1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * file.c 5 * 6 * File open, close, extend, truncate 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/capability.h> 27 #include <linux/fs.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/highmem.h> 31 #include <linux/pagemap.h> 32 #include <linux/uio.h> 33 #include <linux/sched.h> 34 #include <linux/splice.h> 35 #include <linux/mount.h> 36 #include <linux/writeback.h> 37 #include <linux/falloc.h> 38 #include <linux/quotaops.h> 39 #include <linux/blkdev.h> 40 41 #include <cluster/masklog.h> 42 43 #include "ocfs2.h" 44 45 #include "alloc.h" 46 #include "aops.h" 47 #include "dir.h" 48 #include "dlmglue.h" 49 #include "extent_map.h" 50 #include "file.h" 51 #include "sysfile.h" 52 #include "inode.h" 53 #include "ioctl.h" 54 #include "journal.h" 55 #include "locks.h" 56 #include "mmap.h" 57 #include "suballoc.h" 58 #include "super.h" 59 #include "xattr.h" 60 #include "acl.h" 61 #include "quota.h" 62 #include "refcounttree.h" 63 #include "ocfs2_trace.h" 64 65 #include "buffer_head_io.h" 66 67 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 68 { 69 struct ocfs2_file_private *fp; 70 71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 72 if (!fp) 73 return -ENOMEM; 74 75 fp->fp_file = file; 76 mutex_init(&fp->fp_mutex); 77 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 78 file->private_data = fp; 79 80 return 0; 81 } 82 83 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 84 { 85 struct ocfs2_file_private *fp = file->private_data; 86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 87 88 if (fp) { 89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 90 ocfs2_lock_res_free(&fp->fp_flock); 91 kfree(fp); 92 file->private_data = NULL; 93 } 94 } 95 96 static int ocfs2_file_open(struct inode *inode, struct file *file) 97 { 98 int status; 99 int mode = file->f_flags; 100 struct ocfs2_inode_info *oi = OCFS2_I(inode); 101 102 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 103 (unsigned long long)OCFS2_I(inode)->ip_blkno, 104 file->f_path.dentry->d_name.len, 105 file->f_path.dentry->d_name.name, mode); 106 107 if (file->f_mode & FMODE_WRITE) 108 dquot_initialize(inode); 109 110 spin_lock(&oi->ip_lock); 111 112 /* Check that the inode hasn't been wiped from disk by another 113 * node. If it hasn't then we're safe as long as we hold the 114 * spin lock until our increment of open count. */ 115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { 116 spin_unlock(&oi->ip_lock); 117 118 status = -ENOENT; 119 goto leave; 120 } 121 122 if (mode & O_DIRECT) 123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 124 125 oi->ip_open_count++; 126 spin_unlock(&oi->ip_lock); 127 128 status = ocfs2_init_file_private(inode, file); 129 if (status) { 130 /* 131 * We want to set open count back if we're failing the 132 * open. 133 */ 134 spin_lock(&oi->ip_lock); 135 oi->ip_open_count--; 136 spin_unlock(&oi->ip_lock); 137 } 138 139 leave: 140 return status; 141 } 142 143 static int ocfs2_file_release(struct inode *inode, struct file *file) 144 { 145 struct ocfs2_inode_info *oi = OCFS2_I(inode); 146 147 spin_lock(&oi->ip_lock); 148 if (!--oi->ip_open_count) 149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 150 151 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 152 oi->ip_blkno, 153 file->f_path.dentry->d_name.len, 154 file->f_path.dentry->d_name.name, 155 oi->ip_open_count); 156 spin_unlock(&oi->ip_lock); 157 158 ocfs2_free_file_private(inode, file); 159 160 return 0; 161 } 162 163 static int ocfs2_dir_open(struct inode *inode, struct file *file) 164 { 165 return ocfs2_init_file_private(inode, file); 166 } 167 168 static int ocfs2_dir_release(struct inode *inode, struct file *file) 169 { 170 ocfs2_free_file_private(inode, file); 171 return 0; 172 } 173 174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 175 int datasync) 176 { 177 int err = 0; 178 struct inode *inode = file->f_mapping->host; 179 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 180 struct ocfs2_inode_info *oi = OCFS2_I(inode); 181 journal_t *journal = osb->journal->j_journal; 182 int ret; 183 tid_t commit_tid; 184 bool needs_barrier = false; 185 186 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 187 OCFS2_I(inode)->ip_blkno, 188 file->f_path.dentry->d_name.len, 189 file->f_path.dentry->d_name.name, 190 (unsigned long long)datasync); 191 192 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 193 return -EROFS; 194 195 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 196 if (err) 197 return err; 198 199 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 200 if (journal->j_flags & JBD2_BARRIER && 201 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 202 needs_barrier = true; 203 err = jbd2_complete_transaction(journal, commit_tid); 204 if (needs_barrier) { 205 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 206 if (!err) 207 err = ret; 208 } 209 210 if (err) 211 mlog_errno(err); 212 213 return (err < 0) ? -EIO : 0; 214 } 215 216 int ocfs2_should_update_atime(struct inode *inode, 217 struct vfsmount *vfsmnt) 218 { 219 struct timespec now; 220 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 221 222 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 223 return 0; 224 225 if ((inode->i_flags & S_NOATIME) || 226 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) 227 return 0; 228 229 /* 230 * We can be called with no vfsmnt structure - NFSD will 231 * sometimes do this. 232 * 233 * Note that our action here is different than touch_atime() - 234 * if we can't tell whether this is a noatime mount, then we 235 * don't know whether to trust the value of s_atime_quantum. 236 */ 237 if (vfsmnt == NULL) 238 return 0; 239 240 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 241 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 242 return 0; 243 244 if (vfsmnt->mnt_flags & MNT_RELATIME) { 245 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 246 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 247 return 1; 248 249 return 0; 250 } 251 252 now = CURRENT_TIME; 253 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 254 return 0; 255 else 256 return 1; 257 } 258 259 int ocfs2_update_inode_atime(struct inode *inode, 260 struct buffer_head *bh) 261 { 262 int ret; 263 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 264 handle_t *handle; 265 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 266 267 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 268 if (IS_ERR(handle)) { 269 ret = PTR_ERR(handle); 270 mlog_errno(ret); 271 goto out; 272 } 273 274 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 275 OCFS2_JOURNAL_ACCESS_WRITE); 276 if (ret) { 277 mlog_errno(ret); 278 goto out_commit; 279 } 280 281 /* 282 * Don't use ocfs2_mark_inode_dirty() here as we don't always 283 * have i_mutex to guard against concurrent changes to other 284 * inode fields. 285 */ 286 inode->i_atime = CURRENT_TIME; 287 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 288 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 289 ocfs2_update_inode_fsync_trans(handle, inode, 0); 290 ocfs2_journal_dirty(handle, bh); 291 292 out_commit: 293 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 294 out: 295 return ret; 296 } 297 298 static int ocfs2_set_inode_size(handle_t *handle, 299 struct inode *inode, 300 struct buffer_head *fe_bh, 301 u64 new_i_size) 302 { 303 int status; 304 305 i_size_write(inode, new_i_size); 306 inode->i_blocks = ocfs2_inode_sector_count(inode); 307 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 308 309 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 310 if (status < 0) { 311 mlog_errno(status); 312 goto bail; 313 } 314 315 bail: 316 return status; 317 } 318 319 int ocfs2_simple_size_update(struct inode *inode, 320 struct buffer_head *di_bh, 321 u64 new_i_size) 322 { 323 int ret; 324 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 325 handle_t *handle = NULL; 326 327 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 328 if (IS_ERR(handle)) { 329 ret = PTR_ERR(handle); 330 mlog_errno(ret); 331 goto out; 332 } 333 334 ret = ocfs2_set_inode_size(handle, inode, di_bh, 335 new_i_size); 336 if (ret < 0) 337 mlog_errno(ret); 338 339 ocfs2_update_inode_fsync_trans(handle, inode, 0); 340 ocfs2_commit_trans(osb, handle); 341 out: 342 return ret; 343 } 344 345 static int ocfs2_cow_file_pos(struct inode *inode, 346 struct buffer_head *fe_bh, 347 u64 offset) 348 { 349 int status; 350 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 351 unsigned int num_clusters = 0; 352 unsigned int ext_flags = 0; 353 354 /* 355 * If the new offset is aligned to the range of the cluster, there is 356 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 357 * CoW either. 358 */ 359 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 360 return 0; 361 362 status = ocfs2_get_clusters(inode, cpos, &phys, 363 &num_clusters, &ext_flags); 364 if (status) { 365 mlog_errno(status); 366 goto out; 367 } 368 369 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 370 goto out; 371 372 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 373 374 out: 375 return status; 376 } 377 378 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 379 struct inode *inode, 380 struct buffer_head *fe_bh, 381 u64 new_i_size) 382 { 383 int status; 384 handle_t *handle; 385 struct ocfs2_dinode *di; 386 u64 cluster_bytes; 387 388 /* 389 * We need to CoW the cluster contains the offset if it is reflinked 390 * since we will call ocfs2_zero_range_for_truncate later which will 391 * write "0" from offset to the end of the cluster. 392 */ 393 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 394 if (status) { 395 mlog_errno(status); 396 return status; 397 } 398 399 /* TODO: This needs to actually orphan the inode in this 400 * transaction. */ 401 402 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 403 if (IS_ERR(handle)) { 404 status = PTR_ERR(handle); 405 mlog_errno(status); 406 goto out; 407 } 408 409 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 410 OCFS2_JOURNAL_ACCESS_WRITE); 411 if (status < 0) { 412 mlog_errno(status); 413 goto out_commit; 414 } 415 416 /* 417 * Do this before setting i_size. 418 */ 419 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 420 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 421 cluster_bytes); 422 if (status) { 423 mlog_errno(status); 424 goto out_commit; 425 } 426 427 i_size_write(inode, new_i_size); 428 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 429 430 di = (struct ocfs2_dinode *) fe_bh->b_data; 431 di->i_size = cpu_to_le64(new_i_size); 432 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 433 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 434 ocfs2_update_inode_fsync_trans(handle, inode, 0); 435 436 ocfs2_journal_dirty(handle, fe_bh); 437 438 out_commit: 439 ocfs2_commit_trans(osb, handle); 440 out: 441 return status; 442 } 443 444 static int ocfs2_truncate_file(struct inode *inode, 445 struct buffer_head *di_bh, 446 u64 new_i_size) 447 { 448 int status = 0; 449 struct ocfs2_dinode *fe = NULL; 450 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 451 452 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 453 * already validated it */ 454 fe = (struct ocfs2_dinode *) di_bh->b_data; 455 456 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 457 (unsigned long long)le64_to_cpu(fe->i_size), 458 (unsigned long long)new_i_size); 459 460 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 461 "Inode %llu, inode i_size = %lld != di " 462 "i_size = %llu, i_flags = 0x%x\n", 463 (unsigned long long)OCFS2_I(inode)->ip_blkno, 464 i_size_read(inode), 465 (unsigned long long)le64_to_cpu(fe->i_size), 466 le32_to_cpu(fe->i_flags)); 467 468 if (new_i_size > le64_to_cpu(fe->i_size)) { 469 trace_ocfs2_truncate_file_error( 470 (unsigned long long)le64_to_cpu(fe->i_size), 471 (unsigned long long)new_i_size); 472 status = -EINVAL; 473 mlog_errno(status); 474 goto bail; 475 } 476 477 down_write(&OCFS2_I(inode)->ip_alloc_sem); 478 479 ocfs2_resv_discard(&osb->osb_la_resmap, 480 &OCFS2_I(inode)->ip_la_data_resv); 481 482 /* 483 * The inode lock forced other nodes to sync and drop their 484 * pages, which (correctly) happens even if we have a truncate 485 * without allocation change - ocfs2 cluster sizes can be much 486 * greater than page size, so we have to truncate them 487 * anyway. 488 */ 489 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 490 truncate_inode_pages(inode->i_mapping, new_i_size); 491 492 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 493 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 494 i_size_read(inode), 1); 495 if (status) 496 mlog_errno(status); 497 498 goto bail_unlock_sem; 499 } 500 501 /* alright, we're going to need to do a full blown alloc size 502 * change. Orphan the inode so that recovery can complete the 503 * truncate if necessary. This does the task of marking 504 * i_size. */ 505 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 506 if (status < 0) { 507 mlog_errno(status); 508 goto bail_unlock_sem; 509 } 510 511 status = ocfs2_commit_truncate(osb, inode, di_bh); 512 if (status < 0) { 513 mlog_errno(status); 514 goto bail_unlock_sem; 515 } 516 517 /* TODO: orphan dir cleanup here. */ 518 bail_unlock_sem: 519 up_write(&OCFS2_I(inode)->ip_alloc_sem); 520 521 bail: 522 if (!status && OCFS2_I(inode)->ip_clusters == 0) 523 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 524 525 return status; 526 } 527 528 /* 529 * extend file allocation only here. 530 * we'll update all the disk stuff, and oip->alloc_size 531 * 532 * expect stuff to be locked, a transaction started and enough data / 533 * metadata reservations in the contexts. 534 * 535 * Will return -EAGAIN, and a reason if a restart is needed. 536 * If passed in, *reason will always be set, even in error. 537 */ 538 int ocfs2_add_inode_data(struct ocfs2_super *osb, 539 struct inode *inode, 540 u32 *logical_offset, 541 u32 clusters_to_add, 542 int mark_unwritten, 543 struct buffer_head *fe_bh, 544 handle_t *handle, 545 struct ocfs2_alloc_context *data_ac, 546 struct ocfs2_alloc_context *meta_ac, 547 enum ocfs2_alloc_restarted *reason_ret) 548 { 549 int ret; 550 struct ocfs2_extent_tree et; 551 552 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 553 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 554 clusters_to_add, mark_unwritten, 555 data_ac, meta_ac, reason_ret); 556 557 return ret; 558 } 559 560 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 561 u32 clusters_to_add, int mark_unwritten) 562 { 563 int status = 0; 564 int restart_func = 0; 565 int credits; 566 u32 prev_clusters; 567 struct buffer_head *bh = NULL; 568 struct ocfs2_dinode *fe = NULL; 569 handle_t *handle = NULL; 570 struct ocfs2_alloc_context *data_ac = NULL; 571 struct ocfs2_alloc_context *meta_ac = NULL; 572 enum ocfs2_alloc_restarted why; 573 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 574 struct ocfs2_extent_tree et; 575 int did_quota = 0; 576 577 /* 578 * Unwritten extent only exists for file systems which 579 * support holes. 580 */ 581 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 582 583 status = ocfs2_read_inode_block(inode, &bh); 584 if (status < 0) { 585 mlog_errno(status); 586 goto leave; 587 } 588 fe = (struct ocfs2_dinode *) bh->b_data; 589 590 restart_all: 591 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 592 593 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 594 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 595 &data_ac, &meta_ac); 596 if (status) { 597 mlog_errno(status); 598 goto leave; 599 } 600 601 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 602 handle = ocfs2_start_trans(osb, credits); 603 if (IS_ERR(handle)) { 604 status = PTR_ERR(handle); 605 handle = NULL; 606 mlog_errno(status); 607 goto leave; 608 } 609 610 restarted_transaction: 611 trace_ocfs2_extend_allocation( 612 (unsigned long long)OCFS2_I(inode)->ip_blkno, 613 (unsigned long long)i_size_read(inode), 614 le32_to_cpu(fe->i_clusters), clusters_to_add, 615 why, restart_func); 616 617 status = dquot_alloc_space_nodirty(inode, 618 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 619 if (status) 620 goto leave; 621 did_quota = 1; 622 623 /* reserve a write to the file entry early on - that we if we 624 * run out of credits in the allocation path, we can still 625 * update i_size. */ 626 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 627 OCFS2_JOURNAL_ACCESS_WRITE); 628 if (status < 0) { 629 mlog_errno(status); 630 goto leave; 631 } 632 633 prev_clusters = OCFS2_I(inode)->ip_clusters; 634 635 status = ocfs2_add_inode_data(osb, 636 inode, 637 &logical_start, 638 clusters_to_add, 639 mark_unwritten, 640 bh, 641 handle, 642 data_ac, 643 meta_ac, 644 &why); 645 if ((status < 0) && (status != -EAGAIN)) { 646 if (status != -ENOSPC) 647 mlog_errno(status); 648 goto leave; 649 } 650 ocfs2_update_inode_fsync_trans(handle, inode, 1); 651 ocfs2_journal_dirty(handle, bh); 652 653 spin_lock(&OCFS2_I(inode)->ip_lock); 654 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 655 spin_unlock(&OCFS2_I(inode)->ip_lock); 656 /* Release unused quota reservation */ 657 dquot_free_space(inode, 658 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 659 did_quota = 0; 660 661 if (why != RESTART_NONE && clusters_to_add) { 662 if (why == RESTART_META) { 663 restart_func = 1; 664 status = 0; 665 } else { 666 BUG_ON(why != RESTART_TRANS); 667 668 status = ocfs2_allocate_extend_trans(handle, 1); 669 if (status < 0) { 670 /* handle still has to be committed at 671 * this point. */ 672 status = -ENOMEM; 673 mlog_errno(status); 674 goto leave; 675 } 676 goto restarted_transaction; 677 } 678 } 679 680 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 681 le32_to_cpu(fe->i_clusters), 682 (unsigned long long)le64_to_cpu(fe->i_size), 683 OCFS2_I(inode)->ip_clusters, 684 (unsigned long long)i_size_read(inode)); 685 686 leave: 687 if (status < 0 && did_quota) 688 dquot_free_space(inode, 689 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 690 if (handle) { 691 ocfs2_commit_trans(osb, handle); 692 handle = NULL; 693 } 694 if (data_ac) { 695 ocfs2_free_alloc_context(data_ac); 696 data_ac = NULL; 697 } 698 if (meta_ac) { 699 ocfs2_free_alloc_context(meta_ac); 700 meta_ac = NULL; 701 } 702 if ((!status) && restart_func) { 703 restart_func = 0; 704 goto restart_all; 705 } 706 brelse(bh); 707 bh = NULL; 708 709 return status; 710 } 711 712 /* 713 * While a write will already be ordering the data, a truncate will not. 714 * Thus, we need to explicitly order the zeroed pages. 715 */ 716 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 717 struct buffer_head *di_bh) 718 { 719 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 720 handle_t *handle = NULL; 721 int ret = 0; 722 723 if (!ocfs2_should_order_data(inode)) 724 goto out; 725 726 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 727 if (IS_ERR(handle)) { 728 ret = -ENOMEM; 729 mlog_errno(ret); 730 goto out; 731 } 732 733 ret = ocfs2_jbd2_file_inode(handle, inode); 734 if (ret < 0) { 735 mlog_errno(ret); 736 goto out; 737 } 738 739 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 740 OCFS2_JOURNAL_ACCESS_WRITE); 741 if (ret) 742 mlog_errno(ret); 743 ocfs2_update_inode_fsync_trans(handle, inode, 1); 744 745 out: 746 if (ret) { 747 if (!IS_ERR(handle)) 748 ocfs2_commit_trans(osb, handle); 749 handle = ERR_PTR(ret); 750 } 751 return handle; 752 } 753 754 /* Some parts of this taken from generic_cont_expand, which turned out 755 * to be too fragile to do exactly what we need without us having to 756 * worry about recursive locking in ->write_begin() and ->write_end(). */ 757 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 758 u64 abs_to, struct buffer_head *di_bh) 759 { 760 struct address_space *mapping = inode->i_mapping; 761 struct page *page; 762 unsigned long index = abs_from >> PAGE_CACHE_SHIFT; 763 handle_t *handle = NULL; 764 int ret = 0; 765 unsigned zero_from, zero_to, block_start, block_end; 766 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 767 768 BUG_ON(abs_from >= abs_to); 769 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT)); 770 BUG_ON(abs_from & (inode->i_blkbits - 1)); 771 772 page = find_or_create_page(mapping, index, GFP_NOFS); 773 if (!page) { 774 ret = -ENOMEM; 775 mlog_errno(ret); 776 goto out; 777 } 778 779 /* Get the offsets within the page that we want to zero */ 780 zero_from = abs_from & (PAGE_CACHE_SIZE - 1); 781 zero_to = abs_to & (PAGE_CACHE_SIZE - 1); 782 if (!zero_to) 783 zero_to = PAGE_CACHE_SIZE; 784 785 trace_ocfs2_write_zero_page( 786 (unsigned long long)OCFS2_I(inode)->ip_blkno, 787 (unsigned long long)abs_from, 788 (unsigned long long)abs_to, 789 index, zero_from, zero_to); 790 791 /* We know that zero_from is block aligned */ 792 for (block_start = zero_from; block_start < zero_to; 793 block_start = block_end) { 794 block_end = block_start + (1 << inode->i_blkbits); 795 796 /* 797 * block_start is block-aligned. Bump it by one to force 798 * __block_write_begin and block_commit_write to zero the 799 * whole block. 800 */ 801 ret = __block_write_begin(page, block_start + 1, 0, 802 ocfs2_get_block); 803 if (ret < 0) { 804 mlog_errno(ret); 805 goto out_unlock; 806 } 807 808 if (!handle) { 809 handle = ocfs2_zero_start_ordered_transaction(inode, 810 di_bh); 811 if (IS_ERR(handle)) { 812 ret = PTR_ERR(handle); 813 handle = NULL; 814 break; 815 } 816 } 817 818 /* must not update i_size! */ 819 ret = block_commit_write(page, block_start + 1, 820 block_start + 1); 821 if (ret < 0) 822 mlog_errno(ret); 823 else 824 ret = 0; 825 } 826 827 if (handle) { 828 /* 829 * fs-writeback will release the dirty pages without page lock 830 * whose offset are over inode size, the release happens at 831 * block_write_full_page_endio(). 832 */ 833 i_size_write(inode, abs_to); 834 inode->i_blocks = ocfs2_inode_sector_count(inode); 835 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 836 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 837 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 838 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 839 di->i_mtime_nsec = di->i_ctime_nsec; 840 ocfs2_journal_dirty(handle, di_bh); 841 ocfs2_update_inode_fsync_trans(handle, inode, 1); 842 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 843 } 844 845 out_unlock: 846 unlock_page(page); 847 page_cache_release(page); 848 out: 849 return ret; 850 } 851 852 /* 853 * Find the next range to zero. We do this in terms of bytes because 854 * that's what ocfs2_zero_extend() wants, and it is dealing with the 855 * pagecache. We may return multiple extents. 856 * 857 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 858 * needs to be zeroed. range_start and range_end return the next zeroing 859 * range. A subsequent call should pass the previous range_end as its 860 * zero_start. If range_end is 0, there's nothing to do. 861 * 862 * Unwritten extents are skipped over. Refcounted extents are CoWd. 863 */ 864 static int ocfs2_zero_extend_get_range(struct inode *inode, 865 struct buffer_head *di_bh, 866 u64 zero_start, u64 zero_end, 867 u64 *range_start, u64 *range_end) 868 { 869 int rc = 0, needs_cow = 0; 870 u32 p_cpos, zero_clusters = 0; 871 u32 zero_cpos = 872 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 873 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 874 unsigned int num_clusters = 0; 875 unsigned int ext_flags = 0; 876 877 while (zero_cpos < last_cpos) { 878 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 879 &num_clusters, &ext_flags); 880 if (rc) { 881 mlog_errno(rc); 882 goto out; 883 } 884 885 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 886 zero_clusters = num_clusters; 887 if (ext_flags & OCFS2_EXT_REFCOUNTED) 888 needs_cow = 1; 889 break; 890 } 891 892 zero_cpos += num_clusters; 893 } 894 if (!zero_clusters) { 895 *range_end = 0; 896 goto out; 897 } 898 899 while ((zero_cpos + zero_clusters) < last_cpos) { 900 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 901 &p_cpos, &num_clusters, 902 &ext_flags); 903 if (rc) { 904 mlog_errno(rc); 905 goto out; 906 } 907 908 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 909 break; 910 if (ext_flags & OCFS2_EXT_REFCOUNTED) 911 needs_cow = 1; 912 zero_clusters += num_clusters; 913 } 914 if ((zero_cpos + zero_clusters) > last_cpos) 915 zero_clusters = last_cpos - zero_cpos; 916 917 if (needs_cow) { 918 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 919 zero_clusters, UINT_MAX); 920 if (rc) { 921 mlog_errno(rc); 922 goto out; 923 } 924 } 925 926 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 927 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 928 zero_cpos + zero_clusters); 929 930 out: 931 return rc; 932 } 933 934 /* 935 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 936 * has made sure that the entire range needs zeroing. 937 */ 938 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 939 u64 range_end, struct buffer_head *di_bh) 940 { 941 int rc = 0; 942 u64 next_pos; 943 u64 zero_pos = range_start; 944 945 trace_ocfs2_zero_extend_range( 946 (unsigned long long)OCFS2_I(inode)->ip_blkno, 947 (unsigned long long)range_start, 948 (unsigned long long)range_end); 949 BUG_ON(range_start >= range_end); 950 951 while (zero_pos < range_end) { 952 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE; 953 if (next_pos > range_end) 954 next_pos = range_end; 955 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 956 if (rc < 0) { 957 mlog_errno(rc); 958 break; 959 } 960 zero_pos = next_pos; 961 962 /* 963 * Very large extends have the potential to lock up 964 * the cpu for extended periods of time. 965 */ 966 cond_resched(); 967 } 968 969 return rc; 970 } 971 972 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 973 loff_t zero_to_size) 974 { 975 int ret = 0; 976 u64 zero_start, range_start = 0, range_end = 0; 977 struct super_block *sb = inode->i_sb; 978 979 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 980 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 981 (unsigned long long)zero_start, 982 (unsigned long long)i_size_read(inode)); 983 while (zero_start < zero_to_size) { 984 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 985 zero_to_size, 986 &range_start, 987 &range_end); 988 if (ret) { 989 mlog_errno(ret); 990 break; 991 } 992 if (!range_end) 993 break; 994 /* Trim the ends */ 995 if (range_start < zero_start) 996 range_start = zero_start; 997 if (range_end > zero_to_size) 998 range_end = zero_to_size; 999 1000 ret = ocfs2_zero_extend_range(inode, range_start, 1001 range_end, di_bh); 1002 if (ret) { 1003 mlog_errno(ret); 1004 break; 1005 } 1006 zero_start = range_end; 1007 } 1008 1009 return ret; 1010 } 1011 1012 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1013 u64 new_i_size, u64 zero_to) 1014 { 1015 int ret; 1016 u32 clusters_to_add; 1017 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1018 1019 /* 1020 * Only quota files call this without a bh, and they can't be 1021 * refcounted. 1022 */ 1023 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL)); 1024 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1025 1026 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1027 if (clusters_to_add < oi->ip_clusters) 1028 clusters_to_add = 0; 1029 else 1030 clusters_to_add -= oi->ip_clusters; 1031 1032 if (clusters_to_add) { 1033 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters, 1034 clusters_to_add, 0); 1035 if (ret) { 1036 mlog_errno(ret); 1037 goto out; 1038 } 1039 } 1040 1041 /* 1042 * Call this even if we don't add any clusters to the tree. We 1043 * still need to zero the area between the old i_size and the 1044 * new i_size. 1045 */ 1046 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1047 if (ret < 0) 1048 mlog_errno(ret); 1049 1050 out: 1051 return ret; 1052 } 1053 1054 static int ocfs2_extend_file(struct inode *inode, 1055 struct buffer_head *di_bh, 1056 u64 new_i_size) 1057 { 1058 int ret = 0; 1059 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1060 1061 BUG_ON(!di_bh); 1062 1063 /* setattr sometimes calls us like this. */ 1064 if (new_i_size == 0) 1065 goto out; 1066 1067 if (i_size_read(inode) == new_i_size) 1068 goto out; 1069 BUG_ON(new_i_size < i_size_read(inode)); 1070 1071 /* 1072 * The alloc sem blocks people in read/write from reading our 1073 * allocation until we're done changing it. We depend on 1074 * i_mutex to block other extend/truncate calls while we're 1075 * here. We even have to hold it for sparse files because there 1076 * might be some tail zeroing. 1077 */ 1078 down_write(&oi->ip_alloc_sem); 1079 1080 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1081 /* 1082 * We can optimize small extends by keeping the inodes 1083 * inline data. 1084 */ 1085 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1086 up_write(&oi->ip_alloc_sem); 1087 goto out_update_size; 1088 } 1089 1090 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1091 if (ret) { 1092 up_write(&oi->ip_alloc_sem); 1093 mlog_errno(ret); 1094 goto out; 1095 } 1096 } 1097 1098 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1099 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1100 else 1101 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1102 new_i_size); 1103 1104 up_write(&oi->ip_alloc_sem); 1105 1106 if (ret < 0) { 1107 mlog_errno(ret); 1108 goto out; 1109 } 1110 1111 out_update_size: 1112 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1113 if (ret < 0) 1114 mlog_errno(ret); 1115 1116 out: 1117 return ret; 1118 } 1119 1120 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) 1121 { 1122 int status = 0, size_change; 1123 struct inode *inode = dentry->d_inode; 1124 struct super_block *sb = inode->i_sb; 1125 struct ocfs2_super *osb = OCFS2_SB(sb); 1126 struct buffer_head *bh = NULL; 1127 handle_t *handle = NULL; 1128 struct dquot *transfer_to[MAXQUOTAS] = { }; 1129 int qtype; 1130 1131 trace_ocfs2_setattr(inode, dentry, 1132 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1133 dentry->d_name.len, dentry->d_name.name, 1134 attr->ia_valid, attr->ia_mode, 1135 from_kuid(&init_user_ns, attr->ia_uid), 1136 from_kgid(&init_user_ns, attr->ia_gid)); 1137 1138 /* ensuring we don't even attempt to truncate a symlink */ 1139 if (S_ISLNK(inode->i_mode)) 1140 attr->ia_valid &= ~ATTR_SIZE; 1141 1142 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1143 | ATTR_GID | ATTR_UID | ATTR_MODE) 1144 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1145 return 0; 1146 1147 status = inode_change_ok(inode, attr); 1148 if (status) 1149 return status; 1150 1151 if (is_quota_modification(inode, attr)) 1152 dquot_initialize(inode); 1153 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1154 if (size_change) { 1155 status = ocfs2_rw_lock(inode, 1); 1156 if (status < 0) { 1157 mlog_errno(status); 1158 goto bail; 1159 } 1160 } 1161 1162 status = ocfs2_inode_lock(inode, &bh, 1); 1163 if (status < 0) { 1164 if (status != -ENOENT) 1165 mlog_errno(status); 1166 goto bail_unlock_rw; 1167 } 1168 1169 if (size_change) { 1170 status = inode_newsize_ok(inode, attr->ia_size); 1171 if (status) 1172 goto bail_unlock; 1173 1174 inode_dio_wait(inode); 1175 1176 if (i_size_read(inode) >= attr->ia_size) { 1177 if (ocfs2_should_order_data(inode)) { 1178 status = ocfs2_begin_ordered_truncate(inode, 1179 attr->ia_size); 1180 if (status) 1181 goto bail_unlock; 1182 } 1183 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1184 } else 1185 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1186 if (status < 0) { 1187 if (status != -ENOSPC) 1188 mlog_errno(status); 1189 status = -ENOSPC; 1190 goto bail_unlock; 1191 } 1192 } 1193 1194 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1195 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1196 /* 1197 * Gather pointers to quota structures so that allocation / 1198 * freeing of quota structures happens here and not inside 1199 * dquot_transfer() where we have problems with lock ordering 1200 */ 1201 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1202 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1203 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1204 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1205 if (!transfer_to[USRQUOTA]) { 1206 status = -ESRCH; 1207 goto bail_unlock; 1208 } 1209 } 1210 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1211 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1212 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1213 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1214 if (!transfer_to[GRPQUOTA]) { 1215 status = -ESRCH; 1216 goto bail_unlock; 1217 } 1218 } 1219 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1220 2 * ocfs2_quota_trans_credits(sb)); 1221 if (IS_ERR(handle)) { 1222 status = PTR_ERR(handle); 1223 mlog_errno(status); 1224 goto bail_unlock; 1225 } 1226 status = __dquot_transfer(inode, transfer_to); 1227 if (status < 0) 1228 goto bail_commit; 1229 } else { 1230 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1231 if (IS_ERR(handle)) { 1232 status = PTR_ERR(handle); 1233 mlog_errno(status); 1234 goto bail_unlock; 1235 } 1236 } 1237 1238 setattr_copy(inode, attr); 1239 mark_inode_dirty(inode); 1240 1241 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1242 if (status < 0) 1243 mlog_errno(status); 1244 1245 bail_commit: 1246 ocfs2_commit_trans(osb, handle); 1247 bail_unlock: 1248 ocfs2_inode_unlock(inode, 1); 1249 bail_unlock_rw: 1250 if (size_change) 1251 ocfs2_rw_unlock(inode, 1); 1252 bail: 1253 brelse(bh); 1254 1255 /* Release quota pointers in case we acquired them */ 1256 for (qtype = 0; qtype < MAXQUOTAS; qtype++) 1257 dqput(transfer_to[qtype]); 1258 1259 if (!status && attr->ia_valid & ATTR_MODE) { 1260 status = posix_acl_chmod(inode, inode->i_mode); 1261 if (status < 0) 1262 mlog_errno(status); 1263 } 1264 1265 return status; 1266 } 1267 1268 int ocfs2_getattr(struct vfsmount *mnt, 1269 struct dentry *dentry, 1270 struct kstat *stat) 1271 { 1272 struct inode *inode = dentry->d_inode; 1273 struct super_block *sb = dentry->d_inode->i_sb; 1274 struct ocfs2_super *osb = sb->s_fs_info; 1275 int err; 1276 1277 err = ocfs2_inode_revalidate(dentry); 1278 if (err) { 1279 if (err != -ENOENT) 1280 mlog_errno(err); 1281 goto bail; 1282 } 1283 1284 generic_fillattr(inode, stat); 1285 1286 /* We set the blksize from the cluster size for performance */ 1287 stat->blksize = osb->s_clustersize; 1288 1289 bail: 1290 return err; 1291 } 1292 1293 int ocfs2_permission(struct inode *inode, int mask) 1294 { 1295 int ret; 1296 1297 if (mask & MAY_NOT_BLOCK) 1298 return -ECHILD; 1299 1300 ret = ocfs2_inode_lock(inode, NULL, 0); 1301 if (ret) { 1302 if (ret != -ENOENT) 1303 mlog_errno(ret); 1304 goto out; 1305 } 1306 1307 ret = generic_permission(inode, mask); 1308 1309 ocfs2_inode_unlock(inode, 0); 1310 out: 1311 return ret; 1312 } 1313 1314 static int __ocfs2_write_remove_suid(struct inode *inode, 1315 struct buffer_head *bh) 1316 { 1317 int ret; 1318 handle_t *handle; 1319 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1320 struct ocfs2_dinode *di; 1321 1322 trace_ocfs2_write_remove_suid( 1323 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1324 inode->i_mode); 1325 1326 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1327 if (IS_ERR(handle)) { 1328 ret = PTR_ERR(handle); 1329 mlog_errno(ret); 1330 goto out; 1331 } 1332 1333 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1334 OCFS2_JOURNAL_ACCESS_WRITE); 1335 if (ret < 0) { 1336 mlog_errno(ret); 1337 goto out_trans; 1338 } 1339 1340 inode->i_mode &= ~S_ISUID; 1341 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1342 inode->i_mode &= ~S_ISGID; 1343 1344 di = (struct ocfs2_dinode *) bh->b_data; 1345 di->i_mode = cpu_to_le16(inode->i_mode); 1346 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1347 1348 ocfs2_journal_dirty(handle, bh); 1349 1350 out_trans: 1351 ocfs2_commit_trans(osb, handle); 1352 out: 1353 return ret; 1354 } 1355 1356 /* 1357 * Will look for holes and unwritten extents in the range starting at 1358 * pos for count bytes (inclusive). 1359 */ 1360 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos, 1361 size_t count) 1362 { 1363 int ret = 0; 1364 unsigned int extent_flags; 1365 u32 cpos, clusters, extent_len, phys_cpos; 1366 struct super_block *sb = inode->i_sb; 1367 1368 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 1369 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 1370 1371 while (clusters) { 1372 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 1373 &extent_flags); 1374 if (ret < 0) { 1375 mlog_errno(ret); 1376 goto out; 1377 } 1378 1379 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) { 1380 ret = 1; 1381 break; 1382 } 1383 1384 if (extent_len > clusters) 1385 extent_len = clusters; 1386 1387 clusters -= extent_len; 1388 cpos += extent_len; 1389 } 1390 out: 1391 return ret; 1392 } 1393 1394 static int ocfs2_write_remove_suid(struct inode *inode) 1395 { 1396 int ret; 1397 struct buffer_head *bh = NULL; 1398 1399 ret = ocfs2_read_inode_block(inode, &bh); 1400 if (ret < 0) { 1401 mlog_errno(ret); 1402 goto out; 1403 } 1404 1405 ret = __ocfs2_write_remove_suid(inode, bh); 1406 out: 1407 brelse(bh); 1408 return ret; 1409 } 1410 1411 /* 1412 * Allocate enough extents to cover the region starting at byte offset 1413 * start for len bytes. Existing extents are skipped, any extents 1414 * added are marked as "unwritten". 1415 */ 1416 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1417 u64 start, u64 len) 1418 { 1419 int ret; 1420 u32 cpos, phys_cpos, clusters, alloc_size; 1421 u64 end = start + len; 1422 struct buffer_head *di_bh = NULL; 1423 1424 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1425 ret = ocfs2_read_inode_block(inode, &di_bh); 1426 if (ret) { 1427 mlog_errno(ret); 1428 goto out; 1429 } 1430 1431 /* 1432 * Nothing to do if the requested reservation range 1433 * fits within the inode. 1434 */ 1435 if (ocfs2_size_fits_inline_data(di_bh, end)) 1436 goto out; 1437 1438 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1439 if (ret) { 1440 mlog_errno(ret); 1441 goto out; 1442 } 1443 } 1444 1445 /* 1446 * We consider both start and len to be inclusive. 1447 */ 1448 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1449 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1450 clusters -= cpos; 1451 1452 while (clusters) { 1453 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1454 &alloc_size, NULL); 1455 if (ret) { 1456 mlog_errno(ret); 1457 goto out; 1458 } 1459 1460 /* 1461 * Hole or existing extent len can be arbitrary, so 1462 * cap it to our own allocation request. 1463 */ 1464 if (alloc_size > clusters) 1465 alloc_size = clusters; 1466 1467 if (phys_cpos) { 1468 /* 1469 * We already have an allocation at this 1470 * region so we can safely skip it. 1471 */ 1472 goto next; 1473 } 1474 1475 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1476 if (ret) { 1477 if (ret != -ENOSPC) 1478 mlog_errno(ret); 1479 goto out; 1480 } 1481 1482 next: 1483 cpos += alloc_size; 1484 clusters -= alloc_size; 1485 } 1486 1487 ret = 0; 1488 out: 1489 1490 brelse(di_bh); 1491 return ret; 1492 } 1493 1494 /* 1495 * Truncate a byte range, avoiding pages within partial clusters. This 1496 * preserves those pages for the zeroing code to write to. 1497 */ 1498 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1499 u64 byte_len) 1500 { 1501 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1502 loff_t start, end; 1503 struct address_space *mapping = inode->i_mapping; 1504 1505 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1506 end = byte_start + byte_len; 1507 end = end & ~(osb->s_clustersize - 1); 1508 1509 if (start < end) { 1510 unmap_mapping_range(mapping, start, end - start, 0); 1511 truncate_inode_pages_range(mapping, start, end - 1); 1512 } 1513 } 1514 1515 static int ocfs2_zero_partial_clusters(struct inode *inode, 1516 u64 start, u64 len) 1517 { 1518 int ret = 0; 1519 u64 tmpend, end = start + len; 1520 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1521 unsigned int csize = osb->s_clustersize; 1522 handle_t *handle; 1523 1524 /* 1525 * The "start" and "end" values are NOT necessarily part of 1526 * the range whose allocation is being deleted. Rather, this 1527 * is what the user passed in with the request. We must zero 1528 * partial clusters here. There's no need to worry about 1529 * physical allocation - the zeroing code knows to skip holes. 1530 */ 1531 trace_ocfs2_zero_partial_clusters( 1532 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1533 (unsigned long long)start, (unsigned long long)end); 1534 1535 /* 1536 * If both edges are on a cluster boundary then there's no 1537 * zeroing required as the region is part of the allocation to 1538 * be truncated. 1539 */ 1540 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1541 goto out; 1542 1543 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1544 if (IS_ERR(handle)) { 1545 ret = PTR_ERR(handle); 1546 mlog_errno(ret); 1547 goto out; 1548 } 1549 1550 /* 1551 * We want to get the byte offset of the end of the 1st cluster. 1552 */ 1553 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1)); 1554 if (tmpend > end) 1555 tmpend = end; 1556 1557 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start, 1558 (unsigned long long)tmpend); 1559 1560 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend); 1561 if (ret) 1562 mlog_errno(ret); 1563 1564 if (tmpend < end) { 1565 /* 1566 * This may make start and end equal, but the zeroing 1567 * code will skip any work in that case so there's no 1568 * need to catch it up here. 1569 */ 1570 start = end & ~(osb->s_clustersize - 1); 1571 1572 trace_ocfs2_zero_partial_clusters_range2( 1573 (unsigned long long)start, (unsigned long long)end); 1574 1575 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1576 if (ret) 1577 mlog_errno(ret); 1578 } 1579 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1580 1581 ocfs2_commit_trans(osb, handle); 1582 out: 1583 return ret; 1584 } 1585 1586 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1587 { 1588 int i; 1589 struct ocfs2_extent_rec *rec = NULL; 1590 1591 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1592 1593 rec = &el->l_recs[i]; 1594 1595 if (le32_to_cpu(rec->e_cpos) < pos) 1596 break; 1597 } 1598 1599 return i; 1600 } 1601 1602 /* 1603 * Helper to calculate the punching pos and length in one run, we handle the 1604 * following three cases in order: 1605 * 1606 * - remove the entire record 1607 * - remove a partial record 1608 * - no record needs to be removed (hole-punching completed) 1609 */ 1610 static void ocfs2_calc_trunc_pos(struct inode *inode, 1611 struct ocfs2_extent_list *el, 1612 struct ocfs2_extent_rec *rec, 1613 u32 trunc_start, u32 *trunc_cpos, 1614 u32 *trunc_len, u32 *trunc_end, 1615 u64 *blkno, int *done) 1616 { 1617 int ret = 0; 1618 u32 coff, range; 1619 1620 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1621 1622 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1623 /* 1624 * remove an entire extent record. 1625 */ 1626 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1627 /* 1628 * Skip holes if any. 1629 */ 1630 if (range < *trunc_end) 1631 *trunc_end = range; 1632 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1633 *blkno = le64_to_cpu(rec->e_blkno); 1634 *trunc_end = le32_to_cpu(rec->e_cpos); 1635 } else if (range > trunc_start) { 1636 /* 1637 * remove a partial extent record, which means we're 1638 * removing the last extent record. 1639 */ 1640 *trunc_cpos = trunc_start; 1641 /* 1642 * skip hole if any. 1643 */ 1644 if (range < *trunc_end) 1645 *trunc_end = range; 1646 *trunc_len = *trunc_end - trunc_start; 1647 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1648 *blkno = le64_to_cpu(rec->e_blkno) + 1649 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1650 *trunc_end = trunc_start; 1651 } else { 1652 /* 1653 * It may have two following possibilities: 1654 * 1655 * - last record has been removed 1656 * - trunc_start was within a hole 1657 * 1658 * both two cases mean the completion of hole punching. 1659 */ 1660 ret = 1; 1661 } 1662 1663 *done = ret; 1664 } 1665 1666 static int ocfs2_remove_inode_range(struct inode *inode, 1667 struct buffer_head *di_bh, u64 byte_start, 1668 u64 byte_len) 1669 { 1670 int ret = 0, flags = 0, done = 0, i; 1671 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1672 u32 cluster_in_el; 1673 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1674 struct ocfs2_cached_dealloc_ctxt dealloc; 1675 struct address_space *mapping = inode->i_mapping; 1676 struct ocfs2_extent_tree et; 1677 struct ocfs2_path *path = NULL; 1678 struct ocfs2_extent_list *el = NULL; 1679 struct ocfs2_extent_rec *rec = NULL; 1680 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1681 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1682 1683 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1684 ocfs2_init_dealloc_ctxt(&dealloc); 1685 1686 trace_ocfs2_remove_inode_range( 1687 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1688 (unsigned long long)byte_start, 1689 (unsigned long long)byte_len); 1690 1691 if (byte_len == 0) 1692 return 0; 1693 1694 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1695 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1696 byte_start + byte_len, 0); 1697 if (ret) { 1698 mlog_errno(ret); 1699 goto out; 1700 } 1701 /* 1702 * There's no need to get fancy with the page cache 1703 * truncate of an inline-data inode. We're talking 1704 * about less than a page here, which will be cached 1705 * in the dinode buffer anyway. 1706 */ 1707 unmap_mapping_range(mapping, 0, 0, 0); 1708 truncate_inode_pages(mapping, 0); 1709 goto out; 1710 } 1711 1712 /* 1713 * For reflinks, we may need to CoW 2 clusters which might be 1714 * partially zero'd later, if hole's start and end offset were 1715 * within one cluster(means is not exactly aligned to clustersize). 1716 */ 1717 1718 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) { 1719 1720 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1721 if (ret) { 1722 mlog_errno(ret); 1723 goto out; 1724 } 1725 1726 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1727 if (ret) { 1728 mlog_errno(ret); 1729 goto out; 1730 } 1731 } 1732 1733 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1734 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1735 cluster_in_el = trunc_end; 1736 1737 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1738 if (ret) { 1739 mlog_errno(ret); 1740 goto out; 1741 } 1742 1743 path = ocfs2_new_path_from_et(&et); 1744 if (!path) { 1745 ret = -ENOMEM; 1746 mlog_errno(ret); 1747 goto out; 1748 } 1749 1750 while (trunc_end > trunc_start) { 1751 1752 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1753 cluster_in_el); 1754 if (ret) { 1755 mlog_errno(ret); 1756 goto out; 1757 } 1758 1759 el = path_leaf_el(path); 1760 1761 i = ocfs2_find_rec(el, trunc_end); 1762 /* 1763 * Need to go to previous extent block. 1764 */ 1765 if (i < 0) { 1766 if (path->p_tree_depth == 0) 1767 break; 1768 1769 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1770 path, 1771 &cluster_in_el); 1772 if (ret) { 1773 mlog_errno(ret); 1774 goto out; 1775 } 1776 1777 /* 1778 * We've reached the leftmost extent block, 1779 * it's safe to leave. 1780 */ 1781 if (cluster_in_el == 0) 1782 break; 1783 1784 /* 1785 * The 'pos' searched for previous extent block is 1786 * always one cluster less than actual trunc_end. 1787 */ 1788 trunc_end = cluster_in_el + 1; 1789 1790 ocfs2_reinit_path(path, 1); 1791 1792 continue; 1793 1794 } else 1795 rec = &el->l_recs[i]; 1796 1797 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1798 &trunc_len, &trunc_end, &blkno, &done); 1799 if (done) 1800 break; 1801 1802 flags = rec->e_flags; 1803 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1804 1805 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1806 phys_cpos, trunc_len, flags, 1807 &dealloc, refcount_loc); 1808 if (ret < 0) { 1809 mlog_errno(ret); 1810 goto out; 1811 } 1812 1813 cluster_in_el = trunc_end; 1814 1815 ocfs2_reinit_path(path, 1); 1816 } 1817 1818 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1819 1820 out: 1821 ocfs2_free_path(path); 1822 ocfs2_schedule_truncate_log_flush(osb, 1); 1823 ocfs2_run_deallocs(osb, &dealloc); 1824 1825 return ret; 1826 } 1827 1828 /* 1829 * Parts of this function taken from xfs_change_file_space() 1830 */ 1831 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1832 loff_t f_pos, unsigned int cmd, 1833 struct ocfs2_space_resv *sr, 1834 int change_size) 1835 { 1836 int ret; 1837 s64 llen; 1838 loff_t size; 1839 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1840 struct buffer_head *di_bh = NULL; 1841 handle_t *handle; 1842 unsigned long long max_off = inode->i_sb->s_maxbytes; 1843 1844 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1845 return -EROFS; 1846 1847 mutex_lock(&inode->i_mutex); 1848 1849 /* 1850 * This prevents concurrent writes on other nodes 1851 */ 1852 ret = ocfs2_rw_lock(inode, 1); 1853 if (ret) { 1854 mlog_errno(ret); 1855 goto out; 1856 } 1857 1858 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1859 if (ret) { 1860 mlog_errno(ret); 1861 goto out_rw_unlock; 1862 } 1863 1864 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1865 ret = -EPERM; 1866 goto out_inode_unlock; 1867 } 1868 1869 switch (sr->l_whence) { 1870 case 0: /*SEEK_SET*/ 1871 break; 1872 case 1: /*SEEK_CUR*/ 1873 sr->l_start += f_pos; 1874 break; 1875 case 2: /*SEEK_END*/ 1876 sr->l_start += i_size_read(inode); 1877 break; 1878 default: 1879 ret = -EINVAL; 1880 goto out_inode_unlock; 1881 } 1882 sr->l_whence = 0; 1883 1884 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1885 1886 if (sr->l_start < 0 1887 || sr->l_start > max_off 1888 || (sr->l_start + llen) < 0 1889 || (sr->l_start + llen) > max_off) { 1890 ret = -EINVAL; 1891 goto out_inode_unlock; 1892 } 1893 size = sr->l_start + sr->l_len; 1894 1895 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1896 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1897 if (sr->l_len <= 0) { 1898 ret = -EINVAL; 1899 goto out_inode_unlock; 1900 } 1901 } 1902 1903 if (file && should_remove_suid(file->f_path.dentry)) { 1904 ret = __ocfs2_write_remove_suid(inode, di_bh); 1905 if (ret) { 1906 mlog_errno(ret); 1907 goto out_inode_unlock; 1908 } 1909 } 1910 1911 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1912 switch (cmd) { 1913 case OCFS2_IOC_RESVSP: 1914 case OCFS2_IOC_RESVSP64: 1915 /* 1916 * This takes unsigned offsets, but the signed ones we 1917 * pass have been checked against overflow above. 1918 */ 1919 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1920 sr->l_len); 1921 break; 1922 case OCFS2_IOC_UNRESVSP: 1923 case OCFS2_IOC_UNRESVSP64: 1924 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1925 sr->l_len); 1926 break; 1927 default: 1928 ret = -EINVAL; 1929 } 1930 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1931 if (ret) { 1932 mlog_errno(ret); 1933 goto out_inode_unlock; 1934 } 1935 1936 /* 1937 * We update c/mtime for these changes 1938 */ 1939 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1940 if (IS_ERR(handle)) { 1941 ret = PTR_ERR(handle); 1942 mlog_errno(ret); 1943 goto out_inode_unlock; 1944 } 1945 1946 if (change_size && i_size_read(inode) < size) 1947 i_size_write(inode, size); 1948 1949 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 1950 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1951 if (ret < 0) 1952 mlog_errno(ret); 1953 1954 if (file && (file->f_flags & O_SYNC)) 1955 handle->h_sync = 1; 1956 1957 ocfs2_commit_trans(osb, handle); 1958 1959 out_inode_unlock: 1960 brelse(di_bh); 1961 ocfs2_inode_unlock(inode, 1); 1962 out_rw_unlock: 1963 ocfs2_rw_unlock(inode, 1); 1964 1965 out: 1966 mutex_unlock(&inode->i_mutex); 1967 return ret; 1968 } 1969 1970 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 1971 struct ocfs2_space_resv *sr) 1972 { 1973 struct inode *inode = file_inode(file); 1974 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1975 int ret; 1976 1977 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 1978 !ocfs2_writes_unwritten_extents(osb)) 1979 return -ENOTTY; 1980 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 1981 !ocfs2_sparse_alloc(osb)) 1982 return -ENOTTY; 1983 1984 if (!S_ISREG(inode->i_mode)) 1985 return -EINVAL; 1986 1987 if (!(file->f_mode & FMODE_WRITE)) 1988 return -EBADF; 1989 1990 ret = mnt_want_write_file(file); 1991 if (ret) 1992 return ret; 1993 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 1994 mnt_drop_write_file(file); 1995 return ret; 1996 } 1997 1998 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 1999 loff_t len) 2000 { 2001 struct inode *inode = file_inode(file); 2002 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2003 struct ocfs2_space_resv sr; 2004 int change_size = 1; 2005 int cmd = OCFS2_IOC_RESVSP64; 2006 2007 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2008 return -EOPNOTSUPP; 2009 if (!ocfs2_writes_unwritten_extents(osb)) 2010 return -EOPNOTSUPP; 2011 2012 if (mode & FALLOC_FL_KEEP_SIZE) 2013 change_size = 0; 2014 2015 if (mode & FALLOC_FL_PUNCH_HOLE) 2016 cmd = OCFS2_IOC_UNRESVSP64; 2017 2018 sr.l_whence = 0; 2019 sr.l_start = (s64)offset; 2020 sr.l_len = (s64)len; 2021 2022 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2023 change_size); 2024 } 2025 2026 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2027 size_t count) 2028 { 2029 int ret = 0; 2030 unsigned int extent_flags; 2031 u32 cpos, clusters, extent_len, phys_cpos; 2032 struct super_block *sb = inode->i_sb; 2033 2034 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2035 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) || 2036 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2037 return 0; 2038 2039 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2040 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2041 2042 while (clusters) { 2043 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2044 &extent_flags); 2045 if (ret < 0) { 2046 mlog_errno(ret); 2047 goto out; 2048 } 2049 2050 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2051 ret = 1; 2052 break; 2053 } 2054 2055 if (extent_len > clusters) 2056 extent_len = clusters; 2057 2058 clusters -= extent_len; 2059 cpos += extent_len; 2060 } 2061 out: 2062 return ret; 2063 } 2064 2065 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2066 { 2067 int blockmask = inode->i_sb->s_blocksize - 1; 2068 loff_t final_size = pos + count; 2069 2070 if ((pos & blockmask) || (final_size & blockmask)) 2071 return 1; 2072 return 0; 2073 } 2074 2075 static int ocfs2_prepare_inode_for_refcount(struct inode *inode, 2076 struct file *file, 2077 loff_t pos, size_t count, 2078 int *meta_level) 2079 { 2080 int ret; 2081 struct buffer_head *di_bh = NULL; 2082 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2083 u32 clusters = 2084 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2085 2086 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2087 if (ret) { 2088 mlog_errno(ret); 2089 goto out; 2090 } 2091 2092 *meta_level = 1; 2093 2094 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2095 if (ret) 2096 mlog_errno(ret); 2097 out: 2098 brelse(di_bh); 2099 return ret; 2100 } 2101 2102 static int ocfs2_prepare_inode_for_write(struct file *file, 2103 loff_t *ppos, 2104 size_t count, 2105 int appending, 2106 int *direct_io, 2107 int *has_refcount) 2108 { 2109 int ret = 0, meta_level = 0; 2110 struct dentry *dentry = file->f_path.dentry; 2111 struct inode *inode = dentry->d_inode; 2112 loff_t saved_pos = 0, end; 2113 2114 /* 2115 * We start with a read level meta lock and only jump to an ex 2116 * if we need to make modifications here. 2117 */ 2118 for(;;) { 2119 ret = ocfs2_inode_lock(inode, NULL, meta_level); 2120 if (ret < 0) { 2121 meta_level = -1; 2122 mlog_errno(ret); 2123 goto out; 2124 } 2125 2126 /* Clear suid / sgid if necessary. We do this here 2127 * instead of later in the write path because 2128 * remove_suid() calls ->setattr without any hint that 2129 * we may have already done our cluster locking. Since 2130 * ocfs2_setattr() *must* take cluster locks to 2131 * proceed, this will lead us to recursively lock the 2132 * inode. There's also the dinode i_size state which 2133 * can be lost via setattr during extending writes (we 2134 * set inode->i_size at the end of a write. */ 2135 if (should_remove_suid(dentry)) { 2136 if (meta_level == 0) { 2137 ocfs2_inode_unlock(inode, meta_level); 2138 meta_level = 1; 2139 continue; 2140 } 2141 2142 ret = ocfs2_write_remove_suid(inode); 2143 if (ret < 0) { 2144 mlog_errno(ret); 2145 goto out_unlock; 2146 } 2147 } 2148 2149 /* work on a copy of ppos until we're sure that we won't have 2150 * to recalculate it due to relocking. */ 2151 if (appending) 2152 saved_pos = i_size_read(inode); 2153 else 2154 saved_pos = *ppos; 2155 2156 end = saved_pos + count; 2157 2158 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count); 2159 if (ret == 1) { 2160 ocfs2_inode_unlock(inode, meta_level); 2161 meta_level = -1; 2162 2163 ret = ocfs2_prepare_inode_for_refcount(inode, 2164 file, 2165 saved_pos, 2166 count, 2167 &meta_level); 2168 if (has_refcount) 2169 *has_refcount = 1; 2170 if (direct_io) 2171 *direct_io = 0; 2172 } 2173 2174 if (ret < 0) { 2175 mlog_errno(ret); 2176 goto out_unlock; 2177 } 2178 2179 /* 2180 * Skip the O_DIRECT checks if we don't need 2181 * them. 2182 */ 2183 if (!direct_io || !(*direct_io)) 2184 break; 2185 2186 /* 2187 * There's no sane way to do direct writes to an inode 2188 * with inline data. 2189 */ 2190 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2191 *direct_io = 0; 2192 break; 2193 } 2194 2195 /* 2196 * Allowing concurrent direct writes means 2197 * i_size changes wouldn't be synchronized, so 2198 * one node could wind up truncating another 2199 * nodes writes. 2200 */ 2201 if (end > i_size_read(inode)) { 2202 *direct_io = 0; 2203 break; 2204 } 2205 2206 /* 2207 * We don't fill holes during direct io, so 2208 * check for them here. If any are found, the 2209 * caller will have to retake some cluster 2210 * locks and initiate the io as buffered. 2211 */ 2212 ret = ocfs2_check_range_for_holes(inode, saved_pos, count); 2213 if (ret == 1) { 2214 *direct_io = 0; 2215 ret = 0; 2216 } else if (ret < 0) 2217 mlog_errno(ret); 2218 break; 2219 } 2220 2221 if (appending) 2222 *ppos = saved_pos; 2223 2224 out_unlock: 2225 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2226 saved_pos, appending, count, 2227 direct_io, has_refcount); 2228 2229 if (meta_level >= 0) 2230 ocfs2_inode_unlock(inode, meta_level); 2231 2232 out: 2233 return ret; 2234 } 2235 2236 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb, 2237 const struct iovec *iov, 2238 unsigned long nr_segs, 2239 loff_t pos) 2240 { 2241 int ret, direct_io, appending, rw_level, have_alloc_sem = 0; 2242 int can_do_direct, has_refcount = 0; 2243 ssize_t written = 0; 2244 size_t ocount; /* original count */ 2245 size_t count; /* after file limit checks */ 2246 loff_t old_size, *ppos = &iocb->ki_pos; 2247 u32 old_clusters; 2248 struct file *file = iocb->ki_filp; 2249 struct inode *inode = file_inode(file); 2250 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2251 int full_coherency = !(osb->s_mount_opt & 2252 OCFS2_MOUNT_COHERENCY_BUFFERED); 2253 int unaligned_dio = 0; 2254 2255 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry, 2256 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2257 file->f_path.dentry->d_name.len, 2258 file->f_path.dentry->d_name.name, 2259 (unsigned int)nr_segs); 2260 2261 if (iocb->ki_nbytes == 0) 2262 return 0; 2263 2264 appending = file->f_flags & O_APPEND ? 1 : 0; 2265 direct_io = file->f_flags & O_DIRECT ? 1 : 0; 2266 2267 mutex_lock(&inode->i_mutex); 2268 2269 ocfs2_iocb_clear_sem_locked(iocb); 2270 2271 relock: 2272 /* to match setattr's i_mutex -> rw_lock ordering */ 2273 if (direct_io) { 2274 have_alloc_sem = 1; 2275 /* communicate with ocfs2_dio_end_io */ 2276 ocfs2_iocb_set_sem_locked(iocb); 2277 } 2278 2279 /* 2280 * Concurrent O_DIRECT writes are allowed with 2281 * mount_option "coherency=buffered". 2282 */ 2283 rw_level = (!direct_io || full_coherency); 2284 2285 ret = ocfs2_rw_lock(inode, rw_level); 2286 if (ret < 0) { 2287 mlog_errno(ret); 2288 goto out_sems; 2289 } 2290 2291 /* 2292 * O_DIRECT writes with "coherency=full" need to take EX cluster 2293 * inode_lock to guarantee coherency. 2294 */ 2295 if (direct_io && full_coherency) { 2296 /* 2297 * We need to take and drop the inode lock to force 2298 * other nodes to drop their caches. Buffered I/O 2299 * already does this in write_begin(). 2300 */ 2301 ret = ocfs2_inode_lock(inode, NULL, 1); 2302 if (ret < 0) { 2303 mlog_errno(ret); 2304 goto out; 2305 } 2306 2307 ocfs2_inode_unlock(inode, 1); 2308 } 2309 2310 can_do_direct = direct_io; 2311 ret = ocfs2_prepare_inode_for_write(file, ppos, 2312 iocb->ki_nbytes, appending, 2313 &can_do_direct, &has_refcount); 2314 if (ret < 0) { 2315 mlog_errno(ret); 2316 goto out; 2317 } 2318 2319 if (direct_io && !is_sync_kiocb(iocb)) 2320 unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_nbytes, 2321 *ppos); 2322 2323 /* 2324 * We can't complete the direct I/O as requested, fall back to 2325 * buffered I/O. 2326 */ 2327 if (direct_io && !can_do_direct) { 2328 ocfs2_rw_unlock(inode, rw_level); 2329 2330 have_alloc_sem = 0; 2331 rw_level = -1; 2332 2333 direct_io = 0; 2334 goto relock; 2335 } 2336 2337 if (unaligned_dio) { 2338 /* 2339 * Wait on previous unaligned aio to complete before 2340 * proceeding. 2341 */ 2342 mutex_lock(&OCFS2_I(inode)->ip_unaligned_aio); 2343 /* Mark the iocb as needing an unlock in ocfs2_dio_end_io */ 2344 ocfs2_iocb_set_unaligned_aio(iocb); 2345 } 2346 2347 /* 2348 * To later detect whether a journal commit for sync writes is 2349 * necessary, we sample i_size, and cluster count here. 2350 */ 2351 old_size = i_size_read(inode); 2352 old_clusters = OCFS2_I(inode)->ip_clusters; 2353 2354 /* communicate with ocfs2_dio_end_io */ 2355 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2356 2357 ret = generic_segment_checks(iov, &nr_segs, &ocount, 2358 VERIFY_READ); 2359 if (ret) 2360 goto out_dio; 2361 2362 count = ocount; 2363 ret = generic_write_checks(file, ppos, &count, 2364 S_ISBLK(inode->i_mode)); 2365 if (ret) 2366 goto out_dio; 2367 2368 if (direct_io) { 2369 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos, 2370 count, ocount); 2371 if (written < 0) { 2372 ret = written; 2373 goto out_dio; 2374 } 2375 } else { 2376 struct iov_iter from; 2377 iov_iter_init(&from, iov, nr_segs, count, 0); 2378 current->backing_dev_info = file->f_mapping->backing_dev_info; 2379 written = generic_perform_write(file, &from, *ppos); 2380 if (likely(written >= 0)) 2381 iocb->ki_pos = *ppos + written; 2382 current->backing_dev_info = NULL; 2383 } 2384 2385 out_dio: 2386 /* buffered aio wouldn't have proper lock coverage today */ 2387 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT)); 2388 2389 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) || 2390 ((file->f_flags & O_DIRECT) && !direct_io)) { 2391 ret = filemap_fdatawrite_range(file->f_mapping, *ppos, 2392 *ppos + count - 1); 2393 if (ret < 0) 2394 written = ret; 2395 2396 if (!ret && ((old_size != i_size_read(inode)) || 2397 (old_clusters != OCFS2_I(inode)->ip_clusters) || 2398 has_refcount)) { 2399 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2400 if (ret < 0) 2401 written = ret; 2402 } 2403 2404 if (!ret) 2405 ret = filemap_fdatawait_range(file->f_mapping, *ppos, 2406 *ppos + count - 1); 2407 } 2408 2409 /* 2410 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2411 * function pointer which is called when o_direct io completes so that 2412 * it can unlock our rw lock. 2413 * Unfortunately there are error cases which call end_io and others 2414 * that don't. so we don't have to unlock the rw_lock if either an 2415 * async dio is going to do it in the future or an end_io after an 2416 * error has already done it. 2417 */ 2418 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2419 rw_level = -1; 2420 have_alloc_sem = 0; 2421 unaligned_dio = 0; 2422 } 2423 2424 if (unaligned_dio) { 2425 ocfs2_iocb_clear_unaligned_aio(iocb); 2426 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio); 2427 } 2428 2429 out: 2430 if (rw_level != -1) 2431 ocfs2_rw_unlock(inode, rw_level); 2432 2433 out_sems: 2434 if (have_alloc_sem) 2435 ocfs2_iocb_clear_sem_locked(iocb); 2436 2437 mutex_unlock(&inode->i_mutex); 2438 2439 if (written) 2440 ret = written; 2441 return ret; 2442 } 2443 2444 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe, 2445 struct file *out, 2446 struct splice_desc *sd) 2447 { 2448 int ret; 2449 2450 ret = ocfs2_prepare_inode_for_write(out, &sd->pos, 2451 sd->total_len, 0, NULL, NULL); 2452 if (ret < 0) { 2453 mlog_errno(ret); 2454 return ret; 2455 } 2456 2457 return splice_from_pipe_feed(pipe, sd, pipe_to_file); 2458 } 2459 2460 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe, 2461 struct file *out, 2462 loff_t *ppos, 2463 size_t len, 2464 unsigned int flags) 2465 { 2466 int ret; 2467 struct address_space *mapping = out->f_mapping; 2468 struct inode *inode = mapping->host; 2469 struct splice_desc sd = { 2470 .total_len = len, 2471 .flags = flags, 2472 .pos = *ppos, 2473 .u.file = out, 2474 }; 2475 2476 2477 trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry, 2478 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2479 out->f_path.dentry->d_name.len, 2480 out->f_path.dentry->d_name.name, len); 2481 2482 pipe_lock(pipe); 2483 2484 splice_from_pipe_begin(&sd); 2485 do { 2486 ret = splice_from_pipe_next(pipe, &sd); 2487 if (ret <= 0) 2488 break; 2489 2490 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2491 ret = ocfs2_rw_lock(inode, 1); 2492 if (ret < 0) 2493 mlog_errno(ret); 2494 else { 2495 ret = ocfs2_splice_to_file(pipe, out, &sd); 2496 ocfs2_rw_unlock(inode, 1); 2497 } 2498 mutex_unlock(&inode->i_mutex); 2499 } while (ret > 0); 2500 splice_from_pipe_end(pipe, &sd); 2501 2502 pipe_unlock(pipe); 2503 2504 if (sd.num_spliced) 2505 ret = sd.num_spliced; 2506 2507 if (ret > 0) { 2508 int err; 2509 2510 err = generic_write_sync(out, *ppos, ret); 2511 if (err) 2512 ret = err; 2513 else 2514 *ppos += ret; 2515 2516 balance_dirty_pages_ratelimited(mapping); 2517 } 2518 2519 return ret; 2520 } 2521 2522 static ssize_t ocfs2_file_splice_read(struct file *in, 2523 loff_t *ppos, 2524 struct pipe_inode_info *pipe, 2525 size_t len, 2526 unsigned int flags) 2527 { 2528 int ret = 0, lock_level = 0; 2529 struct inode *inode = file_inode(in); 2530 2531 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, 2532 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2533 in->f_path.dentry->d_name.len, 2534 in->f_path.dentry->d_name.name, len); 2535 2536 /* 2537 * See the comment in ocfs2_file_aio_read() 2538 */ 2539 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level); 2540 if (ret < 0) { 2541 mlog_errno(ret); 2542 goto bail; 2543 } 2544 ocfs2_inode_unlock(inode, lock_level); 2545 2546 ret = generic_file_splice_read(in, ppos, pipe, len, flags); 2547 2548 bail: 2549 return ret; 2550 } 2551 2552 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb, 2553 const struct iovec *iov, 2554 unsigned long nr_segs, 2555 loff_t pos) 2556 { 2557 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0; 2558 struct file *filp = iocb->ki_filp; 2559 struct inode *inode = file_inode(filp); 2560 2561 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry, 2562 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2563 filp->f_path.dentry->d_name.len, 2564 filp->f_path.dentry->d_name.name, nr_segs); 2565 2566 2567 if (!inode) { 2568 ret = -EINVAL; 2569 mlog_errno(ret); 2570 goto bail; 2571 } 2572 2573 ocfs2_iocb_clear_sem_locked(iocb); 2574 2575 /* 2576 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2577 * need locks to protect pending reads from racing with truncate. 2578 */ 2579 if (filp->f_flags & O_DIRECT) { 2580 have_alloc_sem = 1; 2581 ocfs2_iocb_set_sem_locked(iocb); 2582 2583 ret = ocfs2_rw_lock(inode, 0); 2584 if (ret < 0) { 2585 mlog_errno(ret); 2586 goto bail; 2587 } 2588 rw_level = 0; 2589 /* communicate with ocfs2_dio_end_io */ 2590 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2591 } 2592 2593 /* 2594 * We're fine letting folks race truncates and extending 2595 * writes with read across the cluster, just like they can 2596 * locally. Hence no rw_lock during read. 2597 * 2598 * Take and drop the meta data lock to update inode fields 2599 * like i_size. This allows the checks down below 2600 * generic_file_aio_read() a chance of actually working. 2601 */ 2602 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level); 2603 if (ret < 0) { 2604 mlog_errno(ret); 2605 goto bail; 2606 } 2607 ocfs2_inode_unlock(inode, lock_level); 2608 2609 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos); 2610 trace_generic_file_aio_read_ret(ret); 2611 2612 /* buffered aio wouldn't have proper lock coverage today */ 2613 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT)); 2614 2615 /* see ocfs2_file_aio_write */ 2616 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2617 rw_level = -1; 2618 have_alloc_sem = 0; 2619 } 2620 2621 bail: 2622 if (have_alloc_sem) 2623 ocfs2_iocb_clear_sem_locked(iocb); 2624 2625 if (rw_level != -1) 2626 ocfs2_rw_unlock(inode, rw_level); 2627 2628 return ret; 2629 } 2630 2631 /* Refer generic_file_llseek_unlocked() */ 2632 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2633 { 2634 struct inode *inode = file->f_mapping->host; 2635 int ret = 0; 2636 2637 mutex_lock(&inode->i_mutex); 2638 2639 switch (whence) { 2640 case SEEK_SET: 2641 break; 2642 case SEEK_END: 2643 /* SEEK_END requires the OCFS2 inode lock for the file 2644 * because it references the file's size. 2645 */ 2646 ret = ocfs2_inode_lock(inode, NULL, 0); 2647 if (ret < 0) { 2648 mlog_errno(ret); 2649 goto out; 2650 } 2651 offset += i_size_read(inode); 2652 ocfs2_inode_unlock(inode, 0); 2653 break; 2654 case SEEK_CUR: 2655 if (offset == 0) { 2656 offset = file->f_pos; 2657 goto out; 2658 } 2659 offset += file->f_pos; 2660 break; 2661 case SEEK_DATA: 2662 case SEEK_HOLE: 2663 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2664 if (ret) 2665 goto out; 2666 break; 2667 default: 2668 ret = -EINVAL; 2669 goto out; 2670 } 2671 2672 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2673 2674 out: 2675 mutex_unlock(&inode->i_mutex); 2676 if (ret) 2677 return ret; 2678 return offset; 2679 } 2680 2681 const struct inode_operations ocfs2_file_iops = { 2682 .setattr = ocfs2_setattr, 2683 .getattr = ocfs2_getattr, 2684 .permission = ocfs2_permission, 2685 .setxattr = generic_setxattr, 2686 .getxattr = generic_getxattr, 2687 .listxattr = ocfs2_listxattr, 2688 .removexattr = generic_removexattr, 2689 .fiemap = ocfs2_fiemap, 2690 .get_acl = ocfs2_iop_get_acl, 2691 .set_acl = ocfs2_iop_set_acl, 2692 }; 2693 2694 const struct inode_operations ocfs2_special_file_iops = { 2695 .setattr = ocfs2_setattr, 2696 .getattr = ocfs2_getattr, 2697 .permission = ocfs2_permission, 2698 .get_acl = ocfs2_iop_get_acl, 2699 .set_acl = ocfs2_iop_set_acl, 2700 }; 2701 2702 /* 2703 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2704 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2705 */ 2706 const struct file_operations ocfs2_fops = { 2707 .llseek = ocfs2_file_llseek, 2708 .read = do_sync_read, 2709 .write = do_sync_write, 2710 .mmap = ocfs2_mmap, 2711 .fsync = ocfs2_sync_file, 2712 .release = ocfs2_file_release, 2713 .open = ocfs2_file_open, 2714 .aio_read = ocfs2_file_aio_read, 2715 .aio_write = ocfs2_file_aio_write, 2716 .unlocked_ioctl = ocfs2_ioctl, 2717 #ifdef CONFIG_COMPAT 2718 .compat_ioctl = ocfs2_compat_ioctl, 2719 #endif 2720 .lock = ocfs2_lock, 2721 .flock = ocfs2_flock, 2722 .splice_read = ocfs2_file_splice_read, 2723 .splice_write = ocfs2_file_splice_write, 2724 .fallocate = ocfs2_fallocate, 2725 }; 2726 2727 const struct file_operations ocfs2_dops = { 2728 .llseek = generic_file_llseek, 2729 .read = generic_read_dir, 2730 .iterate = ocfs2_readdir, 2731 .fsync = ocfs2_sync_file, 2732 .release = ocfs2_dir_release, 2733 .open = ocfs2_dir_open, 2734 .unlocked_ioctl = ocfs2_ioctl, 2735 #ifdef CONFIG_COMPAT 2736 .compat_ioctl = ocfs2_compat_ioctl, 2737 #endif 2738 .lock = ocfs2_lock, 2739 .flock = ocfs2_flock, 2740 }; 2741 2742 /* 2743 * POSIX-lockless variants of our file_operations. 2744 * 2745 * These will be used if the underlying cluster stack does not support 2746 * posix file locking, if the user passes the "localflocks" mount 2747 * option, or if we have a local-only fs. 2748 * 2749 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2750 * so we still want it in the case of no stack support for 2751 * plocks. Internally, it will do the right thing when asked to ignore 2752 * the cluster. 2753 */ 2754 const struct file_operations ocfs2_fops_no_plocks = { 2755 .llseek = ocfs2_file_llseek, 2756 .read = do_sync_read, 2757 .write = do_sync_write, 2758 .mmap = ocfs2_mmap, 2759 .fsync = ocfs2_sync_file, 2760 .release = ocfs2_file_release, 2761 .open = ocfs2_file_open, 2762 .aio_read = ocfs2_file_aio_read, 2763 .aio_write = ocfs2_file_aio_write, 2764 .unlocked_ioctl = ocfs2_ioctl, 2765 #ifdef CONFIG_COMPAT 2766 .compat_ioctl = ocfs2_compat_ioctl, 2767 #endif 2768 .flock = ocfs2_flock, 2769 .splice_read = ocfs2_file_splice_read, 2770 .splice_write = ocfs2_file_splice_write, 2771 .fallocate = ocfs2_fallocate, 2772 }; 2773 2774 const struct file_operations ocfs2_dops_no_plocks = { 2775 .llseek = generic_file_llseek, 2776 .read = generic_read_dir, 2777 .iterate = ocfs2_readdir, 2778 .fsync = ocfs2_sync_file, 2779 .release = ocfs2_dir_release, 2780 .open = ocfs2_dir_open, 2781 .unlocked_ioctl = ocfs2_ioctl, 2782 #ifdef CONFIG_COMPAT 2783 .compat_ioctl = ocfs2_compat_ioctl, 2784 #endif 2785 .flock = ocfs2_flock, 2786 }; 2787