xref: /openbmc/linux/fs/ocfs2/file.c (revision aa1d19f1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * file.c
6  *
7  * File open, close, extend, truncate
8  *
9  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
10  */
11 
12 #include <linux/capability.h>
13 #include <linux/fs.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/highmem.h>
17 #include <linux/pagemap.h>
18 #include <linux/uio.h>
19 #include <linux/sched.h>
20 #include <linux/splice.h>
21 #include <linux/mount.h>
22 #include <linux/writeback.h>
23 #include <linux/falloc.h>
24 #include <linux/quotaops.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 
28 #include <cluster/masklog.h>
29 
30 #include "ocfs2.h"
31 
32 #include "alloc.h"
33 #include "aops.h"
34 #include "dir.h"
35 #include "dlmglue.h"
36 #include "extent_map.h"
37 #include "file.h"
38 #include "sysfile.h"
39 #include "inode.h"
40 #include "ioctl.h"
41 #include "journal.h"
42 #include "locks.h"
43 #include "mmap.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "quota.h"
49 #include "refcounttree.h"
50 #include "ocfs2_trace.h"
51 
52 #include "buffer_head_io.h"
53 
54 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
55 {
56 	struct ocfs2_file_private *fp;
57 
58 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
59 	if (!fp)
60 		return -ENOMEM;
61 
62 	fp->fp_file = file;
63 	mutex_init(&fp->fp_mutex);
64 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
65 	file->private_data = fp;
66 
67 	return 0;
68 }
69 
70 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
71 {
72 	struct ocfs2_file_private *fp = file->private_data;
73 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
74 
75 	if (fp) {
76 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
77 		ocfs2_lock_res_free(&fp->fp_flock);
78 		kfree(fp);
79 		file->private_data = NULL;
80 	}
81 }
82 
83 static int ocfs2_file_open(struct inode *inode, struct file *file)
84 {
85 	int status;
86 	int mode = file->f_flags;
87 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
88 
89 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
90 			      (unsigned long long)oi->ip_blkno,
91 			      file->f_path.dentry->d_name.len,
92 			      file->f_path.dentry->d_name.name, mode);
93 
94 	if (file->f_mode & FMODE_WRITE) {
95 		status = dquot_initialize(inode);
96 		if (status)
97 			goto leave;
98 	}
99 
100 	spin_lock(&oi->ip_lock);
101 
102 	/* Check that the inode hasn't been wiped from disk by another
103 	 * node. If it hasn't then we're safe as long as we hold the
104 	 * spin lock until our increment of open count. */
105 	if (oi->ip_flags & OCFS2_INODE_DELETED) {
106 		spin_unlock(&oi->ip_lock);
107 
108 		status = -ENOENT;
109 		goto leave;
110 	}
111 
112 	if (mode & O_DIRECT)
113 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
114 
115 	oi->ip_open_count++;
116 	spin_unlock(&oi->ip_lock);
117 
118 	status = ocfs2_init_file_private(inode, file);
119 	if (status) {
120 		/*
121 		 * We want to set open count back if we're failing the
122 		 * open.
123 		 */
124 		spin_lock(&oi->ip_lock);
125 		oi->ip_open_count--;
126 		spin_unlock(&oi->ip_lock);
127 	}
128 
129 	file->f_mode |= FMODE_NOWAIT;
130 
131 leave:
132 	return status;
133 }
134 
135 static int ocfs2_file_release(struct inode *inode, struct file *file)
136 {
137 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
138 
139 	spin_lock(&oi->ip_lock);
140 	if (!--oi->ip_open_count)
141 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
142 
143 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
144 				 oi->ip_blkno,
145 				 file->f_path.dentry->d_name.len,
146 				 file->f_path.dentry->d_name.name,
147 				 oi->ip_open_count);
148 	spin_unlock(&oi->ip_lock);
149 
150 	ocfs2_free_file_private(inode, file);
151 
152 	return 0;
153 }
154 
155 static int ocfs2_dir_open(struct inode *inode, struct file *file)
156 {
157 	return ocfs2_init_file_private(inode, file);
158 }
159 
160 static int ocfs2_dir_release(struct inode *inode, struct file *file)
161 {
162 	ocfs2_free_file_private(inode, file);
163 	return 0;
164 }
165 
166 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
167 			   int datasync)
168 {
169 	int err = 0;
170 	struct inode *inode = file->f_mapping->host;
171 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
172 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
173 	journal_t *journal = osb->journal->j_journal;
174 	int ret;
175 	tid_t commit_tid;
176 	bool needs_barrier = false;
177 
178 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
179 			      oi->ip_blkno,
180 			      file->f_path.dentry->d_name.len,
181 			      file->f_path.dentry->d_name.name,
182 			      (unsigned long long)datasync);
183 
184 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
185 		return -EROFS;
186 
187 	err = file_write_and_wait_range(file, start, end);
188 	if (err)
189 		return err;
190 
191 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
192 	if (journal->j_flags & JBD2_BARRIER &&
193 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
194 		needs_barrier = true;
195 	err = jbd2_complete_transaction(journal, commit_tid);
196 	if (needs_barrier) {
197 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
198 		if (!err)
199 			err = ret;
200 	}
201 
202 	if (err)
203 		mlog_errno(err);
204 
205 	return (err < 0) ? -EIO : 0;
206 }
207 
208 int ocfs2_should_update_atime(struct inode *inode,
209 			      struct vfsmount *vfsmnt)
210 {
211 	struct timespec64 now;
212 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
213 
214 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
215 		return 0;
216 
217 	if ((inode->i_flags & S_NOATIME) ||
218 	    ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
219 		return 0;
220 
221 	/*
222 	 * We can be called with no vfsmnt structure - NFSD will
223 	 * sometimes do this.
224 	 *
225 	 * Note that our action here is different than touch_atime() -
226 	 * if we can't tell whether this is a noatime mount, then we
227 	 * don't know whether to trust the value of s_atime_quantum.
228 	 */
229 	if (vfsmnt == NULL)
230 		return 0;
231 
232 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
233 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
234 		return 0;
235 
236 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
237 		if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
238 		    (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
239 			return 1;
240 
241 		return 0;
242 	}
243 
244 	now = current_time(inode);
245 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
246 		return 0;
247 	else
248 		return 1;
249 }
250 
251 int ocfs2_update_inode_atime(struct inode *inode,
252 			     struct buffer_head *bh)
253 {
254 	int ret;
255 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
256 	handle_t *handle;
257 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
258 
259 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
260 	if (IS_ERR(handle)) {
261 		ret = PTR_ERR(handle);
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
267 				      OCFS2_JOURNAL_ACCESS_WRITE);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out_commit;
271 	}
272 
273 	/*
274 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
275 	 * have i_mutex to guard against concurrent changes to other
276 	 * inode fields.
277 	 */
278 	inode->i_atime = current_time(inode);
279 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
280 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
281 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
282 	ocfs2_journal_dirty(handle, bh);
283 
284 out_commit:
285 	ocfs2_commit_trans(osb, handle);
286 out:
287 	return ret;
288 }
289 
290 int ocfs2_set_inode_size(handle_t *handle,
291 				struct inode *inode,
292 				struct buffer_head *fe_bh,
293 				u64 new_i_size)
294 {
295 	int status;
296 
297 	i_size_write(inode, new_i_size);
298 	inode->i_blocks = ocfs2_inode_sector_count(inode);
299 	inode->i_ctime = inode->i_mtime = current_time(inode);
300 
301 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
302 	if (status < 0) {
303 		mlog_errno(status);
304 		goto bail;
305 	}
306 
307 bail:
308 	return status;
309 }
310 
311 int ocfs2_simple_size_update(struct inode *inode,
312 			     struct buffer_head *di_bh,
313 			     u64 new_i_size)
314 {
315 	int ret;
316 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
317 	handle_t *handle = NULL;
318 
319 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
320 	if (IS_ERR(handle)) {
321 		ret = PTR_ERR(handle);
322 		mlog_errno(ret);
323 		goto out;
324 	}
325 
326 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
327 				   new_i_size);
328 	if (ret < 0)
329 		mlog_errno(ret);
330 
331 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
332 	ocfs2_commit_trans(osb, handle);
333 out:
334 	return ret;
335 }
336 
337 static int ocfs2_cow_file_pos(struct inode *inode,
338 			      struct buffer_head *fe_bh,
339 			      u64 offset)
340 {
341 	int status;
342 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
343 	unsigned int num_clusters = 0;
344 	unsigned int ext_flags = 0;
345 
346 	/*
347 	 * If the new offset is aligned to the range of the cluster, there is
348 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
349 	 * CoW either.
350 	 */
351 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
352 		return 0;
353 
354 	status = ocfs2_get_clusters(inode, cpos, &phys,
355 				    &num_clusters, &ext_flags);
356 	if (status) {
357 		mlog_errno(status);
358 		goto out;
359 	}
360 
361 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
362 		goto out;
363 
364 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
365 
366 out:
367 	return status;
368 }
369 
370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
371 				     struct inode *inode,
372 				     struct buffer_head *fe_bh,
373 				     u64 new_i_size)
374 {
375 	int status;
376 	handle_t *handle;
377 	struct ocfs2_dinode *di;
378 	u64 cluster_bytes;
379 
380 	/*
381 	 * We need to CoW the cluster contains the offset if it is reflinked
382 	 * since we will call ocfs2_zero_range_for_truncate later which will
383 	 * write "0" from offset to the end of the cluster.
384 	 */
385 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
386 	if (status) {
387 		mlog_errno(status);
388 		return status;
389 	}
390 
391 	/* TODO: This needs to actually orphan the inode in this
392 	 * transaction. */
393 
394 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
395 	if (IS_ERR(handle)) {
396 		status = PTR_ERR(handle);
397 		mlog_errno(status);
398 		goto out;
399 	}
400 
401 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
402 					 OCFS2_JOURNAL_ACCESS_WRITE);
403 	if (status < 0) {
404 		mlog_errno(status);
405 		goto out_commit;
406 	}
407 
408 	/*
409 	 * Do this before setting i_size.
410 	 */
411 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
412 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
413 					       cluster_bytes);
414 	if (status) {
415 		mlog_errno(status);
416 		goto out_commit;
417 	}
418 
419 	i_size_write(inode, new_i_size);
420 	inode->i_ctime = inode->i_mtime = current_time(inode);
421 
422 	di = (struct ocfs2_dinode *) fe_bh->b_data;
423 	di->i_size = cpu_to_le64(new_i_size);
424 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
425 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
426 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
427 
428 	ocfs2_journal_dirty(handle, fe_bh);
429 
430 out_commit:
431 	ocfs2_commit_trans(osb, handle);
432 out:
433 	return status;
434 }
435 
436 int ocfs2_truncate_file(struct inode *inode,
437 			       struct buffer_head *di_bh,
438 			       u64 new_i_size)
439 {
440 	int status = 0;
441 	struct ocfs2_dinode *fe = NULL;
442 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
443 
444 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
445 	 * already validated it */
446 	fe = (struct ocfs2_dinode *) di_bh->b_data;
447 
448 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
449 				  (unsigned long long)le64_to_cpu(fe->i_size),
450 				  (unsigned long long)new_i_size);
451 
452 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
453 			"Inode %llu, inode i_size = %lld != di "
454 			"i_size = %llu, i_flags = 0x%x\n",
455 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
456 			i_size_read(inode),
457 			(unsigned long long)le64_to_cpu(fe->i_size),
458 			le32_to_cpu(fe->i_flags));
459 
460 	if (new_i_size > le64_to_cpu(fe->i_size)) {
461 		trace_ocfs2_truncate_file_error(
462 			(unsigned long long)le64_to_cpu(fe->i_size),
463 			(unsigned long long)new_i_size);
464 		status = -EINVAL;
465 		mlog_errno(status);
466 		goto bail;
467 	}
468 
469 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
470 
471 	ocfs2_resv_discard(&osb->osb_la_resmap,
472 			   &OCFS2_I(inode)->ip_la_data_resv);
473 
474 	/*
475 	 * The inode lock forced other nodes to sync and drop their
476 	 * pages, which (correctly) happens even if we have a truncate
477 	 * without allocation change - ocfs2 cluster sizes can be much
478 	 * greater than page size, so we have to truncate them
479 	 * anyway.
480 	 */
481 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
482 	truncate_inode_pages(inode->i_mapping, new_i_size);
483 
484 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
485 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
486 					       i_size_read(inode), 1);
487 		if (status)
488 			mlog_errno(status);
489 
490 		goto bail_unlock_sem;
491 	}
492 
493 	/* alright, we're going to need to do a full blown alloc size
494 	 * change. Orphan the inode so that recovery can complete the
495 	 * truncate if necessary. This does the task of marking
496 	 * i_size. */
497 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
498 	if (status < 0) {
499 		mlog_errno(status);
500 		goto bail_unlock_sem;
501 	}
502 
503 	status = ocfs2_commit_truncate(osb, inode, di_bh);
504 	if (status < 0) {
505 		mlog_errno(status);
506 		goto bail_unlock_sem;
507 	}
508 
509 	/* TODO: orphan dir cleanup here. */
510 bail_unlock_sem:
511 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
512 
513 bail:
514 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
515 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
516 
517 	return status;
518 }
519 
520 /*
521  * extend file allocation only here.
522  * we'll update all the disk stuff, and oip->alloc_size
523  *
524  * expect stuff to be locked, a transaction started and enough data /
525  * metadata reservations in the contexts.
526  *
527  * Will return -EAGAIN, and a reason if a restart is needed.
528  * If passed in, *reason will always be set, even in error.
529  */
530 int ocfs2_add_inode_data(struct ocfs2_super *osb,
531 			 struct inode *inode,
532 			 u32 *logical_offset,
533 			 u32 clusters_to_add,
534 			 int mark_unwritten,
535 			 struct buffer_head *fe_bh,
536 			 handle_t *handle,
537 			 struct ocfs2_alloc_context *data_ac,
538 			 struct ocfs2_alloc_context *meta_ac,
539 			 enum ocfs2_alloc_restarted *reason_ret)
540 {
541 	int ret;
542 	struct ocfs2_extent_tree et;
543 
544 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
545 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
546 					  clusters_to_add, mark_unwritten,
547 					  data_ac, meta_ac, reason_ret);
548 
549 	return ret;
550 }
551 
552 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
553 				   u32 clusters_to_add, int mark_unwritten)
554 {
555 	int status = 0;
556 	int restart_func = 0;
557 	int credits;
558 	u32 prev_clusters;
559 	struct buffer_head *bh = NULL;
560 	struct ocfs2_dinode *fe = NULL;
561 	handle_t *handle = NULL;
562 	struct ocfs2_alloc_context *data_ac = NULL;
563 	struct ocfs2_alloc_context *meta_ac = NULL;
564 	enum ocfs2_alloc_restarted why = RESTART_NONE;
565 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
566 	struct ocfs2_extent_tree et;
567 	int did_quota = 0;
568 
569 	/*
570 	 * Unwritten extent only exists for file systems which
571 	 * support holes.
572 	 */
573 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
574 
575 	status = ocfs2_read_inode_block(inode, &bh);
576 	if (status < 0) {
577 		mlog_errno(status);
578 		goto leave;
579 	}
580 	fe = (struct ocfs2_dinode *) bh->b_data;
581 
582 restart_all:
583 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
584 
585 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
586 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
587 				       &data_ac, &meta_ac);
588 	if (status) {
589 		mlog_errno(status);
590 		goto leave;
591 	}
592 
593 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
594 	handle = ocfs2_start_trans(osb, credits);
595 	if (IS_ERR(handle)) {
596 		status = PTR_ERR(handle);
597 		handle = NULL;
598 		mlog_errno(status);
599 		goto leave;
600 	}
601 
602 restarted_transaction:
603 	trace_ocfs2_extend_allocation(
604 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
605 		(unsigned long long)i_size_read(inode),
606 		le32_to_cpu(fe->i_clusters), clusters_to_add,
607 		why, restart_func);
608 
609 	status = dquot_alloc_space_nodirty(inode,
610 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
611 	if (status)
612 		goto leave;
613 	did_quota = 1;
614 
615 	/* reserve a write to the file entry early on - that we if we
616 	 * run out of credits in the allocation path, we can still
617 	 * update i_size. */
618 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
619 					 OCFS2_JOURNAL_ACCESS_WRITE);
620 	if (status < 0) {
621 		mlog_errno(status);
622 		goto leave;
623 	}
624 
625 	prev_clusters = OCFS2_I(inode)->ip_clusters;
626 
627 	status = ocfs2_add_inode_data(osb,
628 				      inode,
629 				      &logical_start,
630 				      clusters_to_add,
631 				      mark_unwritten,
632 				      bh,
633 				      handle,
634 				      data_ac,
635 				      meta_ac,
636 				      &why);
637 	if ((status < 0) && (status != -EAGAIN)) {
638 		if (status != -ENOSPC)
639 			mlog_errno(status);
640 		goto leave;
641 	}
642 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
643 	ocfs2_journal_dirty(handle, bh);
644 
645 	spin_lock(&OCFS2_I(inode)->ip_lock);
646 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
647 	spin_unlock(&OCFS2_I(inode)->ip_lock);
648 	/* Release unused quota reservation */
649 	dquot_free_space(inode,
650 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
651 	did_quota = 0;
652 
653 	if (why != RESTART_NONE && clusters_to_add) {
654 		if (why == RESTART_META) {
655 			restart_func = 1;
656 			status = 0;
657 		} else {
658 			BUG_ON(why != RESTART_TRANS);
659 
660 			status = ocfs2_allocate_extend_trans(handle, 1);
661 			if (status < 0) {
662 				/* handle still has to be committed at
663 				 * this point. */
664 				status = -ENOMEM;
665 				mlog_errno(status);
666 				goto leave;
667 			}
668 			goto restarted_transaction;
669 		}
670 	}
671 
672 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
673 	     le32_to_cpu(fe->i_clusters),
674 	     (unsigned long long)le64_to_cpu(fe->i_size),
675 	     OCFS2_I(inode)->ip_clusters,
676 	     (unsigned long long)i_size_read(inode));
677 
678 leave:
679 	if (status < 0 && did_quota)
680 		dquot_free_space(inode,
681 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
682 	if (handle) {
683 		ocfs2_commit_trans(osb, handle);
684 		handle = NULL;
685 	}
686 	if (data_ac) {
687 		ocfs2_free_alloc_context(data_ac);
688 		data_ac = NULL;
689 	}
690 	if (meta_ac) {
691 		ocfs2_free_alloc_context(meta_ac);
692 		meta_ac = NULL;
693 	}
694 	if ((!status) && restart_func) {
695 		restart_func = 0;
696 		goto restart_all;
697 	}
698 	brelse(bh);
699 	bh = NULL;
700 
701 	return status;
702 }
703 
704 /*
705  * While a write will already be ordering the data, a truncate will not.
706  * Thus, we need to explicitly order the zeroed pages.
707  */
708 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
709 						struct buffer_head *di_bh)
710 {
711 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
712 	handle_t *handle = NULL;
713 	int ret = 0;
714 
715 	if (!ocfs2_should_order_data(inode))
716 		goto out;
717 
718 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
719 	if (IS_ERR(handle)) {
720 		ret = -ENOMEM;
721 		mlog_errno(ret);
722 		goto out;
723 	}
724 
725 	ret = ocfs2_jbd2_file_inode(handle, inode);
726 	if (ret < 0) {
727 		mlog_errno(ret);
728 		goto out;
729 	}
730 
731 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
732 				      OCFS2_JOURNAL_ACCESS_WRITE);
733 	if (ret)
734 		mlog_errno(ret);
735 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
736 
737 out:
738 	if (ret) {
739 		if (!IS_ERR(handle))
740 			ocfs2_commit_trans(osb, handle);
741 		handle = ERR_PTR(ret);
742 	}
743 	return handle;
744 }
745 
746 /* Some parts of this taken from generic_cont_expand, which turned out
747  * to be too fragile to do exactly what we need without us having to
748  * worry about recursive locking in ->write_begin() and ->write_end(). */
749 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
750 				 u64 abs_to, struct buffer_head *di_bh)
751 {
752 	struct address_space *mapping = inode->i_mapping;
753 	struct page *page;
754 	unsigned long index = abs_from >> PAGE_SHIFT;
755 	handle_t *handle;
756 	int ret = 0;
757 	unsigned zero_from, zero_to, block_start, block_end;
758 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
759 
760 	BUG_ON(abs_from >= abs_to);
761 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
762 	BUG_ON(abs_from & (inode->i_blkbits - 1));
763 
764 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
765 	if (IS_ERR(handle)) {
766 		ret = PTR_ERR(handle);
767 		goto out;
768 	}
769 
770 	page = find_or_create_page(mapping, index, GFP_NOFS);
771 	if (!page) {
772 		ret = -ENOMEM;
773 		mlog_errno(ret);
774 		goto out_commit_trans;
775 	}
776 
777 	/* Get the offsets within the page that we want to zero */
778 	zero_from = abs_from & (PAGE_SIZE - 1);
779 	zero_to = abs_to & (PAGE_SIZE - 1);
780 	if (!zero_to)
781 		zero_to = PAGE_SIZE;
782 
783 	trace_ocfs2_write_zero_page(
784 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
785 			(unsigned long long)abs_from,
786 			(unsigned long long)abs_to,
787 			index, zero_from, zero_to);
788 
789 	/* We know that zero_from is block aligned */
790 	for (block_start = zero_from; block_start < zero_to;
791 	     block_start = block_end) {
792 		block_end = block_start + i_blocksize(inode);
793 
794 		/*
795 		 * block_start is block-aligned.  Bump it by one to force
796 		 * __block_write_begin and block_commit_write to zero the
797 		 * whole block.
798 		 */
799 		ret = __block_write_begin(page, block_start + 1, 0,
800 					  ocfs2_get_block);
801 		if (ret < 0) {
802 			mlog_errno(ret);
803 			goto out_unlock;
804 		}
805 
806 
807 		/* must not update i_size! */
808 		ret = block_commit_write(page, block_start + 1,
809 					 block_start + 1);
810 		if (ret < 0)
811 			mlog_errno(ret);
812 		else
813 			ret = 0;
814 	}
815 
816 	/*
817 	 * fs-writeback will release the dirty pages without page lock
818 	 * whose offset are over inode size, the release happens at
819 	 * block_write_full_page().
820 	 */
821 	i_size_write(inode, abs_to);
822 	inode->i_blocks = ocfs2_inode_sector_count(inode);
823 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
824 	inode->i_mtime = inode->i_ctime = current_time(inode);
825 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
826 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
827 	di->i_mtime_nsec = di->i_ctime_nsec;
828 	if (handle) {
829 		ocfs2_journal_dirty(handle, di_bh);
830 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
831 	}
832 
833 out_unlock:
834 	unlock_page(page);
835 	put_page(page);
836 out_commit_trans:
837 	if (handle)
838 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
839 out:
840 	return ret;
841 }
842 
843 /*
844  * Find the next range to zero.  We do this in terms of bytes because
845  * that's what ocfs2_zero_extend() wants, and it is dealing with the
846  * pagecache.  We may return multiple extents.
847  *
848  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
849  * needs to be zeroed.  range_start and range_end return the next zeroing
850  * range.  A subsequent call should pass the previous range_end as its
851  * zero_start.  If range_end is 0, there's nothing to do.
852  *
853  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
854  */
855 static int ocfs2_zero_extend_get_range(struct inode *inode,
856 				       struct buffer_head *di_bh,
857 				       u64 zero_start, u64 zero_end,
858 				       u64 *range_start, u64 *range_end)
859 {
860 	int rc = 0, needs_cow = 0;
861 	u32 p_cpos, zero_clusters = 0;
862 	u32 zero_cpos =
863 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
864 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
865 	unsigned int num_clusters = 0;
866 	unsigned int ext_flags = 0;
867 
868 	while (zero_cpos < last_cpos) {
869 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
870 					&num_clusters, &ext_flags);
871 		if (rc) {
872 			mlog_errno(rc);
873 			goto out;
874 		}
875 
876 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
877 			zero_clusters = num_clusters;
878 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
879 				needs_cow = 1;
880 			break;
881 		}
882 
883 		zero_cpos += num_clusters;
884 	}
885 	if (!zero_clusters) {
886 		*range_end = 0;
887 		goto out;
888 	}
889 
890 	while ((zero_cpos + zero_clusters) < last_cpos) {
891 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
892 					&p_cpos, &num_clusters,
893 					&ext_flags);
894 		if (rc) {
895 			mlog_errno(rc);
896 			goto out;
897 		}
898 
899 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
900 			break;
901 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
902 			needs_cow = 1;
903 		zero_clusters += num_clusters;
904 	}
905 	if ((zero_cpos + zero_clusters) > last_cpos)
906 		zero_clusters = last_cpos - zero_cpos;
907 
908 	if (needs_cow) {
909 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
910 					zero_clusters, UINT_MAX);
911 		if (rc) {
912 			mlog_errno(rc);
913 			goto out;
914 		}
915 	}
916 
917 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
918 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
919 					     zero_cpos + zero_clusters);
920 
921 out:
922 	return rc;
923 }
924 
925 /*
926  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
927  * has made sure that the entire range needs zeroing.
928  */
929 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
930 				   u64 range_end, struct buffer_head *di_bh)
931 {
932 	int rc = 0;
933 	u64 next_pos;
934 	u64 zero_pos = range_start;
935 
936 	trace_ocfs2_zero_extend_range(
937 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
938 			(unsigned long long)range_start,
939 			(unsigned long long)range_end);
940 	BUG_ON(range_start >= range_end);
941 
942 	while (zero_pos < range_end) {
943 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
944 		if (next_pos > range_end)
945 			next_pos = range_end;
946 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
947 		if (rc < 0) {
948 			mlog_errno(rc);
949 			break;
950 		}
951 		zero_pos = next_pos;
952 
953 		/*
954 		 * Very large extends have the potential to lock up
955 		 * the cpu for extended periods of time.
956 		 */
957 		cond_resched();
958 	}
959 
960 	return rc;
961 }
962 
963 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
964 		      loff_t zero_to_size)
965 {
966 	int ret = 0;
967 	u64 zero_start, range_start = 0, range_end = 0;
968 	struct super_block *sb = inode->i_sb;
969 
970 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
971 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
972 				(unsigned long long)zero_start,
973 				(unsigned long long)i_size_read(inode));
974 	while (zero_start < zero_to_size) {
975 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
976 						  zero_to_size,
977 						  &range_start,
978 						  &range_end);
979 		if (ret) {
980 			mlog_errno(ret);
981 			break;
982 		}
983 		if (!range_end)
984 			break;
985 		/* Trim the ends */
986 		if (range_start < zero_start)
987 			range_start = zero_start;
988 		if (range_end > zero_to_size)
989 			range_end = zero_to_size;
990 
991 		ret = ocfs2_zero_extend_range(inode, range_start,
992 					      range_end, di_bh);
993 		if (ret) {
994 			mlog_errno(ret);
995 			break;
996 		}
997 		zero_start = range_end;
998 	}
999 
1000 	return ret;
1001 }
1002 
1003 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1004 			  u64 new_i_size, u64 zero_to)
1005 {
1006 	int ret;
1007 	u32 clusters_to_add;
1008 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1009 
1010 	/*
1011 	 * Only quota files call this without a bh, and they can't be
1012 	 * refcounted.
1013 	 */
1014 	BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1015 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1016 
1017 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1018 	if (clusters_to_add < oi->ip_clusters)
1019 		clusters_to_add = 0;
1020 	else
1021 		clusters_to_add -= oi->ip_clusters;
1022 
1023 	if (clusters_to_add) {
1024 		ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1025 					      clusters_to_add, 0);
1026 		if (ret) {
1027 			mlog_errno(ret);
1028 			goto out;
1029 		}
1030 	}
1031 
1032 	/*
1033 	 * Call this even if we don't add any clusters to the tree. We
1034 	 * still need to zero the area between the old i_size and the
1035 	 * new i_size.
1036 	 */
1037 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1038 	if (ret < 0)
1039 		mlog_errno(ret);
1040 
1041 out:
1042 	return ret;
1043 }
1044 
1045 static int ocfs2_extend_file(struct inode *inode,
1046 			     struct buffer_head *di_bh,
1047 			     u64 new_i_size)
1048 {
1049 	int ret = 0;
1050 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1051 
1052 	BUG_ON(!di_bh);
1053 
1054 	/* setattr sometimes calls us like this. */
1055 	if (new_i_size == 0)
1056 		goto out;
1057 
1058 	if (i_size_read(inode) == new_i_size)
1059 		goto out;
1060 	BUG_ON(new_i_size < i_size_read(inode));
1061 
1062 	/*
1063 	 * The alloc sem blocks people in read/write from reading our
1064 	 * allocation until we're done changing it. We depend on
1065 	 * i_mutex to block other extend/truncate calls while we're
1066 	 * here.  We even have to hold it for sparse files because there
1067 	 * might be some tail zeroing.
1068 	 */
1069 	down_write(&oi->ip_alloc_sem);
1070 
1071 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1072 		/*
1073 		 * We can optimize small extends by keeping the inodes
1074 		 * inline data.
1075 		 */
1076 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1077 			up_write(&oi->ip_alloc_sem);
1078 			goto out_update_size;
1079 		}
1080 
1081 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1082 		if (ret) {
1083 			up_write(&oi->ip_alloc_sem);
1084 			mlog_errno(ret);
1085 			goto out;
1086 		}
1087 	}
1088 
1089 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1090 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1091 	else
1092 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1093 					    new_i_size);
1094 
1095 	up_write(&oi->ip_alloc_sem);
1096 
1097 	if (ret < 0) {
1098 		mlog_errno(ret);
1099 		goto out;
1100 	}
1101 
1102 out_update_size:
1103 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1104 	if (ret < 0)
1105 		mlog_errno(ret);
1106 
1107 out:
1108 	return ret;
1109 }
1110 
1111 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1112 {
1113 	int status = 0, size_change;
1114 	int inode_locked = 0;
1115 	struct inode *inode = d_inode(dentry);
1116 	struct super_block *sb = inode->i_sb;
1117 	struct ocfs2_super *osb = OCFS2_SB(sb);
1118 	struct buffer_head *bh = NULL;
1119 	handle_t *handle = NULL;
1120 	struct dquot *transfer_to[MAXQUOTAS] = { };
1121 	int qtype;
1122 	int had_lock;
1123 	struct ocfs2_lock_holder oh;
1124 
1125 	trace_ocfs2_setattr(inode, dentry,
1126 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1127 			    dentry->d_name.len, dentry->d_name.name,
1128 			    attr->ia_valid, attr->ia_mode,
1129 			    from_kuid(&init_user_ns, attr->ia_uid),
1130 			    from_kgid(&init_user_ns, attr->ia_gid));
1131 
1132 	/* ensuring we don't even attempt to truncate a symlink */
1133 	if (S_ISLNK(inode->i_mode))
1134 		attr->ia_valid &= ~ATTR_SIZE;
1135 
1136 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1137 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1138 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1139 		return 0;
1140 
1141 	status = setattr_prepare(dentry, attr);
1142 	if (status)
1143 		return status;
1144 
1145 	if (is_quota_modification(inode, attr)) {
1146 		status = dquot_initialize(inode);
1147 		if (status)
1148 			return status;
1149 	}
1150 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1151 	if (size_change) {
1152 		/*
1153 		 * Here we should wait dio to finish before inode lock
1154 		 * to avoid a deadlock between ocfs2_setattr() and
1155 		 * ocfs2_dio_end_io_write()
1156 		 */
1157 		inode_dio_wait(inode);
1158 
1159 		status = ocfs2_rw_lock(inode, 1);
1160 		if (status < 0) {
1161 			mlog_errno(status);
1162 			goto bail;
1163 		}
1164 	}
1165 
1166 	had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1167 	if (had_lock < 0) {
1168 		status = had_lock;
1169 		goto bail_unlock_rw;
1170 	} else if (had_lock) {
1171 		/*
1172 		 * As far as we know, ocfs2_setattr() could only be the first
1173 		 * VFS entry point in the call chain of recursive cluster
1174 		 * locking issue.
1175 		 *
1176 		 * For instance:
1177 		 * chmod_common()
1178 		 *  notify_change()
1179 		 *   ocfs2_setattr()
1180 		 *    posix_acl_chmod()
1181 		 *     ocfs2_iop_get_acl()
1182 		 *
1183 		 * But, we're not 100% sure if it's always true, because the
1184 		 * ordering of the VFS entry points in the call chain is out
1185 		 * of our control. So, we'd better dump the stack here to
1186 		 * catch the other cases of recursive locking.
1187 		 */
1188 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1189 		dump_stack();
1190 	}
1191 	inode_locked = 1;
1192 
1193 	if (size_change) {
1194 		status = inode_newsize_ok(inode, attr->ia_size);
1195 		if (status)
1196 			goto bail_unlock;
1197 
1198 		if (i_size_read(inode) >= attr->ia_size) {
1199 			if (ocfs2_should_order_data(inode)) {
1200 				status = ocfs2_begin_ordered_truncate(inode,
1201 								      attr->ia_size);
1202 				if (status)
1203 					goto bail_unlock;
1204 			}
1205 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1206 		} else
1207 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1208 		if (status < 0) {
1209 			if (status != -ENOSPC)
1210 				mlog_errno(status);
1211 			status = -ENOSPC;
1212 			goto bail_unlock;
1213 		}
1214 	}
1215 
1216 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1217 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1218 		/*
1219 		 * Gather pointers to quota structures so that allocation /
1220 		 * freeing of quota structures happens here and not inside
1221 		 * dquot_transfer() where we have problems with lock ordering
1222 		 */
1223 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1224 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1225 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1226 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1227 			if (IS_ERR(transfer_to[USRQUOTA])) {
1228 				status = PTR_ERR(transfer_to[USRQUOTA]);
1229 				goto bail_unlock;
1230 			}
1231 		}
1232 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1233 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1234 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1235 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1236 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1237 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1238 				goto bail_unlock;
1239 			}
1240 		}
1241 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1242 					   2 * ocfs2_quota_trans_credits(sb));
1243 		if (IS_ERR(handle)) {
1244 			status = PTR_ERR(handle);
1245 			mlog_errno(status);
1246 			goto bail_unlock;
1247 		}
1248 		status = __dquot_transfer(inode, transfer_to);
1249 		if (status < 0)
1250 			goto bail_commit;
1251 	} else {
1252 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1253 		if (IS_ERR(handle)) {
1254 			status = PTR_ERR(handle);
1255 			mlog_errno(status);
1256 			goto bail_unlock;
1257 		}
1258 	}
1259 
1260 	setattr_copy(inode, attr);
1261 	mark_inode_dirty(inode);
1262 
1263 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1264 	if (status < 0)
1265 		mlog_errno(status);
1266 
1267 bail_commit:
1268 	ocfs2_commit_trans(osb, handle);
1269 bail_unlock:
1270 	if (status && inode_locked) {
1271 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1272 		inode_locked = 0;
1273 	}
1274 bail_unlock_rw:
1275 	if (size_change)
1276 		ocfs2_rw_unlock(inode, 1);
1277 bail:
1278 
1279 	/* Release quota pointers in case we acquired them */
1280 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1281 		dqput(transfer_to[qtype]);
1282 
1283 	if (!status && attr->ia_valid & ATTR_MODE) {
1284 		status = ocfs2_acl_chmod(inode, bh);
1285 		if (status < 0)
1286 			mlog_errno(status);
1287 	}
1288 	if (inode_locked)
1289 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1290 
1291 	brelse(bh);
1292 	return status;
1293 }
1294 
1295 int ocfs2_getattr(const struct path *path, struct kstat *stat,
1296 		  u32 request_mask, unsigned int flags)
1297 {
1298 	struct inode *inode = d_inode(path->dentry);
1299 	struct super_block *sb = path->dentry->d_sb;
1300 	struct ocfs2_super *osb = sb->s_fs_info;
1301 	int err;
1302 
1303 	err = ocfs2_inode_revalidate(path->dentry);
1304 	if (err) {
1305 		if (err != -ENOENT)
1306 			mlog_errno(err);
1307 		goto bail;
1308 	}
1309 
1310 	generic_fillattr(inode, stat);
1311 	/*
1312 	 * If there is inline data in the inode, the inode will normally not
1313 	 * have data blocks allocated (it may have an external xattr block).
1314 	 * Report at least one sector for such files, so tools like tar, rsync,
1315 	 * others don't incorrectly think the file is completely sparse.
1316 	 */
1317 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1318 		stat->blocks += (stat->size + 511)>>9;
1319 
1320 	/* We set the blksize from the cluster size for performance */
1321 	stat->blksize = osb->s_clustersize;
1322 
1323 bail:
1324 	return err;
1325 }
1326 
1327 int ocfs2_permission(struct inode *inode, int mask)
1328 {
1329 	int ret, had_lock;
1330 	struct ocfs2_lock_holder oh;
1331 
1332 	if (mask & MAY_NOT_BLOCK)
1333 		return -ECHILD;
1334 
1335 	had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1336 	if (had_lock < 0) {
1337 		ret = had_lock;
1338 		goto out;
1339 	} else if (had_lock) {
1340 		/* See comments in ocfs2_setattr() for details.
1341 		 * The call chain of this case could be:
1342 		 * do_sys_open()
1343 		 *  may_open()
1344 		 *   inode_permission()
1345 		 *    ocfs2_permission()
1346 		 *     ocfs2_iop_get_acl()
1347 		 */
1348 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1349 		dump_stack();
1350 	}
1351 
1352 	ret = generic_permission(inode, mask);
1353 
1354 	ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1355 out:
1356 	return ret;
1357 }
1358 
1359 static int __ocfs2_write_remove_suid(struct inode *inode,
1360 				     struct buffer_head *bh)
1361 {
1362 	int ret;
1363 	handle_t *handle;
1364 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1365 	struct ocfs2_dinode *di;
1366 
1367 	trace_ocfs2_write_remove_suid(
1368 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1369 			inode->i_mode);
1370 
1371 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1372 	if (IS_ERR(handle)) {
1373 		ret = PTR_ERR(handle);
1374 		mlog_errno(ret);
1375 		goto out;
1376 	}
1377 
1378 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1379 				      OCFS2_JOURNAL_ACCESS_WRITE);
1380 	if (ret < 0) {
1381 		mlog_errno(ret);
1382 		goto out_trans;
1383 	}
1384 
1385 	inode->i_mode &= ~S_ISUID;
1386 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1387 		inode->i_mode &= ~S_ISGID;
1388 
1389 	di = (struct ocfs2_dinode *) bh->b_data;
1390 	di->i_mode = cpu_to_le16(inode->i_mode);
1391 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1392 
1393 	ocfs2_journal_dirty(handle, bh);
1394 
1395 out_trans:
1396 	ocfs2_commit_trans(osb, handle);
1397 out:
1398 	return ret;
1399 }
1400 
1401 static int ocfs2_write_remove_suid(struct inode *inode)
1402 {
1403 	int ret;
1404 	struct buffer_head *bh = NULL;
1405 
1406 	ret = ocfs2_read_inode_block(inode, &bh);
1407 	if (ret < 0) {
1408 		mlog_errno(ret);
1409 		goto out;
1410 	}
1411 
1412 	ret =  __ocfs2_write_remove_suid(inode, bh);
1413 out:
1414 	brelse(bh);
1415 	return ret;
1416 }
1417 
1418 /*
1419  * Allocate enough extents to cover the region starting at byte offset
1420  * start for len bytes. Existing extents are skipped, any extents
1421  * added are marked as "unwritten".
1422  */
1423 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1424 					    u64 start, u64 len)
1425 {
1426 	int ret;
1427 	u32 cpos, phys_cpos, clusters, alloc_size;
1428 	u64 end = start + len;
1429 	struct buffer_head *di_bh = NULL;
1430 
1431 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1432 		ret = ocfs2_read_inode_block(inode, &di_bh);
1433 		if (ret) {
1434 			mlog_errno(ret);
1435 			goto out;
1436 		}
1437 
1438 		/*
1439 		 * Nothing to do if the requested reservation range
1440 		 * fits within the inode.
1441 		 */
1442 		if (ocfs2_size_fits_inline_data(di_bh, end))
1443 			goto out;
1444 
1445 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1446 		if (ret) {
1447 			mlog_errno(ret);
1448 			goto out;
1449 		}
1450 	}
1451 
1452 	/*
1453 	 * We consider both start and len to be inclusive.
1454 	 */
1455 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1456 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1457 	clusters -= cpos;
1458 
1459 	while (clusters) {
1460 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1461 					 &alloc_size, NULL);
1462 		if (ret) {
1463 			mlog_errno(ret);
1464 			goto out;
1465 		}
1466 
1467 		/*
1468 		 * Hole or existing extent len can be arbitrary, so
1469 		 * cap it to our own allocation request.
1470 		 */
1471 		if (alloc_size > clusters)
1472 			alloc_size = clusters;
1473 
1474 		if (phys_cpos) {
1475 			/*
1476 			 * We already have an allocation at this
1477 			 * region so we can safely skip it.
1478 			 */
1479 			goto next;
1480 		}
1481 
1482 		ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1483 		if (ret) {
1484 			if (ret != -ENOSPC)
1485 				mlog_errno(ret);
1486 			goto out;
1487 		}
1488 
1489 next:
1490 		cpos += alloc_size;
1491 		clusters -= alloc_size;
1492 	}
1493 
1494 	ret = 0;
1495 out:
1496 
1497 	brelse(di_bh);
1498 	return ret;
1499 }
1500 
1501 /*
1502  * Truncate a byte range, avoiding pages within partial clusters. This
1503  * preserves those pages for the zeroing code to write to.
1504  */
1505 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1506 					 u64 byte_len)
1507 {
1508 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1509 	loff_t start, end;
1510 	struct address_space *mapping = inode->i_mapping;
1511 
1512 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1513 	end = byte_start + byte_len;
1514 	end = end & ~(osb->s_clustersize - 1);
1515 
1516 	if (start < end) {
1517 		unmap_mapping_range(mapping, start, end - start, 0);
1518 		truncate_inode_pages_range(mapping, start, end - 1);
1519 	}
1520 }
1521 
1522 static int ocfs2_zero_partial_clusters(struct inode *inode,
1523 				       u64 start, u64 len)
1524 {
1525 	int ret = 0;
1526 	u64 tmpend = 0;
1527 	u64 end = start + len;
1528 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1529 	unsigned int csize = osb->s_clustersize;
1530 	handle_t *handle;
1531 
1532 	/*
1533 	 * The "start" and "end" values are NOT necessarily part of
1534 	 * the range whose allocation is being deleted. Rather, this
1535 	 * is what the user passed in with the request. We must zero
1536 	 * partial clusters here. There's no need to worry about
1537 	 * physical allocation - the zeroing code knows to skip holes.
1538 	 */
1539 	trace_ocfs2_zero_partial_clusters(
1540 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1541 		(unsigned long long)start, (unsigned long long)end);
1542 
1543 	/*
1544 	 * If both edges are on a cluster boundary then there's no
1545 	 * zeroing required as the region is part of the allocation to
1546 	 * be truncated.
1547 	 */
1548 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1549 		goto out;
1550 
1551 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1552 	if (IS_ERR(handle)) {
1553 		ret = PTR_ERR(handle);
1554 		mlog_errno(ret);
1555 		goto out;
1556 	}
1557 
1558 	/*
1559 	 * If start is on a cluster boundary and end is somewhere in another
1560 	 * cluster, we have not COWed the cluster starting at start, unless
1561 	 * end is also within the same cluster. So, in this case, we skip this
1562 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1563 	 * to the next one.
1564 	 */
1565 	if ((start & (csize - 1)) != 0) {
1566 		/*
1567 		 * We want to get the byte offset of the end of the 1st
1568 		 * cluster.
1569 		 */
1570 		tmpend = (u64)osb->s_clustersize +
1571 			(start & ~(osb->s_clustersize - 1));
1572 		if (tmpend > end)
1573 			tmpend = end;
1574 
1575 		trace_ocfs2_zero_partial_clusters_range1(
1576 			(unsigned long long)start,
1577 			(unsigned long long)tmpend);
1578 
1579 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1580 						    tmpend);
1581 		if (ret)
1582 			mlog_errno(ret);
1583 	}
1584 
1585 	if (tmpend < end) {
1586 		/*
1587 		 * This may make start and end equal, but the zeroing
1588 		 * code will skip any work in that case so there's no
1589 		 * need to catch it up here.
1590 		 */
1591 		start = end & ~(osb->s_clustersize - 1);
1592 
1593 		trace_ocfs2_zero_partial_clusters_range2(
1594 			(unsigned long long)start, (unsigned long long)end);
1595 
1596 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1597 		if (ret)
1598 			mlog_errno(ret);
1599 	}
1600 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1601 
1602 	ocfs2_commit_trans(osb, handle);
1603 out:
1604 	return ret;
1605 }
1606 
1607 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1608 {
1609 	int i;
1610 	struct ocfs2_extent_rec *rec = NULL;
1611 
1612 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1613 
1614 		rec = &el->l_recs[i];
1615 
1616 		if (le32_to_cpu(rec->e_cpos) < pos)
1617 			break;
1618 	}
1619 
1620 	return i;
1621 }
1622 
1623 /*
1624  * Helper to calculate the punching pos and length in one run, we handle the
1625  * following three cases in order:
1626  *
1627  * - remove the entire record
1628  * - remove a partial record
1629  * - no record needs to be removed (hole-punching completed)
1630 */
1631 static void ocfs2_calc_trunc_pos(struct inode *inode,
1632 				 struct ocfs2_extent_list *el,
1633 				 struct ocfs2_extent_rec *rec,
1634 				 u32 trunc_start, u32 *trunc_cpos,
1635 				 u32 *trunc_len, u32 *trunc_end,
1636 				 u64 *blkno, int *done)
1637 {
1638 	int ret = 0;
1639 	u32 coff, range;
1640 
1641 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1642 
1643 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1644 		/*
1645 		 * remove an entire extent record.
1646 		 */
1647 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1648 		/*
1649 		 * Skip holes if any.
1650 		 */
1651 		if (range < *trunc_end)
1652 			*trunc_end = range;
1653 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1654 		*blkno = le64_to_cpu(rec->e_blkno);
1655 		*trunc_end = le32_to_cpu(rec->e_cpos);
1656 	} else if (range > trunc_start) {
1657 		/*
1658 		 * remove a partial extent record, which means we're
1659 		 * removing the last extent record.
1660 		 */
1661 		*trunc_cpos = trunc_start;
1662 		/*
1663 		 * skip hole if any.
1664 		 */
1665 		if (range < *trunc_end)
1666 			*trunc_end = range;
1667 		*trunc_len = *trunc_end - trunc_start;
1668 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1669 		*blkno = le64_to_cpu(rec->e_blkno) +
1670 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1671 		*trunc_end = trunc_start;
1672 	} else {
1673 		/*
1674 		 * It may have two following possibilities:
1675 		 *
1676 		 * - last record has been removed
1677 		 * - trunc_start was within a hole
1678 		 *
1679 		 * both two cases mean the completion of hole punching.
1680 		 */
1681 		ret = 1;
1682 	}
1683 
1684 	*done = ret;
1685 }
1686 
1687 int ocfs2_remove_inode_range(struct inode *inode,
1688 			     struct buffer_head *di_bh, u64 byte_start,
1689 			     u64 byte_len)
1690 {
1691 	int ret = 0, flags = 0, done = 0, i;
1692 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1693 	u32 cluster_in_el;
1694 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1695 	struct ocfs2_cached_dealloc_ctxt dealloc;
1696 	struct address_space *mapping = inode->i_mapping;
1697 	struct ocfs2_extent_tree et;
1698 	struct ocfs2_path *path = NULL;
1699 	struct ocfs2_extent_list *el = NULL;
1700 	struct ocfs2_extent_rec *rec = NULL;
1701 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1702 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1703 
1704 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1705 	ocfs2_init_dealloc_ctxt(&dealloc);
1706 
1707 	trace_ocfs2_remove_inode_range(
1708 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1709 			(unsigned long long)byte_start,
1710 			(unsigned long long)byte_len);
1711 
1712 	if (byte_len == 0)
1713 		return 0;
1714 
1715 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1716 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1717 					    byte_start + byte_len, 0);
1718 		if (ret) {
1719 			mlog_errno(ret);
1720 			goto out;
1721 		}
1722 		/*
1723 		 * There's no need to get fancy with the page cache
1724 		 * truncate of an inline-data inode. We're talking
1725 		 * about less than a page here, which will be cached
1726 		 * in the dinode buffer anyway.
1727 		 */
1728 		unmap_mapping_range(mapping, 0, 0, 0);
1729 		truncate_inode_pages(mapping, 0);
1730 		goto out;
1731 	}
1732 
1733 	/*
1734 	 * For reflinks, we may need to CoW 2 clusters which might be
1735 	 * partially zero'd later, if hole's start and end offset were
1736 	 * within one cluster(means is not exactly aligned to clustersize).
1737 	 */
1738 
1739 	if (ocfs2_is_refcount_inode(inode)) {
1740 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1741 		if (ret) {
1742 			mlog_errno(ret);
1743 			goto out;
1744 		}
1745 
1746 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1747 		if (ret) {
1748 			mlog_errno(ret);
1749 			goto out;
1750 		}
1751 	}
1752 
1753 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1754 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1755 	cluster_in_el = trunc_end;
1756 
1757 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1758 	if (ret) {
1759 		mlog_errno(ret);
1760 		goto out;
1761 	}
1762 
1763 	path = ocfs2_new_path_from_et(&et);
1764 	if (!path) {
1765 		ret = -ENOMEM;
1766 		mlog_errno(ret);
1767 		goto out;
1768 	}
1769 
1770 	while (trunc_end > trunc_start) {
1771 
1772 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1773 				      cluster_in_el);
1774 		if (ret) {
1775 			mlog_errno(ret);
1776 			goto out;
1777 		}
1778 
1779 		el = path_leaf_el(path);
1780 
1781 		i = ocfs2_find_rec(el, trunc_end);
1782 		/*
1783 		 * Need to go to previous extent block.
1784 		 */
1785 		if (i < 0) {
1786 			if (path->p_tree_depth == 0)
1787 				break;
1788 
1789 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1790 							    path,
1791 							    &cluster_in_el);
1792 			if (ret) {
1793 				mlog_errno(ret);
1794 				goto out;
1795 			}
1796 
1797 			/*
1798 			 * We've reached the leftmost extent block,
1799 			 * it's safe to leave.
1800 			 */
1801 			if (cluster_in_el == 0)
1802 				break;
1803 
1804 			/*
1805 			 * The 'pos' searched for previous extent block is
1806 			 * always one cluster less than actual trunc_end.
1807 			 */
1808 			trunc_end = cluster_in_el + 1;
1809 
1810 			ocfs2_reinit_path(path, 1);
1811 
1812 			continue;
1813 
1814 		} else
1815 			rec = &el->l_recs[i];
1816 
1817 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1818 				     &trunc_len, &trunc_end, &blkno, &done);
1819 		if (done)
1820 			break;
1821 
1822 		flags = rec->e_flags;
1823 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1824 
1825 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1826 					       phys_cpos, trunc_len, flags,
1827 					       &dealloc, refcount_loc, false);
1828 		if (ret < 0) {
1829 			mlog_errno(ret);
1830 			goto out;
1831 		}
1832 
1833 		cluster_in_el = trunc_end;
1834 
1835 		ocfs2_reinit_path(path, 1);
1836 	}
1837 
1838 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1839 
1840 out:
1841 	ocfs2_free_path(path);
1842 	ocfs2_schedule_truncate_log_flush(osb, 1);
1843 	ocfs2_run_deallocs(osb, &dealloc);
1844 
1845 	return ret;
1846 }
1847 
1848 /*
1849  * Parts of this function taken from xfs_change_file_space()
1850  */
1851 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1852 				     loff_t f_pos, unsigned int cmd,
1853 				     struct ocfs2_space_resv *sr,
1854 				     int change_size)
1855 {
1856 	int ret;
1857 	s64 llen;
1858 	loff_t size;
1859 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1860 	struct buffer_head *di_bh = NULL;
1861 	handle_t *handle;
1862 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1863 
1864 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1865 		return -EROFS;
1866 
1867 	inode_lock(inode);
1868 
1869 	/*
1870 	 * This prevents concurrent writes on other nodes
1871 	 */
1872 	ret = ocfs2_rw_lock(inode, 1);
1873 	if (ret) {
1874 		mlog_errno(ret);
1875 		goto out;
1876 	}
1877 
1878 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1879 	if (ret) {
1880 		mlog_errno(ret);
1881 		goto out_rw_unlock;
1882 	}
1883 
1884 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1885 		ret = -EPERM;
1886 		goto out_inode_unlock;
1887 	}
1888 
1889 	switch (sr->l_whence) {
1890 	case 0: /*SEEK_SET*/
1891 		break;
1892 	case 1: /*SEEK_CUR*/
1893 		sr->l_start += f_pos;
1894 		break;
1895 	case 2: /*SEEK_END*/
1896 		sr->l_start += i_size_read(inode);
1897 		break;
1898 	default:
1899 		ret = -EINVAL;
1900 		goto out_inode_unlock;
1901 	}
1902 	sr->l_whence = 0;
1903 
1904 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1905 
1906 	if (sr->l_start < 0
1907 	    || sr->l_start > max_off
1908 	    || (sr->l_start + llen) < 0
1909 	    || (sr->l_start + llen) > max_off) {
1910 		ret = -EINVAL;
1911 		goto out_inode_unlock;
1912 	}
1913 	size = sr->l_start + sr->l_len;
1914 
1915 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1916 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1917 		if (sr->l_len <= 0) {
1918 			ret = -EINVAL;
1919 			goto out_inode_unlock;
1920 		}
1921 	}
1922 
1923 	if (file && should_remove_suid(file->f_path.dentry)) {
1924 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1925 		if (ret) {
1926 			mlog_errno(ret);
1927 			goto out_inode_unlock;
1928 		}
1929 	}
1930 
1931 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1932 	switch (cmd) {
1933 	case OCFS2_IOC_RESVSP:
1934 	case OCFS2_IOC_RESVSP64:
1935 		/*
1936 		 * This takes unsigned offsets, but the signed ones we
1937 		 * pass have been checked against overflow above.
1938 		 */
1939 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1940 						       sr->l_len);
1941 		break;
1942 	case OCFS2_IOC_UNRESVSP:
1943 	case OCFS2_IOC_UNRESVSP64:
1944 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1945 					       sr->l_len);
1946 		break;
1947 	default:
1948 		ret = -EINVAL;
1949 	}
1950 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1951 	if (ret) {
1952 		mlog_errno(ret);
1953 		goto out_inode_unlock;
1954 	}
1955 
1956 	/*
1957 	 * We update c/mtime for these changes
1958 	 */
1959 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1960 	if (IS_ERR(handle)) {
1961 		ret = PTR_ERR(handle);
1962 		mlog_errno(ret);
1963 		goto out_inode_unlock;
1964 	}
1965 
1966 	if (change_size && i_size_read(inode) < size)
1967 		i_size_write(inode, size);
1968 
1969 	inode->i_ctime = inode->i_mtime = current_time(inode);
1970 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1971 	if (ret < 0)
1972 		mlog_errno(ret);
1973 
1974 	if (file && (file->f_flags & O_SYNC))
1975 		handle->h_sync = 1;
1976 
1977 	ocfs2_commit_trans(osb, handle);
1978 
1979 out_inode_unlock:
1980 	brelse(di_bh);
1981 	ocfs2_inode_unlock(inode, 1);
1982 out_rw_unlock:
1983 	ocfs2_rw_unlock(inode, 1);
1984 
1985 out:
1986 	inode_unlock(inode);
1987 	return ret;
1988 }
1989 
1990 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1991 			    struct ocfs2_space_resv *sr)
1992 {
1993 	struct inode *inode = file_inode(file);
1994 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1995 	int ret;
1996 
1997 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1998 	    !ocfs2_writes_unwritten_extents(osb))
1999 		return -ENOTTY;
2000 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2001 		 !ocfs2_sparse_alloc(osb))
2002 		return -ENOTTY;
2003 
2004 	if (!S_ISREG(inode->i_mode))
2005 		return -EINVAL;
2006 
2007 	if (!(file->f_mode & FMODE_WRITE))
2008 		return -EBADF;
2009 
2010 	ret = mnt_want_write_file(file);
2011 	if (ret)
2012 		return ret;
2013 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2014 	mnt_drop_write_file(file);
2015 	return ret;
2016 }
2017 
2018 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2019 			    loff_t len)
2020 {
2021 	struct inode *inode = file_inode(file);
2022 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2023 	struct ocfs2_space_resv sr;
2024 	int change_size = 1;
2025 	int cmd = OCFS2_IOC_RESVSP64;
2026 
2027 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2028 		return -EOPNOTSUPP;
2029 	if (!ocfs2_writes_unwritten_extents(osb))
2030 		return -EOPNOTSUPP;
2031 
2032 	if (mode & FALLOC_FL_KEEP_SIZE)
2033 		change_size = 0;
2034 
2035 	if (mode & FALLOC_FL_PUNCH_HOLE)
2036 		cmd = OCFS2_IOC_UNRESVSP64;
2037 
2038 	sr.l_whence = 0;
2039 	sr.l_start = (s64)offset;
2040 	sr.l_len = (s64)len;
2041 
2042 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2043 					 change_size);
2044 }
2045 
2046 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2047 				   size_t count)
2048 {
2049 	int ret = 0;
2050 	unsigned int extent_flags;
2051 	u32 cpos, clusters, extent_len, phys_cpos;
2052 	struct super_block *sb = inode->i_sb;
2053 
2054 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2055 	    !ocfs2_is_refcount_inode(inode) ||
2056 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2057 		return 0;
2058 
2059 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2060 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2061 
2062 	while (clusters) {
2063 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2064 					 &extent_flags);
2065 		if (ret < 0) {
2066 			mlog_errno(ret);
2067 			goto out;
2068 		}
2069 
2070 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2071 			ret = 1;
2072 			break;
2073 		}
2074 
2075 		if (extent_len > clusters)
2076 			extent_len = clusters;
2077 
2078 		clusters -= extent_len;
2079 		cpos += extent_len;
2080 	}
2081 out:
2082 	return ret;
2083 }
2084 
2085 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2086 {
2087 	int blockmask = inode->i_sb->s_blocksize - 1;
2088 	loff_t final_size = pos + count;
2089 
2090 	if ((pos & blockmask) || (final_size & blockmask))
2091 		return 1;
2092 	return 0;
2093 }
2094 
2095 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2096 					    struct file *file,
2097 					    loff_t pos, size_t count,
2098 					    int *meta_level)
2099 {
2100 	int ret;
2101 	struct buffer_head *di_bh = NULL;
2102 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2103 	u32 clusters =
2104 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2105 
2106 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2107 	if (ret) {
2108 		mlog_errno(ret);
2109 		goto out;
2110 	}
2111 
2112 	*meta_level = 1;
2113 
2114 	ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2115 	if (ret)
2116 		mlog_errno(ret);
2117 out:
2118 	brelse(di_bh);
2119 	return ret;
2120 }
2121 
2122 static int ocfs2_prepare_inode_for_write(struct file *file,
2123 					 loff_t pos, size_t count, int wait)
2124 {
2125 	int ret = 0, meta_level = 0, overwrite_io = 0;
2126 	struct dentry *dentry = file->f_path.dentry;
2127 	struct inode *inode = d_inode(dentry);
2128 	struct buffer_head *di_bh = NULL;
2129 	loff_t end;
2130 
2131 	/*
2132 	 * We start with a read level meta lock and only jump to an ex
2133 	 * if we need to make modifications here.
2134 	 */
2135 	for(;;) {
2136 		if (wait)
2137 			ret = ocfs2_inode_lock(inode, NULL, meta_level);
2138 		else
2139 			ret = ocfs2_try_inode_lock(inode,
2140 				overwrite_io ? NULL : &di_bh, meta_level);
2141 		if (ret < 0) {
2142 			meta_level = -1;
2143 			if (ret != -EAGAIN)
2144 				mlog_errno(ret);
2145 			goto out;
2146 		}
2147 
2148 		/*
2149 		 * Check if IO will overwrite allocated blocks in case
2150 		 * IOCB_NOWAIT flag is set.
2151 		 */
2152 		if (!wait && !overwrite_io) {
2153 			overwrite_io = 1;
2154 			if (!down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem)) {
2155 				ret = -EAGAIN;
2156 				goto out_unlock;
2157 			}
2158 
2159 			ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2160 			brelse(di_bh);
2161 			di_bh = NULL;
2162 			up_read(&OCFS2_I(inode)->ip_alloc_sem);
2163 			if (ret < 0) {
2164 				if (ret != -EAGAIN)
2165 					mlog_errno(ret);
2166 				goto out_unlock;
2167 			}
2168 		}
2169 
2170 		/* Clear suid / sgid if necessary. We do this here
2171 		 * instead of later in the write path because
2172 		 * remove_suid() calls ->setattr without any hint that
2173 		 * we may have already done our cluster locking. Since
2174 		 * ocfs2_setattr() *must* take cluster locks to
2175 		 * proceed, this will lead us to recursively lock the
2176 		 * inode. There's also the dinode i_size state which
2177 		 * can be lost via setattr during extending writes (we
2178 		 * set inode->i_size at the end of a write. */
2179 		if (should_remove_suid(dentry)) {
2180 			if (meta_level == 0) {
2181 				ocfs2_inode_unlock(inode, meta_level);
2182 				meta_level = 1;
2183 				continue;
2184 			}
2185 
2186 			ret = ocfs2_write_remove_suid(inode);
2187 			if (ret < 0) {
2188 				mlog_errno(ret);
2189 				goto out_unlock;
2190 			}
2191 		}
2192 
2193 		end = pos + count;
2194 
2195 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2196 		if (ret == 1) {
2197 			ocfs2_inode_unlock(inode, meta_level);
2198 			meta_level = -1;
2199 
2200 			ret = ocfs2_prepare_inode_for_refcount(inode,
2201 							       file,
2202 							       pos,
2203 							       count,
2204 							       &meta_level);
2205 		}
2206 
2207 		if (ret < 0) {
2208 			mlog_errno(ret);
2209 			goto out_unlock;
2210 		}
2211 
2212 		break;
2213 	}
2214 
2215 out_unlock:
2216 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2217 					    pos, count, wait);
2218 
2219 	brelse(di_bh);
2220 
2221 	if (meta_level >= 0)
2222 		ocfs2_inode_unlock(inode, meta_level);
2223 
2224 out:
2225 	return ret;
2226 }
2227 
2228 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2229 				    struct iov_iter *from)
2230 {
2231 	int rw_level;
2232 	ssize_t written = 0;
2233 	ssize_t ret;
2234 	size_t count = iov_iter_count(from);
2235 	struct file *file = iocb->ki_filp;
2236 	struct inode *inode = file_inode(file);
2237 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2238 	int full_coherency = !(osb->s_mount_opt &
2239 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2240 	void *saved_ki_complete = NULL;
2241 	int append_write = ((iocb->ki_pos + count) >=
2242 			i_size_read(inode) ? 1 : 0);
2243 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2244 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2245 
2246 	trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2247 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2248 		file->f_path.dentry->d_name.len,
2249 		file->f_path.dentry->d_name.name,
2250 		(unsigned int)from->nr_segs);	/* GRRRRR */
2251 
2252 	if (!direct_io && nowait)
2253 		return -EOPNOTSUPP;
2254 
2255 	if (count == 0)
2256 		return 0;
2257 
2258 	if (nowait) {
2259 		if (!inode_trylock(inode))
2260 			return -EAGAIN;
2261 	} else
2262 		inode_lock(inode);
2263 
2264 	/*
2265 	 * Concurrent O_DIRECT writes are allowed with
2266 	 * mount_option "coherency=buffered".
2267 	 * For append write, we must take rw EX.
2268 	 */
2269 	rw_level = (!direct_io || full_coherency || append_write);
2270 
2271 	if (nowait)
2272 		ret = ocfs2_try_rw_lock(inode, rw_level);
2273 	else
2274 		ret = ocfs2_rw_lock(inode, rw_level);
2275 	if (ret < 0) {
2276 		if (ret != -EAGAIN)
2277 			mlog_errno(ret);
2278 		goto out_mutex;
2279 	}
2280 
2281 	/*
2282 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2283 	 * inode_lock to guarantee coherency.
2284 	 */
2285 	if (direct_io && full_coherency) {
2286 		/*
2287 		 * We need to take and drop the inode lock to force
2288 		 * other nodes to drop their caches.  Buffered I/O
2289 		 * already does this in write_begin().
2290 		 */
2291 		if (nowait)
2292 			ret = ocfs2_try_inode_lock(inode, NULL, 1);
2293 		else
2294 			ret = ocfs2_inode_lock(inode, NULL, 1);
2295 		if (ret < 0) {
2296 			if (ret != -EAGAIN)
2297 				mlog_errno(ret);
2298 			goto out;
2299 		}
2300 
2301 		ocfs2_inode_unlock(inode, 1);
2302 	}
2303 
2304 	ret = generic_write_checks(iocb, from);
2305 	if (ret <= 0) {
2306 		if (ret)
2307 			mlog_errno(ret);
2308 		goto out;
2309 	}
2310 	count = ret;
2311 
2312 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2313 	if (ret < 0) {
2314 		if (ret != -EAGAIN)
2315 			mlog_errno(ret);
2316 		goto out;
2317 	}
2318 
2319 	if (direct_io && !is_sync_kiocb(iocb) &&
2320 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2321 		/*
2322 		 * Make it a sync io if it's an unaligned aio.
2323 		 */
2324 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2325 	}
2326 
2327 	/* communicate with ocfs2_dio_end_io */
2328 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2329 
2330 	written = __generic_file_write_iter(iocb, from);
2331 	/* buffered aio wouldn't have proper lock coverage today */
2332 	BUG_ON(written == -EIOCBQUEUED && !direct_io);
2333 
2334 	/*
2335 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2336 	 * function pointer which is called when o_direct io completes so that
2337 	 * it can unlock our rw lock.
2338 	 * Unfortunately there are error cases which call end_io and others
2339 	 * that don't.  so we don't have to unlock the rw_lock if either an
2340 	 * async dio is going to do it in the future or an end_io after an
2341 	 * error has already done it.
2342 	 */
2343 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2344 		rw_level = -1;
2345 	}
2346 
2347 	if (unlikely(written <= 0))
2348 		goto out;
2349 
2350 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2351 	    IS_SYNC(inode)) {
2352 		ret = filemap_fdatawrite_range(file->f_mapping,
2353 					       iocb->ki_pos - written,
2354 					       iocb->ki_pos - 1);
2355 		if (ret < 0)
2356 			written = ret;
2357 
2358 		if (!ret) {
2359 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2360 			if (ret < 0)
2361 				written = ret;
2362 		}
2363 
2364 		if (!ret)
2365 			ret = filemap_fdatawait_range(file->f_mapping,
2366 						      iocb->ki_pos - written,
2367 						      iocb->ki_pos - 1);
2368 	}
2369 
2370 out:
2371 	if (saved_ki_complete)
2372 		xchg(&iocb->ki_complete, saved_ki_complete);
2373 
2374 	if (rw_level != -1)
2375 		ocfs2_rw_unlock(inode, rw_level);
2376 
2377 out_mutex:
2378 	inode_unlock(inode);
2379 
2380 	if (written)
2381 		ret = written;
2382 	return ret;
2383 }
2384 
2385 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2386 				   struct iov_iter *to)
2387 {
2388 	int ret = 0, rw_level = -1, lock_level = 0;
2389 	struct file *filp = iocb->ki_filp;
2390 	struct inode *inode = file_inode(filp);
2391 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2392 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2393 
2394 	trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2395 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2396 			filp->f_path.dentry->d_name.len,
2397 			filp->f_path.dentry->d_name.name,
2398 			to->nr_segs);	/* GRRRRR */
2399 
2400 
2401 	if (!inode) {
2402 		ret = -EINVAL;
2403 		mlog_errno(ret);
2404 		goto bail;
2405 	}
2406 
2407 	if (!direct_io && nowait)
2408 		return -EOPNOTSUPP;
2409 
2410 	/*
2411 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2412 	 * need locks to protect pending reads from racing with truncate.
2413 	 */
2414 	if (direct_io) {
2415 		if (nowait)
2416 			ret = ocfs2_try_rw_lock(inode, 0);
2417 		else
2418 			ret = ocfs2_rw_lock(inode, 0);
2419 
2420 		if (ret < 0) {
2421 			if (ret != -EAGAIN)
2422 				mlog_errno(ret);
2423 			goto bail;
2424 		}
2425 		rw_level = 0;
2426 		/* communicate with ocfs2_dio_end_io */
2427 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2428 	}
2429 
2430 	/*
2431 	 * We're fine letting folks race truncates and extending
2432 	 * writes with read across the cluster, just like they can
2433 	 * locally. Hence no rw_lock during read.
2434 	 *
2435 	 * Take and drop the meta data lock to update inode fields
2436 	 * like i_size. This allows the checks down below
2437 	 * generic_file_read_iter() a chance of actually working.
2438 	 */
2439 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2440 				     !nowait);
2441 	if (ret < 0) {
2442 		if (ret != -EAGAIN)
2443 			mlog_errno(ret);
2444 		goto bail;
2445 	}
2446 	ocfs2_inode_unlock(inode, lock_level);
2447 
2448 	ret = generic_file_read_iter(iocb, to);
2449 	trace_generic_file_read_iter_ret(ret);
2450 
2451 	/* buffered aio wouldn't have proper lock coverage today */
2452 	BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2453 
2454 	/* see ocfs2_file_write_iter */
2455 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2456 		rw_level = -1;
2457 	}
2458 
2459 bail:
2460 	if (rw_level != -1)
2461 		ocfs2_rw_unlock(inode, rw_level);
2462 
2463 	return ret;
2464 }
2465 
2466 /* Refer generic_file_llseek_unlocked() */
2467 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2468 {
2469 	struct inode *inode = file->f_mapping->host;
2470 	int ret = 0;
2471 
2472 	inode_lock(inode);
2473 
2474 	switch (whence) {
2475 	case SEEK_SET:
2476 		break;
2477 	case SEEK_END:
2478 		/* SEEK_END requires the OCFS2 inode lock for the file
2479 		 * because it references the file's size.
2480 		 */
2481 		ret = ocfs2_inode_lock(inode, NULL, 0);
2482 		if (ret < 0) {
2483 			mlog_errno(ret);
2484 			goto out;
2485 		}
2486 		offset += i_size_read(inode);
2487 		ocfs2_inode_unlock(inode, 0);
2488 		break;
2489 	case SEEK_CUR:
2490 		if (offset == 0) {
2491 			offset = file->f_pos;
2492 			goto out;
2493 		}
2494 		offset += file->f_pos;
2495 		break;
2496 	case SEEK_DATA:
2497 	case SEEK_HOLE:
2498 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2499 		if (ret)
2500 			goto out;
2501 		break;
2502 	default:
2503 		ret = -EINVAL;
2504 		goto out;
2505 	}
2506 
2507 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2508 
2509 out:
2510 	inode_unlock(inode);
2511 	if (ret)
2512 		return ret;
2513 	return offset;
2514 }
2515 
2516 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2517 				     struct file *file_out, loff_t pos_out,
2518 				     loff_t len, unsigned int remap_flags)
2519 {
2520 	struct inode *inode_in = file_inode(file_in);
2521 	struct inode *inode_out = file_inode(file_out);
2522 	struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2523 	struct buffer_head *in_bh = NULL, *out_bh = NULL;
2524 	bool same_inode = (inode_in == inode_out);
2525 	loff_t remapped = 0;
2526 	ssize_t ret;
2527 
2528 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2529 		return -EINVAL;
2530 	if (!ocfs2_refcount_tree(osb))
2531 		return -EOPNOTSUPP;
2532 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2533 		return -EROFS;
2534 
2535 	/* Lock both files against IO */
2536 	ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2537 	if (ret)
2538 		return ret;
2539 
2540 	/* Check file eligibility and prepare for block sharing. */
2541 	ret = -EINVAL;
2542 	if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2543 	    (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2544 		goto out_unlock;
2545 
2546 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2547 			&len, remap_flags);
2548 	if (ret < 0 || len == 0)
2549 		goto out_unlock;
2550 
2551 	/* Lock out changes to the allocation maps and remap. */
2552 	down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2553 	if (!same_inode)
2554 		down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2555 				  SINGLE_DEPTH_NESTING);
2556 
2557 	/* Zap any page cache for the destination file's range. */
2558 	truncate_inode_pages_range(&inode_out->i_data,
2559 				   round_down(pos_out, PAGE_SIZE),
2560 				   round_up(pos_out + len, PAGE_SIZE) - 1);
2561 
2562 	remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2563 			inode_out, out_bh, pos_out, len);
2564 	up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2565 	if (!same_inode)
2566 		up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2567 	if (remapped < 0) {
2568 		ret = remapped;
2569 		mlog_errno(ret);
2570 		goto out_unlock;
2571 	}
2572 
2573 	/*
2574 	 * Empty the extent map so that we may get the right extent
2575 	 * record from the disk.
2576 	 */
2577 	ocfs2_extent_map_trunc(inode_in, 0);
2578 	ocfs2_extent_map_trunc(inode_out, 0);
2579 
2580 	ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2581 	if (ret) {
2582 		mlog_errno(ret);
2583 		goto out_unlock;
2584 	}
2585 
2586 out_unlock:
2587 	ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2588 	return remapped > 0 ? remapped : ret;
2589 }
2590 
2591 const struct inode_operations ocfs2_file_iops = {
2592 	.setattr	= ocfs2_setattr,
2593 	.getattr	= ocfs2_getattr,
2594 	.permission	= ocfs2_permission,
2595 	.listxattr	= ocfs2_listxattr,
2596 	.fiemap		= ocfs2_fiemap,
2597 	.get_acl	= ocfs2_iop_get_acl,
2598 	.set_acl	= ocfs2_iop_set_acl,
2599 };
2600 
2601 const struct inode_operations ocfs2_special_file_iops = {
2602 	.setattr	= ocfs2_setattr,
2603 	.getattr	= ocfs2_getattr,
2604 	.permission	= ocfs2_permission,
2605 	.get_acl	= ocfs2_iop_get_acl,
2606 	.set_acl	= ocfs2_iop_set_acl,
2607 };
2608 
2609 /*
2610  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2611  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2612  */
2613 const struct file_operations ocfs2_fops = {
2614 	.llseek		= ocfs2_file_llseek,
2615 	.mmap		= ocfs2_mmap,
2616 	.fsync		= ocfs2_sync_file,
2617 	.release	= ocfs2_file_release,
2618 	.open		= ocfs2_file_open,
2619 	.read_iter	= ocfs2_file_read_iter,
2620 	.write_iter	= ocfs2_file_write_iter,
2621 	.unlocked_ioctl	= ocfs2_ioctl,
2622 #ifdef CONFIG_COMPAT
2623 	.compat_ioctl   = ocfs2_compat_ioctl,
2624 #endif
2625 	.lock		= ocfs2_lock,
2626 	.flock		= ocfs2_flock,
2627 	.splice_read	= generic_file_splice_read,
2628 	.splice_write	= iter_file_splice_write,
2629 	.fallocate	= ocfs2_fallocate,
2630 	.remap_file_range = ocfs2_remap_file_range,
2631 };
2632 
2633 const struct file_operations ocfs2_dops = {
2634 	.llseek		= generic_file_llseek,
2635 	.read		= generic_read_dir,
2636 	.iterate	= ocfs2_readdir,
2637 	.fsync		= ocfs2_sync_file,
2638 	.release	= ocfs2_dir_release,
2639 	.open		= ocfs2_dir_open,
2640 	.unlocked_ioctl	= ocfs2_ioctl,
2641 #ifdef CONFIG_COMPAT
2642 	.compat_ioctl   = ocfs2_compat_ioctl,
2643 #endif
2644 	.lock		= ocfs2_lock,
2645 	.flock		= ocfs2_flock,
2646 };
2647 
2648 /*
2649  * POSIX-lockless variants of our file_operations.
2650  *
2651  * These will be used if the underlying cluster stack does not support
2652  * posix file locking, if the user passes the "localflocks" mount
2653  * option, or if we have a local-only fs.
2654  *
2655  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2656  * so we still want it in the case of no stack support for
2657  * plocks. Internally, it will do the right thing when asked to ignore
2658  * the cluster.
2659  */
2660 const struct file_operations ocfs2_fops_no_plocks = {
2661 	.llseek		= ocfs2_file_llseek,
2662 	.mmap		= ocfs2_mmap,
2663 	.fsync		= ocfs2_sync_file,
2664 	.release	= ocfs2_file_release,
2665 	.open		= ocfs2_file_open,
2666 	.read_iter	= ocfs2_file_read_iter,
2667 	.write_iter	= ocfs2_file_write_iter,
2668 	.unlocked_ioctl	= ocfs2_ioctl,
2669 #ifdef CONFIG_COMPAT
2670 	.compat_ioctl   = ocfs2_compat_ioctl,
2671 #endif
2672 	.flock		= ocfs2_flock,
2673 	.splice_read	= generic_file_splice_read,
2674 	.splice_write	= iter_file_splice_write,
2675 	.fallocate	= ocfs2_fallocate,
2676 	.remap_file_range = ocfs2_remap_file_range,
2677 };
2678 
2679 const struct file_operations ocfs2_dops_no_plocks = {
2680 	.llseek		= generic_file_llseek,
2681 	.read		= generic_read_dir,
2682 	.iterate	= ocfs2_readdir,
2683 	.fsync		= ocfs2_sync_file,
2684 	.release	= ocfs2_dir_release,
2685 	.open		= ocfs2_dir_open,
2686 	.unlocked_ioctl	= ocfs2_ioctl,
2687 #ifdef CONFIG_COMPAT
2688 	.compat_ioctl   = ocfs2_compat_ioctl,
2689 #endif
2690 	.flock		= ocfs2_flock,
2691 };
2692