;
1675 	struct address_space *mapping = inode->i_mapping;
1676 	struct ocfs2_extent_tree et;
1677 	struct ocfs2_path *path = NULL;
1678 	struct ocfs2_extent_list *el = NULL;
1679 	struct ocfs2_extent_rec *rec = NULL;
1680 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1681 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1682 
1683 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1684 	ocfs2_init_dealloc_ctxt(&dealloc);
1685 
1686 	trace_ocfs2_remove_inode_range(
1687 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1688 			(unsigned long long)byte_start,
1689 			(unsigned long long)byte_len);
1690 
1691 	if (byte_len == 0)
1692 		return 0;
1693 
1694 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1695 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1696 					    byte_start + byte_len, 0);
1697 		if (ret) {
1698 			mlog_errno(ret);
1699 			goto out;
1700 		}
1701 		/*
1702 		 * There's no need to get fancy with the page cache
1703 		 * truncate of an inline-data inode. We're talking
1704 		 * about less than a page here, which will be cached
1705 		 * in the dinode buffer anyway.
1706 		 */
1707 		unmap_mapping_range(mapping, 0, 0, 0);
1708 		truncate_inode_pages(mapping, 0);
1709 		goto out;
1710 	}
1711 
1712 	/*
1713 	 * For reflinks, we may need to CoW 2 clusters which might be
1714 	 * partially zero'd later, if hole's start and end offset were
1715 	 * within one cluster(means is not exactly aligned to clustersize).
1716 	 */
1717 
1718 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1719 
1720 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1721 		if (ret) {
1722 			mlog_errno(ret);
1723 			goto out;
1724 		}
1725 
1726 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1727 		if (ret) {
1728 			mlog_errno(ret);
1729 			goto out;
1730 		}
1731 	}
1732 
1733 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1734 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1735 	cluster_in_el = trunc_end;
1736 
1737 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1738 	if (ret) {
1739 		mlog_errno(ret);
1740 		goto out;
1741 	}
1742 
1743 	path = ocfs2_new_path_from_et(&et);
1744 	if (!path) {
1745 		ret = -ENOMEM;
1746 		mlog_errno(ret);
1747 		goto out;
1748 	}
1749 
1750 	while (trunc_end > trunc_start) {
1751 
1752 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1753 				      cluster_in_el);
1754 		if (ret) {
1755 			mlog_errno(ret);
1756 			goto out;
1757 		}
1758 
1759 		el = path_leaf_el(path);
1760 
1761 		i = ocfs2_find_rec(el, trunc_end);
1762 		/*
1763 		 * Need to go to previous extent block.
1764 		 */
1765 		if (i < 0) {
1766 			if (path->p_tree_depth == 0)
1767 				break;
1768 
1769 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1770 							    path,
1771 							    &cluster_in_el);
1772 			if (ret) {
1773 				mlog_errno(ret);
1774 				goto out;
1775 			}
1776 
1777 			/*
1778 			 * We've reached the leftmost extent block,
1779 			 * it's safe to leave.
1780 			 */
1781 			if (cluster_in_el == 0)
1782 				break;
1783 
1784 			/*
1785 			 * The 'pos' searched for previous extent block is
1786 			 * always one cluster less than actual trunc_end.
1787 			 */
1788 			trunc_end = cluster_in_el + 1;
1789 
1790 			ocfs2_reinit_path(path, 1);
1791 
1792 			continue;
1793 
1794 		} else
1795 			rec = &el->l_recs[i];
1796 
1797 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1798 				     &trunc_len, &trunc_end, &blkno, &done);
1799 		if (done)
1800 			break;
1801 
1802 		flags = rec->e_flags;
1803 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1804 
1805 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1806 					       phys_cpos, trunc_len, flags,
1807 					       &dealloc, refcount_loc);
1808 		if (ret < 0) {
1809 			mlog_errno(ret);
1810 			goto out;
1811 		}
1812 
1813 		cluster_in_el = trunc_end;
1814 
1815 		ocfs2_reinit_path(path, 1);
1816 	}
1817 
1818 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1819 
1820 out:
1821 	ocfs2_free_path(path);
1822 	ocfs2_schedule_truncate_log_flush(osb, 1);
1823 	ocfs2_run_deallocs(osb, &dealloc);
1824 
1825 	return ret;
1826 }
1827 
1828 /*
1829  * Parts of this function taken from xfs_change_file_space()
1830  */
1831 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1832 				     loff_t f_pos, unsigned int cmd,
1833 				     struct ocfs2_space_resv *sr,
1834 				     int change_size)
1835 {
1836 	int ret;
1837 	s64 llen;
1838 	loff_t size;
1839 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1840 	struct buffer_head *di_bh = NULL;
1841 	handle_t *handle;
1842 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1843 
1844 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1845 		return -EROFS;
1846 
1847 	mutex_lock(&inode->i_mutex);
1848 
1849 	/*
1850 	 * This prevents concurrent writes on other nodes
1851 	 */
1852 	ret = ocfs2_rw_lock(inode, 1);
1853 	if (ret) {
1854 		mlog_errno(ret);
1855 		goto out;
1856 	}
1857 
1858 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1859 	if (ret) {
1860 		mlog_errno(ret);
1861 		goto out_rw_unlock;
1862 	}
1863 
1864 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1865 		ret = -EPERM;
1866 		goto out_inode_unlock;
1867 	}
1868 
1869 	switch (sr->l_whence) {
1870 	case 0: /*SEEK_SET*/
1871 		break;
1872 	case 1: /*SEEK_CUR*/
1873 		sr->l_start += f_pos;
1874 		break;
1875 	case 2: /*SEEK_END*/
1876 		sr->l_start += i_size_read(inode);
1877 		break;
1878 	default:
1879 		ret = -EINVAL;
1880 		goto out_inode_unlock;
1881 	}
1882 	sr->l_whence = 0;
1883 
1884 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1885 
1886 	if (sr->l_start < 0
1887 	    || sr->l_start > max_off
1888 	    || (sr->l_start + llen) < 0
1889 	    || (sr->l_start + llen) > max_off) {
1890 		ret = -EINVAL;
1891 		goto out_inode_unlock;
1892 	}
1893 	size = sr->l_start + sr->l_len;
1894 
1895 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1896 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1897 		if (sr->l_len <= 0) {
1898 			ret = -EINVAL;
1899 			goto out_inode_unlock;
1900 		}
1901 	}
1902 
1903 	if (file && should_remove_suid(file->f_path.dentry)) {
1904 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1905 		if (ret) {
1906 			mlog_errno(ret);
1907 			goto out_inode_unlock;
1908 		}
1909 	}
1910 
1911 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1912 	switch (cmd) {
1913 	case OCFS2_IOC_RESVSP:
1914 	case OCFS2_IOC_RESVSP64:
1915 		/*
1916 		 * This takes unsigned offsets, but the signed ones we
1917 		 * pass have been checked against overflow above.
1918 		 */
1919 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1920 						       sr->l_len);
1921 		break;
1922 	case OCFS2_IOC_UNRESVSP:
1923 	case OCFS2_IOC_UNRESVSP64:
1924 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1925 					       sr->l_len);
1926 		break;
1927 	default:
1928 		ret = -EINVAL;
1929 	}
1930 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1931 	if (ret) {
1932 		mlog_errno(ret);
1933 		goto out_inode_unlock;
1934 	}
1935 
1936 	/*
1937 	 * We update c/mtime for these changes
1938 	 */
1939 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1940 	if (IS_ERR(handle)) {
1941 		ret = PTR_ERR(handle);
1942 		mlog_errno(ret);
1943 		goto out_inode_unlock;
1944 	}
1945 
1946 	if (change_size && i_size_read(inode) < size)
1947 		i_size_write(inode, size);
1948 
1949 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1950 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1951 	if (ret < 0)
1952 		mlog_errno(ret);
1953 
1954 	if (file && (file->f_flags & O_SYNC))
1955 		handle->h_sync = 1;
1956 
1957 	ocfs2_commit_trans(osb, handle);
1958 
1959 out_inode_unlock:
1960 	brelse(di_bh);
1961 	ocfs2_inode_unlock(inode, 1);
1962 out_rw_unlock:
1963 	ocfs2_rw_unlock(inode, 1);
1964 
1965 out:
1966 	mutex_unlock(&inode->i_mutex);
1967 	return ret;
1968 }
1969 
1970 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1971 			    struct ocfs2_space_resv *sr)
1972 {
1973 	struct inode *inode = file_inode(file);
1974 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1975 	int ret;
1976 
1977 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1978 	    !ocfs2_writes_unwritten_extents(osb))
1979 		return -ENOTTY;
1980 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1981 		 !ocfs2_sparse_alloc(osb))
1982 		return -ENOTTY;
1983 
1984 	if (!S_ISREG(inode->i_mode))
1985 		return -EINVAL;
1986 
1987 	if (!(file->f_mode & FMODE_WRITE))
1988 		return -EBADF;
1989 
1990 	ret = mnt_want_write_file(file);
1991 	if (ret)
1992 		return ret;
1993 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1994 	mnt_drop_write_file(file);
1995 	return ret;
1996 }
1997 
1998 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1999 			    loff_t len)
2000 {
2001 	struct inode *inode = file_inode(file);
2002 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2003 	struct ocfs2_space_resv sr;
2004 	int change_size = 1;
2005 	int cmd = OCFS2_IOC_RESVSP64;
2006 
2007 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2008 		return -EOPNOTSUPP;
2009 	if (!ocfs2_writes_unwritten_extents(osb))
2010 		return -EOPNOTSUPP;
2011 
2012 	if (mode & FALLOC_FL_KEEP_SIZE)
2013 		change_size = 0;
2014 
2015 	if (mode & FALLOC_FL_PUNCH_HOLE)
2016 		cmd = OCFS2_IOC_UNRESVSP64;
2017 
2018 	sr.l_whence = 0;
2019 	sr.l_start = (s64)offset;
2020 	sr.l_len = (s64)len;
2021 
2022 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2023 					 change_size);
2024 }
2025 
2026 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2027 				   size_t count)
2028 {
2029 	int ret = 0;
2030 	unsigned int extent_flags;
2031 	u32 cpos, clusters, extent_len, phys_cpos;
2032 	struct super_block *sb = inode->i_sb;
2033 
2034 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2035 	    !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2036 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2037 		return 0;
2038 
2039 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2040 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2041 
2042 	while (clusters) {
2043 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2044 					 &extent_flags);
2045 		if (ret < 0) {
2046 			mlog_errno(ret);
2047 			goto out;
2048 		}
2049 
2050 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2051 			ret = 1;
2052 			break;
2053 		}
2054 
2055 		if (extent_len > clusters)
2056 			extent_len = clusters;
2057 
2058 		clusters -= extent_len;
2059 		cpos += extent_len;
2060 	}
2061 out:
2062 	return ret;
2063 }
2064 
2065 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2066 {
2067 	int blockmask = inode->i_sb->s_blocksize - 1;
2068 	loff_t final_size = pos + count;
2069 
2070 	if ((pos & blockmask) || (final_size & blockmask))
2071 		return 1;
2072 	return 0;
2073 }
2074 
2075 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2076 					    struct file *file,
2077 					    loff_t pos, size_t count,
2078 					    int *meta_level)
2079 {
2080 	int ret;
2081 	struct buffer_head *di_bh = NULL;
2082 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2083 	u32 clusters =
2084 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2085 
2086 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2087 	if (ret) {
2088 		mlog_errno(ret);
2089 		goto out;
2090 	}
2091 
2092 	*meta_level = 1;
2093 
2094 	ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2095 	if (ret)
2096 		mlog_errno(ret);
2097 out:
2098 	brelse(di_bh);
2099 	return ret;
2100 }
2101 
2102 static int ocfs2_prepare_inode_for_write(struct file *file,
2103 					 loff_t *ppos,
2104 					 size_t count,
2105 					 int appending,
2106 					 int *direct_io,
2107 					 int *has_refcount)
2108 {
2109 	int ret = 0, meta_level = 0;
2110 	struct dentry *dentry = file->f_path.dentry;
2111 	struct inode *inode = dentry->d_inode;
2112 	loff_t saved_pos = 0, end;
2113 
2114 	/*
2115 	 * We start with a read level meta lock and only jump to an ex
2116 	 * if we need to make modifications here.
2117 	 */
2118 	for(;;) {
2119 		ret = ocfs2_inode_lock(inode, NULL, meta_level);
2120 		if (ret < 0) {
2121 			meta_level = -1;
2122 			mlog_errno(ret);
2123 			goto out;
2124 		}
2125 
2126 		/* Clear suid / sgid if necessary. We do this here
2127 		 * instead of later in the write path because
2128 		 * remove_suid() calls ->setattr without any hint that
2129 		 * we may have already done our cluster locking. Since
2130 		 * ocfs2_setattr() *must* take cluster locks to
2131 		 * proceed, this will lead us to recursively lock the
2132 		 * inode. There's also the dinode i_size state which
2133 		 * can be lost via setattr during extending writes (we
2134 		 * set inode->i_size at the end of a write. */
2135 		if (should_remove_suid(dentry)) {
2136 			if (meta_level == 0) {
2137 				ocfs2_inode_unlock(inode, meta_level);
2138 				meta_level = 1;
2139 				continue;
2140 			}
2141 
2142 			ret = ocfs2_write_remove_suid(inode);
2143 			if (ret < 0) {
2144 				mlog_errno(ret);
2145 				goto out_unlock;
2146 			}
2147 		}
2148 
2149 		/* work on a copy of ppos until we're sure that we won't have
2150 		 * to recalculate it due to relocking. */
2151 		if (appending)
2152 			saved_pos = i_size_read(inode);
2153 		else
2154 			saved_pos = *ppos;
2155 
2156 		end = saved_pos + count;
2157 
2158 		ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2159 		if (ret == 1) {
2160 			ocfs2_inode_unlock(inode, meta_level);
2161 			meta_level = -1;
2162 
2163 			ret = ocfs2_prepare_inode_for_refcount(inode,
2164 							       file,
2165 							       saved_pos,
2166 							       count,
2167 							       &meta_level);
2168 			if (has_refcount)
2169 				*has_refcount = 1;
2170 			if (direct_io)
2171 				*direct_io = 0;
2172 		}
2173 
2174 		if (ret < 0) {
2175 			mlog_errno(ret);
2176 			goto out_unlock;
2177 		}
2178 
2179 		/*
2180 		 * Skip the O_DIRECT checks if we don't need
2181 		 * them.
2182 		 */
2183 		if (!direct_io || !(*direct_io))
2184 			break;
2185 
2186 		/*
2187 		 * There's no sane way to do direct writes to an inode
2188 		 * with inline data.
2189 		 */
2190 		if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2191 			*direct_io = 0;
2192 			break;
2193 		}
2194 
2195 		/*
2196 		 * Allowing concurrent direct writes means
2197 		 * i_size changes wouldn't be synchronized, so
2198 		 * one node could wind up truncating another
2199 		 * nodes writes.
2200 		 */
2201 		if (end > i_size_read(inode)) {
2202 			*direct_io = 0;
2203 			break;
2204 		}
2205 
2206 		/*
2207 		 * We don't fill holes during direct io, so
2208 		 * check for them here. If any are found, the
2209 		 * caller will have to retake some cluster
2210 		 * locks and initiate the io as buffered.
2211 		 */
2212 		ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2213 		if (ret == 1) {
2214 			*direct_io = 0;
2215 			ret = 0;
2216 		} else if (ret < 0)
2217 			mlog_errno(ret);
2218 		break;
2219 	}
2220 
2221 	if (appending)
2222 		*ppos = saved_pos;
2223 
2224 out_unlock:
2225 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2226 					    saved_pos, appending, count,
2227 					    direct_io, has_refcount);
2228 
2229 	if (meta_level >= 0)
2230 		ocfs2_inode_unlock(inode, meta_level);
2231 
2232 out:
2233 	return ret;
2234 }
2235 
2236 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2237 				    const struct iovec *iov,
2238 				    unsigned long nr_segs,
2239 				    loff_t pos)
2240 {
2241 	int ret, direct_io, appending, rw_level, have_alloc_sem  = 0;
2242 	int can_do_direct, has_refcount = 0;
2243 	ssize_t written = 0;
2244 	size_t ocount;		/* original count */
2245 	size_t count;		/* after file limit checks */
2246 	loff_t old_size, *ppos = &iocb->ki_pos;
2247 	u32 old_clusters;
2248 	struct file *file = iocb->ki_filp;
2249 	struct inode *inode = file_inode(file);
2250 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2251 	int full_coherency = !(osb->s_mount_opt &
2252 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2253 	int unaligned_dio = 0;
2254 
2255 	trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2256 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2257 		file->f_path.dentry->d_name.len,
2258 		file->f_path.dentry->d_name.name,
2259 		(unsigned int)nr_segs);
2260 
2261 	if (iocb->ki_nbytes == 0)
2262 		return 0;
2263 
2264 	appending = file->f_flags & O_APPEND ? 1 : 0;
2265 	direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2266 
2267 	mutex_lock(&inode->i_mutex);
2268 
2269 	ocfs2_iocb_clear_sem_locked(iocb);
2270 
2271 relock:
2272 	/* to match setattr's i_mutex -> rw_lock ordering */
2273 	if (direct_io) {
2274 		have_alloc_sem = 1;
2275 		/* communicate with ocfs2_dio_end_io */
2276 		ocfs2_iocb_set_sem_locked(iocb);
2277 	}
2278 
2279 	/*
2280 	 * Concurrent O_DIRECT writes are allowed with
2281 	 * mount_option "coherency=buffered".
2282 	 */
2283 	rw_level = (!direct_io || full_coherency);
2284 
2285 	ret = ocfs2_rw_lock(inode, rw_level);
2286 	if (ret < 0) {
2287 		mlog_errno(ret);
2288 		goto out_sems;
2289 	}
2290 
2291 	/*
2292 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2293 	 * inode_lock to guarantee coherency.
2294 	 */
2295 	if (direct_io && full_coherency) {
2296 		/*
2297 		 * We need to take and drop the inode lock to force
2298 		 * other nodes to drop their caches.  Buffered I/O
2299 		 * already does this in write_begin().
2300 		 */
2301 		ret = ocfs2_inode_lock(inode, NULL, 1);
2302 		if (ret < 0) {
2303 			mlog_errno(ret);
2304 			goto out;
2305 		}
2306 
2307 		ocfs2_inode_unlock(inode, 1);
2308 	}
2309 
2310 	can_do_direct = direct_io;
2311 	ret = ocfs2_prepare_inode_for_write(file, ppos,
2312 					    iocb->ki_nbytes, appending,
2313 					    &can_do_direct, &has_refcount);
2314 	if (ret < 0) {
2315 		mlog_errno(ret);
2316 		goto out;
2317 	}
2318 
2319 	if (direct_io && !is_sync_kiocb(iocb))
2320 		unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_nbytes,
2321 						      *ppos);
2322 
2323 	/*
2324 	 * We can't complete the direct I/O as requested, fall back to
2325 	 * buffered I/O.
2326 	 */
2327 	if (direct_io && !can_do_direct) {
2328 		ocfs2_rw_unlock(inode, rw_level);
2329 
2330 		have_alloc_sem = 0;
2331 		rw_level = -1;
2332 
2333 		direct_io = 0;
2334 		goto relock;
2335 	}
2336 
2337 	if (unaligned_dio) {
2338 		/*
2339 		 * Wait on previous unaligned aio to complete before
2340 		 * proceeding.
2341 		 */
2342 		mutex_lock(&OCFS2_I(inode)->ip_unaligned_aio);
2343 		/* Mark the iocb as needing an unlock in ocfs2_dio_end_io */
2344 		ocfs2_iocb_set_unaligned_aio(iocb);
2345 	}
2346 
2347 	/*
2348 	 * To later detect whether a journal commit for sync writes is
2349 	 * necessary, we sample i_size, and cluster count here.
2350 	 */
2351 	old_size = i_size_read(inode);
2352 	old_clusters = OCFS2_I(inode)->ip_clusters;
2353 
2354 	/* communicate with ocfs2_dio_end_io */
2355 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2356 
2357 	ret = generic_segment_checks(iov, &nr_segs, &ocount,
2358 				     VERIFY_READ);
2359 	if (ret)
2360 		goto out_dio;
2361 
2362 	count = ocount;
2363 	ret = generic_write_checks(file, ppos, &count,
2364 				   S_ISBLK(inode->i_mode));
2365 	if (ret)
2366 		goto out_dio;
2367 
2368 	if (direct_io) {
2369 		written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2370 						    count, ocount);
2371 		if (written < 0) {
2372 			ret = written;
2373 			goto out_dio;
2374 		}
2375 	} else {
2376 		struct iov_iter from;
2377 		iov_iter_init(&from, iov, nr_segs, count, 0);
2378 		current->backing_dev_info = file->f_mapping->backing_dev_info;
2379 		written = generic_perform_write(file, &from, *ppos);
2380 		if (likely(written >= 0))
2381 			iocb->ki_pos = *ppos + written;
2382 		current->backing_dev_info = NULL;
2383 	}
2384 
2385 out_dio:
2386 	/* buffered aio wouldn't have proper lock coverage today */
2387 	BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2388 
2389 	if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2390 	    ((file->f_flags & O_DIRECT) && !direct_io)) {
2391 		ret = filemap_fdatawrite_range(file->f_mapping, *ppos,
2392 					       *ppos + count - 1);
2393 		if (ret < 0)
2394 			written = ret;
2395 
2396 		if (!ret && ((old_size != i_size_read(inode)) ||
2397 			     (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2398 			     has_refcount)) {
2399 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2400 			if (ret < 0)
2401 				written = ret;
2402 		}
2403 
2404 		if (!ret)
2405 			ret = filemap_fdatawait_range(file->f_mapping, *ppos,
2406 						      *ppos + count - 1);
2407 	}
2408 
2409 	/*
2410 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2411 	 * function pointer which is called when o_direct io completes so that
2412 	 * it can unlock our rw lock.
2413 	 * Unfortunately there are error cases which call end_io and others
2414 	 * that don't.  so we don't have to unlock the rw_lock if either an
2415 	 * async dio is going to do it in the future or an end_io after an
2416 	 * error has already done it.
2417 	 */
2418 	if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2419 		rw_level = -1;
2420 		have_alloc_sem = 0;
2421 		unaligned_dio = 0;
2422 	}
2423 
2424 	if (unaligned_dio) {
2425 		ocfs2_iocb_clear_unaligned_aio(iocb);
2426 		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
2427 	}
2428 
2429 out:
2430 	if (rw_level != -1)
2431 		ocfs2_rw_unlock(inode, rw_level);
2432 
2433 out_sems:
2434 	if (have_alloc_sem)
2435 		ocfs2_iocb_clear_sem_locked(iocb);
2436 
2437 	mutex_unlock(&inode->i_mutex);
2438 
2439 	if (written)
2440 		ret = written;
2441 	return ret;
2442 }
2443 
2444 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2445 				struct file *out,
2446 				struct splice_desc *sd)
2447 {
2448 	int ret;
2449 
2450 	ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2451 					    sd->total_len, 0, NULL, NULL);
2452 	if (ret < 0) {
2453 		mlog_errno(ret);
2454 		return ret;
2455 	}
2456 
2457 	return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2458 }
2459 
2460 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2461 				       struct file *out,
2462 				       loff_t *ppos,
2463 				       size_t len,
2464 				       unsigned int flags)
2465 {
2466 	int ret;
2467 	struct address_space *mapping = out->f_mapping;
2468 	struct inode *inode = mapping->host;
2469 	struct splice_desc sd = {
2470 		.total_len = len,
2471 		.flags = flags,
2472 		.pos = *ppos,
2473 		.u.file = out,
2474 	};
2475 
2476 
2477 	trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2478 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2479 			out->f_path.dentry->d_name.len,
2480 			out->f_path.dentry->d_name.name, len);
2481 
2482 	pipe_lock(pipe);
2483 
2484 	splice_from_pipe_begin(&sd);
2485 	do {
2486 		ret = splice_from_pipe_next(pipe, &sd);
2487 		if (ret <= 0)
2488 			break;
2489 
2490 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2491 		ret = ocfs2_rw_lock(inode, 1);
2492 		if (ret < 0)
2493 			mlog_errno(ret);
2494 		else {
2495 			ret = ocfs2_splice_to_file(pipe, out, &sd);
2496 			ocfs2_rw_unlock(inode, 1);
2497 		}
2498 		mutex_unlock(&inode->i_mutex);
2499 	} while (ret > 0);
2500 	splice_from_pipe_end(pipe, &sd);
2501 
2502 	pipe_unlock(pipe);
2503 
2504 	if (sd.num_spliced)
2505 		ret = sd.num_spliced;
2506 
2507 	if (ret > 0) {
2508 		int err;
2509 
2510 		err = generic_write_sync(out, *ppos, ret);
2511 		if (err)
2512 			ret = err;
2513 		else
2514 			*ppos += ret;
2515 
2516 		balance_dirty_pages_ratelimited(mapping);
2517 	}
2518 
2519 	return ret;
2520 }
2521 
2522 static ssize_t ocfs2_file_splice_read(struct file *in,
2523 				      loff_t *ppos,
2524 				      struct pipe_inode_info *pipe,
2525 				      size_t len,
2526 				      unsigned int flags)
2527 {
2528 	int ret = 0, lock_level = 0;
2529 	struct inode *inode = file_inode(in);
2530 
2531 	trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2532 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2533 			in->f_path.dentry->d_name.len,
2534 			in->f_path.dentry->d_name.name, len);
2535 
2536 	/*
2537 	 * See the comment in ocfs2_file_aio_read()
2538 	 */
2539 	ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level);
2540 	if (ret < 0) {
2541 		mlog_errno(ret);
2542 		goto bail;
2543 	}
2544 	ocfs2_inode_unlock(inode, lock_level);
2545 
2546 	ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2547 
2548 bail:
2549 	return ret;
2550 }
2551 
2552 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2553 				   const struct iovec *iov,
2554 				   unsigned long nr_segs,
2555 				   loff_t pos)
2556 {
2557 	int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2558 	struct file *filp = iocb->ki_filp;
2559 	struct inode *inode = file_inode(filp);
2560 
2561 	trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2562 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2563 			filp->f_path.dentry->d_name.len,
2564 			filp->f_path.dentry->d_name.name, nr_segs);
2565 
2566 
2567 	if (!inode) {
2568 		ret = -EINVAL;
2569 		mlog_errno(ret);
2570 		goto bail;
2571 	}
2572 
2573 	ocfs2_iocb_clear_sem_locked(iocb);
2574 
2575 	/*
2576 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2577 	 * need locks to protect pending reads from racing with truncate.
2578 	 */
2579 	if (filp->f_flags & O_DIRECT) {
2580 		have_alloc_sem = 1;
2581 		ocfs2_iocb_set_sem_locked(iocb);
2582 
2583 		ret = ocfs2_rw_lock(inode, 0);
2584 		if (ret < 0) {
2585 			mlog_errno(ret);
2586 			goto bail;
2587 		}
2588 		rw_level = 0;
2589 		/* communicate with ocfs2_dio_end_io */
2590 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2591 	}
2592 
2593 	/*
2594 	 * We're fine letting folks race truncates and extending
2595 	 * writes with read across the cluster, just like they can
2596 	 * locally. Hence no rw_lock during read.
2597 	 *
2598 	 * Take and drop the meta data lock to update inode fields
2599 	 * like i_size. This allows the checks down below
2600 	 * generic_file_aio_read() a chance of actually working.
2601 	 */
2602 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2603 	if (ret < 0) {
2604 		mlog_errno(ret);
2605 		goto bail;
2606 	}
2607 	ocfs2_inode_unlock(inode, lock_level);
2608 
2609 	ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2610 	trace_generic_file_aio_read_ret(ret);
2611 
2612 	/* buffered aio wouldn't have proper lock coverage today */
2613 	BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2614 
2615 	/* see ocfs2_file_aio_write */
2616 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2617 		rw_level = -1;
2618 		have_alloc_sem = 0;
2619 	}
2620 
2621 bail:
2622 	if (have_alloc_sem)
2623 		ocfs2_iocb_clear_sem_locked(iocb);
2624 
2625 	if (rw_level != -1)
2626 		ocfs2_rw_unlock(inode, rw_level);
2627 
2628 	return ret;
2629 }
2630 
2631 /* Refer generic_file_llseek_unlocked() */
2632 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2633 {
2634 	struct inode *inode = file->f_mapping->host;
2635 	int ret = 0;
2636 
2637 	mutex_lock(&inode->i_mutex);
2638 
2639 	switch (whence) {
2640 	case SEEK_SET:
2641 		break;
2642 	case SEEK_END:
2643 		/* SEEK_END requires the OCFS2 inode lock for the file
2644 		 * because it references the file's size.
2645 		 */
2646 		ret = ocfs2_inode_lock(inode, NULL, 0);
2647 		if (ret < 0) {
2648 			mlog_errno(ret);
2649 			goto out;
2650 		}
2651 		offset += i_size_read(inode);
2652 		ocfs2_inode_unlock(inode, 0);
2653 		break;
2654 	case SEEK_CUR:
2655 		if (offset == 0) {
2656 			offset = file->f_pos;
2657 			goto out;
2658 		}
2659 		offset += file->f_pos;
2660 		break;
2661 	case SEEK_DATA:
2662 	case SEEK_HOLE:
2663 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2664 		if (ret)
2665 			goto out;
2666 		break;
2667 	default:
2668 		ret = -EINVAL;
2669 		goto out;
2670 	}
2671 
2672 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2673 
2674 out:
2675 	mutex_unlock(&inode->i_mutex);
2676 	if (ret)
2677 		return ret;
2678 	return offset;
2679 }
2680 
2681 const struct inode_operations ocfs2_file_iops = {
2682 	.setattr	= ocfs2_setattr,
2683 	.getattr	= ocfs2_getattr,
2684 	.permission	= ocfs2_permission,
2685 	.setxattr	= generic_setxattr,
2686 	.getxattr	= generic_getxattr,
2687 	.listxattr	= ocfs2_listxattr,
2688 	.removexattr	= generic_removexattr,
2689 	.fiemap		= ocfs2_fiemap,
2690 	.get_acl	= ocfs2_iop_get_acl,
2691 	.set_acl	= ocfs2_iop_set_acl,
2692 };
2693 
2694 const struct inode_operations ocfs2_special_file_iops = {
2695 	.setattr	= ocfs2_setattr,
2696 	.getattr	= ocfs2_getattr,
2697 	.permission	= ocfs2_permission,
2698 	.get_acl	= ocfs2_iop_get_acl,
2699 	.set_acl	= ocfs2_iop_set_acl,
2700 };
2701 
2702 /*
2703  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2704  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2705  */
2706 const struct file_operations ocfs2_fops = {
2707 	.llseek		= ocfs2_file_llseek,
2708 	.read		= do_sync_read,
2709 	.write		= do_sync_write,
2710 	.mmap		= ocfs2_mmap,
2711 	.fsync		= ocfs2_sync_file,
2712 	.release	= ocfs2_file_release,
2713 	.open		= ocfs2_file_open,
2714 	.aio_read	= ocfs2_file_aio_read,
2715 	.aio_write	= ocfs2_file_aio_write,
2716 	.unlocked_ioctl	= ocfs2_ioctl,
2717 #ifdef CONFIG_COMPAT
2718 	.compat_ioctl   = ocfs2_compat_ioctl,
2719 #endif
2720 	.lock		= ocfs2_lock,
2721 	.flock		= ocfs2_flock,
2722 	.splice_read	= ocfs2_file_splice_read,
2723 	.splice_write	= ocfs2_file_splice_write,
2724 	.fallocate	= ocfs2_fallocate,
2725 };
2726 
2727 const struct file_operations ocfs2_dops = {
2728 	.llseek		= generic_file_llseek,
2729 	.read		= generic_read_dir,
2730 	.iterate	= ocfs2_readdir,
2731 	.fsync		= ocfs2_sync_file,
2732 	.release	= ocfs2_dir_release,
2733 	.open		= ocfs2_dir_open,
2734 	.unlocked_ioctl	= ocfs2_ioctl,
2735 #ifdef CONFIG_COMPAT
2736 	.compat_ioctl   = ocfs2_compat_ioctl,
2737 #endif
2738 	.lock		= ocfs2_lock,
2739 	.flock		= ocfs2_flock,
2740 };
2741 
2742 /*
2743  * POSIX-lockless variants of our file_operations.
2744  *
2745  * These will be used if the underlying cluster stack does not support
2746  * posix file locking, if the user passes the "localflocks" mount
2747  * option, or if we have a local-only fs.
2748  *
2749  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2750  * so we still want it in the case of no stack support for
2751  * plocks. Internally, it will do the right thing when asked to ignore
2752  * the cluster.
2753  */
2754 const struct file_operations ocfs2_fops_no_plocks = {
2755 	.llseek		= ocfs2_file_llseek,
2756 	.read		= do_sync_read,
2757 	.write		= do_sync_write,
2758 	.mmap		= ocfs2_mmap,
2759 	.fsync		= ocfs2_sync_file,
2760 	.release	= ocfs2_file_release,
2761 	.open		= ocfs2_file_open,
2762 	.aio_read	= ocfs2_file_aio_read,
2763 	.aio_write	= ocfs2_file_aio_write,
2764 	.unlocked_ioctl	= ocfs2_ioctl,
2765 #ifdef CONFIG_COMPAT
2766 	.compat_ioctl   = ocfs2_compat_ioctl,
2767 #endif
2768 	.flock		= ocfs2_flock,
2769 	.splice_read	= ocfs2_file_splice_read,
2770 	.splice_write	= ocfs2_file_splice_write,
2771 	.fallocate	= ocfs2_fallocate,
2772 };
2773 
2774 const struct file_operations ocfs2_dops_no_plocks = {
2775 	.llseek		= generic_file_llseek,
2776 	.read		= generic_read_dir,
2777 	.iterate	= ocfs2_readdir,
2778 	.fsync		= ocfs2_sync_file,
2779 	.release	= ocfs2_dir_release,
2780 	.open		= ocfs2_dir_open,
2781 	.unlocked_ioctl	= ocfs2_ioctl,
2782 #ifdef CONFIG_COMPAT
2783 	.compat_ioctl   = ocfs2_compat_ioctl,
2784 #endif
2785 	.flock		= ocfs2_flock,
2786 };
2787