xref: /openbmc/linux/fs/ocfs2/file.c (revision 867e6d38)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * file.c
4  *
5  * File open, close, extend, truncate
6  *
7  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/fs.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/uio.h>
17 #include <linux/sched.h>
18 #include <linux/splice.h>
19 #include <linux/mount.h>
20 #include <linux/writeback.h>
21 #include <linux/falloc.h>
22 #include <linux/quotaops.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 
26 #include <cluster/masklog.h>
27 
28 #include "ocfs2.h"
29 
30 #include "alloc.h"
31 #include "aops.h"
32 #include "dir.h"
33 #include "dlmglue.h"
34 #include "extent_map.h"
35 #include "file.h"
36 #include "sysfile.h"
37 #include "inode.h"
38 #include "ioctl.h"
39 #include "journal.h"
40 #include "locks.h"
41 #include "mmap.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "quota.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49 
50 #include "buffer_head_io.h"
51 
52 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
53 {
54 	struct ocfs2_file_private *fp;
55 
56 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
57 	if (!fp)
58 		return -ENOMEM;
59 
60 	fp->fp_file = file;
61 	mutex_init(&fp->fp_mutex);
62 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
63 	file->private_data = fp;
64 
65 	return 0;
66 }
67 
68 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
69 {
70 	struct ocfs2_file_private *fp = file->private_data;
71 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
72 
73 	if (fp) {
74 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
75 		ocfs2_lock_res_free(&fp->fp_flock);
76 		kfree(fp);
77 		file->private_data = NULL;
78 	}
79 }
80 
81 static int ocfs2_file_open(struct inode *inode, struct file *file)
82 {
83 	int status;
84 	int mode = file->f_flags;
85 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
86 
87 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
88 			      (unsigned long long)oi->ip_blkno,
89 			      file->f_path.dentry->d_name.len,
90 			      file->f_path.dentry->d_name.name, mode);
91 
92 	if (file->f_mode & FMODE_WRITE) {
93 		status = dquot_initialize(inode);
94 		if (status)
95 			goto leave;
96 	}
97 
98 	spin_lock(&oi->ip_lock);
99 
100 	/* Check that the inode hasn't been wiped from disk by another
101 	 * node. If it hasn't then we're safe as long as we hold the
102 	 * spin lock until our increment of open count. */
103 	if (oi->ip_flags & OCFS2_INODE_DELETED) {
104 		spin_unlock(&oi->ip_lock);
105 
106 		status = -ENOENT;
107 		goto leave;
108 	}
109 
110 	if (mode & O_DIRECT)
111 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
112 
113 	oi->ip_open_count++;
114 	spin_unlock(&oi->ip_lock);
115 
116 	status = ocfs2_init_file_private(inode, file);
117 	if (status) {
118 		/*
119 		 * We want to set open count back if we're failing the
120 		 * open.
121 		 */
122 		spin_lock(&oi->ip_lock);
123 		oi->ip_open_count--;
124 		spin_unlock(&oi->ip_lock);
125 	}
126 
127 	file->f_mode |= FMODE_NOWAIT;
128 
129 leave:
130 	return status;
131 }
132 
133 static int ocfs2_file_release(struct inode *inode, struct file *file)
134 {
135 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
136 
137 	spin_lock(&oi->ip_lock);
138 	if (!--oi->ip_open_count)
139 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
140 
141 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
142 				 oi->ip_blkno,
143 				 file->f_path.dentry->d_name.len,
144 				 file->f_path.dentry->d_name.name,
145 				 oi->ip_open_count);
146 	spin_unlock(&oi->ip_lock);
147 
148 	ocfs2_free_file_private(inode, file);
149 
150 	return 0;
151 }
152 
153 static int ocfs2_dir_open(struct inode *inode, struct file *file)
154 {
155 	return ocfs2_init_file_private(inode, file);
156 }
157 
158 static int ocfs2_dir_release(struct inode *inode, struct file *file)
159 {
160 	ocfs2_free_file_private(inode, file);
161 	return 0;
162 }
163 
164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
165 			   int datasync)
166 {
167 	int err = 0;
168 	struct inode *inode = file->f_mapping->host;
169 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
170 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
171 	journal_t *journal = osb->journal->j_journal;
172 	int ret;
173 	tid_t commit_tid;
174 	bool needs_barrier = false;
175 
176 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
177 			      oi->ip_blkno,
178 			      file->f_path.dentry->d_name.len,
179 			      file->f_path.dentry->d_name.name,
180 			      (unsigned long long)datasync);
181 
182 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
183 		return -EROFS;
184 
185 	err = file_write_and_wait_range(file, start, end);
186 	if (err)
187 		return err;
188 
189 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
190 	if (journal->j_flags & JBD2_BARRIER &&
191 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
192 		needs_barrier = true;
193 	err = jbd2_complete_transaction(journal, commit_tid);
194 	if (needs_barrier) {
195 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
196 		if (!err)
197 			err = ret;
198 	}
199 
200 	if (err)
201 		mlog_errno(err);
202 
203 	return (err < 0) ? -EIO : 0;
204 }
205 
206 int ocfs2_should_update_atime(struct inode *inode,
207 			      struct vfsmount *vfsmnt)
208 {
209 	struct timespec64 now;
210 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
211 
212 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
213 		return 0;
214 
215 	if ((inode->i_flags & S_NOATIME) ||
216 	    ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
217 		return 0;
218 
219 	/*
220 	 * We can be called with no vfsmnt structure - NFSD will
221 	 * sometimes do this.
222 	 *
223 	 * Note that our action here is different than touch_atime() -
224 	 * if we can't tell whether this is a noatime mount, then we
225 	 * don't know whether to trust the value of s_atime_quantum.
226 	 */
227 	if (vfsmnt == NULL)
228 		return 0;
229 
230 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
231 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
232 		return 0;
233 
234 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
235 		if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
236 		    (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
237 			return 1;
238 
239 		return 0;
240 	}
241 
242 	now = current_time(inode);
243 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
244 		return 0;
245 	else
246 		return 1;
247 }
248 
249 int ocfs2_update_inode_atime(struct inode *inode,
250 			     struct buffer_head *bh)
251 {
252 	int ret;
253 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
254 	handle_t *handle;
255 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
256 
257 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
258 	if (IS_ERR(handle)) {
259 		ret = PTR_ERR(handle);
260 		mlog_errno(ret);
261 		goto out;
262 	}
263 
264 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
265 				      OCFS2_JOURNAL_ACCESS_WRITE);
266 	if (ret) {
267 		mlog_errno(ret);
268 		goto out_commit;
269 	}
270 
271 	/*
272 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
273 	 * have i_mutex to guard against concurrent changes to other
274 	 * inode fields.
275 	 */
276 	inode->i_atime = current_time(inode);
277 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
278 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
279 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
280 	ocfs2_journal_dirty(handle, bh);
281 
282 out_commit:
283 	ocfs2_commit_trans(osb, handle);
284 out:
285 	return ret;
286 }
287 
288 int ocfs2_set_inode_size(handle_t *handle,
289 				struct inode *inode,
290 				struct buffer_head *fe_bh,
291 				u64 new_i_size)
292 {
293 	int status;
294 
295 	i_size_write(inode, new_i_size);
296 	inode->i_blocks = ocfs2_inode_sector_count(inode);
297 	inode->i_ctime = inode->i_mtime = current_time(inode);
298 
299 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
300 	if (status < 0) {
301 		mlog_errno(status);
302 		goto bail;
303 	}
304 
305 bail:
306 	return status;
307 }
308 
309 int ocfs2_simple_size_update(struct inode *inode,
310 			     struct buffer_head *di_bh,
311 			     u64 new_i_size)
312 {
313 	int ret;
314 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
315 	handle_t *handle = NULL;
316 
317 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
318 	if (IS_ERR(handle)) {
319 		ret = PTR_ERR(handle);
320 		mlog_errno(ret);
321 		goto out;
322 	}
323 
324 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
325 				   new_i_size);
326 	if (ret < 0)
327 		mlog_errno(ret);
328 
329 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
330 	ocfs2_commit_trans(osb, handle);
331 out:
332 	return ret;
333 }
334 
335 static int ocfs2_cow_file_pos(struct inode *inode,
336 			      struct buffer_head *fe_bh,
337 			      u64 offset)
338 {
339 	int status;
340 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
341 	unsigned int num_clusters = 0;
342 	unsigned int ext_flags = 0;
343 
344 	/*
345 	 * If the new offset is aligned to the range of the cluster, there is
346 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
347 	 * CoW either.
348 	 */
349 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
350 		return 0;
351 
352 	status = ocfs2_get_clusters(inode, cpos, &phys,
353 				    &num_clusters, &ext_flags);
354 	if (status) {
355 		mlog_errno(status);
356 		goto out;
357 	}
358 
359 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
360 		goto out;
361 
362 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
363 
364 out:
365 	return status;
366 }
367 
368 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
369 				     struct inode *inode,
370 				     struct buffer_head *fe_bh,
371 				     u64 new_i_size)
372 {
373 	int status;
374 	handle_t *handle;
375 	struct ocfs2_dinode *di;
376 	u64 cluster_bytes;
377 
378 	/*
379 	 * We need to CoW the cluster contains the offset if it is reflinked
380 	 * since we will call ocfs2_zero_range_for_truncate later which will
381 	 * write "0" from offset to the end of the cluster.
382 	 */
383 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
384 	if (status) {
385 		mlog_errno(status);
386 		return status;
387 	}
388 
389 	/* TODO: This needs to actually orphan the inode in this
390 	 * transaction. */
391 
392 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
393 	if (IS_ERR(handle)) {
394 		status = PTR_ERR(handle);
395 		mlog_errno(status);
396 		goto out;
397 	}
398 
399 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
400 					 OCFS2_JOURNAL_ACCESS_WRITE);
401 	if (status < 0) {
402 		mlog_errno(status);
403 		goto out_commit;
404 	}
405 
406 	/*
407 	 * Do this before setting i_size.
408 	 */
409 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
410 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
411 					       cluster_bytes);
412 	if (status) {
413 		mlog_errno(status);
414 		goto out_commit;
415 	}
416 
417 	i_size_write(inode, new_i_size);
418 	inode->i_ctime = inode->i_mtime = current_time(inode);
419 
420 	di = (struct ocfs2_dinode *) fe_bh->b_data;
421 	di->i_size = cpu_to_le64(new_i_size);
422 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
423 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
424 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
425 
426 	ocfs2_journal_dirty(handle, fe_bh);
427 
428 out_commit:
429 	ocfs2_commit_trans(osb, handle);
430 out:
431 	return status;
432 }
433 
434 int ocfs2_truncate_file(struct inode *inode,
435 			       struct buffer_head *di_bh,
436 			       u64 new_i_size)
437 {
438 	int status = 0;
439 	struct ocfs2_dinode *fe = NULL;
440 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
441 
442 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
443 	 * already validated it */
444 	fe = (struct ocfs2_dinode *) di_bh->b_data;
445 
446 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
447 				  (unsigned long long)le64_to_cpu(fe->i_size),
448 				  (unsigned long long)new_i_size);
449 
450 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
451 			"Inode %llu, inode i_size = %lld != di "
452 			"i_size = %llu, i_flags = 0x%x\n",
453 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
454 			i_size_read(inode),
455 			(unsigned long long)le64_to_cpu(fe->i_size),
456 			le32_to_cpu(fe->i_flags));
457 
458 	if (new_i_size > le64_to_cpu(fe->i_size)) {
459 		trace_ocfs2_truncate_file_error(
460 			(unsigned long long)le64_to_cpu(fe->i_size),
461 			(unsigned long long)new_i_size);
462 		status = -EINVAL;
463 		mlog_errno(status);
464 		goto bail;
465 	}
466 
467 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
468 
469 	ocfs2_resv_discard(&osb->osb_la_resmap,
470 			   &OCFS2_I(inode)->ip_la_data_resv);
471 
472 	/*
473 	 * The inode lock forced other nodes to sync and drop their
474 	 * pages, which (correctly) happens even if we have a truncate
475 	 * without allocation change - ocfs2 cluster sizes can be much
476 	 * greater than page size, so we have to truncate them
477 	 * anyway.
478 	 */
479 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
480 	truncate_inode_pages(inode->i_mapping, new_i_size);
481 
482 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
483 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
484 					       i_size_read(inode), 1);
485 		if (status)
486 			mlog_errno(status);
487 
488 		goto bail_unlock_sem;
489 	}
490 
491 	/* alright, we're going to need to do a full blown alloc size
492 	 * change. Orphan the inode so that recovery can complete the
493 	 * truncate if necessary. This does the task of marking
494 	 * i_size. */
495 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
496 	if (status < 0) {
497 		mlog_errno(status);
498 		goto bail_unlock_sem;
499 	}
500 
501 	status = ocfs2_commit_truncate(osb, inode, di_bh);
502 	if (status < 0) {
503 		mlog_errno(status);
504 		goto bail_unlock_sem;
505 	}
506 
507 	/* TODO: orphan dir cleanup here. */
508 bail_unlock_sem:
509 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
510 
511 bail:
512 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
513 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
514 
515 	return status;
516 }
517 
518 /*
519  * extend file allocation only here.
520  * we'll update all the disk stuff, and oip->alloc_size
521  *
522  * expect stuff to be locked, a transaction started and enough data /
523  * metadata reservations in the contexts.
524  *
525  * Will return -EAGAIN, and a reason if a restart is needed.
526  * If passed in, *reason will always be set, even in error.
527  */
528 int ocfs2_add_inode_data(struct ocfs2_super *osb,
529 			 struct inode *inode,
530 			 u32 *logical_offset,
531 			 u32 clusters_to_add,
532 			 int mark_unwritten,
533 			 struct buffer_head *fe_bh,
534 			 handle_t *handle,
535 			 struct ocfs2_alloc_context *data_ac,
536 			 struct ocfs2_alloc_context *meta_ac,
537 			 enum ocfs2_alloc_restarted *reason_ret)
538 {
539 	int ret;
540 	struct ocfs2_extent_tree et;
541 
542 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
543 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
544 					  clusters_to_add, mark_unwritten,
545 					  data_ac, meta_ac, reason_ret);
546 
547 	return ret;
548 }
549 
550 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
551 				   u32 clusters_to_add, int mark_unwritten)
552 {
553 	int status = 0;
554 	int restart_func = 0;
555 	int credits;
556 	u32 prev_clusters;
557 	struct buffer_head *bh = NULL;
558 	struct ocfs2_dinode *fe = NULL;
559 	handle_t *handle = NULL;
560 	struct ocfs2_alloc_context *data_ac = NULL;
561 	struct ocfs2_alloc_context *meta_ac = NULL;
562 	enum ocfs2_alloc_restarted why = RESTART_NONE;
563 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
564 	struct ocfs2_extent_tree et;
565 	int did_quota = 0;
566 
567 	/*
568 	 * Unwritten extent only exists for file systems which
569 	 * support holes.
570 	 */
571 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
572 
573 	status = ocfs2_read_inode_block(inode, &bh);
574 	if (status < 0) {
575 		mlog_errno(status);
576 		goto leave;
577 	}
578 	fe = (struct ocfs2_dinode *) bh->b_data;
579 
580 restart_all:
581 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
582 
583 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
584 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
585 				       &data_ac, &meta_ac);
586 	if (status) {
587 		mlog_errno(status);
588 		goto leave;
589 	}
590 
591 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
592 	handle = ocfs2_start_trans(osb, credits);
593 	if (IS_ERR(handle)) {
594 		status = PTR_ERR(handle);
595 		handle = NULL;
596 		mlog_errno(status);
597 		goto leave;
598 	}
599 
600 restarted_transaction:
601 	trace_ocfs2_extend_allocation(
602 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
603 		(unsigned long long)i_size_read(inode),
604 		le32_to_cpu(fe->i_clusters), clusters_to_add,
605 		why, restart_func);
606 
607 	status = dquot_alloc_space_nodirty(inode,
608 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
609 	if (status)
610 		goto leave;
611 	did_quota = 1;
612 
613 	/* reserve a write to the file entry early on - that we if we
614 	 * run out of credits in the allocation path, we can still
615 	 * update i_size. */
616 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
617 					 OCFS2_JOURNAL_ACCESS_WRITE);
618 	if (status < 0) {
619 		mlog_errno(status);
620 		goto leave;
621 	}
622 
623 	prev_clusters = OCFS2_I(inode)->ip_clusters;
624 
625 	status = ocfs2_add_inode_data(osb,
626 				      inode,
627 				      &logical_start,
628 				      clusters_to_add,
629 				      mark_unwritten,
630 				      bh,
631 				      handle,
632 				      data_ac,
633 				      meta_ac,
634 				      &why);
635 	if ((status < 0) && (status != -EAGAIN)) {
636 		if (status != -ENOSPC)
637 			mlog_errno(status);
638 		goto leave;
639 	}
640 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
641 	ocfs2_journal_dirty(handle, bh);
642 
643 	spin_lock(&OCFS2_I(inode)->ip_lock);
644 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
645 	spin_unlock(&OCFS2_I(inode)->ip_lock);
646 	/* Release unused quota reservation */
647 	dquot_free_space(inode,
648 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
649 	did_quota = 0;
650 
651 	if (why != RESTART_NONE && clusters_to_add) {
652 		if (why == RESTART_META) {
653 			restart_func = 1;
654 			status = 0;
655 		} else {
656 			BUG_ON(why != RESTART_TRANS);
657 
658 			status = ocfs2_allocate_extend_trans(handle, 1);
659 			if (status < 0) {
660 				/* handle still has to be committed at
661 				 * this point. */
662 				status = -ENOMEM;
663 				mlog_errno(status);
664 				goto leave;
665 			}
666 			goto restarted_transaction;
667 		}
668 	}
669 
670 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
671 	     le32_to_cpu(fe->i_clusters),
672 	     (unsigned long long)le64_to_cpu(fe->i_size),
673 	     OCFS2_I(inode)->ip_clusters,
674 	     (unsigned long long)i_size_read(inode));
675 
676 leave:
677 	if (status < 0 && did_quota)
678 		dquot_free_space(inode,
679 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
680 	if (handle) {
681 		ocfs2_commit_trans(osb, handle);
682 		handle = NULL;
683 	}
684 	if (data_ac) {
685 		ocfs2_free_alloc_context(data_ac);
686 		data_ac = NULL;
687 	}
688 	if (meta_ac) {
689 		ocfs2_free_alloc_context(meta_ac);
690 		meta_ac = NULL;
691 	}
692 	if ((!status) && restart_func) {
693 		restart_func = 0;
694 		goto restart_all;
695 	}
696 	brelse(bh);
697 	bh = NULL;
698 
699 	return status;
700 }
701 
702 /*
703  * While a write will already be ordering the data, a truncate will not.
704  * Thus, we need to explicitly order the zeroed pages.
705  */
706 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
707 						      struct buffer_head *di_bh,
708 						      loff_t start_byte,
709 						      loff_t length)
710 {
711 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
712 	handle_t *handle = NULL;
713 	int ret = 0;
714 
715 	if (!ocfs2_should_order_data(inode))
716 		goto out;
717 
718 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
719 	if (IS_ERR(handle)) {
720 		ret = -ENOMEM;
721 		mlog_errno(ret);
722 		goto out;
723 	}
724 
725 	ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
726 	if (ret < 0) {
727 		mlog_errno(ret);
728 		goto out;
729 	}
730 
731 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
732 				      OCFS2_JOURNAL_ACCESS_WRITE);
733 	if (ret)
734 		mlog_errno(ret);
735 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
736 
737 out:
738 	if (ret) {
739 		if (!IS_ERR(handle))
740 			ocfs2_commit_trans(osb, handle);
741 		handle = ERR_PTR(ret);
742 	}
743 	return handle;
744 }
745 
746 /* Some parts of this taken from generic_cont_expand, which turned out
747  * to be too fragile to do exactly what we need without us having to
748  * worry about recursive locking in ->write_begin() and ->write_end(). */
749 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
750 				 u64 abs_to, struct buffer_head *di_bh)
751 {
752 	struct address_space *mapping = inode->i_mapping;
753 	struct page *page;
754 	unsigned long index = abs_from >> PAGE_SHIFT;
755 	handle_t *handle;
756 	int ret = 0;
757 	unsigned zero_from, zero_to, block_start, block_end;
758 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
759 
760 	BUG_ON(abs_from >= abs_to);
761 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
762 	BUG_ON(abs_from & (inode->i_blkbits - 1));
763 
764 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
765 						      abs_from,
766 						      abs_to - abs_from);
767 	if (IS_ERR(handle)) {
768 		ret = PTR_ERR(handle);
769 		goto out;
770 	}
771 
772 	page = find_or_create_page(mapping, index, GFP_NOFS);
773 	if (!page) {
774 		ret = -ENOMEM;
775 		mlog_errno(ret);
776 		goto out_commit_trans;
777 	}
778 
779 	/* Get the offsets within the page that we want to zero */
780 	zero_from = abs_from & (PAGE_SIZE - 1);
781 	zero_to = abs_to & (PAGE_SIZE - 1);
782 	if (!zero_to)
783 		zero_to = PAGE_SIZE;
784 
785 	trace_ocfs2_write_zero_page(
786 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
787 			(unsigned long long)abs_from,
788 			(unsigned long long)abs_to,
789 			index, zero_from, zero_to);
790 
791 	/* We know that zero_from is block aligned */
792 	for (block_start = zero_from; block_start < zero_to;
793 	     block_start = block_end) {
794 		block_end = block_start + i_blocksize(inode);
795 
796 		/*
797 		 * block_start is block-aligned.  Bump it by one to force
798 		 * __block_write_begin and block_commit_write to zero the
799 		 * whole block.
800 		 */
801 		ret = __block_write_begin(page, block_start + 1, 0,
802 					  ocfs2_get_block);
803 		if (ret < 0) {
804 			mlog_errno(ret);
805 			goto out_unlock;
806 		}
807 
808 
809 		/* must not update i_size! */
810 		ret = block_commit_write(page, block_start + 1,
811 					 block_start + 1);
812 		if (ret < 0)
813 			mlog_errno(ret);
814 		else
815 			ret = 0;
816 	}
817 
818 	/*
819 	 * fs-writeback will release the dirty pages without page lock
820 	 * whose offset are over inode size, the release happens at
821 	 * block_write_full_page().
822 	 */
823 	i_size_write(inode, abs_to);
824 	inode->i_blocks = ocfs2_inode_sector_count(inode);
825 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
826 	inode->i_mtime = inode->i_ctime = current_time(inode);
827 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
828 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
829 	di->i_mtime_nsec = di->i_ctime_nsec;
830 	if (handle) {
831 		ocfs2_journal_dirty(handle, di_bh);
832 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
833 	}
834 
835 out_unlock:
836 	unlock_page(page);
837 	put_page(page);
838 out_commit_trans:
839 	if (handle)
840 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
841 out:
842 	return ret;
843 }
844 
845 /*
846  * Find the next range to zero.  We do this in terms of bytes because
847  * that's what ocfs2_zero_extend() wants, and it is dealing with the
848  * pagecache.  We may return multiple extents.
849  *
850  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
851  * needs to be zeroed.  range_start and range_end return the next zeroing
852  * range.  A subsequent call should pass the previous range_end as its
853  * zero_start.  If range_end is 0, there's nothing to do.
854  *
855  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
856  */
857 static int ocfs2_zero_extend_get_range(struct inode *inode,
858 				       struct buffer_head *di_bh,
859 				       u64 zero_start, u64 zero_end,
860 				       u64 *range_start, u64 *range_end)
861 {
862 	int rc = 0, needs_cow = 0;
863 	u32 p_cpos, zero_clusters = 0;
864 	u32 zero_cpos =
865 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
866 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
867 	unsigned int num_clusters = 0;
868 	unsigned int ext_flags = 0;
869 
870 	while (zero_cpos < last_cpos) {
871 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
872 					&num_clusters, &ext_flags);
873 		if (rc) {
874 			mlog_errno(rc);
875 			goto out;
876 		}
877 
878 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
879 			zero_clusters = num_clusters;
880 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
881 				needs_cow = 1;
882 			break;
883 		}
884 
885 		zero_cpos += num_clusters;
886 	}
887 	if (!zero_clusters) {
888 		*range_end = 0;
889 		goto out;
890 	}
891 
892 	while ((zero_cpos + zero_clusters) < last_cpos) {
893 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
894 					&p_cpos, &num_clusters,
895 					&ext_flags);
896 		if (rc) {
897 			mlog_errno(rc);
898 			goto out;
899 		}
900 
901 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
902 			break;
903 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
904 			needs_cow = 1;
905 		zero_clusters += num_clusters;
906 	}
907 	if ((zero_cpos + zero_clusters) > last_cpos)
908 		zero_clusters = last_cpos - zero_cpos;
909 
910 	if (needs_cow) {
911 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
912 					zero_clusters, UINT_MAX);
913 		if (rc) {
914 			mlog_errno(rc);
915 			goto out;
916 		}
917 	}
918 
919 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
920 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
921 					     zero_cpos + zero_clusters);
922 
923 out:
924 	return rc;
925 }
926 
927 /*
928  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
929  * has made sure that the entire range needs zeroing.
930  */
931 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
932 				   u64 range_end, struct buffer_head *di_bh)
933 {
934 	int rc = 0;
935 	u64 next_pos;
936 	u64 zero_pos = range_start;
937 
938 	trace_ocfs2_zero_extend_range(
939 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
940 			(unsigned long long)range_start,
941 			(unsigned long long)range_end);
942 	BUG_ON(range_start >= range_end);
943 
944 	while (zero_pos < range_end) {
945 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
946 		if (next_pos > range_end)
947 			next_pos = range_end;
948 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
949 		if (rc < 0) {
950 			mlog_errno(rc);
951 			break;
952 		}
953 		zero_pos = next_pos;
954 
955 		/*
956 		 * Very large extends have the potential to lock up
957 		 * the cpu for extended periods of time.
958 		 */
959 		cond_resched();
960 	}
961 
962 	return rc;
963 }
964 
965 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
966 		      loff_t zero_to_size)
967 {
968 	int ret = 0;
969 	u64 zero_start, range_start = 0, range_end = 0;
970 	struct super_block *sb = inode->i_sb;
971 
972 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
973 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
974 				(unsigned long long)zero_start,
975 				(unsigned long long)i_size_read(inode));
976 	while (zero_start < zero_to_size) {
977 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
978 						  zero_to_size,
979 						  &range_start,
980 						  &range_end);
981 		if (ret) {
982 			mlog_errno(ret);
983 			break;
984 		}
985 		if (!range_end)
986 			break;
987 		/* Trim the ends */
988 		if (range_start < zero_start)
989 			range_start = zero_start;
990 		if (range_end > zero_to_size)
991 			range_end = zero_to_size;
992 
993 		ret = ocfs2_zero_extend_range(inode, range_start,
994 					      range_end, di_bh);
995 		if (ret) {
996 			mlog_errno(ret);
997 			break;
998 		}
999 		zero_start = range_end;
1000 	}
1001 
1002 	return ret;
1003 }
1004 
1005 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1006 			  u64 new_i_size, u64 zero_to)
1007 {
1008 	int ret;
1009 	u32 clusters_to_add;
1010 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1011 
1012 	/*
1013 	 * Only quota files call this without a bh, and they can't be
1014 	 * refcounted.
1015 	 */
1016 	BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1017 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1018 
1019 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1020 	if (clusters_to_add < oi->ip_clusters)
1021 		clusters_to_add = 0;
1022 	else
1023 		clusters_to_add -= oi->ip_clusters;
1024 
1025 	if (clusters_to_add) {
1026 		ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1027 					      clusters_to_add, 0);
1028 		if (ret) {
1029 			mlog_errno(ret);
1030 			goto out;
1031 		}
1032 	}
1033 
1034 	/*
1035 	 * Call this even if we don't add any clusters to the tree. We
1036 	 * still need to zero the area between the old i_size and the
1037 	 * new i_size.
1038 	 */
1039 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1040 	if (ret < 0)
1041 		mlog_errno(ret);
1042 
1043 out:
1044 	return ret;
1045 }
1046 
1047 static int ocfs2_extend_file(struct inode *inode,
1048 			     struct buffer_head *di_bh,
1049 			     u64 new_i_size)
1050 {
1051 	int ret = 0;
1052 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1053 
1054 	BUG_ON(!di_bh);
1055 
1056 	/* setattr sometimes calls us like this. */
1057 	if (new_i_size == 0)
1058 		goto out;
1059 
1060 	if (i_size_read(inode) == new_i_size)
1061 		goto out;
1062 	BUG_ON(new_i_size < i_size_read(inode));
1063 
1064 	/*
1065 	 * The alloc sem blocks people in read/write from reading our
1066 	 * allocation until we're done changing it. We depend on
1067 	 * i_mutex to block other extend/truncate calls while we're
1068 	 * here.  We even have to hold it for sparse files because there
1069 	 * might be some tail zeroing.
1070 	 */
1071 	down_write(&oi->ip_alloc_sem);
1072 
1073 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1074 		/*
1075 		 * We can optimize small extends by keeping the inodes
1076 		 * inline data.
1077 		 */
1078 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1079 			up_write(&oi->ip_alloc_sem);
1080 			goto out_update_size;
1081 		}
1082 
1083 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1084 		if (ret) {
1085 			up_write(&oi->ip_alloc_sem);
1086 			mlog_errno(ret);
1087 			goto out;
1088 		}
1089 	}
1090 
1091 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1092 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1093 	else
1094 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1095 					    new_i_size);
1096 
1097 	up_write(&oi->ip_alloc_sem);
1098 
1099 	if (ret < 0) {
1100 		mlog_errno(ret);
1101 		goto out;
1102 	}
1103 
1104 out_update_size:
1105 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1106 	if (ret < 0)
1107 		mlog_errno(ret);
1108 
1109 out:
1110 	return ret;
1111 }
1112 
1113 int ocfs2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1114 		  struct iattr *attr)
1115 {
1116 	int status = 0, size_change;
1117 	int inode_locked = 0;
1118 	struct inode *inode = d_inode(dentry);
1119 	struct super_block *sb = inode->i_sb;
1120 	struct ocfs2_super *osb = OCFS2_SB(sb);
1121 	struct buffer_head *bh = NULL;
1122 	handle_t *handle = NULL;
1123 	struct dquot *transfer_to[MAXQUOTAS] = { };
1124 	int qtype;
1125 	int had_lock;
1126 	struct ocfs2_lock_holder oh;
1127 
1128 	trace_ocfs2_setattr(inode, dentry,
1129 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1130 			    dentry->d_name.len, dentry->d_name.name,
1131 			    attr->ia_valid, attr->ia_mode,
1132 			    from_kuid(&init_user_ns, attr->ia_uid),
1133 			    from_kgid(&init_user_ns, attr->ia_gid));
1134 
1135 	/* ensuring we don't even attempt to truncate a symlink */
1136 	if (S_ISLNK(inode->i_mode))
1137 		attr->ia_valid &= ~ATTR_SIZE;
1138 
1139 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1140 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1141 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1142 		return 0;
1143 
1144 	status = setattr_prepare(&init_user_ns, dentry, attr);
1145 	if (status)
1146 		return status;
1147 
1148 	if (is_quota_modification(inode, attr)) {
1149 		status = dquot_initialize(inode);
1150 		if (status)
1151 			return status;
1152 	}
1153 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1154 	if (size_change) {
1155 		/*
1156 		 * Here we should wait dio to finish before inode lock
1157 		 * to avoid a deadlock between ocfs2_setattr() and
1158 		 * ocfs2_dio_end_io_write()
1159 		 */
1160 		inode_dio_wait(inode);
1161 
1162 		status = ocfs2_rw_lock(inode, 1);
1163 		if (status < 0) {
1164 			mlog_errno(status);
1165 			goto bail;
1166 		}
1167 	}
1168 
1169 	had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1170 	if (had_lock < 0) {
1171 		status = had_lock;
1172 		goto bail_unlock_rw;
1173 	} else if (had_lock) {
1174 		/*
1175 		 * As far as we know, ocfs2_setattr() could only be the first
1176 		 * VFS entry point in the call chain of recursive cluster
1177 		 * locking issue.
1178 		 *
1179 		 * For instance:
1180 		 * chmod_common()
1181 		 *  notify_change()
1182 		 *   ocfs2_setattr()
1183 		 *    posix_acl_chmod()
1184 		 *     ocfs2_iop_get_acl()
1185 		 *
1186 		 * But, we're not 100% sure if it's always true, because the
1187 		 * ordering of the VFS entry points in the call chain is out
1188 		 * of our control. So, we'd better dump the stack here to
1189 		 * catch the other cases of recursive locking.
1190 		 */
1191 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1192 		dump_stack();
1193 	}
1194 	inode_locked = 1;
1195 
1196 	if (size_change) {
1197 		status = inode_newsize_ok(inode, attr->ia_size);
1198 		if (status)
1199 			goto bail_unlock;
1200 
1201 		if (i_size_read(inode) >= attr->ia_size) {
1202 			if (ocfs2_should_order_data(inode)) {
1203 				status = ocfs2_begin_ordered_truncate(inode,
1204 								      attr->ia_size);
1205 				if (status)
1206 					goto bail_unlock;
1207 			}
1208 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1209 		} else
1210 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1211 		if (status < 0) {
1212 			if (status != -ENOSPC)
1213 				mlog_errno(status);
1214 			status = -ENOSPC;
1215 			goto bail_unlock;
1216 		}
1217 	}
1218 
1219 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1220 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1221 		/*
1222 		 * Gather pointers to quota structures so that allocation /
1223 		 * freeing of quota structures happens here and not inside
1224 		 * dquot_transfer() where we have problems with lock ordering
1225 		 */
1226 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1227 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1228 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1229 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1230 			if (IS_ERR(transfer_to[USRQUOTA])) {
1231 				status = PTR_ERR(transfer_to[USRQUOTA]);
1232 				transfer_to[USRQUOTA] = NULL;
1233 				goto bail_unlock;
1234 			}
1235 		}
1236 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1237 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1238 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1239 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1240 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1241 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1242 				transfer_to[GRPQUOTA] = NULL;
1243 				goto bail_unlock;
1244 			}
1245 		}
1246 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1247 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1248 					   2 * ocfs2_quota_trans_credits(sb));
1249 		if (IS_ERR(handle)) {
1250 			status = PTR_ERR(handle);
1251 			mlog_errno(status);
1252 			goto bail_unlock_alloc;
1253 		}
1254 		status = __dquot_transfer(inode, transfer_to);
1255 		if (status < 0)
1256 			goto bail_commit;
1257 	} else {
1258 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1259 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1260 		if (IS_ERR(handle)) {
1261 			status = PTR_ERR(handle);
1262 			mlog_errno(status);
1263 			goto bail_unlock_alloc;
1264 		}
1265 	}
1266 
1267 	setattr_copy(&init_user_ns, inode, attr);
1268 	mark_inode_dirty(inode);
1269 
1270 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1271 	if (status < 0)
1272 		mlog_errno(status);
1273 
1274 bail_commit:
1275 	ocfs2_commit_trans(osb, handle);
1276 bail_unlock_alloc:
1277 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1278 bail_unlock:
1279 	if (status && inode_locked) {
1280 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1281 		inode_locked = 0;
1282 	}
1283 bail_unlock_rw:
1284 	if (size_change)
1285 		ocfs2_rw_unlock(inode, 1);
1286 bail:
1287 
1288 	/* Release quota pointers in case we acquired them */
1289 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1290 		dqput(transfer_to[qtype]);
1291 
1292 	if (!status && attr->ia_valid & ATTR_MODE) {
1293 		status = ocfs2_acl_chmod(inode, bh);
1294 		if (status < 0)
1295 			mlog_errno(status);
1296 	}
1297 	if (inode_locked)
1298 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1299 
1300 	brelse(bh);
1301 	return status;
1302 }
1303 
1304 int ocfs2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1305 		  struct kstat *stat, u32 request_mask, unsigned int flags)
1306 {
1307 	struct inode *inode = d_inode(path->dentry);
1308 	struct super_block *sb = path->dentry->d_sb;
1309 	struct ocfs2_super *osb = sb->s_fs_info;
1310 	int err;
1311 
1312 	err = ocfs2_inode_revalidate(path->dentry);
1313 	if (err) {
1314 		if (err != -ENOENT)
1315 			mlog_errno(err);
1316 		goto bail;
1317 	}
1318 
1319 	generic_fillattr(&init_user_ns, inode, stat);
1320 	/*
1321 	 * If there is inline data in the inode, the inode will normally not
1322 	 * have data blocks allocated (it may have an external xattr block).
1323 	 * Report at least one sector for such files, so tools like tar, rsync,
1324 	 * others don't incorrectly think the file is completely sparse.
1325 	 */
1326 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1327 		stat->blocks += (stat->size + 511)>>9;
1328 
1329 	/* We set the blksize from the cluster size for performance */
1330 	stat->blksize = osb->s_clustersize;
1331 
1332 bail:
1333 	return err;
1334 }
1335 
1336 int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode,
1337 		     int mask)
1338 {
1339 	int ret, had_lock;
1340 	struct ocfs2_lock_holder oh;
1341 
1342 	if (mask & MAY_NOT_BLOCK)
1343 		return -ECHILD;
1344 
1345 	had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1346 	if (had_lock < 0) {
1347 		ret = had_lock;
1348 		goto out;
1349 	} else if (had_lock) {
1350 		/* See comments in ocfs2_setattr() for details.
1351 		 * The call chain of this case could be:
1352 		 * do_sys_open()
1353 		 *  may_open()
1354 		 *   inode_permission()
1355 		 *    ocfs2_permission()
1356 		 *     ocfs2_iop_get_acl()
1357 		 */
1358 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1359 		dump_stack();
1360 	}
1361 
1362 	ret = generic_permission(&init_user_ns, inode, mask);
1363 
1364 	ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1365 out:
1366 	return ret;
1367 }
1368 
1369 static int __ocfs2_write_remove_suid(struct inode *inode,
1370 				     struct buffer_head *bh)
1371 {
1372 	int ret;
1373 	handle_t *handle;
1374 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1375 	struct ocfs2_dinode *di;
1376 
1377 	trace_ocfs2_write_remove_suid(
1378 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1379 			inode->i_mode);
1380 
1381 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1382 	if (IS_ERR(handle)) {
1383 		ret = PTR_ERR(handle);
1384 		mlog_errno(ret);
1385 		goto out;
1386 	}
1387 
1388 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1389 				      OCFS2_JOURNAL_ACCESS_WRITE);
1390 	if (ret < 0) {
1391 		mlog_errno(ret);
1392 		goto out_trans;
1393 	}
1394 
1395 	inode->i_mode &= ~S_ISUID;
1396 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1397 		inode->i_mode &= ~S_ISGID;
1398 
1399 	di = (struct ocfs2_dinode *) bh->b_data;
1400 	di->i_mode = cpu_to_le16(inode->i_mode);
1401 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1402 
1403 	ocfs2_journal_dirty(handle, bh);
1404 
1405 out_trans:
1406 	ocfs2_commit_trans(osb, handle);
1407 out:
1408 	return ret;
1409 }
1410 
1411 static int ocfs2_write_remove_suid(struct inode *inode)
1412 {
1413 	int ret;
1414 	struct buffer_head *bh = NULL;
1415 
1416 	ret = ocfs2_read_inode_block(inode, &bh);
1417 	if (ret < 0) {
1418 		mlog_errno(ret);
1419 		goto out;
1420 	}
1421 
1422 	ret =  __ocfs2_write_remove_suid(inode, bh);
1423 out:
1424 	brelse(bh);
1425 	return ret;
1426 }
1427 
1428 /*
1429  * Allocate enough extents to cover the region starting at byte offset
1430  * start for len bytes. Existing extents are skipped, any extents
1431  * added are marked as "unwritten".
1432  */
1433 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1434 					    u64 start, u64 len)
1435 {
1436 	int ret;
1437 	u32 cpos, phys_cpos, clusters, alloc_size;
1438 	u64 end = start + len;
1439 	struct buffer_head *di_bh = NULL;
1440 
1441 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1442 		ret = ocfs2_read_inode_block(inode, &di_bh);
1443 		if (ret) {
1444 			mlog_errno(ret);
1445 			goto out;
1446 		}
1447 
1448 		/*
1449 		 * Nothing to do if the requested reservation range
1450 		 * fits within the inode.
1451 		 */
1452 		if (ocfs2_size_fits_inline_data(di_bh, end))
1453 			goto out;
1454 
1455 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1456 		if (ret) {
1457 			mlog_errno(ret);
1458 			goto out;
1459 		}
1460 	}
1461 
1462 	/*
1463 	 * We consider both start and len to be inclusive.
1464 	 */
1465 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1466 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1467 	clusters -= cpos;
1468 
1469 	while (clusters) {
1470 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1471 					 &alloc_size, NULL);
1472 		if (ret) {
1473 			mlog_errno(ret);
1474 			goto out;
1475 		}
1476 
1477 		/*
1478 		 * Hole or existing extent len can be arbitrary, so
1479 		 * cap it to our own allocation request.
1480 		 */
1481 		if (alloc_size > clusters)
1482 			alloc_size = clusters;
1483 
1484 		if (phys_cpos) {
1485 			/*
1486 			 * We already have an allocation at this
1487 			 * region so we can safely skip it.
1488 			 */
1489 			goto next;
1490 		}
1491 
1492 		ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1493 		if (ret) {
1494 			if (ret != -ENOSPC)
1495 				mlog_errno(ret);
1496 			goto out;
1497 		}
1498 
1499 next:
1500 		cpos += alloc_size;
1501 		clusters -= alloc_size;
1502 	}
1503 
1504 	ret = 0;
1505 out:
1506 
1507 	brelse(di_bh);
1508 	return ret;
1509 }
1510 
1511 /*
1512  * Truncate a byte range, avoiding pages within partial clusters. This
1513  * preserves those pages for the zeroing code to write to.
1514  */
1515 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1516 					 u64 byte_len)
1517 {
1518 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1519 	loff_t start, end;
1520 	struct address_space *mapping = inode->i_mapping;
1521 
1522 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1523 	end = byte_start + byte_len;
1524 	end = end & ~(osb->s_clustersize - 1);
1525 
1526 	if (start < end) {
1527 		unmap_mapping_range(mapping, start, end - start, 0);
1528 		truncate_inode_pages_range(mapping, start, end - 1);
1529 	}
1530 }
1531 
1532 static int ocfs2_zero_partial_clusters(struct inode *inode,
1533 				       u64 start, u64 len)
1534 {
1535 	int ret = 0;
1536 	u64 tmpend = 0;
1537 	u64 end = start + len;
1538 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1539 	unsigned int csize = osb->s_clustersize;
1540 	handle_t *handle;
1541 
1542 	/*
1543 	 * The "start" and "end" values are NOT necessarily part of
1544 	 * the range whose allocation is being deleted. Rather, this
1545 	 * is what the user passed in with the request. We must zero
1546 	 * partial clusters here. There's no need to worry about
1547 	 * physical allocation - the zeroing code knows to skip holes.
1548 	 */
1549 	trace_ocfs2_zero_partial_clusters(
1550 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1551 		(unsigned long long)start, (unsigned long long)end);
1552 
1553 	/*
1554 	 * If both edges are on a cluster boundary then there's no
1555 	 * zeroing required as the region is part of the allocation to
1556 	 * be truncated.
1557 	 */
1558 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1559 		goto out;
1560 
1561 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1562 	if (IS_ERR(handle)) {
1563 		ret = PTR_ERR(handle);
1564 		mlog_errno(ret);
1565 		goto out;
1566 	}
1567 
1568 	/*
1569 	 * If start is on a cluster boundary and end is somewhere in another
1570 	 * cluster, we have not COWed the cluster starting at start, unless
1571 	 * end is also within the same cluster. So, in this case, we skip this
1572 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1573 	 * to the next one.
1574 	 */
1575 	if ((start & (csize - 1)) != 0) {
1576 		/*
1577 		 * We want to get the byte offset of the end of the 1st
1578 		 * cluster.
1579 		 */
1580 		tmpend = (u64)osb->s_clustersize +
1581 			(start & ~(osb->s_clustersize - 1));
1582 		if (tmpend > end)
1583 			tmpend = end;
1584 
1585 		trace_ocfs2_zero_partial_clusters_range1(
1586 			(unsigned long long)start,
1587 			(unsigned long long)tmpend);
1588 
1589 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1590 						    tmpend);
1591 		if (ret)
1592 			mlog_errno(ret);
1593 	}
1594 
1595 	if (tmpend < end) {
1596 		/*
1597 		 * This may make start and end equal, but the zeroing
1598 		 * code will skip any work in that case so there's no
1599 		 * need to catch it up here.
1600 		 */
1601 		start = end & ~(osb->s_clustersize - 1);
1602 
1603 		trace_ocfs2_zero_partial_clusters_range2(
1604 			(unsigned long long)start, (unsigned long long)end);
1605 
1606 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1607 		if (ret)
1608 			mlog_errno(ret);
1609 	}
1610 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1611 
1612 	ocfs2_commit_trans(osb, handle);
1613 out:
1614 	return ret;
1615 }
1616 
1617 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1618 {
1619 	int i;
1620 	struct ocfs2_extent_rec *rec = NULL;
1621 
1622 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1623 
1624 		rec = &el->l_recs[i];
1625 
1626 		if (le32_to_cpu(rec->e_cpos) < pos)
1627 			break;
1628 	}
1629 
1630 	return i;
1631 }
1632 
1633 /*
1634  * Helper to calculate the punching pos and length in one run, we handle the
1635  * following three cases in order:
1636  *
1637  * - remove the entire record
1638  * - remove a partial record
1639  * - no record needs to be removed (hole-punching completed)
1640 */
1641 static void ocfs2_calc_trunc_pos(struct inode *inode,
1642 				 struct ocfs2_extent_list *el,
1643 				 struct ocfs2_extent_rec *rec,
1644 				 u32 trunc_start, u32 *trunc_cpos,
1645 				 u32 *trunc_len, u32 *trunc_end,
1646 				 u64 *blkno, int *done)
1647 {
1648 	int ret = 0;
1649 	u32 coff, range;
1650 
1651 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1652 
1653 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1654 		/*
1655 		 * remove an entire extent record.
1656 		 */
1657 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1658 		/*
1659 		 * Skip holes if any.
1660 		 */
1661 		if (range < *trunc_end)
1662 			*trunc_end = range;
1663 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1664 		*blkno = le64_to_cpu(rec->e_blkno);
1665 		*trunc_end = le32_to_cpu(rec->e_cpos);
1666 	} else if (range > trunc_start) {
1667 		/*
1668 		 * remove a partial extent record, which means we're
1669 		 * removing the last extent record.
1670 		 */
1671 		*trunc_cpos = trunc_start;
1672 		/*
1673 		 * skip hole if any.
1674 		 */
1675 		if (range < *trunc_end)
1676 			*trunc_end = range;
1677 		*trunc_len = *trunc_end - trunc_start;
1678 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1679 		*blkno = le64_to_cpu(rec->e_blkno) +
1680 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1681 		*trunc_end = trunc_start;
1682 	} else {
1683 		/*
1684 		 * It may have two following possibilities:
1685 		 *
1686 		 * - last record has been removed
1687 		 * - trunc_start was within a hole
1688 		 *
1689 		 * both two cases mean the completion of hole punching.
1690 		 */
1691 		ret = 1;
1692 	}
1693 
1694 	*done = ret;
1695 }
1696 
1697 int ocfs2_remove_inode_range(struct inode *inode,
1698 			     struct buffer_head *di_bh, u64 byte_start,
1699 			     u64 byte_len)
1700 {
1701 	int ret = 0, flags = 0, done = 0, i;
1702 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1703 	u32 cluster_in_el;
1704 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1705 	struct ocfs2_cached_dealloc_ctxt dealloc;
1706 	struct address_space *mapping = inode->i_mapping;
1707 	struct ocfs2_extent_tree et;
1708 	struct ocfs2_path *path = NULL;
1709 	struct ocfs2_extent_list *el = NULL;
1710 	struct ocfs2_extent_rec *rec = NULL;
1711 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1712 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1713 
1714 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1715 	ocfs2_init_dealloc_ctxt(&dealloc);
1716 
1717 	trace_ocfs2_remove_inode_range(
1718 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1719 			(unsigned long long)byte_start,
1720 			(unsigned long long)byte_len);
1721 
1722 	if (byte_len == 0)
1723 		return 0;
1724 
1725 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1726 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1727 					    byte_start + byte_len, 0);
1728 		if (ret) {
1729 			mlog_errno(ret);
1730 			goto out;
1731 		}
1732 		/*
1733 		 * There's no need to get fancy with the page cache
1734 		 * truncate of an inline-data inode. We're talking
1735 		 * about less than a page here, which will be cached
1736 		 * in the dinode buffer anyway.
1737 		 */
1738 		unmap_mapping_range(mapping, 0, 0, 0);
1739 		truncate_inode_pages(mapping, 0);
1740 		goto out;
1741 	}
1742 
1743 	/*
1744 	 * For reflinks, we may need to CoW 2 clusters which might be
1745 	 * partially zero'd later, if hole's start and end offset were
1746 	 * within one cluster(means is not exactly aligned to clustersize).
1747 	 */
1748 
1749 	if (ocfs2_is_refcount_inode(inode)) {
1750 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1751 		if (ret) {
1752 			mlog_errno(ret);
1753 			goto out;
1754 		}
1755 
1756 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1757 		if (ret) {
1758 			mlog_errno(ret);
1759 			goto out;
1760 		}
1761 	}
1762 
1763 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1764 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1765 	cluster_in_el = trunc_end;
1766 
1767 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1768 	if (ret) {
1769 		mlog_errno(ret);
1770 		goto out;
1771 	}
1772 
1773 	path = ocfs2_new_path_from_et(&et);
1774 	if (!path) {
1775 		ret = -ENOMEM;
1776 		mlog_errno(ret);
1777 		goto out;
1778 	}
1779 
1780 	while (trunc_end > trunc_start) {
1781 
1782 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1783 				      cluster_in_el);
1784 		if (ret) {
1785 			mlog_errno(ret);
1786 			goto out;
1787 		}
1788 
1789 		el = path_leaf_el(path);
1790 
1791 		i = ocfs2_find_rec(el, trunc_end);
1792 		/*
1793 		 * Need to go to previous extent block.
1794 		 */
1795 		if (i < 0) {
1796 			if (path->p_tree_depth == 0)
1797 				break;
1798 
1799 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1800 							    path,
1801 							    &cluster_in_el);
1802 			if (ret) {
1803 				mlog_errno(ret);
1804 				goto out;
1805 			}
1806 
1807 			/*
1808 			 * We've reached the leftmost extent block,
1809 			 * it's safe to leave.
1810 			 */
1811 			if (cluster_in_el == 0)
1812 				break;
1813 
1814 			/*
1815 			 * The 'pos' searched for previous extent block is
1816 			 * always one cluster less than actual trunc_end.
1817 			 */
1818 			trunc_end = cluster_in_el + 1;
1819 
1820 			ocfs2_reinit_path(path, 1);
1821 
1822 			continue;
1823 
1824 		} else
1825 			rec = &el->l_recs[i];
1826 
1827 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1828 				     &trunc_len, &trunc_end, &blkno, &done);
1829 		if (done)
1830 			break;
1831 
1832 		flags = rec->e_flags;
1833 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1834 
1835 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1836 					       phys_cpos, trunc_len, flags,
1837 					       &dealloc, refcount_loc, false);
1838 		if (ret < 0) {
1839 			mlog_errno(ret);
1840 			goto out;
1841 		}
1842 
1843 		cluster_in_el = trunc_end;
1844 
1845 		ocfs2_reinit_path(path, 1);
1846 	}
1847 
1848 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1849 
1850 out:
1851 	ocfs2_free_path(path);
1852 	ocfs2_schedule_truncate_log_flush(osb, 1);
1853 	ocfs2_run_deallocs(osb, &dealloc);
1854 
1855 	return ret;
1856 }
1857 
1858 /*
1859  * Parts of this function taken from xfs_change_file_space()
1860  */
1861 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1862 				     loff_t f_pos, unsigned int cmd,
1863 				     struct ocfs2_space_resv *sr,
1864 				     int change_size)
1865 {
1866 	int ret;
1867 	s64 llen;
1868 	loff_t size;
1869 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1870 	struct buffer_head *di_bh = NULL;
1871 	handle_t *handle;
1872 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1873 
1874 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1875 		return -EROFS;
1876 
1877 	inode_lock(inode);
1878 
1879 	/*
1880 	 * This prevents concurrent writes on other nodes
1881 	 */
1882 	ret = ocfs2_rw_lock(inode, 1);
1883 	if (ret) {
1884 		mlog_errno(ret);
1885 		goto out;
1886 	}
1887 
1888 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1889 	if (ret) {
1890 		mlog_errno(ret);
1891 		goto out_rw_unlock;
1892 	}
1893 
1894 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1895 		ret = -EPERM;
1896 		goto out_inode_unlock;
1897 	}
1898 
1899 	switch (sr->l_whence) {
1900 	case 0: /*SEEK_SET*/
1901 		break;
1902 	case 1: /*SEEK_CUR*/
1903 		sr->l_start += f_pos;
1904 		break;
1905 	case 2: /*SEEK_END*/
1906 		sr->l_start += i_size_read(inode);
1907 		break;
1908 	default:
1909 		ret = -EINVAL;
1910 		goto out_inode_unlock;
1911 	}
1912 	sr->l_whence = 0;
1913 
1914 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1915 
1916 	if (sr->l_start < 0
1917 	    || sr->l_start > max_off
1918 	    || (sr->l_start + llen) < 0
1919 	    || (sr->l_start + llen) > max_off) {
1920 		ret = -EINVAL;
1921 		goto out_inode_unlock;
1922 	}
1923 	size = sr->l_start + sr->l_len;
1924 
1925 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1926 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1927 		if (sr->l_len <= 0) {
1928 			ret = -EINVAL;
1929 			goto out_inode_unlock;
1930 		}
1931 	}
1932 
1933 	if (file && should_remove_suid(file->f_path.dentry)) {
1934 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1935 		if (ret) {
1936 			mlog_errno(ret);
1937 			goto out_inode_unlock;
1938 		}
1939 	}
1940 
1941 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1942 	switch (cmd) {
1943 	case OCFS2_IOC_RESVSP:
1944 	case OCFS2_IOC_RESVSP64:
1945 		/*
1946 		 * This takes unsigned offsets, but the signed ones we
1947 		 * pass have been checked against overflow above.
1948 		 */
1949 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1950 						       sr->l_len);
1951 		break;
1952 	case OCFS2_IOC_UNRESVSP:
1953 	case OCFS2_IOC_UNRESVSP64:
1954 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1955 					       sr->l_len);
1956 		break;
1957 	default:
1958 		ret = -EINVAL;
1959 	}
1960 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1961 	if (ret) {
1962 		mlog_errno(ret);
1963 		goto out_inode_unlock;
1964 	}
1965 
1966 	/*
1967 	 * We update c/mtime for these changes
1968 	 */
1969 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1970 	if (IS_ERR(handle)) {
1971 		ret = PTR_ERR(handle);
1972 		mlog_errno(ret);
1973 		goto out_inode_unlock;
1974 	}
1975 
1976 	if (change_size && i_size_read(inode) < size)
1977 		i_size_write(inode, size);
1978 
1979 	inode->i_ctime = inode->i_mtime = current_time(inode);
1980 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1981 	if (ret < 0)
1982 		mlog_errno(ret);
1983 
1984 	if (file && (file->f_flags & O_SYNC))
1985 		handle->h_sync = 1;
1986 
1987 	ocfs2_commit_trans(osb, handle);
1988 
1989 out_inode_unlock:
1990 	brelse(di_bh);
1991 	ocfs2_inode_unlock(inode, 1);
1992 out_rw_unlock:
1993 	ocfs2_rw_unlock(inode, 1);
1994 
1995 out:
1996 	inode_unlock(inode);
1997 	return ret;
1998 }
1999 
2000 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2001 			    struct ocfs2_space_resv *sr)
2002 {
2003 	struct inode *inode = file_inode(file);
2004 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2005 	int ret;
2006 
2007 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2008 	    !ocfs2_writes_unwritten_extents(osb))
2009 		return -ENOTTY;
2010 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2011 		 !ocfs2_sparse_alloc(osb))
2012 		return -ENOTTY;
2013 
2014 	if (!S_ISREG(inode->i_mode))
2015 		return -EINVAL;
2016 
2017 	if (!(file->f_mode & FMODE_WRITE))
2018 		return -EBADF;
2019 
2020 	ret = mnt_want_write_file(file);
2021 	if (ret)
2022 		return ret;
2023 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2024 	mnt_drop_write_file(file);
2025 	return ret;
2026 }
2027 
2028 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2029 			    loff_t len)
2030 {
2031 	struct inode *inode = file_inode(file);
2032 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2033 	struct ocfs2_space_resv sr;
2034 	int change_size = 1;
2035 	int cmd = OCFS2_IOC_RESVSP64;
2036 
2037 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2038 		return -EOPNOTSUPP;
2039 	if (!ocfs2_writes_unwritten_extents(osb))
2040 		return -EOPNOTSUPP;
2041 
2042 	if (mode & FALLOC_FL_KEEP_SIZE)
2043 		change_size = 0;
2044 
2045 	if (mode & FALLOC_FL_PUNCH_HOLE)
2046 		cmd = OCFS2_IOC_UNRESVSP64;
2047 
2048 	sr.l_whence = 0;
2049 	sr.l_start = (s64)offset;
2050 	sr.l_len = (s64)len;
2051 
2052 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2053 					 change_size);
2054 }
2055 
2056 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2057 				   size_t count)
2058 {
2059 	int ret = 0;
2060 	unsigned int extent_flags;
2061 	u32 cpos, clusters, extent_len, phys_cpos;
2062 	struct super_block *sb = inode->i_sb;
2063 
2064 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2065 	    !ocfs2_is_refcount_inode(inode) ||
2066 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2067 		return 0;
2068 
2069 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2070 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2071 
2072 	while (clusters) {
2073 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2074 					 &extent_flags);
2075 		if (ret < 0) {
2076 			mlog_errno(ret);
2077 			goto out;
2078 		}
2079 
2080 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2081 			ret = 1;
2082 			break;
2083 		}
2084 
2085 		if (extent_len > clusters)
2086 			extent_len = clusters;
2087 
2088 		clusters -= extent_len;
2089 		cpos += extent_len;
2090 	}
2091 out:
2092 	return ret;
2093 }
2094 
2095 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2096 {
2097 	int blockmask = inode->i_sb->s_blocksize - 1;
2098 	loff_t final_size = pos + count;
2099 
2100 	if ((pos & blockmask) || (final_size & blockmask))
2101 		return 1;
2102 	return 0;
2103 }
2104 
2105 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2106 					    struct buffer_head **di_bh,
2107 					    int meta_level,
2108 					    int write_sem,
2109 					    int wait)
2110 {
2111 	int ret = 0;
2112 
2113 	if (wait)
2114 		ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2115 	else
2116 		ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2117 	if (ret < 0)
2118 		goto out;
2119 
2120 	if (wait) {
2121 		if (write_sem)
2122 			down_write(&OCFS2_I(inode)->ip_alloc_sem);
2123 		else
2124 			down_read(&OCFS2_I(inode)->ip_alloc_sem);
2125 	} else {
2126 		if (write_sem)
2127 			ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2128 		else
2129 			ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2130 
2131 		if (!ret) {
2132 			ret = -EAGAIN;
2133 			goto out_unlock;
2134 		}
2135 	}
2136 
2137 	return ret;
2138 
2139 out_unlock:
2140 	brelse(*di_bh);
2141 	*di_bh = NULL;
2142 	ocfs2_inode_unlock(inode, meta_level);
2143 out:
2144 	return ret;
2145 }
2146 
2147 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2148 					       struct buffer_head **di_bh,
2149 					       int meta_level,
2150 					       int write_sem)
2151 {
2152 	if (write_sem)
2153 		up_write(&OCFS2_I(inode)->ip_alloc_sem);
2154 	else
2155 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
2156 
2157 	brelse(*di_bh);
2158 	*di_bh = NULL;
2159 
2160 	if (meta_level >= 0)
2161 		ocfs2_inode_unlock(inode, meta_level);
2162 }
2163 
2164 static int ocfs2_prepare_inode_for_write(struct file *file,
2165 					 loff_t pos, size_t count, int wait)
2166 {
2167 	int ret = 0, meta_level = 0, overwrite_io = 0;
2168 	int write_sem = 0;
2169 	struct dentry *dentry = file->f_path.dentry;
2170 	struct inode *inode = d_inode(dentry);
2171 	struct buffer_head *di_bh = NULL;
2172 	u32 cpos;
2173 	u32 clusters;
2174 
2175 	/*
2176 	 * We start with a read level meta lock and only jump to an ex
2177 	 * if we need to make modifications here.
2178 	 */
2179 	for(;;) {
2180 		ret = ocfs2_inode_lock_for_extent_tree(inode,
2181 						       &di_bh,
2182 						       meta_level,
2183 						       write_sem,
2184 						       wait);
2185 		if (ret < 0) {
2186 			if (ret != -EAGAIN)
2187 				mlog_errno(ret);
2188 			goto out;
2189 		}
2190 
2191 		/*
2192 		 * Check if IO will overwrite allocated blocks in case
2193 		 * IOCB_NOWAIT flag is set.
2194 		 */
2195 		if (!wait && !overwrite_io) {
2196 			overwrite_io = 1;
2197 
2198 			ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2199 			if (ret < 0) {
2200 				if (ret != -EAGAIN)
2201 					mlog_errno(ret);
2202 				goto out_unlock;
2203 			}
2204 		}
2205 
2206 		/* Clear suid / sgid if necessary. We do this here
2207 		 * instead of later in the write path because
2208 		 * remove_suid() calls ->setattr without any hint that
2209 		 * we may have already done our cluster locking. Since
2210 		 * ocfs2_setattr() *must* take cluster locks to
2211 		 * proceed, this will lead us to recursively lock the
2212 		 * inode. There's also the dinode i_size state which
2213 		 * can be lost via setattr during extending writes (we
2214 		 * set inode->i_size at the end of a write. */
2215 		if (should_remove_suid(dentry)) {
2216 			if (meta_level == 0) {
2217 				ocfs2_inode_unlock_for_extent_tree(inode,
2218 								   &di_bh,
2219 								   meta_level,
2220 								   write_sem);
2221 				meta_level = 1;
2222 				continue;
2223 			}
2224 
2225 			ret = ocfs2_write_remove_suid(inode);
2226 			if (ret < 0) {
2227 				mlog_errno(ret);
2228 				goto out_unlock;
2229 			}
2230 		}
2231 
2232 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2233 		if (ret == 1) {
2234 			ocfs2_inode_unlock_for_extent_tree(inode,
2235 							   &di_bh,
2236 							   meta_level,
2237 							   write_sem);
2238 			meta_level = 1;
2239 			write_sem = 1;
2240 			ret = ocfs2_inode_lock_for_extent_tree(inode,
2241 							       &di_bh,
2242 							       meta_level,
2243 							       write_sem,
2244 							       wait);
2245 			if (ret < 0) {
2246 				if (ret != -EAGAIN)
2247 					mlog_errno(ret);
2248 				goto out;
2249 			}
2250 
2251 			cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2252 			clusters =
2253 				ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2254 			ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2255 		}
2256 
2257 		if (ret < 0) {
2258 			if (ret != -EAGAIN)
2259 				mlog_errno(ret);
2260 			goto out_unlock;
2261 		}
2262 
2263 		break;
2264 	}
2265 
2266 out_unlock:
2267 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2268 					    pos, count, wait);
2269 
2270 	ocfs2_inode_unlock_for_extent_tree(inode,
2271 					   &di_bh,
2272 					   meta_level,
2273 					   write_sem);
2274 
2275 out:
2276 	return ret;
2277 }
2278 
2279 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2280 				    struct iov_iter *from)
2281 {
2282 	int rw_level;
2283 	ssize_t written = 0;
2284 	ssize_t ret;
2285 	size_t count = iov_iter_count(from);
2286 	struct file *file = iocb->ki_filp;
2287 	struct inode *inode = file_inode(file);
2288 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2289 	int full_coherency = !(osb->s_mount_opt &
2290 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2291 	void *saved_ki_complete = NULL;
2292 	int append_write = ((iocb->ki_pos + count) >=
2293 			i_size_read(inode) ? 1 : 0);
2294 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2295 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2296 
2297 	trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2298 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2299 		file->f_path.dentry->d_name.len,
2300 		file->f_path.dentry->d_name.name,
2301 		(unsigned int)from->nr_segs);	/* GRRRRR */
2302 
2303 	if (!direct_io && nowait)
2304 		return -EOPNOTSUPP;
2305 
2306 	if (count == 0)
2307 		return 0;
2308 
2309 	if (nowait) {
2310 		if (!inode_trylock(inode))
2311 			return -EAGAIN;
2312 	} else
2313 		inode_lock(inode);
2314 
2315 	/*
2316 	 * Concurrent O_DIRECT writes are allowed with
2317 	 * mount_option "coherency=buffered".
2318 	 * For append write, we must take rw EX.
2319 	 */
2320 	rw_level = (!direct_io || full_coherency || append_write);
2321 
2322 	if (nowait)
2323 		ret = ocfs2_try_rw_lock(inode, rw_level);
2324 	else
2325 		ret = ocfs2_rw_lock(inode, rw_level);
2326 	if (ret < 0) {
2327 		if (ret != -EAGAIN)
2328 			mlog_errno(ret);
2329 		goto out_mutex;
2330 	}
2331 
2332 	/*
2333 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2334 	 * inode_lock to guarantee coherency.
2335 	 */
2336 	if (direct_io && full_coherency) {
2337 		/*
2338 		 * We need to take and drop the inode lock to force
2339 		 * other nodes to drop their caches.  Buffered I/O
2340 		 * already does this in write_begin().
2341 		 */
2342 		if (nowait)
2343 			ret = ocfs2_try_inode_lock(inode, NULL, 1);
2344 		else
2345 			ret = ocfs2_inode_lock(inode, NULL, 1);
2346 		if (ret < 0) {
2347 			if (ret != -EAGAIN)
2348 				mlog_errno(ret);
2349 			goto out;
2350 		}
2351 
2352 		ocfs2_inode_unlock(inode, 1);
2353 	}
2354 
2355 	ret = generic_write_checks(iocb, from);
2356 	if (ret <= 0) {
2357 		if (ret)
2358 			mlog_errno(ret);
2359 		goto out;
2360 	}
2361 	count = ret;
2362 
2363 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2364 	if (ret < 0) {
2365 		if (ret != -EAGAIN)
2366 			mlog_errno(ret);
2367 		goto out;
2368 	}
2369 
2370 	if (direct_io && !is_sync_kiocb(iocb) &&
2371 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2372 		/*
2373 		 * Make it a sync io if it's an unaligned aio.
2374 		 */
2375 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2376 	}
2377 
2378 	/* communicate with ocfs2_dio_end_io */
2379 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2380 
2381 	written = __generic_file_write_iter(iocb, from);
2382 	/* buffered aio wouldn't have proper lock coverage today */
2383 	BUG_ON(written == -EIOCBQUEUED && !direct_io);
2384 
2385 	/*
2386 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2387 	 * function pointer which is called when o_direct io completes so that
2388 	 * it can unlock our rw lock.
2389 	 * Unfortunately there are error cases which call end_io and others
2390 	 * that don't.  so we don't have to unlock the rw_lock if either an
2391 	 * async dio is going to do it in the future or an end_io after an
2392 	 * error has already done it.
2393 	 */
2394 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2395 		rw_level = -1;
2396 	}
2397 
2398 	if (unlikely(written <= 0))
2399 		goto out;
2400 
2401 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2402 	    IS_SYNC(inode)) {
2403 		ret = filemap_fdatawrite_range(file->f_mapping,
2404 					       iocb->ki_pos - written,
2405 					       iocb->ki_pos - 1);
2406 		if (ret < 0)
2407 			written = ret;
2408 
2409 		if (!ret) {
2410 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2411 			if (ret < 0)
2412 				written = ret;
2413 		}
2414 
2415 		if (!ret)
2416 			ret = filemap_fdatawait_range(file->f_mapping,
2417 						      iocb->ki_pos - written,
2418 						      iocb->ki_pos - 1);
2419 	}
2420 
2421 out:
2422 	if (saved_ki_complete)
2423 		xchg(&iocb->ki_complete, saved_ki_complete);
2424 
2425 	if (rw_level != -1)
2426 		ocfs2_rw_unlock(inode, rw_level);
2427 
2428 out_mutex:
2429 	inode_unlock(inode);
2430 
2431 	if (written)
2432 		ret = written;
2433 	return ret;
2434 }
2435 
2436 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2437 				   struct iov_iter *to)
2438 {
2439 	int ret = 0, rw_level = -1, lock_level = 0;
2440 	struct file *filp = iocb->ki_filp;
2441 	struct inode *inode = file_inode(filp);
2442 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2443 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2444 
2445 	trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2446 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2447 			filp->f_path.dentry->d_name.len,
2448 			filp->f_path.dentry->d_name.name,
2449 			to->nr_segs);	/* GRRRRR */
2450 
2451 
2452 	if (!inode) {
2453 		ret = -EINVAL;
2454 		mlog_errno(ret);
2455 		goto bail;
2456 	}
2457 
2458 	if (!direct_io && nowait)
2459 		return -EOPNOTSUPP;
2460 
2461 	/*
2462 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2463 	 * need locks to protect pending reads from racing with truncate.
2464 	 */
2465 	if (direct_io) {
2466 		if (nowait)
2467 			ret = ocfs2_try_rw_lock(inode, 0);
2468 		else
2469 			ret = ocfs2_rw_lock(inode, 0);
2470 
2471 		if (ret < 0) {
2472 			if (ret != -EAGAIN)
2473 				mlog_errno(ret);
2474 			goto bail;
2475 		}
2476 		rw_level = 0;
2477 		/* communicate with ocfs2_dio_end_io */
2478 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2479 	}
2480 
2481 	/*
2482 	 * We're fine letting folks race truncates and extending
2483 	 * writes with read across the cluster, just like they can
2484 	 * locally. Hence no rw_lock during read.
2485 	 *
2486 	 * Take and drop the meta data lock to update inode fields
2487 	 * like i_size. This allows the checks down below
2488 	 * generic_file_read_iter() a chance of actually working.
2489 	 */
2490 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2491 				     !nowait);
2492 	if (ret < 0) {
2493 		if (ret != -EAGAIN)
2494 			mlog_errno(ret);
2495 		goto bail;
2496 	}
2497 	ocfs2_inode_unlock(inode, lock_level);
2498 
2499 	ret = generic_file_read_iter(iocb, to);
2500 	trace_generic_file_read_iter_ret(ret);
2501 
2502 	/* buffered aio wouldn't have proper lock coverage today */
2503 	BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2504 
2505 	/* see ocfs2_file_write_iter */
2506 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2507 		rw_level = -1;
2508 	}
2509 
2510 bail:
2511 	if (rw_level != -1)
2512 		ocfs2_rw_unlock(inode, rw_level);
2513 
2514 	return ret;
2515 }
2516 
2517 /* Refer generic_file_llseek_unlocked() */
2518 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2519 {
2520 	struct inode *inode = file->f_mapping->host;
2521 	int ret = 0;
2522 
2523 	inode_lock(inode);
2524 
2525 	switch (whence) {
2526 	case SEEK_SET:
2527 		break;
2528 	case SEEK_END:
2529 		/* SEEK_END requires the OCFS2 inode lock for the file
2530 		 * because it references the file's size.
2531 		 */
2532 		ret = ocfs2_inode_lock(inode, NULL, 0);
2533 		if (ret < 0) {
2534 			mlog_errno(ret);
2535 			goto out;
2536 		}
2537 		offset += i_size_read(inode);
2538 		ocfs2_inode_unlock(inode, 0);
2539 		break;
2540 	case SEEK_CUR:
2541 		if (offset == 0) {
2542 			offset = file->f_pos;
2543 			goto out;
2544 		}
2545 		offset += file->f_pos;
2546 		break;
2547 	case SEEK_DATA:
2548 	case SEEK_HOLE:
2549 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2550 		if (ret)
2551 			goto out;
2552 		break;
2553 	default:
2554 		ret = -EINVAL;
2555 		goto out;
2556 	}
2557 
2558 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2559 
2560 out:
2561 	inode_unlock(inode);
2562 	if (ret)
2563 		return ret;
2564 	return offset;
2565 }
2566 
2567 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2568 				     struct file *file_out, loff_t pos_out,
2569 				     loff_t len, unsigned int remap_flags)
2570 {
2571 	struct inode *inode_in = file_inode(file_in);
2572 	struct inode *inode_out = file_inode(file_out);
2573 	struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2574 	struct buffer_head *in_bh = NULL, *out_bh = NULL;
2575 	bool same_inode = (inode_in == inode_out);
2576 	loff_t remapped = 0;
2577 	ssize_t ret;
2578 
2579 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2580 		return -EINVAL;
2581 	if (!ocfs2_refcount_tree(osb))
2582 		return -EOPNOTSUPP;
2583 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2584 		return -EROFS;
2585 
2586 	/* Lock both files against IO */
2587 	ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2588 	if (ret)
2589 		return ret;
2590 
2591 	/* Check file eligibility and prepare for block sharing. */
2592 	ret = -EINVAL;
2593 	if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2594 	    (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2595 		goto out_unlock;
2596 
2597 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2598 			&len, remap_flags);
2599 	if (ret < 0 || len == 0)
2600 		goto out_unlock;
2601 
2602 	/* Lock out changes to the allocation maps and remap. */
2603 	down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2604 	if (!same_inode)
2605 		down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2606 				  SINGLE_DEPTH_NESTING);
2607 
2608 	/* Zap any page cache for the destination file's range. */
2609 	truncate_inode_pages_range(&inode_out->i_data,
2610 				   round_down(pos_out, PAGE_SIZE),
2611 				   round_up(pos_out + len, PAGE_SIZE) - 1);
2612 
2613 	remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2614 			inode_out, out_bh, pos_out, len);
2615 	up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2616 	if (!same_inode)
2617 		up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2618 	if (remapped < 0) {
2619 		ret = remapped;
2620 		mlog_errno(ret);
2621 		goto out_unlock;
2622 	}
2623 
2624 	/*
2625 	 * Empty the extent map so that we may get the right extent
2626 	 * record from the disk.
2627 	 */
2628 	ocfs2_extent_map_trunc(inode_in, 0);
2629 	ocfs2_extent_map_trunc(inode_out, 0);
2630 
2631 	ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2632 	if (ret) {
2633 		mlog_errno(ret);
2634 		goto out_unlock;
2635 	}
2636 
2637 out_unlock:
2638 	ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2639 	return remapped > 0 ? remapped : ret;
2640 }
2641 
2642 const struct inode_operations ocfs2_file_iops = {
2643 	.setattr	= ocfs2_setattr,
2644 	.getattr	= ocfs2_getattr,
2645 	.permission	= ocfs2_permission,
2646 	.listxattr	= ocfs2_listxattr,
2647 	.fiemap		= ocfs2_fiemap,
2648 	.get_acl	= ocfs2_iop_get_acl,
2649 	.set_acl	= ocfs2_iop_set_acl,
2650 	.fileattr_get	= ocfs2_fileattr_get,
2651 	.fileattr_set	= ocfs2_fileattr_set,
2652 };
2653 
2654 const struct inode_operations ocfs2_special_file_iops = {
2655 	.setattr	= ocfs2_setattr,
2656 	.getattr	= ocfs2_getattr,
2657 	.permission	= ocfs2_permission,
2658 	.get_acl	= ocfs2_iop_get_acl,
2659 	.set_acl	= ocfs2_iop_set_acl,
2660 };
2661 
2662 /*
2663  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2664  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2665  */
2666 const struct file_operations ocfs2_fops = {
2667 	.llseek		= ocfs2_file_llseek,
2668 	.mmap		= ocfs2_mmap,
2669 	.fsync		= ocfs2_sync_file,
2670 	.release	= ocfs2_file_release,
2671 	.open		= ocfs2_file_open,
2672 	.read_iter	= ocfs2_file_read_iter,
2673 	.write_iter	= ocfs2_file_write_iter,
2674 	.unlocked_ioctl	= ocfs2_ioctl,
2675 #ifdef CONFIG_COMPAT
2676 	.compat_ioctl   = ocfs2_compat_ioctl,
2677 #endif
2678 	.lock		= ocfs2_lock,
2679 	.flock		= ocfs2_flock,
2680 	.splice_read	= generic_file_splice_read,
2681 	.splice_write	= iter_file_splice_write,
2682 	.fallocate	= ocfs2_fallocate,
2683 	.remap_file_range = ocfs2_remap_file_range,
2684 };
2685 
2686 const struct file_operations ocfs2_dops = {
2687 	.llseek		= generic_file_llseek,
2688 	.read		= generic_read_dir,
2689 	.iterate	= ocfs2_readdir,
2690 	.fsync		= ocfs2_sync_file,
2691 	.release	= ocfs2_dir_release,
2692 	.open		= ocfs2_dir_open,
2693 	.unlocked_ioctl	= ocfs2_ioctl,
2694 #ifdef CONFIG_COMPAT
2695 	.compat_ioctl   = ocfs2_compat_ioctl,
2696 #endif
2697 	.lock		= ocfs2_lock,
2698 	.flock		= ocfs2_flock,
2699 };
2700 
2701 /*
2702  * POSIX-lockless variants of our file_operations.
2703  *
2704  * These will be used if the underlying cluster stack does not support
2705  * posix file locking, if the user passes the "localflocks" mount
2706  * option, or if we have a local-only fs.
2707  *
2708  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2709  * so we still want it in the case of no stack support for
2710  * plocks. Internally, it will do the right thing when asked to ignore
2711  * the cluster.
2712  */
2713 const struct file_operations ocfs2_fops_no_plocks = {
2714 	.llseek		= ocfs2_file_llseek,
2715 	.mmap		= ocfs2_mmap,
2716 	.fsync		= ocfs2_sync_file,
2717 	.release	= ocfs2_file_release,
2718 	.open		= ocfs2_file_open,
2719 	.read_iter	= ocfs2_file_read_iter,
2720 	.write_iter	= ocfs2_file_write_iter,
2721 	.unlocked_ioctl	= ocfs2_ioctl,
2722 #ifdef CONFIG_COMPAT
2723 	.compat_ioctl   = ocfs2_compat_ioctl,
2724 #endif
2725 	.flock		= ocfs2_flock,
2726 	.splice_read	= generic_file_splice_read,
2727 	.splice_write	= iter_file_splice_write,
2728 	.fallocate	= ocfs2_fallocate,
2729 	.remap_file_range = ocfs2_remap_file_range,
2730 };
2731 
2732 const struct file_operations ocfs2_dops_no_plocks = {
2733 	.llseek		= generic_file_llseek,
2734 	.read		= generic_read_dir,
2735 	.iterate	= ocfs2_readdir,
2736 	.fsync		= ocfs2_sync_file,
2737 	.release	= ocfs2_dir_release,
2738 	.open		= ocfs2_dir_open,
2739 	.unlocked_ioctl	= ocfs2_ioctl,
2740 #ifdef CONFIG_COMPAT
2741 	.compat_ioctl   = ocfs2_compat_ioctl,
2742 #endif
2743 	.flock		= ocfs2_flock,
2744 };
2745