1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * file.c 5 * 6 * File open, close, extend, truncate 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/capability.h> 27 #include <linux/fs.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/highmem.h> 31 #include <linux/pagemap.h> 32 #include <linux/uio.h> 33 #include <linux/sched.h> 34 #include <linux/splice.h> 35 #include <linux/mount.h> 36 #include <linux/writeback.h> 37 #include <linux/falloc.h> 38 #include <linux/quotaops.h> 39 #include <linux/blkdev.h> 40 41 #include <cluster/masklog.h> 42 43 #include "ocfs2.h" 44 45 #include "alloc.h" 46 #include "aops.h" 47 #include "dir.h" 48 #include "dlmglue.h" 49 #include "extent_map.h" 50 #include "file.h" 51 #include "sysfile.h" 52 #include "inode.h" 53 #include "ioctl.h" 54 #include "journal.h" 55 #include "locks.h" 56 #include "mmap.h" 57 #include "suballoc.h" 58 #include "super.h" 59 #include "xattr.h" 60 #include "acl.h" 61 #include "quota.h" 62 #include "refcounttree.h" 63 #include "ocfs2_trace.h" 64 65 #include "buffer_head_io.h" 66 67 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 68 { 69 struct ocfs2_file_private *fp; 70 71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 72 if (!fp) 73 return -ENOMEM; 74 75 fp->fp_file = file; 76 mutex_init(&fp->fp_mutex); 77 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 78 file->private_data = fp; 79 80 return 0; 81 } 82 83 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 84 { 85 struct ocfs2_file_private *fp = file->private_data; 86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 87 88 if (fp) { 89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 90 ocfs2_lock_res_free(&fp->fp_flock); 91 kfree(fp); 92 file->private_data = NULL; 93 } 94 } 95 96 static int ocfs2_file_open(struct inode *inode, struct file *file) 97 { 98 int status; 99 int mode = file->f_flags; 100 struct ocfs2_inode_info *oi = OCFS2_I(inode); 101 102 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 103 (unsigned long long)OCFS2_I(inode)->ip_blkno, 104 file->f_path.dentry->d_name.len, 105 file->f_path.dentry->d_name.name, mode); 106 107 if (file->f_mode & FMODE_WRITE) 108 dquot_initialize(inode); 109 110 spin_lock(&oi->ip_lock); 111 112 /* Check that the inode hasn't been wiped from disk by another 113 * node. If it hasn't then we're safe as long as we hold the 114 * spin lock until our increment of open count. */ 115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { 116 spin_unlock(&oi->ip_lock); 117 118 status = -ENOENT; 119 goto leave; 120 } 121 122 if (mode & O_DIRECT) 123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 124 125 oi->ip_open_count++; 126 spin_unlock(&oi->ip_lock); 127 128 status = ocfs2_init_file_private(inode, file); 129 if (status) { 130 /* 131 * We want to set open count back if we're failing the 132 * open. 133 */ 134 spin_lock(&oi->ip_lock); 135 oi->ip_open_count--; 136 spin_unlock(&oi->ip_lock); 137 } 138 139 leave: 140 return status; 141 } 142 143 static int ocfs2_file_release(struct inode *inode, struct file *file) 144 { 145 struct ocfs2_inode_info *oi = OCFS2_I(inode); 146 147 spin_lock(&oi->ip_lock); 148 if (!--oi->ip_open_count) 149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 150 151 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 152 oi->ip_blkno, 153 file->f_path.dentry->d_name.len, 154 file->f_path.dentry->d_name.name, 155 oi->ip_open_count); 156 spin_unlock(&oi->ip_lock); 157 158 ocfs2_free_file_private(inode, file); 159 160 return 0; 161 } 162 163 static int ocfs2_dir_open(struct inode *inode, struct file *file) 164 { 165 return ocfs2_init_file_private(inode, file); 166 } 167 168 static int ocfs2_dir_release(struct inode *inode, struct file *file) 169 { 170 ocfs2_free_file_private(inode, file); 171 return 0; 172 } 173 174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 175 int datasync) 176 { 177 int err = 0; 178 struct inode *inode = file->f_mapping->host; 179 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 180 struct ocfs2_inode_info *oi = OCFS2_I(inode); 181 journal_t *journal = osb->journal->j_journal; 182 int ret; 183 tid_t commit_tid; 184 bool needs_barrier = false; 185 186 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 187 OCFS2_I(inode)->ip_blkno, 188 file->f_path.dentry->d_name.len, 189 file->f_path.dentry->d_name.name, 190 (unsigned long long)datasync); 191 192 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 193 return -EROFS; 194 195 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 196 if (err) 197 return err; 198 199 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 200 if (journal->j_flags & JBD2_BARRIER && 201 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 202 needs_barrier = true; 203 err = jbd2_complete_transaction(journal, commit_tid); 204 if (needs_barrier) { 205 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 206 if (!err) 207 err = ret; 208 } 209 210 if (err) 211 mlog_errno(err); 212 213 return (err < 0) ? -EIO : 0; 214 } 215 216 int ocfs2_should_update_atime(struct inode *inode, 217 struct vfsmount *vfsmnt) 218 { 219 struct timespec now; 220 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 221 222 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 223 return 0; 224 225 if ((inode->i_flags & S_NOATIME) || 226 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) 227 return 0; 228 229 /* 230 * We can be called with no vfsmnt structure - NFSD will 231 * sometimes do this. 232 * 233 * Note that our action here is different than touch_atime() - 234 * if we can't tell whether this is a noatime mount, then we 235 * don't know whether to trust the value of s_atime_quantum. 236 */ 237 if (vfsmnt == NULL) 238 return 0; 239 240 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 241 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 242 return 0; 243 244 if (vfsmnt->mnt_flags & MNT_RELATIME) { 245 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 246 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 247 return 1; 248 249 return 0; 250 } 251 252 now = CURRENT_TIME; 253 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 254 return 0; 255 else 256 return 1; 257 } 258 259 int ocfs2_update_inode_atime(struct inode *inode, 260 struct buffer_head *bh) 261 { 262 int ret; 263 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 264 handle_t *handle; 265 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 266 267 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 268 if (IS_ERR(handle)) { 269 ret = PTR_ERR(handle); 270 mlog_errno(ret); 271 goto out; 272 } 273 274 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 275 OCFS2_JOURNAL_ACCESS_WRITE); 276 if (ret) { 277 mlog_errno(ret); 278 goto out_commit; 279 } 280 281 /* 282 * Don't use ocfs2_mark_inode_dirty() here as we don't always 283 * have i_mutex to guard against concurrent changes to other 284 * inode fields. 285 */ 286 inode->i_atime = CURRENT_TIME; 287 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 288 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 289 ocfs2_update_inode_fsync_trans(handle, inode, 0); 290 ocfs2_journal_dirty(handle, bh); 291 292 out_commit: 293 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 294 out: 295 return ret; 296 } 297 298 static int ocfs2_set_inode_size(handle_t *handle, 299 struct inode *inode, 300 struct buffer_head *fe_bh, 301 u64 new_i_size) 302 { 303 int status; 304 305 i_size_write(inode, new_i_size); 306 inode->i_blocks = ocfs2_inode_sector_count(inode); 307 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 308 309 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 310 if (status < 0) { 311 mlog_errno(status); 312 goto bail; 313 } 314 315 bail: 316 return status; 317 } 318 319 int ocfs2_simple_size_update(struct inode *inode, 320 struct buffer_head *di_bh, 321 u64 new_i_size) 322 { 323 int ret; 324 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 325 handle_t *handle = NULL; 326 327 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 328 if (IS_ERR(handle)) { 329 ret = PTR_ERR(handle); 330 mlog_errno(ret); 331 goto out; 332 } 333 334 ret = ocfs2_set_inode_size(handle, inode, di_bh, 335 new_i_size); 336 if (ret < 0) 337 mlog_errno(ret); 338 339 ocfs2_update_inode_fsync_trans(handle, inode, 0); 340 ocfs2_commit_trans(osb, handle); 341 out: 342 return ret; 343 } 344 345 static int ocfs2_cow_file_pos(struct inode *inode, 346 struct buffer_head *fe_bh, 347 u64 offset) 348 { 349 int status; 350 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 351 unsigned int num_clusters = 0; 352 unsigned int ext_flags = 0; 353 354 /* 355 * If the new offset is aligned to the range of the cluster, there is 356 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 357 * CoW either. 358 */ 359 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 360 return 0; 361 362 status = ocfs2_get_clusters(inode, cpos, &phys, 363 &num_clusters, &ext_flags); 364 if (status) { 365 mlog_errno(status); 366 goto out; 367 } 368 369 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 370 goto out; 371 372 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 373 374 out: 375 return status; 376 } 377 378 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 379 struct inode *inode, 380 struct buffer_head *fe_bh, 381 u64 new_i_size) 382 { 383 int status; 384 handle_t *handle; 385 struct ocfs2_dinode *di; 386 u64 cluster_bytes; 387 388 /* 389 * We need to CoW the cluster contains the offset if it is reflinked 390 * since we will call ocfs2_zero_range_for_truncate later which will 391 * write "0" from offset to the end of the cluster. 392 */ 393 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 394 if (status) { 395 mlog_errno(status); 396 return status; 397 } 398 399 /* TODO: This needs to actually orphan the inode in this 400 * transaction. */ 401 402 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 403 if (IS_ERR(handle)) { 404 status = PTR_ERR(handle); 405 mlog_errno(status); 406 goto out; 407 } 408 409 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 410 OCFS2_JOURNAL_ACCESS_WRITE); 411 if (status < 0) { 412 mlog_errno(status); 413 goto out_commit; 414 } 415 416 /* 417 * Do this before setting i_size. 418 */ 419 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 420 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 421 cluster_bytes); 422 if (status) { 423 mlog_errno(status); 424 goto out_commit; 425 } 426 427 i_size_write(inode, new_i_size); 428 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 429 430 di = (struct ocfs2_dinode *) fe_bh->b_data; 431 di->i_size = cpu_to_le64(new_i_size); 432 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 433 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 434 ocfs2_update_inode_fsync_trans(handle, inode, 0); 435 436 ocfs2_journal_dirty(handle, fe_bh); 437 438 out_commit: 439 ocfs2_commit_trans(osb, handle); 440 out: 441 return status; 442 } 443 444 static int ocfs2_truncate_file(struct inode *inode, 445 struct buffer_head *di_bh, 446 u64 new_i_size) 447 { 448 int status = 0; 449 struct ocfs2_dinode *fe = NULL; 450 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 451 452 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 453 * already validated it */ 454 fe = (struct ocfs2_dinode *) di_bh->b_data; 455 456 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 457 (unsigned long long)le64_to_cpu(fe->i_size), 458 (unsigned long long)new_i_size); 459 460 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 461 "Inode %llu, inode i_size = %lld != di " 462 "i_size = %llu, i_flags = 0x%x\n", 463 (unsigned long long)OCFS2_I(inode)->ip_blkno, 464 i_size_read(inode), 465 (unsigned long long)le64_to_cpu(fe->i_size), 466 le32_to_cpu(fe->i_flags)); 467 468 if (new_i_size > le64_to_cpu(fe->i_size)) { 469 trace_ocfs2_truncate_file_error( 470 (unsigned long long)le64_to_cpu(fe->i_size), 471 (unsigned long long)new_i_size); 472 status = -EINVAL; 473 mlog_errno(status); 474 goto bail; 475 } 476 477 down_write(&OCFS2_I(inode)->ip_alloc_sem); 478 479 ocfs2_resv_discard(&osb->osb_la_resmap, 480 &OCFS2_I(inode)->ip_la_data_resv); 481 482 /* 483 * The inode lock forced other nodes to sync and drop their 484 * pages, which (correctly) happens even if we have a truncate 485 * without allocation change - ocfs2 cluster sizes can be much 486 * greater than page size, so we have to truncate them 487 * anyway. 488 */ 489 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 490 truncate_inode_pages(inode->i_mapping, new_i_size); 491 492 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 493 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 494 i_size_read(inode), 1); 495 if (status) 496 mlog_errno(status); 497 498 goto bail_unlock_sem; 499 } 500 501 /* alright, we're going to need to do a full blown alloc size 502 * change. Orphan the inode so that recovery can complete the 503 * truncate if necessary. This does the task of marking 504 * i_size. */ 505 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 506 if (status < 0) { 507 mlog_errno(status); 508 goto bail_unlock_sem; 509 } 510 511 status = ocfs2_commit_truncate(osb, inode, di_bh); 512 if (status < 0) { 513 mlog_errno(status); 514 goto bail_unlock_sem; 515 } 516 517 /* TODO: orphan dir cleanup here. */ 518 bail_unlock_sem: 519 up_write(&OCFS2_I(inode)->ip_alloc_sem); 520 521 bail: 522 if (!status && OCFS2_I(inode)->ip_clusters == 0) 523 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 524 525 return status; 526 } 527 528 /* 529 * extend file allocation only here. 530 * we'll update all the disk stuff, and oip->alloc_size 531 * 532 * expect stuff to be locked, a transaction started and enough data / 533 * metadata reservations in the contexts. 534 * 535 * Will return -EAGAIN, and a reason if a restart is needed. 536 * If passed in, *reason will always be set, even in error. 537 */ 538 int ocfs2_add_inode_data(struct ocfs2_super *osb, 539 struct inode *inode, 540 u32 *logical_offset, 541 u32 clusters_to_add, 542 int mark_unwritten, 543 struct buffer_head *fe_bh, 544 handle_t *handle, 545 struct ocfs2_alloc_context *data_ac, 546 struct ocfs2_alloc_context *meta_ac, 547 enum ocfs2_alloc_restarted *reason_ret) 548 { 549 int ret; 550 struct ocfs2_extent_tree et; 551 552 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 553 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 554 clusters_to_add, mark_unwritten, 555 data_ac, meta_ac, reason_ret); 556 557 return ret; 558 } 559 560 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 561 u32 clusters_to_add, int mark_unwritten) 562 { 563 int status = 0; 564 int restart_func = 0; 565 int credits; 566 u32 prev_clusters; 567 struct buffer_head *bh = NULL; 568 struct ocfs2_dinode *fe = NULL; 569 handle_t *handle = NULL; 570 struct ocfs2_alloc_context *data_ac = NULL; 571 struct ocfs2_alloc_context *meta_ac = NULL; 572 enum ocfs2_alloc_restarted why; 573 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 574 struct ocfs2_extent_tree et; 575 int did_quota = 0; 576 577 /* 578 * Unwritten extent only exists for file systems which 579 * support holes. 580 */ 581 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 582 583 status = ocfs2_read_inode_block(inode, &bh); 584 if (status < 0) { 585 mlog_errno(status); 586 goto leave; 587 } 588 fe = (struct ocfs2_dinode *) bh->b_data; 589 590 restart_all: 591 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 592 593 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 594 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 595 &data_ac, &meta_ac); 596 if (status) { 597 mlog_errno(status); 598 goto leave; 599 } 600 601 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 602 handle = ocfs2_start_trans(osb, credits); 603 if (IS_ERR(handle)) { 604 status = PTR_ERR(handle); 605 handle = NULL; 606 mlog_errno(status); 607 goto leave; 608 } 609 610 restarted_transaction: 611 trace_ocfs2_extend_allocation( 612 (unsigned long long)OCFS2_I(inode)->ip_blkno, 613 (unsigned long long)i_size_read(inode), 614 le32_to_cpu(fe->i_clusters), clusters_to_add, 615 why, restart_func); 616 617 status = dquot_alloc_space_nodirty(inode, 618 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 619 if (status) 620 goto leave; 621 did_quota = 1; 622 623 /* reserve a write to the file entry early on - that we if we 624 * run out of credits in the allocation path, we can still 625 * update i_size. */ 626 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 627 OCFS2_JOURNAL_ACCESS_WRITE); 628 if (status < 0) { 629 mlog_errno(status); 630 goto leave; 631 } 632 633 prev_clusters = OCFS2_I(inode)->ip_clusters; 634 635 status = ocfs2_add_inode_data(osb, 636 inode, 637 &logical_start, 638 clusters_to_add, 639 mark_unwritten, 640 bh, 641 handle, 642 data_ac, 643 meta_ac, 644 &why); 645 if ((status < 0) && (status != -EAGAIN)) { 646 if (status != -ENOSPC) 647 mlog_errno(status); 648 goto leave; 649 } 650 ocfs2_update_inode_fsync_trans(handle, inode, 1); 651 ocfs2_journal_dirty(handle, bh); 652 653 spin_lock(&OCFS2_I(inode)->ip_lock); 654 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 655 spin_unlock(&OCFS2_I(inode)->ip_lock); 656 /* Release unused quota reservation */ 657 dquot_free_space(inode, 658 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 659 did_quota = 0; 660 661 if (why != RESTART_NONE && clusters_to_add) { 662 if (why == RESTART_META) { 663 restart_func = 1; 664 status = 0; 665 } else { 666 BUG_ON(why != RESTART_TRANS); 667 668 status = ocfs2_allocate_extend_trans(handle, 1); 669 if (status < 0) { 670 /* handle still has to be committed at 671 * this point. */ 672 status = -ENOMEM; 673 mlog_errno(status); 674 goto leave; 675 } 676 goto restarted_transaction; 677 } 678 } 679 680 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 681 le32_to_cpu(fe->i_clusters), 682 (unsigned long long)le64_to_cpu(fe->i_size), 683 OCFS2_I(inode)->ip_clusters, 684 (unsigned long long)i_size_read(inode)); 685 686 leave: 687 if (status < 0 && did_quota) 688 dquot_free_space(inode, 689 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 690 if (handle) { 691 ocfs2_commit_trans(osb, handle); 692 handle = NULL; 693 } 694 if (data_ac) { 695 ocfs2_free_alloc_context(data_ac); 696 data_ac = NULL; 697 } 698 if (meta_ac) { 699 ocfs2_free_alloc_context(meta_ac); 700 meta_ac = NULL; 701 } 702 if ((!status) && restart_func) { 703 restart_func = 0; 704 goto restart_all; 705 } 706 brelse(bh); 707 bh = NULL; 708 709 return status; 710 } 711 712 /* 713 * While a write will already be ordering the data, a truncate will not. 714 * Thus, we need to explicitly order the zeroed pages. 715 */ 716 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 717 struct buffer_head *di_bh) 718 { 719 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 720 handle_t *handle = NULL; 721 int ret = 0; 722 723 if (!ocfs2_should_order_data(inode)) 724 goto out; 725 726 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 727 if (IS_ERR(handle)) { 728 ret = -ENOMEM; 729 mlog_errno(ret); 730 goto out; 731 } 732 733 ret = ocfs2_jbd2_file_inode(handle, inode); 734 if (ret < 0) { 735 mlog_errno(ret); 736 goto out; 737 } 738 739 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 740 OCFS2_JOURNAL_ACCESS_WRITE); 741 if (ret) 742 mlog_errno(ret); 743 ocfs2_update_inode_fsync_trans(handle, inode, 1); 744 745 out: 746 if (ret) { 747 if (!IS_ERR(handle)) 748 ocfs2_commit_trans(osb, handle); 749 handle = ERR_PTR(ret); 750 } 751 return handle; 752 } 753 754 /* Some parts of this taken from generic_cont_expand, which turned out 755 * to be too fragile to do exactly what we need without us having to 756 * worry about recursive locking in ->write_begin() and ->write_end(). */ 757 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 758 u64 abs_to, struct buffer_head *di_bh) 759 { 760 struct address_space *mapping = inode->i_mapping; 761 struct page *page; 762 unsigned long index = abs_from >> PAGE_CACHE_SHIFT; 763 handle_t *handle; 764 int ret = 0; 765 unsigned zero_from, zero_to, block_start, block_end; 766 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 767 768 BUG_ON(abs_from >= abs_to); 769 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT)); 770 BUG_ON(abs_from & (inode->i_blkbits - 1)); 771 772 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh); 773 if (IS_ERR(handle)) { 774 ret = PTR_ERR(handle); 775 goto out; 776 } 777 778 page = find_or_create_page(mapping, index, GFP_NOFS); 779 if (!page) { 780 ret = -ENOMEM; 781 mlog_errno(ret); 782 goto out_commit_trans; 783 } 784 785 /* Get the offsets within the page that we want to zero */ 786 zero_from = abs_from & (PAGE_CACHE_SIZE - 1); 787 zero_to = abs_to & (PAGE_CACHE_SIZE - 1); 788 if (!zero_to) 789 zero_to = PAGE_CACHE_SIZE; 790 791 trace_ocfs2_write_zero_page( 792 (unsigned long long)OCFS2_I(inode)->ip_blkno, 793 (unsigned long long)abs_from, 794 (unsigned long long)abs_to, 795 index, zero_from, zero_to); 796 797 /* We know that zero_from is block aligned */ 798 for (block_start = zero_from; block_start < zero_to; 799 block_start = block_end) { 800 block_end = block_start + (1 << inode->i_blkbits); 801 802 /* 803 * block_start is block-aligned. Bump it by one to force 804 * __block_write_begin and block_commit_write to zero the 805 * whole block. 806 */ 807 ret = __block_write_begin(page, block_start + 1, 0, 808 ocfs2_get_block); 809 if (ret < 0) { 810 mlog_errno(ret); 811 goto out_unlock; 812 } 813 814 815 /* must not update i_size! */ 816 ret = block_commit_write(page, block_start + 1, 817 block_start + 1); 818 if (ret < 0) 819 mlog_errno(ret); 820 else 821 ret = 0; 822 } 823 824 /* 825 * fs-writeback will release the dirty pages without page lock 826 * whose offset are over inode size, the release happens at 827 * block_write_full_page(). 828 */ 829 i_size_write(inode, abs_to); 830 inode->i_blocks = ocfs2_inode_sector_count(inode); 831 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 832 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 833 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 834 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 835 di->i_mtime_nsec = di->i_ctime_nsec; 836 if (handle) { 837 ocfs2_journal_dirty(handle, di_bh); 838 ocfs2_update_inode_fsync_trans(handle, inode, 1); 839 } 840 841 out_unlock: 842 unlock_page(page); 843 page_cache_release(page); 844 out_commit_trans: 845 if (handle) 846 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 847 out: 848 return ret; 849 } 850 851 /* 852 * Find the next range to zero. We do this in terms of bytes because 853 * that's what ocfs2_zero_extend() wants, and it is dealing with the 854 * pagecache. We may return multiple extents. 855 * 856 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 857 * needs to be zeroed. range_start and range_end return the next zeroing 858 * range. A subsequent call should pass the previous range_end as its 859 * zero_start. If range_end is 0, there's nothing to do. 860 * 861 * Unwritten extents are skipped over. Refcounted extents are CoWd. 862 */ 863 static int ocfs2_zero_extend_get_range(struct inode *inode, 864 struct buffer_head *di_bh, 865 u64 zero_start, u64 zero_end, 866 u64 *range_start, u64 *range_end) 867 { 868 int rc = 0, needs_cow = 0; 869 u32 p_cpos, zero_clusters = 0; 870 u32 zero_cpos = 871 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 872 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 873 unsigned int num_clusters = 0; 874 unsigned int ext_flags = 0; 875 876 while (zero_cpos < last_cpos) { 877 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 878 &num_clusters, &ext_flags); 879 if (rc) { 880 mlog_errno(rc); 881 goto out; 882 } 883 884 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 885 zero_clusters = num_clusters; 886 if (ext_flags & OCFS2_EXT_REFCOUNTED) 887 needs_cow = 1; 888 break; 889 } 890 891 zero_cpos += num_clusters; 892 } 893 if (!zero_clusters) { 894 *range_end = 0; 895 goto out; 896 } 897 898 while ((zero_cpos + zero_clusters) < last_cpos) { 899 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 900 &p_cpos, &num_clusters, 901 &ext_flags); 902 if (rc) { 903 mlog_errno(rc); 904 goto out; 905 } 906 907 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 908 break; 909 if (ext_flags & OCFS2_EXT_REFCOUNTED) 910 needs_cow = 1; 911 zero_clusters += num_clusters; 912 } 913 if ((zero_cpos + zero_clusters) > last_cpos) 914 zero_clusters = last_cpos - zero_cpos; 915 916 if (needs_cow) { 917 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 918 zero_clusters, UINT_MAX); 919 if (rc) { 920 mlog_errno(rc); 921 goto out; 922 } 923 } 924 925 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 926 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 927 zero_cpos + zero_clusters); 928 929 out: 930 return rc; 931 } 932 933 /* 934 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 935 * has made sure that the entire range needs zeroing. 936 */ 937 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 938 u64 range_end, struct buffer_head *di_bh) 939 { 940 int rc = 0; 941 u64 next_pos; 942 u64 zero_pos = range_start; 943 944 trace_ocfs2_zero_extend_range( 945 (unsigned long long)OCFS2_I(inode)->ip_blkno, 946 (unsigned long long)range_start, 947 (unsigned long long)range_end); 948 BUG_ON(range_start >= range_end); 949 950 while (zero_pos < range_end) { 951 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE; 952 if (next_pos > range_end) 953 next_pos = range_end; 954 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 955 if (rc < 0) { 956 mlog_errno(rc); 957 break; 958 } 959 zero_pos = next_pos; 960 961 /* 962 * Very large extends have the potential to lock up 963 * the cpu for extended periods of time. 964 */ 965 cond_resched(); 966 } 967 968 return rc; 969 } 970 971 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 972 loff_t zero_to_size) 973 { 974 int ret = 0; 975 u64 zero_start, range_start = 0, range_end = 0; 976 struct super_block *sb = inode->i_sb; 977 978 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 979 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 980 (unsigned long long)zero_start, 981 (unsigned long long)i_size_read(inode)); 982 while (zero_start < zero_to_size) { 983 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 984 zero_to_size, 985 &range_start, 986 &range_end); 987 if (ret) { 988 mlog_errno(ret); 989 break; 990 } 991 if (!range_end) 992 break; 993 /* Trim the ends */ 994 if (range_start < zero_start) 995 range_start = zero_start; 996 if (range_end > zero_to_size) 997 range_end = zero_to_size; 998 999 ret = ocfs2_zero_extend_range(inode, range_start, 1000 range_end, di_bh); 1001 if (ret) { 1002 mlog_errno(ret); 1003 break; 1004 } 1005 zero_start = range_end; 1006 } 1007 1008 return ret; 1009 } 1010 1011 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1012 u64 new_i_size, u64 zero_to) 1013 { 1014 int ret; 1015 u32 clusters_to_add; 1016 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1017 1018 /* 1019 * Only quota files call this without a bh, and they can't be 1020 * refcounted. 1021 */ 1022 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL)); 1023 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1024 1025 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1026 if (clusters_to_add < oi->ip_clusters) 1027 clusters_to_add = 0; 1028 else 1029 clusters_to_add -= oi->ip_clusters; 1030 1031 if (clusters_to_add) { 1032 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters, 1033 clusters_to_add, 0); 1034 if (ret) { 1035 mlog_errno(ret); 1036 goto out; 1037 } 1038 } 1039 1040 /* 1041 * Call this even if we don't add any clusters to the tree. We 1042 * still need to zero the area between the old i_size and the 1043 * new i_size. 1044 */ 1045 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1046 if (ret < 0) 1047 mlog_errno(ret); 1048 1049 out: 1050 return ret; 1051 } 1052 1053 static int ocfs2_extend_file(struct inode *inode, 1054 struct buffer_head *di_bh, 1055 u64 new_i_size) 1056 { 1057 int ret = 0; 1058 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1059 1060 BUG_ON(!di_bh); 1061 1062 /* setattr sometimes calls us like this. */ 1063 if (new_i_size == 0) 1064 goto out; 1065 1066 if (i_size_read(inode) == new_i_size) 1067 goto out; 1068 BUG_ON(new_i_size < i_size_read(inode)); 1069 1070 /* 1071 * The alloc sem blocks people in read/write from reading our 1072 * allocation until we're done changing it. We depend on 1073 * i_mutex to block other extend/truncate calls while we're 1074 * here. We even have to hold it for sparse files because there 1075 * might be some tail zeroing. 1076 */ 1077 down_write(&oi->ip_alloc_sem); 1078 1079 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1080 /* 1081 * We can optimize small extends by keeping the inodes 1082 * inline data. 1083 */ 1084 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1085 up_write(&oi->ip_alloc_sem); 1086 goto out_update_size; 1087 } 1088 1089 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1090 if (ret) { 1091 up_write(&oi->ip_alloc_sem); 1092 mlog_errno(ret); 1093 goto out; 1094 } 1095 } 1096 1097 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1098 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1099 else 1100 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1101 new_i_size); 1102 1103 up_write(&oi->ip_alloc_sem); 1104 1105 if (ret < 0) { 1106 mlog_errno(ret); 1107 goto out; 1108 } 1109 1110 out_update_size: 1111 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1112 if (ret < 0) 1113 mlog_errno(ret); 1114 1115 out: 1116 return ret; 1117 } 1118 1119 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) 1120 { 1121 int status = 0, size_change; 1122 struct inode *inode = dentry->d_inode; 1123 struct super_block *sb = inode->i_sb; 1124 struct ocfs2_super *osb = OCFS2_SB(sb); 1125 struct buffer_head *bh = NULL; 1126 handle_t *handle = NULL; 1127 struct dquot *transfer_to[MAXQUOTAS] = { }; 1128 int qtype; 1129 1130 trace_ocfs2_setattr(inode, dentry, 1131 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1132 dentry->d_name.len, dentry->d_name.name, 1133 attr->ia_valid, attr->ia_mode, 1134 from_kuid(&init_user_ns, attr->ia_uid), 1135 from_kgid(&init_user_ns, attr->ia_gid)); 1136 1137 /* ensuring we don't even attempt to truncate a symlink */ 1138 if (S_ISLNK(inode->i_mode)) 1139 attr->ia_valid &= ~ATTR_SIZE; 1140 1141 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1142 | ATTR_GID | ATTR_UID | ATTR_MODE) 1143 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1144 return 0; 1145 1146 status = inode_change_ok(inode, attr); 1147 if (status) 1148 return status; 1149 1150 if (is_quota_modification(inode, attr)) 1151 dquot_initialize(inode); 1152 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1153 if (size_change) { 1154 status = ocfs2_rw_lock(inode, 1); 1155 if (status < 0) { 1156 mlog_errno(status); 1157 goto bail; 1158 } 1159 } 1160 1161 status = ocfs2_inode_lock(inode, &bh, 1); 1162 if (status < 0) { 1163 if (status != -ENOENT) 1164 mlog_errno(status); 1165 goto bail_unlock_rw; 1166 } 1167 1168 if (size_change) { 1169 status = inode_newsize_ok(inode, attr->ia_size); 1170 if (status) 1171 goto bail_unlock; 1172 1173 inode_dio_wait(inode); 1174 1175 if (i_size_read(inode) >= attr->ia_size) { 1176 if (ocfs2_should_order_data(inode)) { 1177 status = ocfs2_begin_ordered_truncate(inode, 1178 attr->ia_size); 1179 if (status) 1180 goto bail_unlock; 1181 } 1182 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1183 } else 1184 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1185 if (status < 0) { 1186 if (status != -ENOSPC) 1187 mlog_errno(status); 1188 status = -ENOSPC; 1189 goto bail_unlock; 1190 } 1191 } 1192 1193 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1194 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1195 /* 1196 * Gather pointers to quota structures so that allocation / 1197 * freeing of quota structures happens here and not inside 1198 * dquot_transfer() where we have problems with lock ordering 1199 */ 1200 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1201 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1202 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1203 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1204 if (!transfer_to[USRQUOTA]) { 1205 status = -ESRCH; 1206 goto bail_unlock; 1207 } 1208 } 1209 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1210 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1211 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1212 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1213 if (!transfer_to[GRPQUOTA]) { 1214 status = -ESRCH; 1215 goto bail_unlock; 1216 } 1217 } 1218 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1219 2 * ocfs2_quota_trans_credits(sb)); 1220 if (IS_ERR(handle)) { 1221 status = PTR_ERR(handle); 1222 mlog_errno(status); 1223 goto bail_unlock; 1224 } 1225 status = __dquot_transfer(inode, transfer_to); 1226 if (status < 0) 1227 goto bail_commit; 1228 } else { 1229 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1230 if (IS_ERR(handle)) { 1231 status = PTR_ERR(handle); 1232 mlog_errno(status); 1233 goto bail_unlock; 1234 } 1235 } 1236 1237 setattr_copy(inode, attr); 1238 mark_inode_dirty(inode); 1239 1240 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1241 if (status < 0) 1242 mlog_errno(status); 1243 1244 bail_commit: 1245 ocfs2_commit_trans(osb, handle); 1246 bail_unlock: 1247 ocfs2_inode_unlock(inode, 1); 1248 bail_unlock_rw: 1249 if (size_change) 1250 ocfs2_rw_unlock(inode, 1); 1251 bail: 1252 brelse(bh); 1253 1254 /* Release quota pointers in case we acquired them */ 1255 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1256 dqput(transfer_to[qtype]); 1257 1258 if (!status && attr->ia_valid & ATTR_MODE) { 1259 status = posix_acl_chmod(inode, inode->i_mode); 1260 if (status < 0) 1261 mlog_errno(status); 1262 } 1263 1264 return status; 1265 } 1266 1267 int ocfs2_getattr(struct vfsmount *mnt, 1268 struct dentry *dentry, 1269 struct kstat *stat) 1270 { 1271 struct inode *inode = dentry->d_inode; 1272 struct super_block *sb = dentry->d_inode->i_sb; 1273 struct ocfs2_super *osb = sb->s_fs_info; 1274 int err; 1275 1276 err = ocfs2_inode_revalidate(dentry); 1277 if (err) { 1278 if (err != -ENOENT) 1279 mlog_errno(err); 1280 goto bail; 1281 } 1282 1283 generic_fillattr(inode, stat); 1284 1285 /* We set the blksize from the cluster size for performance */ 1286 stat->blksize = osb->s_clustersize; 1287 1288 bail: 1289 return err; 1290 } 1291 1292 int ocfs2_permission(struct inode *inode, int mask) 1293 { 1294 int ret; 1295 1296 if (mask & MAY_NOT_BLOCK) 1297 return -ECHILD; 1298 1299 ret = ocfs2_inode_lock(inode, NULL, 0); 1300 if (ret) { 1301 if (ret != -ENOENT) 1302 mlog_errno(ret); 1303 goto out; 1304 } 1305 1306 ret = generic_permission(inode, mask); 1307 1308 ocfs2_inode_unlock(inode, 0); 1309 out: 1310 return ret; 1311 } 1312 1313 static int __ocfs2_write_remove_suid(struct inode *inode, 1314 struct buffer_head *bh) 1315 { 1316 int ret; 1317 handle_t *handle; 1318 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1319 struct ocfs2_dinode *di; 1320 1321 trace_ocfs2_write_remove_suid( 1322 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1323 inode->i_mode); 1324 1325 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1326 if (IS_ERR(handle)) { 1327 ret = PTR_ERR(handle); 1328 mlog_errno(ret); 1329 goto out; 1330 } 1331 1332 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1333 OCFS2_JOURNAL_ACCESS_WRITE); 1334 if (ret < 0) { 1335 mlog_errno(ret); 1336 goto out_trans; 1337 } 1338 1339 inode->i_mode &= ~S_ISUID; 1340 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1341 inode->i_mode &= ~S_ISGID; 1342 1343 di = (struct ocfs2_dinode *) bh->b_data; 1344 di->i_mode = cpu_to_le16(inode->i_mode); 1345 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1346 1347 ocfs2_journal_dirty(handle, bh); 1348 1349 out_trans: 1350 ocfs2_commit_trans(osb, handle); 1351 out: 1352 return ret; 1353 } 1354 1355 /* 1356 * Will look for holes and unwritten extents in the range starting at 1357 * pos for count bytes (inclusive). 1358 */ 1359 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos, 1360 size_t count) 1361 { 1362 int ret = 0; 1363 unsigned int extent_flags; 1364 u32 cpos, clusters, extent_len, phys_cpos; 1365 struct super_block *sb = inode->i_sb; 1366 1367 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 1368 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 1369 1370 while (clusters) { 1371 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 1372 &extent_flags); 1373 if (ret < 0) { 1374 mlog_errno(ret); 1375 goto out; 1376 } 1377 1378 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) { 1379 ret = 1; 1380 break; 1381 } 1382 1383 if (extent_len > clusters) 1384 extent_len = clusters; 1385 1386 clusters -= extent_len; 1387 cpos += extent_len; 1388 } 1389 out: 1390 return ret; 1391 } 1392 1393 static int ocfs2_write_remove_suid(struct inode *inode) 1394 { 1395 int ret; 1396 struct buffer_head *bh = NULL; 1397 1398 ret = ocfs2_read_inode_block(inode, &bh); 1399 if (ret < 0) { 1400 mlog_errno(ret); 1401 goto out; 1402 } 1403 1404 ret = __ocfs2_write_remove_suid(inode, bh); 1405 out: 1406 brelse(bh); 1407 return ret; 1408 } 1409 1410 /* 1411 * Allocate enough extents to cover the region starting at byte offset 1412 * start for len bytes. Existing extents are skipped, any extents 1413 * added are marked as "unwritten". 1414 */ 1415 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1416 u64 start, u64 len) 1417 { 1418 int ret; 1419 u32 cpos, phys_cpos, clusters, alloc_size; 1420 u64 end = start + len; 1421 struct buffer_head *di_bh = NULL; 1422 1423 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1424 ret = ocfs2_read_inode_block(inode, &di_bh); 1425 if (ret) { 1426 mlog_errno(ret); 1427 goto out; 1428 } 1429 1430 /* 1431 * Nothing to do if the requested reservation range 1432 * fits within the inode. 1433 */ 1434 if (ocfs2_size_fits_inline_data(di_bh, end)) 1435 goto out; 1436 1437 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1438 if (ret) { 1439 mlog_errno(ret); 1440 goto out; 1441 } 1442 } 1443 1444 /* 1445 * We consider both start and len to be inclusive. 1446 */ 1447 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1448 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1449 clusters -= cpos; 1450 1451 while (clusters) { 1452 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1453 &alloc_size, NULL); 1454 if (ret) { 1455 mlog_errno(ret); 1456 goto out; 1457 } 1458 1459 /* 1460 * Hole or existing extent len can be arbitrary, so 1461 * cap it to our own allocation request. 1462 */ 1463 if (alloc_size > clusters) 1464 alloc_size = clusters; 1465 1466 if (phys_cpos) { 1467 /* 1468 * We already have an allocation at this 1469 * region so we can safely skip it. 1470 */ 1471 goto next; 1472 } 1473 1474 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1475 if (ret) { 1476 if (ret != -ENOSPC) 1477 mlog_errno(ret); 1478 goto out; 1479 } 1480 1481 next: 1482 cpos += alloc_size; 1483 clusters -= alloc_size; 1484 } 1485 1486 ret = 0; 1487 out: 1488 1489 brelse(di_bh); 1490 return ret; 1491 } 1492 1493 /* 1494 * Truncate a byte range, avoiding pages within partial clusters. This 1495 * preserves those pages for the zeroing code to write to. 1496 */ 1497 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1498 u64 byte_len) 1499 { 1500 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1501 loff_t start, end; 1502 struct address_space *mapping = inode->i_mapping; 1503 1504 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1505 end = byte_start + byte_len; 1506 end = end & ~(osb->s_clustersize - 1); 1507 1508 if (start < end) { 1509 unmap_mapping_range(mapping, start, end - start, 0); 1510 truncate_inode_pages_range(mapping, start, end - 1); 1511 } 1512 } 1513 1514 static int ocfs2_zero_partial_clusters(struct inode *inode, 1515 u64 start, u64 len) 1516 { 1517 int ret = 0; 1518 u64 tmpend, end = start + len; 1519 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1520 unsigned int csize = osb->s_clustersize; 1521 handle_t *handle; 1522 1523 /* 1524 * The "start" and "end" values are NOT necessarily part of 1525 * the range whose allocation is being deleted. Rather, this 1526 * is what the user passed in with the request. We must zero 1527 * partial clusters here. There's no need to worry about 1528 * physical allocation - the zeroing code knows to skip holes. 1529 */ 1530 trace_ocfs2_zero_partial_clusters( 1531 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1532 (unsigned long long)start, (unsigned long long)end); 1533 1534 /* 1535 * If both edges are on a cluster boundary then there's no 1536 * zeroing required as the region is part of the allocation to 1537 * be truncated. 1538 */ 1539 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1540 goto out; 1541 1542 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1543 if (IS_ERR(handle)) { 1544 ret = PTR_ERR(handle); 1545 mlog_errno(ret); 1546 goto out; 1547 } 1548 1549 /* 1550 * We want to get the byte offset of the end of the 1st cluster. 1551 */ 1552 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1)); 1553 if (tmpend > end) 1554 tmpend = end; 1555 1556 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start, 1557 (unsigned long long)tmpend); 1558 1559 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend); 1560 if (ret) 1561 mlog_errno(ret); 1562 1563 if (tmpend < end) { 1564 /* 1565 * This may make start and end equal, but the zeroing 1566 * code will skip any work in that case so there's no 1567 * need to catch it up here. 1568 */ 1569 start = end & ~(osb->s_clustersize - 1); 1570 1571 trace_ocfs2_zero_partial_clusters_range2( 1572 (unsigned long long)start, (unsigned long long)end); 1573 1574 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1575 if (ret) 1576 mlog_errno(ret); 1577 } 1578 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1579 1580 ocfs2_commit_trans(osb, handle); 1581 out: 1582 return ret; 1583 } 1584 1585 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1586 { 1587 int i; 1588 struct ocfs2_extent_rec *rec = NULL; 1589 1590 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1591 1592 rec = &el->l_recs[i]; 1593 1594 if (le32_to_cpu(rec->e_cpos) < pos) 1595 break; 1596 } 1597 1598 return i; 1599 } 1600 1601 /* 1602 * Helper to calculate the punching pos and length in one run, we handle the 1603 * following three cases in order: 1604 * 1605 * - remove the entire record 1606 * - remove a partial record 1607 * - no record needs to be removed (hole-punching completed) 1608 */ 1609 static void ocfs2_calc_trunc_pos(struct inode *inode, 1610 struct ocfs2_extent_list *el, 1611 struct ocfs2_extent_rec *rec, 1612 u32 trunc_start, u32 *trunc_cpos, 1613 u32 *trunc_len, u32 *trunc_end, 1614 u64 *blkno, int *done) 1615 { 1616 int ret = 0; 1617 u32 coff, range; 1618 1619 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1620 1621 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1622 /* 1623 * remove an entire extent record. 1624 */ 1625 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1626 /* 1627 * Skip holes if any. 1628 */ 1629 if (range < *trunc_end) 1630 *trunc_end = range; 1631 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1632 *blkno = le64_to_cpu(rec->e_blkno); 1633 *trunc_end = le32_to_cpu(rec->e_cpos); 1634 } else if (range > trunc_start) { 1635 /* 1636 * remove a partial extent record, which means we're 1637 * removing the last extent record. 1638 */ 1639 *trunc_cpos = trunc_start; 1640 /* 1641 * skip hole if any. 1642 */ 1643 if (range < *trunc_end) 1644 *trunc_end = range; 1645 *trunc_len = *trunc_end - trunc_start; 1646 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1647 *blkno = le64_to_cpu(rec->e_blkno) + 1648 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1649 *trunc_end = trunc_start; 1650 } else { 1651 /* 1652 * It may have two following possibilities: 1653 * 1654 * - last record has been removed 1655 * - trunc_start was within a hole 1656 * 1657 * both two cases mean the completion of hole punching. 1658 */ 1659 ret = 1; 1660 } 1661 1662 *done = ret; 1663 } 1664 1665 static int ocfs2_remove_inode_range(struct inode *inode, 1666 struct buffer_head *di_bh, u64 byte_start, 1667 u64 byte_len) 1668 { 1669 int ret = 0, flags = 0, done = 0, i; 1670 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1671 u32 cluster_in_el; 1672 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1673 struct ocfs2_cached_dealloc_ctxt dealloc; 1674 struct address_space *mapping = inode->i_mapping; 1675 struct ocfs2_extent_tree et; 1676 struct ocfs2_path *path = NULL; 1677 struct ocfs2_extent_list *el = NULL; 1678 struct ocfs2_extent_rec *rec = NULL; 1679 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1680 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1681 1682 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1683 ocfs2_init_dealloc_ctxt(&dealloc); 1684 1685 trace_ocfs2_remove_inode_range( 1686 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1687 (unsigned long long)byte_start, 1688 (unsigned long long)byte_len); 1689 1690 if (byte_len == 0) 1691 return 0; 1692 1693 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1694 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1695 byte_start + byte_len, 0); 1696 if (ret) { 1697 mlog_errno(ret); 1698 goto out; 1699 } 1700 /* 1701 * There's no need to get fancy with the page cache 1702 * truncate of an inline-data inode. We're talking 1703 * about less than a page here, which will be cached 1704 * in the dinode buffer anyway. 1705 */ 1706 unmap_mapping_range(mapping, 0, 0, 0); 1707 truncate_inode_pages(mapping, 0); 1708 goto out; 1709 } 1710 1711 /* 1712 * For reflinks, we may need to CoW 2 clusters which might be 1713 * partially zero'd later, if hole's start and end offset were 1714 * within one cluster(means is not exactly aligned to clustersize). 1715 */ 1716 1717 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) { 1718 1719 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1720 if (ret) { 1721 mlog_errno(ret); 1722 goto out; 1723 } 1724 1725 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1726 if (ret) { 1727 mlog_errno(ret); 1728 goto out; 1729 } 1730 } 1731 1732 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1733 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1734 cluster_in_el = trunc_end; 1735 1736 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1737 if (ret) { 1738 mlog_errno(ret); 1739 goto out; 1740 } 1741 1742 path = ocfs2_new_path_from_et(&et); 1743 if (!path) { 1744 ret = -ENOMEM; 1745 mlog_errno(ret); 1746 goto out; 1747 } 1748 1749 while (trunc_end > trunc_start) { 1750 1751 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1752 cluster_in_el); 1753 if (ret) { 1754 mlog_errno(ret); 1755 goto out; 1756 } 1757 1758 el = path_leaf_el(path); 1759 1760 i = ocfs2_find_rec(el, trunc_end); 1761 /* 1762 * Need to go to previous extent block. 1763 */ 1764 if (i < 0) { 1765 if (path->p_tree_depth == 0) 1766 break; 1767 1768 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1769 path, 1770 &cluster_in_el); 1771 if (ret) { 1772 mlog_errno(ret); 1773 goto out; 1774 } 1775 1776 /* 1777 * We've reached the leftmost extent block, 1778 * it's safe to leave. 1779 */ 1780 if (cluster_in_el == 0) 1781 break; 1782 1783 /* 1784 * The 'pos' searched for previous extent block is 1785 * always one cluster less than actual trunc_end. 1786 */ 1787 trunc_end = cluster_in_el + 1; 1788 1789 ocfs2_reinit_path(path, 1); 1790 1791 continue; 1792 1793 } else 1794 rec = &el->l_recs[i]; 1795 1796 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1797 &trunc_len, &trunc_end, &blkno, &done); 1798 if (done) 1799 break; 1800 1801 flags = rec->e_flags; 1802 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1803 1804 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1805 phys_cpos, trunc_len, flags, 1806 &dealloc, refcount_loc, false); 1807 if (ret < 0) { 1808 mlog_errno(ret); 1809 goto out; 1810 } 1811 1812 cluster_in_el = trunc_end; 1813 1814 ocfs2_reinit_path(path, 1); 1815 } 1816 1817 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1818 1819 out: 1820 ocfs2_free_path(path); 1821 ocfs2_schedule_truncate_log_flush(osb, 1); 1822 ocfs2_run_deallocs(osb, &dealloc); 1823 1824 return ret; 1825 } 1826 1827 /* 1828 * Parts of this function taken from xfs_change_file_space() 1829 */ 1830 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1831 loff_t f_pos, unsigned int cmd, 1832 struct ocfs2_space_resv *sr, 1833 int change_size) 1834 { 1835 int ret; 1836 s64 llen; 1837 loff_t size; 1838 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1839 struct buffer_head *di_bh = NULL; 1840 handle_t *handle; 1841 unsigned long long max_off = inode->i_sb->s_maxbytes; 1842 1843 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1844 return -EROFS; 1845 1846 mutex_lock(&inode->i_mutex); 1847 1848 /* 1849 * This prevents concurrent writes on other nodes 1850 */ 1851 ret = ocfs2_rw_lock(inode, 1); 1852 if (ret) { 1853 mlog_errno(ret); 1854 goto out; 1855 } 1856 1857 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1858 if (ret) { 1859 mlog_errno(ret); 1860 goto out_rw_unlock; 1861 } 1862 1863 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1864 ret = -EPERM; 1865 goto out_inode_unlock; 1866 } 1867 1868 switch (sr->l_whence) { 1869 case 0: /*SEEK_SET*/ 1870 break; 1871 case 1: /*SEEK_CUR*/ 1872 sr->l_start += f_pos; 1873 break; 1874 case 2: /*SEEK_END*/ 1875 sr->l_start += i_size_read(inode); 1876 break; 1877 default: 1878 ret = -EINVAL; 1879 goto out_inode_unlock; 1880 } 1881 sr->l_whence = 0; 1882 1883 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1884 1885 if (sr->l_start < 0 1886 || sr->l_start > max_off 1887 || (sr->l_start + llen) < 0 1888 || (sr->l_start + llen) > max_off) { 1889 ret = -EINVAL; 1890 goto out_inode_unlock; 1891 } 1892 size = sr->l_start + sr->l_len; 1893 1894 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1895 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1896 if (sr->l_len <= 0) { 1897 ret = -EINVAL; 1898 goto out_inode_unlock; 1899 } 1900 } 1901 1902 if (file && should_remove_suid(file->f_path.dentry)) { 1903 ret = __ocfs2_write_remove_suid(inode, di_bh); 1904 if (ret) { 1905 mlog_errno(ret); 1906 goto out_inode_unlock; 1907 } 1908 } 1909 1910 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1911 switch (cmd) { 1912 case OCFS2_IOC_RESVSP: 1913 case OCFS2_IOC_RESVSP64: 1914 /* 1915 * This takes unsigned offsets, but the signed ones we 1916 * pass have been checked against overflow above. 1917 */ 1918 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1919 sr->l_len); 1920 break; 1921 case OCFS2_IOC_UNRESVSP: 1922 case OCFS2_IOC_UNRESVSP64: 1923 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1924 sr->l_len); 1925 break; 1926 default: 1927 ret = -EINVAL; 1928 } 1929 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1930 if (ret) { 1931 mlog_errno(ret); 1932 goto out_inode_unlock; 1933 } 1934 1935 /* 1936 * We update c/mtime for these changes 1937 */ 1938 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1939 if (IS_ERR(handle)) { 1940 ret = PTR_ERR(handle); 1941 mlog_errno(ret); 1942 goto out_inode_unlock; 1943 } 1944 1945 if (change_size && i_size_read(inode) < size) 1946 i_size_write(inode, size); 1947 1948 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 1949 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1950 if (ret < 0) 1951 mlog_errno(ret); 1952 1953 if (file && (file->f_flags & O_SYNC)) 1954 handle->h_sync = 1; 1955 1956 ocfs2_commit_trans(osb, handle); 1957 1958 out_inode_unlock: 1959 brelse(di_bh); 1960 ocfs2_inode_unlock(inode, 1); 1961 out_rw_unlock: 1962 ocfs2_rw_unlock(inode, 1); 1963 1964 out: 1965 mutex_unlock(&inode->i_mutex); 1966 return ret; 1967 } 1968 1969 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 1970 struct ocfs2_space_resv *sr) 1971 { 1972 struct inode *inode = file_inode(file); 1973 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1974 int ret; 1975 1976 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 1977 !ocfs2_writes_unwritten_extents(osb)) 1978 return -ENOTTY; 1979 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 1980 !ocfs2_sparse_alloc(osb)) 1981 return -ENOTTY; 1982 1983 if (!S_ISREG(inode->i_mode)) 1984 return -EINVAL; 1985 1986 if (!(file->f_mode & FMODE_WRITE)) 1987 return -EBADF; 1988 1989 ret = mnt_want_write_file(file); 1990 if (ret) 1991 return ret; 1992 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 1993 mnt_drop_write_file(file); 1994 return ret; 1995 } 1996 1997 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 1998 loff_t len) 1999 { 2000 struct inode *inode = file_inode(file); 2001 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2002 struct ocfs2_space_resv sr; 2003 int change_size = 1; 2004 int cmd = OCFS2_IOC_RESVSP64; 2005 2006 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2007 return -EOPNOTSUPP; 2008 if (!ocfs2_writes_unwritten_extents(osb)) 2009 return -EOPNOTSUPP; 2010 2011 if (mode & FALLOC_FL_KEEP_SIZE) 2012 change_size = 0; 2013 2014 if (mode & FALLOC_FL_PUNCH_HOLE) 2015 cmd = OCFS2_IOC_UNRESVSP64; 2016 2017 sr.l_whence = 0; 2018 sr.l_start = (s64)offset; 2019 sr.l_len = (s64)len; 2020 2021 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2022 change_size); 2023 } 2024 2025 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2026 size_t count) 2027 { 2028 int ret = 0; 2029 unsigned int extent_flags; 2030 u32 cpos, clusters, extent_len, phys_cpos; 2031 struct super_block *sb = inode->i_sb; 2032 2033 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2034 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) || 2035 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2036 return 0; 2037 2038 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2039 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2040 2041 while (clusters) { 2042 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2043 &extent_flags); 2044 if (ret < 0) { 2045 mlog_errno(ret); 2046 goto out; 2047 } 2048 2049 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2050 ret = 1; 2051 break; 2052 } 2053 2054 if (extent_len > clusters) 2055 extent_len = clusters; 2056 2057 clusters -= extent_len; 2058 cpos += extent_len; 2059 } 2060 out: 2061 return ret; 2062 } 2063 2064 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2065 { 2066 int blockmask = inode->i_sb->s_blocksize - 1; 2067 loff_t final_size = pos + count; 2068 2069 if ((pos & blockmask) || (final_size & blockmask)) 2070 return 1; 2071 return 0; 2072 } 2073 2074 static int ocfs2_prepare_inode_for_refcount(struct inode *inode, 2075 struct file *file, 2076 loff_t pos, size_t count, 2077 int *meta_level) 2078 { 2079 int ret; 2080 struct buffer_head *di_bh = NULL; 2081 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2082 u32 clusters = 2083 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2084 2085 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2086 if (ret) { 2087 mlog_errno(ret); 2088 goto out; 2089 } 2090 2091 *meta_level = 1; 2092 2093 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2094 if (ret) 2095 mlog_errno(ret); 2096 out: 2097 brelse(di_bh); 2098 return ret; 2099 } 2100 2101 static int ocfs2_prepare_inode_for_write(struct file *file, 2102 loff_t *ppos, 2103 size_t count, 2104 int appending, 2105 int *direct_io, 2106 int *has_refcount) 2107 { 2108 int ret = 0, meta_level = 0; 2109 struct dentry *dentry = file->f_path.dentry; 2110 struct inode *inode = dentry->d_inode; 2111 loff_t saved_pos = 0, end; 2112 2113 /* 2114 * We start with a read level meta lock and only jump to an ex 2115 * if we need to make modifications here. 2116 */ 2117 for(;;) { 2118 ret = ocfs2_inode_lock(inode, NULL, meta_level); 2119 if (ret < 0) { 2120 meta_level = -1; 2121 mlog_errno(ret); 2122 goto out; 2123 } 2124 2125 /* Clear suid / sgid if necessary. We do this here 2126 * instead of later in the write path because 2127 * remove_suid() calls ->setattr without any hint that 2128 * we may have already done our cluster locking. Since 2129 * ocfs2_setattr() *must* take cluster locks to 2130 * proceed, this will lead us to recursively lock the 2131 * inode. There's also the dinode i_size state which 2132 * can be lost via setattr during extending writes (we 2133 * set inode->i_size at the end of a write. */ 2134 if (should_remove_suid(dentry)) { 2135 if (meta_level == 0) { 2136 ocfs2_inode_unlock(inode, meta_level); 2137 meta_level = 1; 2138 continue; 2139 } 2140 2141 ret = ocfs2_write_remove_suid(inode); 2142 if (ret < 0) { 2143 mlog_errno(ret); 2144 goto out_unlock; 2145 } 2146 } 2147 2148 /* work on a copy of ppos until we're sure that we won't have 2149 * to recalculate it due to relocking. */ 2150 if (appending) 2151 saved_pos = i_size_read(inode); 2152 else 2153 saved_pos = *ppos; 2154 2155 end = saved_pos + count; 2156 2157 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count); 2158 if (ret == 1) { 2159 ocfs2_inode_unlock(inode, meta_level); 2160 meta_level = -1; 2161 2162 ret = ocfs2_prepare_inode_for_refcount(inode, 2163 file, 2164 saved_pos, 2165 count, 2166 &meta_level); 2167 if (has_refcount) 2168 *has_refcount = 1; 2169 if (direct_io) 2170 *direct_io = 0; 2171 } 2172 2173 if (ret < 0) { 2174 mlog_errno(ret); 2175 goto out_unlock; 2176 } 2177 2178 /* 2179 * Skip the O_DIRECT checks if we don't need 2180 * them. 2181 */ 2182 if (!direct_io || !(*direct_io)) 2183 break; 2184 2185 /* 2186 * There's no sane way to do direct writes to an inode 2187 * with inline data. 2188 */ 2189 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2190 *direct_io = 0; 2191 break; 2192 } 2193 2194 /* 2195 * Allowing concurrent direct writes means 2196 * i_size changes wouldn't be synchronized, so 2197 * one node could wind up truncating another 2198 * nodes writes. 2199 */ 2200 if (end > i_size_read(inode)) { 2201 *direct_io = 0; 2202 break; 2203 } 2204 2205 /* 2206 * We don't fill holes during direct io, so 2207 * check for them here. If any are found, the 2208 * caller will have to retake some cluster 2209 * locks and initiate the io as buffered. 2210 */ 2211 ret = ocfs2_check_range_for_holes(inode, saved_pos, count); 2212 if (ret == 1) { 2213 *direct_io = 0; 2214 ret = 0; 2215 } else if (ret < 0) 2216 mlog_errno(ret); 2217 break; 2218 } 2219 2220 if (appending) 2221 *ppos = saved_pos; 2222 2223 out_unlock: 2224 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2225 saved_pos, appending, count, 2226 direct_io, has_refcount); 2227 2228 if (meta_level >= 0) 2229 ocfs2_inode_unlock(inode, meta_level); 2230 2231 out: 2232 return ret; 2233 } 2234 2235 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2236 struct iov_iter *from) 2237 { 2238 int ret, direct_io, appending, rw_level, have_alloc_sem = 0; 2239 int can_do_direct, has_refcount = 0; 2240 ssize_t written = 0; 2241 size_t count = iov_iter_count(from); 2242 loff_t old_size, *ppos = &iocb->ki_pos; 2243 u32 old_clusters; 2244 struct file *file = iocb->ki_filp; 2245 struct inode *inode = file_inode(file); 2246 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2247 int full_coherency = !(osb->s_mount_opt & 2248 OCFS2_MOUNT_COHERENCY_BUFFERED); 2249 int unaligned_dio = 0; 2250 2251 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry, 2252 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2253 file->f_path.dentry->d_name.len, 2254 file->f_path.dentry->d_name.name, 2255 (unsigned int)from->nr_segs); /* GRRRRR */ 2256 2257 if (iocb->ki_nbytes == 0) 2258 return 0; 2259 2260 appending = file->f_flags & O_APPEND ? 1 : 0; 2261 direct_io = file->f_flags & O_DIRECT ? 1 : 0; 2262 2263 mutex_lock(&inode->i_mutex); 2264 2265 ocfs2_iocb_clear_sem_locked(iocb); 2266 2267 relock: 2268 /* to match setattr's i_mutex -> rw_lock ordering */ 2269 if (direct_io) { 2270 have_alloc_sem = 1; 2271 /* communicate with ocfs2_dio_end_io */ 2272 ocfs2_iocb_set_sem_locked(iocb); 2273 } 2274 2275 /* 2276 * Concurrent O_DIRECT writes are allowed with 2277 * mount_option "coherency=buffered". 2278 */ 2279 rw_level = (!direct_io || full_coherency); 2280 2281 ret = ocfs2_rw_lock(inode, rw_level); 2282 if (ret < 0) { 2283 mlog_errno(ret); 2284 goto out_sems; 2285 } 2286 2287 /* 2288 * O_DIRECT writes with "coherency=full" need to take EX cluster 2289 * inode_lock to guarantee coherency. 2290 */ 2291 if (direct_io && full_coherency) { 2292 /* 2293 * We need to take and drop the inode lock to force 2294 * other nodes to drop their caches. Buffered I/O 2295 * already does this in write_begin(). 2296 */ 2297 ret = ocfs2_inode_lock(inode, NULL, 1); 2298 if (ret < 0) { 2299 mlog_errno(ret); 2300 goto out; 2301 } 2302 2303 ocfs2_inode_unlock(inode, 1); 2304 } 2305 2306 can_do_direct = direct_io; 2307 ret = ocfs2_prepare_inode_for_write(file, ppos, 2308 iocb->ki_nbytes, appending, 2309 &can_do_direct, &has_refcount); 2310 if (ret < 0) { 2311 mlog_errno(ret); 2312 goto out; 2313 } 2314 2315 if (direct_io && !is_sync_kiocb(iocb)) 2316 unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_nbytes, 2317 *ppos); 2318 2319 /* 2320 * We can't complete the direct I/O as requested, fall back to 2321 * buffered I/O. 2322 */ 2323 if (direct_io && !can_do_direct) { 2324 ocfs2_rw_unlock(inode, rw_level); 2325 2326 have_alloc_sem = 0; 2327 rw_level = -1; 2328 2329 direct_io = 0; 2330 goto relock; 2331 } 2332 2333 if (unaligned_dio) { 2334 /* 2335 * Wait on previous unaligned aio to complete before 2336 * proceeding. 2337 */ 2338 mutex_lock(&OCFS2_I(inode)->ip_unaligned_aio); 2339 /* Mark the iocb as needing an unlock in ocfs2_dio_end_io */ 2340 ocfs2_iocb_set_unaligned_aio(iocb); 2341 } 2342 2343 /* 2344 * To later detect whether a journal commit for sync writes is 2345 * necessary, we sample i_size, and cluster count here. 2346 */ 2347 old_size = i_size_read(inode); 2348 old_clusters = OCFS2_I(inode)->ip_clusters; 2349 2350 /* communicate with ocfs2_dio_end_io */ 2351 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2352 2353 ret = generic_write_checks(file, ppos, &count, 2354 S_ISBLK(inode->i_mode)); 2355 if (ret) 2356 goto out_dio; 2357 2358 iov_iter_truncate(from, count); 2359 if (direct_io) { 2360 written = generic_file_direct_write(iocb, from, *ppos); 2361 if (written < 0) { 2362 ret = written; 2363 goto out_dio; 2364 } 2365 } else { 2366 current->backing_dev_info = file->f_mapping->backing_dev_info; 2367 written = generic_perform_write(file, from, *ppos); 2368 if (likely(written >= 0)) 2369 iocb->ki_pos = *ppos + written; 2370 current->backing_dev_info = NULL; 2371 } 2372 2373 out_dio: 2374 /* buffered aio wouldn't have proper lock coverage today */ 2375 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT)); 2376 2377 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) || 2378 ((file->f_flags & O_DIRECT) && !direct_io)) { 2379 ret = filemap_fdatawrite_range(file->f_mapping, *ppos, 2380 *ppos + count - 1); 2381 if (ret < 0) 2382 written = ret; 2383 2384 if (!ret) { 2385 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2386 if (ret < 0) 2387 written = ret; 2388 } 2389 2390 if (!ret) 2391 ret = filemap_fdatawait_range(file->f_mapping, *ppos, 2392 *ppos + count - 1); 2393 } 2394 2395 /* 2396 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2397 * function pointer which is called when o_direct io completes so that 2398 * it can unlock our rw lock. 2399 * Unfortunately there are error cases which call end_io and others 2400 * that don't. so we don't have to unlock the rw_lock if either an 2401 * async dio is going to do it in the future or an end_io after an 2402 * error has already done it. 2403 */ 2404 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2405 rw_level = -1; 2406 have_alloc_sem = 0; 2407 unaligned_dio = 0; 2408 } 2409 2410 if (unaligned_dio) { 2411 ocfs2_iocb_clear_unaligned_aio(iocb); 2412 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio); 2413 } 2414 2415 out: 2416 if (rw_level != -1) 2417 ocfs2_rw_unlock(inode, rw_level); 2418 2419 out_sems: 2420 if (have_alloc_sem) 2421 ocfs2_iocb_clear_sem_locked(iocb); 2422 2423 mutex_unlock(&inode->i_mutex); 2424 2425 if (written) 2426 ret = written; 2427 return ret; 2428 } 2429 2430 static ssize_t ocfs2_file_splice_read(struct file *in, 2431 loff_t *ppos, 2432 struct pipe_inode_info *pipe, 2433 size_t len, 2434 unsigned int flags) 2435 { 2436 int ret = 0, lock_level = 0; 2437 struct inode *inode = file_inode(in); 2438 2439 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, 2440 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2441 in->f_path.dentry->d_name.len, 2442 in->f_path.dentry->d_name.name, len); 2443 2444 /* 2445 * See the comment in ocfs2_file_read_iter() 2446 */ 2447 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level); 2448 if (ret < 0) { 2449 mlog_errno(ret); 2450 goto bail; 2451 } 2452 ocfs2_inode_unlock(inode, lock_level); 2453 2454 ret = generic_file_splice_read(in, ppos, pipe, len, flags); 2455 2456 bail: 2457 return ret; 2458 } 2459 2460 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2461 struct iov_iter *to) 2462 { 2463 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0; 2464 struct file *filp = iocb->ki_filp; 2465 struct inode *inode = file_inode(filp); 2466 2467 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry, 2468 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2469 filp->f_path.dentry->d_name.len, 2470 filp->f_path.dentry->d_name.name, 2471 to->nr_segs); /* GRRRRR */ 2472 2473 2474 if (!inode) { 2475 ret = -EINVAL; 2476 mlog_errno(ret); 2477 goto bail; 2478 } 2479 2480 ocfs2_iocb_clear_sem_locked(iocb); 2481 2482 /* 2483 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2484 * need locks to protect pending reads from racing with truncate. 2485 */ 2486 if (filp->f_flags & O_DIRECT) { 2487 have_alloc_sem = 1; 2488 ocfs2_iocb_set_sem_locked(iocb); 2489 2490 ret = ocfs2_rw_lock(inode, 0); 2491 if (ret < 0) { 2492 mlog_errno(ret); 2493 goto bail; 2494 } 2495 rw_level = 0; 2496 /* communicate with ocfs2_dio_end_io */ 2497 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2498 } 2499 2500 /* 2501 * We're fine letting folks race truncates and extending 2502 * writes with read across the cluster, just like they can 2503 * locally. Hence no rw_lock during read. 2504 * 2505 * Take and drop the meta data lock to update inode fields 2506 * like i_size. This allows the checks down below 2507 * generic_file_aio_read() a chance of actually working. 2508 */ 2509 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level); 2510 if (ret < 0) { 2511 mlog_errno(ret); 2512 goto bail; 2513 } 2514 ocfs2_inode_unlock(inode, lock_level); 2515 2516 ret = generic_file_read_iter(iocb, to); 2517 trace_generic_file_aio_read_ret(ret); 2518 2519 /* buffered aio wouldn't have proper lock coverage today */ 2520 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT)); 2521 2522 /* see ocfs2_file_write_iter */ 2523 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2524 rw_level = -1; 2525 have_alloc_sem = 0; 2526 } 2527 2528 bail: 2529 if (have_alloc_sem) 2530 ocfs2_iocb_clear_sem_locked(iocb); 2531 2532 if (rw_level != -1) 2533 ocfs2_rw_unlock(inode, rw_level); 2534 2535 return ret; 2536 } 2537 2538 /* Refer generic_file_llseek_unlocked() */ 2539 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2540 { 2541 struct inode *inode = file->f_mapping->host; 2542 int ret = 0; 2543 2544 mutex_lock(&inode->i_mutex); 2545 2546 switch (whence) { 2547 case SEEK_SET: 2548 break; 2549 case SEEK_END: 2550 /* SEEK_END requires the OCFS2 inode lock for the file 2551 * because it references the file's size. 2552 */ 2553 ret = ocfs2_inode_lock(inode, NULL, 0); 2554 if (ret < 0) { 2555 mlog_errno(ret); 2556 goto out; 2557 } 2558 offset += i_size_read(inode); 2559 ocfs2_inode_unlock(inode, 0); 2560 break; 2561 case SEEK_CUR: 2562 if (offset == 0) { 2563 offset = file->f_pos; 2564 goto out; 2565 } 2566 offset += file->f_pos; 2567 break; 2568 case SEEK_DATA: 2569 case SEEK_HOLE: 2570 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2571 if (ret) 2572 goto out; 2573 break; 2574 default: 2575 ret = -EINVAL; 2576 goto out; 2577 } 2578 2579 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2580 2581 out: 2582 mutex_unlock(&inode->i_mutex); 2583 if (ret) 2584 return ret; 2585 return offset; 2586 } 2587 2588 const struct inode_operations ocfs2_file_iops = { 2589 .setattr = ocfs2_setattr, 2590 .getattr = ocfs2_getattr, 2591 .permission = ocfs2_permission, 2592 .setxattr = generic_setxattr, 2593 .getxattr = generic_getxattr, 2594 .listxattr = ocfs2_listxattr, 2595 .removexattr = generic_removexattr, 2596 .fiemap = ocfs2_fiemap, 2597 .get_acl = ocfs2_iop_get_acl, 2598 .set_acl = ocfs2_iop_set_acl, 2599 }; 2600 2601 const struct inode_operations ocfs2_special_file_iops = { 2602 .setattr = ocfs2_setattr, 2603 .getattr = ocfs2_getattr, 2604 .permission = ocfs2_permission, 2605 .get_acl = ocfs2_iop_get_acl, 2606 .set_acl = ocfs2_iop_set_acl, 2607 }; 2608 2609 /* 2610 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2611 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2612 */ 2613 const struct file_operations ocfs2_fops = { 2614 .llseek = ocfs2_file_llseek, 2615 .read = new_sync_read, 2616 .write = new_sync_write, 2617 .mmap = ocfs2_mmap, 2618 .fsync = ocfs2_sync_file, 2619 .release = ocfs2_file_release, 2620 .open = ocfs2_file_open, 2621 .read_iter = ocfs2_file_read_iter, 2622 .write_iter = ocfs2_file_write_iter, 2623 .unlocked_ioctl = ocfs2_ioctl, 2624 #ifdef CONFIG_COMPAT 2625 .compat_ioctl = ocfs2_compat_ioctl, 2626 #endif 2627 .lock = ocfs2_lock, 2628 .flock = ocfs2_flock, 2629 .splice_read = ocfs2_file_splice_read, 2630 .splice_write = iter_file_splice_write, 2631 .fallocate = ocfs2_fallocate, 2632 }; 2633 2634 const struct file_operations ocfs2_dops = { 2635 .llseek = generic_file_llseek, 2636 .read = generic_read_dir, 2637 .iterate = ocfs2_readdir, 2638 .fsync = ocfs2_sync_file, 2639 .release = ocfs2_dir_release, 2640 .open = ocfs2_dir_open, 2641 .unlocked_ioctl = ocfs2_ioctl, 2642 #ifdef CONFIG_COMPAT 2643 .compat_ioctl = ocfs2_compat_ioctl, 2644 #endif 2645 .lock = ocfs2_lock, 2646 .flock = ocfs2_flock, 2647 }; 2648 2649 /* 2650 * POSIX-lockless variants of our file_operations. 2651 * 2652 * These will be used if the underlying cluster stack does not support 2653 * posix file locking, if the user passes the "localflocks" mount 2654 * option, or if we have a local-only fs. 2655 * 2656 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2657 * so we still want it in the case of no stack support for 2658 * plocks. Internally, it will do the right thing when asked to ignore 2659 * the cluster. 2660 */ 2661 const struct file_operations ocfs2_fops_no_plocks = { 2662 .llseek = ocfs2_file_llseek, 2663 .read = new_sync_read, 2664 .write = new_sync_write, 2665 .mmap = ocfs2_mmap, 2666 .fsync = ocfs2_sync_file, 2667 .release = ocfs2_file_release, 2668 .open = ocfs2_file_open, 2669 .read_iter = ocfs2_file_read_iter, 2670 .write_iter = ocfs2_file_write_iter, 2671 .unlocked_ioctl = ocfs2_ioctl, 2672 #ifdef CONFIG_COMPAT 2673 .compat_ioctl = ocfs2_compat_ioctl, 2674 #endif 2675 .flock = ocfs2_flock, 2676 .splice_read = ocfs2_file_splice_read, 2677 .splice_write = iter_file_splice_write, 2678 .fallocate = ocfs2_fallocate, 2679 }; 2680 2681 const struct file_operations ocfs2_dops_no_plocks = { 2682 .llseek = generic_file_llseek, 2683 .read = generic_read_dir, 2684 .iterate = ocfs2_readdir, 2685 .fsync = ocfs2_sync_file, 2686 .release = ocfs2_dir_release, 2687 .open = ocfs2_dir_open, 2688 .unlocked_ioctl = ocfs2_ioctl, 2689 #ifdef CONFIG_COMPAT 2690 .compat_ioctl = ocfs2_compat_ioctl, 2691 #endif 2692 .flock = ocfs2_flock, 2693 }; 2694