xref: /openbmc/linux/fs/ocfs2/file.c (revision 7e035230)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 
41 #include <cluster/masklog.h>
42 
43 #include "ocfs2.h"
44 
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64 
65 #include "buffer_head_io.h"
66 
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 	struct ocfs2_file_private *fp;
70 
71 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 	if (!fp)
73 		return -ENOMEM;
74 
75 	fp->fp_file = file;
76 	mutex_init(&fp->fp_mutex);
77 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 	file->private_data = fp;
79 
80 	return 0;
81 }
82 
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 	struct ocfs2_file_private *fp = file->private_data;
86 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87 
88 	if (fp) {
89 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 		ocfs2_lock_res_free(&fp->fp_flock);
91 		kfree(fp);
92 		file->private_data = NULL;
93 	}
94 }
95 
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 	int status;
99 	int mode = file->f_flags;
100 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
101 
102 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 			      (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 			      file->f_path.dentry->d_name.len,
105 			      file->f_path.dentry->d_name.name, mode);
106 
107 	if (file->f_mode & FMODE_WRITE)
108 		dquot_initialize(inode);
109 
110 	spin_lock(&oi->ip_lock);
111 
112 	/* Check that the inode hasn't been wiped from disk by another
113 	 * node. If it hasn't then we're safe as long as we hold the
114 	 * spin lock until our increment of open count. */
115 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 		spin_unlock(&oi->ip_lock);
117 
118 		status = -ENOENT;
119 		goto leave;
120 	}
121 
122 	if (mode & O_DIRECT)
123 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124 
125 	oi->ip_open_count++;
126 	spin_unlock(&oi->ip_lock);
127 
128 	status = ocfs2_init_file_private(inode, file);
129 	if (status) {
130 		/*
131 		 * We want to set open count back if we're failing the
132 		 * open.
133 		 */
134 		spin_lock(&oi->ip_lock);
135 		oi->ip_open_count--;
136 		spin_unlock(&oi->ip_lock);
137 	}
138 
139 leave:
140 	return status;
141 }
142 
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
146 
147 	spin_lock(&oi->ip_lock);
148 	if (!--oi->ip_open_count)
149 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150 
151 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152 				 oi->ip_blkno,
153 				 file->f_path.dentry->d_name.len,
154 				 file->f_path.dentry->d_name.name,
155 				 oi->ip_open_count);
156 	spin_unlock(&oi->ip_lock);
157 
158 	ocfs2_free_file_private(inode, file);
159 
160 	return 0;
161 }
162 
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165 	return ocfs2_init_file_private(inode, file);
166 }
167 
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170 	ocfs2_free_file_private(inode, file);
171 	return 0;
172 }
173 
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175 			   int datasync)
176 {
177 	int err = 0;
178 	journal_t *journal;
179 	struct inode *inode = file->f_mapping->host;
180 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
181 
182 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
183 			      OCFS2_I(inode)->ip_blkno,
184 			      file->f_path.dentry->d_name.len,
185 			      file->f_path.dentry->d_name.name,
186 			      (unsigned long long)datasync);
187 
188 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
189 	if (err)
190 		return err;
191 
192 	/*
193 	 * Probably don't need the i_mutex at all in here, just putting it here
194 	 * to be consistent with how fsync used to be called, someone more
195 	 * familiar with the fs could possibly remove it.
196 	 */
197 	mutex_lock(&inode->i_mutex);
198 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
199 		/*
200 		 * We still have to flush drive's caches to get data to the
201 		 * platter
202 		 */
203 		if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
204 			blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
205 		goto bail;
206 	}
207 
208 	journal = osb->journal->j_journal;
209 	err = jbd2_journal_force_commit(journal);
210 
211 bail:
212 	if (err)
213 		mlog_errno(err);
214 	mutex_unlock(&inode->i_mutex);
215 
216 	return (err < 0) ? -EIO : 0;
217 }
218 
219 int ocfs2_should_update_atime(struct inode *inode,
220 			      struct vfsmount *vfsmnt)
221 {
222 	struct timespec now;
223 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
224 
225 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
226 		return 0;
227 
228 	if ((inode->i_flags & S_NOATIME) ||
229 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
230 		return 0;
231 
232 	/*
233 	 * We can be called with no vfsmnt structure - NFSD will
234 	 * sometimes do this.
235 	 *
236 	 * Note that our action here is different than touch_atime() -
237 	 * if we can't tell whether this is a noatime mount, then we
238 	 * don't know whether to trust the value of s_atime_quantum.
239 	 */
240 	if (vfsmnt == NULL)
241 		return 0;
242 
243 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
244 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
245 		return 0;
246 
247 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
248 		if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
249 		    (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
250 			return 1;
251 
252 		return 0;
253 	}
254 
255 	now = CURRENT_TIME;
256 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
257 		return 0;
258 	else
259 		return 1;
260 }
261 
262 int ocfs2_update_inode_atime(struct inode *inode,
263 			     struct buffer_head *bh)
264 {
265 	int ret;
266 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
267 	handle_t *handle;
268 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
269 
270 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
271 	if (IS_ERR(handle)) {
272 		ret = PTR_ERR(handle);
273 		mlog_errno(ret);
274 		goto out;
275 	}
276 
277 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
278 				      OCFS2_JOURNAL_ACCESS_WRITE);
279 	if (ret) {
280 		mlog_errno(ret);
281 		goto out_commit;
282 	}
283 
284 	/*
285 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
286 	 * have i_mutex to guard against concurrent changes to other
287 	 * inode fields.
288 	 */
289 	inode->i_atime = CURRENT_TIME;
290 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
291 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
292 	ocfs2_journal_dirty(handle, bh);
293 
294 out_commit:
295 	ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
296 out:
297 	return ret;
298 }
299 
300 static int ocfs2_set_inode_size(handle_t *handle,
301 				struct inode *inode,
302 				struct buffer_head *fe_bh,
303 				u64 new_i_size)
304 {
305 	int status;
306 
307 	i_size_write(inode, new_i_size);
308 	inode->i_blocks = ocfs2_inode_sector_count(inode);
309 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
310 
311 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
312 	if (status < 0) {
313 		mlog_errno(status);
314 		goto bail;
315 	}
316 
317 bail:
318 	return status;
319 }
320 
321 int ocfs2_simple_size_update(struct inode *inode,
322 			     struct buffer_head *di_bh,
323 			     u64 new_i_size)
324 {
325 	int ret;
326 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
327 	handle_t *handle = NULL;
328 
329 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
330 	if (IS_ERR(handle)) {
331 		ret = PTR_ERR(handle);
332 		mlog_errno(ret);
333 		goto out;
334 	}
335 
336 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
337 				   new_i_size);
338 	if (ret < 0)
339 		mlog_errno(ret);
340 
341 	ocfs2_commit_trans(osb, handle);
342 out:
343 	return ret;
344 }
345 
346 static int ocfs2_cow_file_pos(struct inode *inode,
347 			      struct buffer_head *fe_bh,
348 			      u64 offset)
349 {
350 	int status;
351 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
352 	unsigned int num_clusters = 0;
353 	unsigned int ext_flags = 0;
354 
355 	/*
356 	 * If the new offset is aligned to the range of the cluster, there is
357 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
358 	 * CoW either.
359 	 */
360 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
361 		return 0;
362 
363 	status = ocfs2_get_clusters(inode, cpos, &phys,
364 				    &num_clusters, &ext_flags);
365 	if (status) {
366 		mlog_errno(status);
367 		goto out;
368 	}
369 
370 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
371 		goto out;
372 
373 	return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1);
374 
375 out:
376 	return status;
377 }
378 
379 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
380 				     struct inode *inode,
381 				     struct buffer_head *fe_bh,
382 				     u64 new_i_size)
383 {
384 	int status;
385 	handle_t *handle;
386 	struct ocfs2_dinode *di;
387 	u64 cluster_bytes;
388 
389 	/*
390 	 * We need to CoW the cluster contains the offset if it is reflinked
391 	 * since we will call ocfs2_zero_range_for_truncate later which will
392 	 * write "0" from offset to the end of the cluster.
393 	 */
394 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
395 	if (status) {
396 		mlog_errno(status);
397 		return status;
398 	}
399 
400 	/* TODO: This needs to actually orphan the inode in this
401 	 * transaction. */
402 
403 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
404 	if (IS_ERR(handle)) {
405 		status = PTR_ERR(handle);
406 		mlog_errno(status);
407 		goto out;
408 	}
409 
410 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
411 					 OCFS2_JOURNAL_ACCESS_WRITE);
412 	if (status < 0) {
413 		mlog_errno(status);
414 		goto out_commit;
415 	}
416 
417 	/*
418 	 * Do this before setting i_size.
419 	 */
420 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
421 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
422 					       cluster_bytes);
423 	if (status) {
424 		mlog_errno(status);
425 		goto out_commit;
426 	}
427 
428 	i_size_write(inode, new_i_size);
429 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
430 
431 	di = (struct ocfs2_dinode *) fe_bh->b_data;
432 	di->i_size = cpu_to_le64(new_i_size);
433 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
434 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
435 
436 	ocfs2_journal_dirty(handle, fe_bh);
437 
438 out_commit:
439 	ocfs2_commit_trans(osb, handle);
440 out:
441 	return status;
442 }
443 
444 static int ocfs2_truncate_file(struct inode *inode,
445 			       struct buffer_head *di_bh,
446 			       u64 new_i_size)
447 {
448 	int status = 0;
449 	struct ocfs2_dinode *fe = NULL;
450 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
451 
452 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
453 	 * already validated it */
454 	fe = (struct ocfs2_dinode *) di_bh->b_data;
455 
456 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457 				  (unsigned long long)le64_to_cpu(fe->i_size),
458 				  (unsigned long long)new_i_size);
459 
460 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461 			"Inode %llu, inode i_size = %lld != di "
462 			"i_size = %llu, i_flags = 0x%x\n",
463 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
464 			i_size_read(inode),
465 			(unsigned long long)le64_to_cpu(fe->i_size),
466 			le32_to_cpu(fe->i_flags));
467 
468 	if (new_i_size > le64_to_cpu(fe->i_size)) {
469 		trace_ocfs2_truncate_file_error(
470 			(unsigned long long)le64_to_cpu(fe->i_size),
471 			(unsigned long long)new_i_size);
472 		status = -EINVAL;
473 		mlog_errno(status);
474 		goto bail;
475 	}
476 
477 	/* lets handle the simple truncate cases before doing any more
478 	 * cluster locking. */
479 	if (new_i_size == le64_to_cpu(fe->i_size))
480 		goto bail;
481 
482 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
483 
484 	ocfs2_resv_discard(&osb->osb_la_resmap,
485 			   &OCFS2_I(inode)->ip_la_data_resv);
486 
487 	/*
488 	 * The inode lock forced other nodes to sync and drop their
489 	 * pages, which (correctly) happens even if we have a truncate
490 	 * without allocation change - ocfs2 cluster sizes can be much
491 	 * greater than page size, so we have to truncate them
492 	 * anyway.
493 	 */
494 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
495 	truncate_inode_pages(inode->i_mapping, new_i_size);
496 
497 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
498 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
499 					       i_size_read(inode), 1);
500 		if (status)
501 			mlog_errno(status);
502 
503 		goto bail_unlock_sem;
504 	}
505 
506 	/* alright, we're going to need to do a full blown alloc size
507 	 * change. Orphan the inode so that recovery can complete the
508 	 * truncate if necessary. This does the task of marking
509 	 * i_size. */
510 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
511 	if (status < 0) {
512 		mlog_errno(status);
513 		goto bail_unlock_sem;
514 	}
515 
516 	status = ocfs2_commit_truncate(osb, inode, di_bh);
517 	if (status < 0) {
518 		mlog_errno(status);
519 		goto bail_unlock_sem;
520 	}
521 
522 	/* TODO: orphan dir cleanup here. */
523 bail_unlock_sem:
524 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
525 
526 bail:
527 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
528 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
529 
530 	return status;
531 }
532 
533 /*
534  * extend file allocation only here.
535  * we'll update all the disk stuff, and oip->alloc_size
536  *
537  * expect stuff to be locked, a transaction started and enough data /
538  * metadata reservations in the contexts.
539  *
540  * Will return -EAGAIN, and a reason if a restart is needed.
541  * If passed in, *reason will always be set, even in error.
542  */
543 int ocfs2_add_inode_data(struct ocfs2_super *osb,
544 			 struct inode *inode,
545 			 u32 *logical_offset,
546 			 u32 clusters_to_add,
547 			 int mark_unwritten,
548 			 struct buffer_head *fe_bh,
549 			 handle_t *handle,
550 			 struct ocfs2_alloc_context *data_ac,
551 			 struct ocfs2_alloc_context *meta_ac,
552 			 enum ocfs2_alloc_restarted *reason_ret)
553 {
554 	int ret;
555 	struct ocfs2_extent_tree et;
556 
557 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
558 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
559 					  clusters_to_add, mark_unwritten,
560 					  data_ac, meta_ac, reason_ret);
561 
562 	return ret;
563 }
564 
565 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
566 				     u32 clusters_to_add, int mark_unwritten)
567 {
568 	int status = 0;
569 	int restart_func = 0;
570 	int credits;
571 	u32 prev_clusters;
572 	struct buffer_head *bh = NULL;
573 	struct ocfs2_dinode *fe = NULL;
574 	handle_t *handle = NULL;
575 	struct ocfs2_alloc_context *data_ac = NULL;
576 	struct ocfs2_alloc_context *meta_ac = NULL;
577 	enum ocfs2_alloc_restarted why;
578 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
579 	struct ocfs2_extent_tree et;
580 	int did_quota = 0;
581 
582 	/*
583 	 * This function only exists for file systems which don't
584 	 * support holes.
585 	 */
586 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
587 
588 	status = ocfs2_read_inode_block(inode, &bh);
589 	if (status < 0) {
590 		mlog_errno(status);
591 		goto leave;
592 	}
593 	fe = (struct ocfs2_dinode *) bh->b_data;
594 
595 restart_all:
596 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
597 
598 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
599 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
600 				       &data_ac, &meta_ac);
601 	if (status) {
602 		mlog_errno(status);
603 		goto leave;
604 	}
605 
606 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list,
607 					    clusters_to_add);
608 	handle = ocfs2_start_trans(osb, credits);
609 	if (IS_ERR(handle)) {
610 		status = PTR_ERR(handle);
611 		handle = NULL;
612 		mlog_errno(status);
613 		goto leave;
614 	}
615 
616 restarted_transaction:
617 	trace_ocfs2_extend_allocation(
618 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
619 		(unsigned long long)i_size_read(inode),
620 		le32_to_cpu(fe->i_clusters), clusters_to_add,
621 		why, restart_func);
622 
623 	status = dquot_alloc_space_nodirty(inode,
624 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
625 	if (status)
626 		goto leave;
627 	did_quota = 1;
628 
629 	/* reserve a write to the file entry early on - that we if we
630 	 * run out of credits in the allocation path, we can still
631 	 * update i_size. */
632 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
633 					 OCFS2_JOURNAL_ACCESS_WRITE);
634 	if (status < 0) {
635 		mlog_errno(status);
636 		goto leave;
637 	}
638 
639 	prev_clusters = OCFS2_I(inode)->ip_clusters;
640 
641 	status = ocfs2_add_inode_data(osb,
642 				      inode,
643 				      &logical_start,
644 				      clusters_to_add,
645 				      mark_unwritten,
646 				      bh,
647 				      handle,
648 				      data_ac,
649 				      meta_ac,
650 				      &why);
651 	if ((status < 0) && (status != -EAGAIN)) {
652 		if (status != -ENOSPC)
653 			mlog_errno(status);
654 		goto leave;
655 	}
656 
657 	ocfs2_journal_dirty(handle, bh);
658 
659 	spin_lock(&OCFS2_I(inode)->ip_lock);
660 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
661 	spin_unlock(&OCFS2_I(inode)->ip_lock);
662 	/* Release unused quota reservation */
663 	dquot_free_space(inode,
664 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
665 	did_quota = 0;
666 
667 	if (why != RESTART_NONE && clusters_to_add) {
668 		if (why == RESTART_META) {
669 			restart_func = 1;
670 			status = 0;
671 		} else {
672 			BUG_ON(why != RESTART_TRANS);
673 
674 			/* TODO: This can be more intelligent. */
675 			credits = ocfs2_calc_extend_credits(osb->sb,
676 							    &fe->id2.i_list,
677 							    clusters_to_add);
678 			status = ocfs2_extend_trans(handle, credits);
679 			if (status < 0) {
680 				/* handle still has to be committed at
681 				 * this point. */
682 				status = -ENOMEM;
683 				mlog_errno(status);
684 				goto leave;
685 			}
686 			goto restarted_transaction;
687 		}
688 	}
689 
690 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
691 	     le32_to_cpu(fe->i_clusters),
692 	     (unsigned long long)le64_to_cpu(fe->i_size),
693 	     OCFS2_I(inode)->ip_clusters,
694 	     (unsigned long long)i_size_read(inode));
695 
696 leave:
697 	if (status < 0 && did_quota)
698 		dquot_free_space(inode,
699 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
700 	if (handle) {
701 		ocfs2_commit_trans(osb, handle);
702 		handle = NULL;
703 	}
704 	if (data_ac) {
705 		ocfs2_free_alloc_context(data_ac);
706 		data_ac = NULL;
707 	}
708 	if (meta_ac) {
709 		ocfs2_free_alloc_context(meta_ac);
710 		meta_ac = NULL;
711 	}
712 	if ((!status) && restart_func) {
713 		restart_func = 0;
714 		goto restart_all;
715 	}
716 	brelse(bh);
717 	bh = NULL;
718 
719 	return status;
720 }
721 
722 /*
723  * While a write will already be ordering the data, a truncate will not.
724  * Thus, we need to explicitly order the zeroed pages.
725  */
726 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
727 {
728 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
729 	handle_t *handle = NULL;
730 	int ret = 0;
731 
732 	if (!ocfs2_should_order_data(inode))
733 		goto out;
734 
735 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
736 	if (IS_ERR(handle)) {
737 		ret = -ENOMEM;
738 		mlog_errno(ret);
739 		goto out;
740 	}
741 
742 	ret = ocfs2_jbd2_file_inode(handle, inode);
743 	if (ret < 0)
744 		mlog_errno(ret);
745 
746 out:
747 	if (ret) {
748 		if (!IS_ERR(handle))
749 			ocfs2_commit_trans(osb, handle);
750 		handle = ERR_PTR(ret);
751 	}
752 	return handle;
753 }
754 
755 /* Some parts of this taken from generic_cont_expand, which turned out
756  * to be too fragile to do exactly what we need without us having to
757  * worry about recursive locking in ->write_begin() and ->write_end(). */
758 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
759 				 u64 abs_to)
760 {
761 	struct address_space *mapping = inode->i_mapping;
762 	struct page *page;
763 	unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
764 	handle_t *handle = NULL;
765 	int ret = 0;
766 	unsigned zero_from, zero_to, block_start, block_end;
767 
768 	BUG_ON(abs_from >= abs_to);
769 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
770 	BUG_ON(abs_from & (inode->i_blkbits - 1));
771 
772 	page = find_or_create_page(mapping, index, GFP_NOFS);
773 	if (!page) {
774 		ret = -ENOMEM;
775 		mlog_errno(ret);
776 		goto out;
777 	}
778 
779 	/* Get the offsets within the page that we want to zero */
780 	zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
781 	zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
782 	if (!zero_to)
783 		zero_to = PAGE_CACHE_SIZE;
784 
785 	trace_ocfs2_write_zero_page(
786 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
787 			(unsigned long long)abs_from,
788 			(unsigned long long)abs_to,
789 			index, zero_from, zero_to);
790 
791 	/* We know that zero_from is block aligned */
792 	for (block_start = zero_from; block_start < zero_to;
793 	     block_start = block_end) {
794 		block_end = block_start + (1 << inode->i_blkbits);
795 
796 		/*
797 		 * block_start is block-aligned.  Bump it by one to force
798 		 * __block_write_begin and block_commit_write to zero the
799 		 * whole block.
800 		 */
801 		ret = __block_write_begin(page, block_start + 1, 0,
802 					  ocfs2_get_block);
803 		if (ret < 0) {
804 			mlog_errno(ret);
805 			goto out_unlock;
806 		}
807 
808 		if (!handle) {
809 			handle = ocfs2_zero_start_ordered_transaction(inode);
810 			if (IS_ERR(handle)) {
811 				ret = PTR_ERR(handle);
812 				handle = NULL;
813 				break;
814 			}
815 		}
816 
817 		/* must not update i_size! */
818 		ret = block_commit_write(page, block_start + 1,
819 					 block_start + 1);
820 		if (ret < 0)
821 			mlog_errno(ret);
822 		else
823 			ret = 0;
824 	}
825 
826 	if (handle)
827 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
828 
829 out_unlock:
830 	unlock_page(page);
831 	page_cache_release(page);
832 out:
833 	return ret;
834 }
835 
836 /*
837  * Find the next range to zero.  We do this in terms of bytes because
838  * that's what ocfs2_zero_extend() wants, and it is dealing with the
839  * pagecache.  We may return multiple extents.
840  *
841  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
842  * needs to be zeroed.  range_start and range_end return the next zeroing
843  * range.  A subsequent call should pass the previous range_end as its
844  * zero_start.  If range_end is 0, there's nothing to do.
845  *
846  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
847  */
848 static int ocfs2_zero_extend_get_range(struct inode *inode,
849 				       struct buffer_head *di_bh,
850 				       u64 zero_start, u64 zero_end,
851 				       u64 *range_start, u64 *range_end)
852 {
853 	int rc = 0, needs_cow = 0;
854 	u32 p_cpos, zero_clusters = 0;
855 	u32 zero_cpos =
856 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
857 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
858 	unsigned int num_clusters = 0;
859 	unsigned int ext_flags = 0;
860 
861 	while (zero_cpos < last_cpos) {
862 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
863 					&num_clusters, &ext_flags);
864 		if (rc) {
865 			mlog_errno(rc);
866 			goto out;
867 		}
868 
869 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
870 			zero_clusters = num_clusters;
871 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
872 				needs_cow = 1;
873 			break;
874 		}
875 
876 		zero_cpos += num_clusters;
877 	}
878 	if (!zero_clusters) {
879 		*range_end = 0;
880 		goto out;
881 	}
882 
883 	while ((zero_cpos + zero_clusters) < last_cpos) {
884 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
885 					&p_cpos, &num_clusters,
886 					&ext_flags);
887 		if (rc) {
888 			mlog_errno(rc);
889 			goto out;
890 		}
891 
892 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
893 			break;
894 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
895 			needs_cow = 1;
896 		zero_clusters += num_clusters;
897 	}
898 	if ((zero_cpos + zero_clusters) > last_cpos)
899 		zero_clusters = last_cpos - zero_cpos;
900 
901 	if (needs_cow) {
902 		rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos,
903 					zero_clusters, UINT_MAX);
904 		if (rc) {
905 			mlog_errno(rc);
906 			goto out;
907 		}
908 	}
909 
910 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
911 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
912 					     zero_cpos + zero_clusters);
913 
914 out:
915 	return rc;
916 }
917 
918 /*
919  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
920  * has made sure that the entire range needs zeroing.
921  */
922 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
923 				   u64 range_end)
924 {
925 	int rc = 0;
926 	u64 next_pos;
927 	u64 zero_pos = range_start;
928 
929 	trace_ocfs2_zero_extend_range(
930 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
931 			(unsigned long long)range_start,
932 			(unsigned long long)range_end);
933 	BUG_ON(range_start >= range_end);
934 
935 	while (zero_pos < range_end) {
936 		next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
937 		if (next_pos > range_end)
938 			next_pos = range_end;
939 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
940 		if (rc < 0) {
941 			mlog_errno(rc);
942 			break;
943 		}
944 		zero_pos = next_pos;
945 
946 		/*
947 		 * Very large extends have the potential to lock up
948 		 * the cpu for extended periods of time.
949 		 */
950 		cond_resched();
951 	}
952 
953 	return rc;
954 }
955 
956 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
957 		      loff_t zero_to_size)
958 {
959 	int ret = 0;
960 	u64 zero_start, range_start = 0, range_end = 0;
961 	struct super_block *sb = inode->i_sb;
962 
963 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
964 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
965 				(unsigned long long)zero_start,
966 				(unsigned long long)i_size_read(inode));
967 	while (zero_start < zero_to_size) {
968 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
969 						  zero_to_size,
970 						  &range_start,
971 						  &range_end);
972 		if (ret) {
973 			mlog_errno(ret);
974 			break;
975 		}
976 		if (!range_end)
977 			break;
978 		/* Trim the ends */
979 		if (range_start < zero_start)
980 			range_start = zero_start;
981 		if (range_end > zero_to_size)
982 			range_end = zero_to_size;
983 
984 		ret = ocfs2_zero_extend_range(inode, range_start,
985 					      range_end);
986 		if (ret) {
987 			mlog_errno(ret);
988 			break;
989 		}
990 		zero_start = range_end;
991 	}
992 
993 	return ret;
994 }
995 
996 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
997 			  u64 new_i_size, u64 zero_to)
998 {
999 	int ret;
1000 	u32 clusters_to_add;
1001 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1002 
1003 	/*
1004 	 * Only quota files call this without a bh, and they can't be
1005 	 * refcounted.
1006 	 */
1007 	BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1008 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1009 
1010 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1011 	if (clusters_to_add < oi->ip_clusters)
1012 		clusters_to_add = 0;
1013 	else
1014 		clusters_to_add -= oi->ip_clusters;
1015 
1016 	if (clusters_to_add) {
1017 		ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1018 						clusters_to_add, 0);
1019 		if (ret) {
1020 			mlog_errno(ret);
1021 			goto out;
1022 		}
1023 	}
1024 
1025 	/*
1026 	 * Call this even if we don't add any clusters to the tree. We
1027 	 * still need to zero the area between the old i_size and the
1028 	 * new i_size.
1029 	 */
1030 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1031 	if (ret < 0)
1032 		mlog_errno(ret);
1033 
1034 out:
1035 	return ret;
1036 }
1037 
1038 static int ocfs2_extend_file(struct inode *inode,
1039 			     struct buffer_head *di_bh,
1040 			     u64 new_i_size)
1041 {
1042 	int ret = 0;
1043 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1044 
1045 	BUG_ON(!di_bh);
1046 
1047 	/* setattr sometimes calls us like this. */
1048 	if (new_i_size == 0)
1049 		goto out;
1050 
1051 	if (i_size_read(inode) == new_i_size)
1052 		goto out;
1053 	BUG_ON(new_i_size < i_size_read(inode));
1054 
1055 	/*
1056 	 * The alloc sem blocks people in read/write from reading our
1057 	 * allocation until we're done changing it. We depend on
1058 	 * i_mutex to block other extend/truncate calls while we're
1059 	 * here.  We even have to hold it for sparse files because there
1060 	 * might be some tail zeroing.
1061 	 */
1062 	down_write(&oi->ip_alloc_sem);
1063 
1064 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1065 		/*
1066 		 * We can optimize small extends by keeping the inodes
1067 		 * inline data.
1068 		 */
1069 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1070 			up_write(&oi->ip_alloc_sem);
1071 			goto out_update_size;
1072 		}
1073 
1074 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1075 		if (ret) {
1076 			up_write(&oi->ip_alloc_sem);
1077 			mlog_errno(ret);
1078 			goto out;
1079 		}
1080 	}
1081 
1082 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1083 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1084 	else
1085 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1086 					    new_i_size);
1087 
1088 	up_write(&oi->ip_alloc_sem);
1089 
1090 	if (ret < 0) {
1091 		mlog_errno(ret);
1092 		goto out;
1093 	}
1094 
1095 out_update_size:
1096 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1097 	if (ret < 0)
1098 		mlog_errno(ret);
1099 
1100 out:
1101 	return ret;
1102 }
1103 
1104 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1105 {
1106 	int status = 0, size_change;
1107 	struct inode *inode = dentry->d_inode;
1108 	struct super_block *sb = inode->i_sb;
1109 	struct ocfs2_super *osb = OCFS2_SB(sb);
1110 	struct buffer_head *bh = NULL;
1111 	handle_t *handle = NULL;
1112 	struct dquot *transfer_to[MAXQUOTAS] = { };
1113 	int qtype;
1114 
1115 	trace_ocfs2_setattr(inode, dentry,
1116 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1117 			    dentry->d_name.len, dentry->d_name.name,
1118 			    attr->ia_valid, attr->ia_mode,
1119 			    attr->ia_uid, attr->ia_gid);
1120 
1121 	/* ensuring we don't even attempt to truncate a symlink */
1122 	if (S_ISLNK(inode->i_mode))
1123 		attr->ia_valid &= ~ATTR_SIZE;
1124 
1125 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1126 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1127 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1128 		return 0;
1129 
1130 	status = inode_change_ok(inode, attr);
1131 	if (status)
1132 		return status;
1133 
1134 	if (is_quota_modification(inode, attr))
1135 		dquot_initialize(inode);
1136 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1137 	if (size_change) {
1138 		status = ocfs2_rw_lock(inode, 1);
1139 		if (status < 0) {
1140 			mlog_errno(status);
1141 			goto bail;
1142 		}
1143 	}
1144 
1145 	status = ocfs2_inode_lock(inode, &bh, 1);
1146 	if (status < 0) {
1147 		if (status != -ENOENT)
1148 			mlog_errno(status);
1149 		goto bail_unlock_rw;
1150 	}
1151 
1152 	if (size_change && attr->ia_size != i_size_read(inode)) {
1153 		status = inode_newsize_ok(inode, attr->ia_size);
1154 		if (status)
1155 			goto bail_unlock;
1156 
1157 		inode_dio_wait(inode);
1158 
1159 		if (i_size_read(inode) > attr->ia_size) {
1160 			if (ocfs2_should_order_data(inode)) {
1161 				status = ocfs2_begin_ordered_truncate(inode,
1162 								      attr->ia_size);
1163 				if (status)
1164 					goto bail_unlock;
1165 			}
1166 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1167 		} else
1168 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1169 		if (status < 0) {
1170 			if (status != -ENOSPC)
1171 				mlog_errno(status);
1172 			status = -ENOSPC;
1173 			goto bail_unlock;
1174 		}
1175 	}
1176 
1177 	if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
1178 	    (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
1179 		/*
1180 		 * Gather pointers to quota structures so that allocation /
1181 		 * freeing of quota structures happens here and not inside
1182 		 * dquot_transfer() where we have problems with lock ordering
1183 		 */
1184 		if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid
1185 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1186 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1187 			transfer_to[USRQUOTA] = dqget(sb, attr->ia_uid,
1188 						      USRQUOTA);
1189 			if (!transfer_to[USRQUOTA]) {
1190 				status = -ESRCH;
1191 				goto bail_unlock;
1192 			}
1193 		}
1194 		if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid
1195 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1196 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1197 			transfer_to[GRPQUOTA] = dqget(sb, attr->ia_gid,
1198 						      GRPQUOTA);
1199 			if (!transfer_to[GRPQUOTA]) {
1200 				status = -ESRCH;
1201 				goto bail_unlock;
1202 			}
1203 		}
1204 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1205 					   2 * ocfs2_quota_trans_credits(sb));
1206 		if (IS_ERR(handle)) {
1207 			status = PTR_ERR(handle);
1208 			mlog_errno(status);
1209 			goto bail_unlock;
1210 		}
1211 		status = __dquot_transfer(inode, transfer_to);
1212 		if (status < 0)
1213 			goto bail_commit;
1214 	} else {
1215 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1216 		if (IS_ERR(handle)) {
1217 			status = PTR_ERR(handle);
1218 			mlog_errno(status);
1219 			goto bail_unlock;
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * This will intentionally not wind up calling truncate_setsize(),
1225 	 * since all the work for a size change has been done above.
1226 	 * Otherwise, we could get into problems with truncate as
1227 	 * ip_alloc_sem is used there to protect against i_size
1228 	 * changes.
1229 	 *
1230 	 * XXX: this means the conditional below can probably be removed.
1231 	 */
1232 	if ((attr->ia_valid & ATTR_SIZE) &&
1233 	    attr->ia_size != i_size_read(inode)) {
1234 		status = vmtruncate(inode, attr->ia_size);
1235 		if (status) {
1236 			mlog_errno(status);
1237 			goto bail_commit;
1238 		}
1239 	}
1240 
1241 	setattr_copy(inode, attr);
1242 	mark_inode_dirty(inode);
1243 
1244 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1245 	if (status < 0)
1246 		mlog_errno(status);
1247 
1248 bail_commit:
1249 	ocfs2_commit_trans(osb, handle);
1250 bail_unlock:
1251 	ocfs2_inode_unlock(inode, 1);
1252 bail_unlock_rw:
1253 	if (size_change)
1254 		ocfs2_rw_unlock(inode, 1);
1255 bail:
1256 	brelse(bh);
1257 
1258 	/* Release quota pointers in case we acquired them */
1259 	for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1260 		dqput(transfer_to[qtype]);
1261 
1262 	if (!status && attr->ia_valid & ATTR_MODE) {
1263 		status = ocfs2_acl_chmod(inode);
1264 		if (status < 0)
1265 			mlog_errno(status);
1266 	}
1267 
1268 	return status;
1269 }
1270 
1271 int ocfs2_getattr(struct vfsmount *mnt,
1272 		  struct dentry *dentry,
1273 		  struct kstat *stat)
1274 {
1275 	struct inode *inode = dentry->d_inode;
1276 	struct super_block *sb = dentry->d_inode->i_sb;
1277 	struct ocfs2_super *osb = sb->s_fs_info;
1278 	int err;
1279 
1280 	err = ocfs2_inode_revalidate(dentry);
1281 	if (err) {
1282 		if (err != -ENOENT)
1283 			mlog_errno(err);
1284 		goto bail;
1285 	}
1286 
1287 	generic_fillattr(inode, stat);
1288 
1289 	/* We set the blksize from the cluster size for performance */
1290 	stat->blksize = osb->s_clustersize;
1291 
1292 bail:
1293 	return err;
1294 }
1295 
1296 int ocfs2_permission(struct inode *inode, int mask)
1297 {
1298 	int ret;
1299 
1300 	if (mask & MAY_NOT_BLOCK)
1301 		return -ECHILD;
1302 
1303 	ret = ocfs2_inode_lock(inode, NULL, 0);
1304 	if (ret) {
1305 		if (ret != -ENOENT)
1306 			mlog_errno(ret);
1307 		goto out;
1308 	}
1309 
1310 	ret = generic_permission(inode, mask);
1311 
1312 	ocfs2_inode_unlock(inode, 0);
1313 out:
1314 	return ret;
1315 }
1316 
1317 static int __ocfs2_write_remove_suid(struct inode *inode,
1318 				     struct buffer_head *bh)
1319 {
1320 	int ret;
1321 	handle_t *handle;
1322 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1323 	struct ocfs2_dinode *di;
1324 
1325 	trace_ocfs2_write_remove_suid(
1326 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1327 			inode->i_mode);
1328 
1329 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1330 	if (IS_ERR(handle)) {
1331 		ret = PTR_ERR(handle);
1332 		mlog_errno(ret);
1333 		goto out;
1334 	}
1335 
1336 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1337 				      OCFS2_JOURNAL_ACCESS_WRITE);
1338 	if (ret < 0) {
1339 		mlog_errno(ret);
1340 		goto out_trans;
1341 	}
1342 
1343 	inode->i_mode &= ~S_ISUID;
1344 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1345 		inode->i_mode &= ~S_ISGID;
1346 
1347 	di = (struct ocfs2_dinode *) bh->b_data;
1348 	di->i_mode = cpu_to_le16(inode->i_mode);
1349 
1350 	ocfs2_journal_dirty(handle, bh);
1351 
1352 out_trans:
1353 	ocfs2_commit_trans(osb, handle);
1354 out:
1355 	return ret;
1356 }
1357 
1358 /*
1359  * Will look for holes and unwritten extents in the range starting at
1360  * pos for count bytes (inclusive).
1361  */
1362 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1363 				       size_t count)
1364 {
1365 	int ret = 0;
1366 	unsigned int extent_flags;
1367 	u32 cpos, clusters, extent_len, phys_cpos;
1368 	struct super_block *sb = inode->i_sb;
1369 
1370 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1371 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1372 
1373 	while (clusters) {
1374 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1375 					 &extent_flags);
1376 		if (ret < 0) {
1377 			mlog_errno(ret);
1378 			goto out;
1379 		}
1380 
1381 		if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1382 			ret = 1;
1383 			break;
1384 		}
1385 
1386 		if (extent_len > clusters)
1387 			extent_len = clusters;
1388 
1389 		clusters -= extent_len;
1390 		cpos += extent_len;
1391 	}
1392 out:
1393 	return ret;
1394 }
1395 
1396 static int ocfs2_write_remove_suid(struct inode *inode)
1397 {
1398 	int ret;
1399 	struct buffer_head *bh = NULL;
1400 
1401 	ret = ocfs2_read_inode_block(inode, &bh);
1402 	if (ret < 0) {
1403 		mlog_errno(ret);
1404 		goto out;
1405 	}
1406 
1407 	ret =  __ocfs2_write_remove_suid(inode, bh);
1408 out:
1409 	brelse(bh);
1410 	return ret;
1411 }
1412 
1413 /*
1414  * Allocate enough extents to cover the region starting at byte offset
1415  * start for len bytes. Existing extents are skipped, any extents
1416  * added are marked as "unwritten".
1417  */
1418 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1419 					    u64 start, u64 len)
1420 {
1421 	int ret;
1422 	u32 cpos, phys_cpos, clusters, alloc_size;
1423 	u64 end = start + len;
1424 	struct buffer_head *di_bh = NULL;
1425 
1426 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1427 		ret = ocfs2_read_inode_block(inode, &di_bh);
1428 		if (ret) {
1429 			mlog_errno(ret);
1430 			goto out;
1431 		}
1432 
1433 		/*
1434 		 * Nothing to do if the requested reservation range
1435 		 * fits within the inode.
1436 		 */
1437 		if (ocfs2_size_fits_inline_data(di_bh, end))
1438 			goto out;
1439 
1440 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1441 		if (ret) {
1442 			mlog_errno(ret);
1443 			goto out;
1444 		}
1445 	}
1446 
1447 	/*
1448 	 * We consider both start and len to be inclusive.
1449 	 */
1450 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1451 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1452 	clusters -= cpos;
1453 
1454 	while (clusters) {
1455 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1456 					 &alloc_size, NULL);
1457 		if (ret) {
1458 			mlog_errno(ret);
1459 			goto out;
1460 		}
1461 
1462 		/*
1463 		 * Hole or existing extent len can be arbitrary, so
1464 		 * cap it to our own allocation request.
1465 		 */
1466 		if (alloc_size > clusters)
1467 			alloc_size = clusters;
1468 
1469 		if (phys_cpos) {
1470 			/*
1471 			 * We already have an allocation at this
1472 			 * region so we can safely skip it.
1473 			 */
1474 			goto next;
1475 		}
1476 
1477 		ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1478 		if (ret) {
1479 			if (ret != -ENOSPC)
1480 				mlog_errno(ret);
1481 			goto out;
1482 		}
1483 
1484 next:
1485 		cpos += alloc_size;
1486 		clusters -= alloc_size;
1487 	}
1488 
1489 	ret = 0;
1490 out:
1491 
1492 	brelse(di_bh);
1493 	return ret;
1494 }
1495 
1496 /*
1497  * Truncate a byte range, avoiding pages within partial clusters. This
1498  * preserves those pages for the zeroing code to write to.
1499  */
1500 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1501 					 u64 byte_len)
1502 {
1503 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1504 	loff_t start, end;
1505 	struct address_space *mapping = inode->i_mapping;
1506 
1507 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1508 	end = byte_start + byte_len;
1509 	end = end & ~(osb->s_clustersize - 1);
1510 
1511 	if (start < end) {
1512 		unmap_mapping_range(mapping, start, end - start, 0);
1513 		truncate_inode_pages_range(mapping, start, end - 1);
1514 	}
1515 }
1516 
1517 static int ocfs2_zero_partial_clusters(struct inode *inode,
1518 				       u64 start, u64 len)
1519 {
1520 	int ret = 0;
1521 	u64 tmpend, end = start + len;
1522 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1523 	unsigned int csize = osb->s_clustersize;
1524 	handle_t *handle;
1525 
1526 	/*
1527 	 * The "start" and "end" values are NOT necessarily part of
1528 	 * the range whose allocation is being deleted. Rather, this
1529 	 * is what the user passed in with the request. We must zero
1530 	 * partial clusters here. There's no need to worry about
1531 	 * physical allocation - the zeroing code knows to skip holes.
1532 	 */
1533 	trace_ocfs2_zero_partial_clusters(
1534 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1535 		(unsigned long long)start, (unsigned long long)end);
1536 
1537 	/*
1538 	 * If both edges are on a cluster boundary then there's no
1539 	 * zeroing required as the region is part of the allocation to
1540 	 * be truncated.
1541 	 */
1542 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1543 		goto out;
1544 
1545 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1546 	if (IS_ERR(handle)) {
1547 		ret = PTR_ERR(handle);
1548 		mlog_errno(ret);
1549 		goto out;
1550 	}
1551 
1552 	/*
1553 	 * We want to get the byte offset of the end of the 1st cluster.
1554 	 */
1555 	tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1556 	if (tmpend > end)
1557 		tmpend = end;
1558 
1559 	trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1560 						 (unsigned long long)tmpend);
1561 
1562 	ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1563 	if (ret)
1564 		mlog_errno(ret);
1565 
1566 	if (tmpend < end) {
1567 		/*
1568 		 * This may make start and end equal, but the zeroing
1569 		 * code will skip any work in that case so there's no
1570 		 * need to catch it up here.
1571 		 */
1572 		start = end & ~(osb->s_clustersize - 1);
1573 
1574 		trace_ocfs2_zero_partial_clusters_range2(
1575 			(unsigned long long)start, (unsigned long long)end);
1576 
1577 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1578 		if (ret)
1579 			mlog_errno(ret);
1580 	}
1581 
1582 	ocfs2_commit_trans(osb, handle);
1583 out:
1584 	return ret;
1585 }
1586 
1587 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1588 {
1589 	int i;
1590 	struct ocfs2_extent_rec *rec = NULL;
1591 
1592 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1593 
1594 		rec = &el->l_recs[i];
1595 
1596 		if (le32_to_cpu(rec->e_cpos) < pos)
1597 			break;
1598 	}
1599 
1600 	return i;
1601 }
1602 
1603 /*
1604  * Helper to calculate the punching pos and length in one run, we handle the
1605  * following three cases in order:
1606  *
1607  * - remove the entire record
1608  * - remove a partial record
1609  * - no record needs to be removed (hole-punching completed)
1610 */
1611 static void ocfs2_calc_trunc_pos(struct inode *inode,
1612 				 struct ocfs2_extent_list *el,
1613 				 struct ocfs2_extent_rec *rec,
1614 				 u32 trunc_start, u32 *trunc_cpos,
1615 				 u32 *trunc_len, u32 *trunc_end,
1616 				 u64 *blkno, int *done)
1617 {
1618 	int ret = 0;
1619 	u32 coff, range;
1620 
1621 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1622 
1623 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1624 		/*
1625 		 * remove an entire extent record.
1626 		 */
1627 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1628 		/*
1629 		 * Skip holes if any.
1630 		 */
1631 		if (range < *trunc_end)
1632 			*trunc_end = range;
1633 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1634 		*blkno = le64_to_cpu(rec->e_blkno);
1635 		*trunc_end = le32_to_cpu(rec->e_cpos);
1636 	} else if (range > trunc_start) {
1637 		/*
1638 		 * remove a partial extent record, which means we're
1639 		 * removing the last extent record.
1640 		 */
1641 		*trunc_cpos = trunc_start;
1642 		/*
1643 		 * skip hole if any.
1644 		 */
1645 		if (range < *trunc_end)
1646 			*trunc_end = range;
1647 		*trunc_len = *trunc_end - trunc_start;
1648 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1649 		*blkno = le64_to_cpu(rec->e_blkno) +
1650 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1651 		*trunc_end = trunc_start;
1652 	} else {
1653 		/*
1654 		 * It may have two following possibilities:
1655 		 *
1656 		 * - last record has been removed
1657 		 * - trunc_start was within a hole
1658 		 *
1659 		 * both two cases mean the completion of hole punching.
1660 		 */
1661 		ret = 1;
1662 	}
1663 
1664 	*done = ret;
1665 }
1666 
1667 static int ocfs2_remove_inode_range(struct inode *inode,
1668 				    struct buffer_head *di_bh, u64 byte_start,
1669 				    u64 byte_len)
1670 {
1671 	int ret = 0, flags = 0, done = 0, i;
1672 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1673 	u32 cluster_in_el;
1674 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1675 	struct ocfs2_cached_dealloc_ctxt dealloc;
1676 	struct address_space *mapping = inode->i_mapping;
1677 	struct ocfs2_extent_tree et;
1678 	struct ocfs2_path *path = NULL;
1679 	struct ocfs2_extent_list *el = NULL;
1680 	struct ocfs2_extent_rec *rec = NULL;
1681 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1682 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1683 
1684 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1685 	ocfs2_init_dealloc_ctxt(&dealloc);
1686 
1687 	trace_ocfs2_remove_inode_range(
1688 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1689 			(unsigned long long)byte_start,
1690 			(unsigned long long)byte_len);
1691 
1692 	if (byte_len == 0)
1693 		return 0;
1694 
1695 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1696 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1697 					    byte_start + byte_len, 0);
1698 		if (ret) {
1699 			mlog_errno(ret);
1700 			goto out;
1701 		}
1702 		/*
1703 		 * There's no need to get fancy with the page cache
1704 		 * truncate of an inline-data inode. We're talking
1705 		 * about less than a page here, which will be cached
1706 		 * in the dinode buffer anyway.
1707 		 */
1708 		unmap_mapping_range(mapping, 0, 0, 0);
1709 		truncate_inode_pages(mapping, 0);
1710 		goto out;
1711 	}
1712 
1713 	/*
1714 	 * For reflinks, we may need to CoW 2 clusters which might be
1715 	 * partially zero'd later, if hole's start and end offset were
1716 	 * within one cluster(means is not exactly aligned to clustersize).
1717 	 */
1718 
1719 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1720 
1721 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1722 		if (ret) {
1723 			mlog_errno(ret);
1724 			goto out;
1725 		}
1726 
1727 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1728 		if (ret) {
1729 			mlog_errno(ret);
1730 			goto out;
1731 		}
1732 	}
1733 
1734 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1735 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1736 	cluster_in_el = trunc_end;
1737 
1738 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1739 	if (ret) {
1740 		mlog_errno(ret);
1741 		goto out;
1742 	}
1743 
1744 	path = ocfs2_new_path_from_et(&et);
1745 	if (!path) {
1746 		ret = -ENOMEM;
1747 		mlog_errno(ret);
1748 		goto out;
1749 	}
1750 
1751 	while (trunc_end > trunc_start) {
1752 
1753 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1754 				      cluster_in_el);
1755 		if (ret) {
1756 			mlog_errno(ret);
1757 			goto out;
1758 		}
1759 
1760 		el = path_leaf_el(path);
1761 
1762 		i = ocfs2_find_rec(el, trunc_end);
1763 		/*
1764 		 * Need to go to previous extent block.
1765 		 */
1766 		if (i < 0) {
1767 			if (path->p_tree_depth == 0)
1768 				break;
1769 
1770 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1771 							    path,
1772 							    &cluster_in_el);
1773 			if (ret) {
1774 				mlog_errno(ret);
1775 				goto out;
1776 			}
1777 
1778 			/*
1779 			 * We've reached the leftmost extent block,
1780 			 * it's safe to leave.
1781 			 */
1782 			if (cluster_in_el == 0)
1783 				break;
1784 
1785 			/*
1786 			 * The 'pos' searched for previous extent block is
1787 			 * always one cluster less than actual trunc_end.
1788 			 */
1789 			trunc_end = cluster_in_el + 1;
1790 
1791 			ocfs2_reinit_path(path, 1);
1792 
1793 			continue;
1794 
1795 		} else
1796 			rec = &el->l_recs[i];
1797 
1798 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1799 				     &trunc_len, &trunc_end, &blkno, &done);
1800 		if (done)
1801 			break;
1802 
1803 		flags = rec->e_flags;
1804 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1805 
1806 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1807 					       phys_cpos, trunc_len, flags,
1808 					       &dealloc, refcount_loc);
1809 		if (ret < 0) {
1810 			mlog_errno(ret);
1811 			goto out;
1812 		}
1813 
1814 		cluster_in_el = trunc_end;
1815 
1816 		ocfs2_reinit_path(path, 1);
1817 	}
1818 
1819 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1820 
1821 out:
1822 	ocfs2_schedule_truncate_log_flush(osb, 1);
1823 	ocfs2_run_deallocs(osb, &dealloc);
1824 
1825 	return ret;
1826 }
1827 
1828 /*
1829  * Parts of this function taken from xfs_change_file_space()
1830  */
1831 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1832 				     loff_t f_pos, unsigned int cmd,
1833 				     struct ocfs2_space_resv *sr,
1834 				     int change_size)
1835 {
1836 	int ret;
1837 	s64 llen;
1838 	loff_t size;
1839 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1840 	struct buffer_head *di_bh = NULL;
1841 	handle_t *handle;
1842 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1843 
1844 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1845 		return -EROFS;
1846 
1847 	mutex_lock(&inode->i_mutex);
1848 
1849 	/*
1850 	 * This prevents concurrent writes on other nodes
1851 	 */
1852 	ret = ocfs2_rw_lock(inode, 1);
1853 	if (ret) {
1854 		mlog_errno(ret);
1855 		goto out;
1856 	}
1857 
1858 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1859 	if (ret) {
1860 		mlog_errno(ret);
1861 		goto out_rw_unlock;
1862 	}
1863 
1864 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1865 		ret = -EPERM;
1866 		goto out_inode_unlock;
1867 	}
1868 
1869 	switch (sr->l_whence) {
1870 	case 0: /*SEEK_SET*/
1871 		break;
1872 	case 1: /*SEEK_CUR*/
1873 		sr->l_start += f_pos;
1874 		break;
1875 	case 2: /*SEEK_END*/
1876 		sr->l_start += i_size_read(inode);
1877 		break;
1878 	default:
1879 		ret = -EINVAL;
1880 		goto out_inode_unlock;
1881 	}
1882 	sr->l_whence = 0;
1883 
1884 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1885 
1886 	if (sr->l_start < 0
1887 	    || sr->l_start > max_off
1888 	    || (sr->l_start + llen) < 0
1889 	    || (sr->l_start + llen) > max_off) {
1890 		ret = -EINVAL;
1891 		goto out_inode_unlock;
1892 	}
1893 	size = sr->l_start + sr->l_len;
1894 
1895 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1896 		if (sr->l_len <= 0) {
1897 			ret = -EINVAL;
1898 			goto out_inode_unlock;
1899 		}
1900 	}
1901 
1902 	if (file && should_remove_suid(file->f_path.dentry)) {
1903 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1904 		if (ret) {
1905 			mlog_errno(ret);
1906 			goto out_inode_unlock;
1907 		}
1908 	}
1909 
1910 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1911 	switch (cmd) {
1912 	case OCFS2_IOC_RESVSP:
1913 	case OCFS2_IOC_RESVSP64:
1914 		/*
1915 		 * This takes unsigned offsets, but the signed ones we
1916 		 * pass have been checked against overflow above.
1917 		 */
1918 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1919 						       sr->l_len);
1920 		break;
1921 	case OCFS2_IOC_UNRESVSP:
1922 	case OCFS2_IOC_UNRESVSP64:
1923 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1924 					       sr->l_len);
1925 		break;
1926 	default:
1927 		ret = -EINVAL;
1928 	}
1929 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1930 	if (ret) {
1931 		mlog_errno(ret);
1932 		goto out_inode_unlock;
1933 	}
1934 
1935 	/*
1936 	 * We update c/mtime for these changes
1937 	 */
1938 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1939 	if (IS_ERR(handle)) {
1940 		ret = PTR_ERR(handle);
1941 		mlog_errno(ret);
1942 		goto out_inode_unlock;
1943 	}
1944 
1945 	if (change_size && i_size_read(inode) < size)
1946 		i_size_write(inode, size);
1947 
1948 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1949 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1950 	if (ret < 0)
1951 		mlog_errno(ret);
1952 
1953 	if (file && (file->f_flags & O_SYNC))
1954 		handle->h_sync = 1;
1955 
1956 	ocfs2_commit_trans(osb, handle);
1957 
1958 out_inode_unlock:
1959 	brelse(di_bh);
1960 	ocfs2_inode_unlock(inode, 1);
1961 out_rw_unlock:
1962 	ocfs2_rw_unlock(inode, 1);
1963 
1964 out:
1965 	mutex_unlock(&inode->i_mutex);
1966 	return ret;
1967 }
1968 
1969 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1970 			    struct ocfs2_space_resv *sr)
1971 {
1972 	struct inode *inode = file->f_path.dentry->d_inode;
1973 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1974 	int ret;
1975 
1976 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1977 	    !ocfs2_writes_unwritten_extents(osb))
1978 		return -ENOTTY;
1979 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1980 		 !ocfs2_sparse_alloc(osb))
1981 		return -ENOTTY;
1982 
1983 	if (!S_ISREG(inode->i_mode))
1984 		return -EINVAL;
1985 
1986 	if (!(file->f_mode & FMODE_WRITE))
1987 		return -EBADF;
1988 
1989 	ret = mnt_want_write_file(file);
1990 	if (ret)
1991 		return ret;
1992 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1993 	mnt_drop_write_file(file);
1994 	return ret;
1995 }
1996 
1997 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1998 			    loff_t len)
1999 {
2000 	struct inode *inode = file->f_path.dentry->d_inode;
2001 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2002 	struct ocfs2_space_resv sr;
2003 	int change_size = 1;
2004 	int cmd = OCFS2_IOC_RESVSP64;
2005 
2006 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2007 		return -EOPNOTSUPP;
2008 	if (!ocfs2_writes_unwritten_extents(osb))
2009 		return -EOPNOTSUPP;
2010 
2011 	if (mode & FALLOC_FL_KEEP_SIZE)
2012 		change_size = 0;
2013 
2014 	if (mode & FALLOC_FL_PUNCH_HOLE)
2015 		cmd = OCFS2_IOC_UNRESVSP64;
2016 
2017 	sr.l_whence = 0;
2018 	sr.l_start = (s64)offset;
2019 	sr.l_len = (s64)len;
2020 
2021 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2022 					 change_size);
2023 }
2024 
2025 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2026 				   size_t count)
2027 {
2028 	int ret = 0;
2029 	unsigned int extent_flags;
2030 	u32 cpos, clusters, extent_len, phys_cpos;
2031 	struct super_block *sb = inode->i_sb;
2032 
2033 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2034 	    !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2035 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2036 		return 0;
2037 
2038 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2039 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2040 
2041 	while (clusters) {
2042 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2043 					 &extent_flags);
2044 		if (ret < 0) {
2045 			mlog_errno(ret);
2046 			goto out;
2047 		}
2048 
2049 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2050 			ret = 1;
2051 			break;
2052 		}
2053 
2054 		if (extent_len > clusters)
2055 			extent_len = clusters;
2056 
2057 		clusters -= extent_len;
2058 		cpos += extent_len;
2059 	}
2060 out:
2061 	return ret;
2062 }
2063 
2064 static void ocfs2_aiodio_wait(struct inode *inode)
2065 {
2066 	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
2067 
2068 	wait_event(*wq, (atomic_read(&OCFS2_I(inode)->ip_unaligned_aio) == 0));
2069 }
2070 
2071 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2072 {
2073 	int blockmask = inode->i_sb->s_blocksize - 1;
2074 	loff_t final_size = pos + count;
2075 
2076 	if ((pos & blockmask) || (final_size & blockmask))
2077 		return 1;
2078 	return 0;
2079 }
2080 
2081 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2082 					    struct file *file,
2083 					    loff_t pos, size_t count,
2084 					    int *meta_level)
2085 {
2086 	int ret;
2087 	struct buffer_head *di_bh = NULL;
2088 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2089 	u32 clusters =
2090 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2091 
2092 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2093 	if (ret) {
2094 		mlog_errno(ret);
2095 		goto out;
2096 	}
2097 
2098 	*meta_level = 1;
2099 
2100 	ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX);
2101 	if (ret)
2102 		mlog_errno(ret);
2103 out:
2104 	brelse(di_bh);
2105 	return ret;
2106 }
2107 
2108 static int ocfs2_prepare_inode_for_write(struct file *file,
2109 					 loff_t *ppos,
2110 					 size_t count,
2111 					 int appending,
2112 					 int *direct_io,
2113 					 int *has_refcount)
2114 {
2115 	int ret = 0, meta_level = 0;
2116 	struct dentry *dentry = file->f_path.dentry;
2117 	struct inode *inode = dentry->d_inode;
2118 	loff_t saved_pos = 0, end;
2119 
2120 	/*
2121 	 * We start with a read level meta lock and only jump to an ex
2122 	 * if we need to make modifications here.
2123 	 */
2124 	for(;;) {
2125 		ret = ocfs2_inode_lock(inode, NULL, meta_level);
2126 		if (ret < 0) {
2127 			meta_level = -1;
2128 			mlog_errno(ret);
2129 			goto out;
2130 		}
2131 
2132 		/* Clear suid / sgid if necessary. We do this here
2133 		 * instead of later in the write path because
2134 		 * remove_suid() calls ->setattr without any hint that
2135 		 * we may have already done our cluster locking. Since
2136 		 * ocfs2_setattr() *must* take cluster locks to
2137 		 * proceed, this will lead us to recursively lock the
2138 		 * inode. There's also the dinode i_size state which
2139 		 * can be lost via setattr during extending writes (we
2140 		 * set inode->i_size at the end of a write. */
2141 		if (should_remove_suid(dentry)) {
2142 			if (meta_level == 0) {
2143 				ocfs2_inode_unlock(inode, meta_level);
2144 				meta_level = 1;
2145 				continue;
2146 			}
2147 
2148 			ret = ocfs2_write_remove_suid(inode);
2149 			if (ret < 0) {
2150 				mlog_errno(ret);
2151 				goto out_unlock;
2152 			}
2153 		}
2154 
2155 		/* work on a copy of ppos until we're sure that we won't have
2156 		 * to recalculate it due to relocking. */
2157 		if (appending)
2158 			saved_pos = i_size_read(inode);
2159 		else
2160 			saved_pos = *ppos;
2161 
2162 		end = saved_pos + count;
2163 
2164 		ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2165 		if (ret == 1) {
2166 			ocfs2_inode_unlock(inode, meta_level);
2167 			meta_level = -1;
2168 
2169 			ret = ocfs2_prepare_inode_for_refcount(inode,
2170 							       file,
2171 							       saved_pos,
2172 							       count,
2173 							       &meta_level);
2174 			if (has_refcount)
2175 				*has_refcount = 1;
2176 			if (direct_io)
2177 				*direct_io = 0;
2178 		}
2179 
2180 		if (ret < 0) {
2181 			mlog_errno(ret);
2182 			goto out_unlock;
2183 		}
2184 
2185 		/*
2186 		 * Skip the O_DIRECT checks if we don't need
2187 		 * them.
2188 		 */
2189 		if (!direct_io || !(*direct_io))
2190 			break;
2191 
2192 		/*
2193 		 * There's no sane way to do direct writes to an inode
2194 		 * with inline data.
2195 		 */
2196 		if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2197 			*direct_io = 0;
2198 			break;
2199 		}
2200 
2201 		/*
2202 		 * Allowing concurrent direct writes means
2203 		 * i_size changes wouldn't be synchronized, so
2204 		 * one node could wind up truncating another
2205 		 * nodes writes.
2206 		 */
2207 		if (end > i_size_read(inode)) {
2208 			*direct_io = 0;
2209 			break;
2210 		}
2211 
2212 		/*
2213 		 * We don't fill holes during direct io, so
2214 		 * check for them here. If any are found, the
2215 		 * caller will have to retake some cluster
2216 		 * locks and initiate the io as buffered.
2217 		 */
2218 		ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2219 		if (ret == 1) {
2220 			*direct_io = 0;
2221 			ret = 0;
2222 		} else if (ret < 0)
2223 			mlog_errno(ret);
2224 		break;
2225 	}
2226 
2227 	if (appending)
2228 		*ppos = saved_pos;
2229 
2230 out_unlock:
2231 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2232 					    saved_pos, appending, count,
2233 					    direct_io, has_refcount);
2234 
2235 	if (meta_level >= 0)
2236 		ocfs2_inode_unlock(inode, meta_level);
2237 
2238 out:
2239 	return ret;
2240 }
2241 
2242 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2243 				    const struct iovec *iov,
2244 				    unsigned long nr_segs,
2245 				    loff_t pos)
2246 {
2247 	int ret, direct_io, appending, rw_level, have_alloc_sem  = 0;
2248 	int can_do_direct, has_refcount = 0;
2249 	ssize_t written = 0;
2250 	size_t ocount;		/* original count */
2251 	size_t count;		/* after file limit checks */
2252 	loff_t old_size, *ppos = &iocb->ki_pos;
2253 	u32 old_clusters;
2254 	struct file *file = iocb->ki_filp;
2255 	struct inode *inode = file->f_path.dentry->d_inode;
2256 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2257 	int full_coherency = !(osb->s_mount_opt &
2258 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2259 	int unaligned_dio = 0;
2260 
2261 	trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2262 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2263 		file->f_path.dentry->d_name.len,
2264 		file->f_path.dentry->d_name.name,
2265 		(unsigned int)nr_segs);
2266 
2267 	if (iocb->ki_left == 0)
2268 		return 0;
2269 
2270 	sb_start_write(inode->i_sb);
2271 
2272 	appending = file->f_flags & O_APPEND ? 1 : 0;
2273 	direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2274 
2275 	mutex_lock(&inode->i_mutex);
2276 
2277 	ocfs2_iocb_clear_sem_locked(iocb);
2278 
2279 relock:
2280 	/* to match setattr's i_mutex -> rw_lock ordering */
2281 	if (direct_io) {
2282 		have_alloc_sem = 1;
2283 		/* communicate with ocfs2_dio_end_io */
2284 		ocfs2_iocb_set_sem_locked(iocb);
2285 	}
2286 
2287 	/*
2288 	 * Concurrent O_DIRECT writes are allowed with
2289 	 * mount_option "coherency=buffered".
2290 	 */
2291 	rw_level = (!direct_io || full_coherency);
2292 
2293 	ret = ocfs2_rw_lock(inode, rw_level);
2294 	if (ret < 0) {
2295 		mlog_errno(ret);
2296 		goto out_sems;
2297 	}
2298 
2299 	/*
2300 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2301 	 * inode_lock to guarantee coherency.
2302 	 */
2303 	if (direct_io && full_coherency) {
2304 		/*
2305 		 * We need to take and drop the inode lock to force
2306 		 * other nodes to drop their caches.  Buffered I/O
2307 		 * already does this in write_begin().
2308 		 */
2309 		ret = ocfs2_inode_lock(inode, NULL, 1);
2310 		if (ret < 0) {
2311 			mlog_errno(ret);
2312 			goto out_sems;
2313 		}
2314 
2315 		ocfs2_inode_unlock(inode, 1);
2316 	}
2317 
2318 	can_do_direct = direct_io;
2319 	ret = ocfs2_prepare_inode_for_write(file, ppos,
2320 					    iocb->ki_left, appending,
2321 					    &can_do_direct, &has_refcount);
2322 	if (ret < 0) {
2323 		mlog_errno(ret);
2324 		goto out;
2325 	}
2326 
2327 	if (direct_io && !is_sync_kiocb(iocb))
2328 		unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_left,
2329 						      *ppos);
2330 
2331 	/*
2332 	 * We can't complete the direct I/O as requested, fall back to
2333 	 * buffered I/O.
2334 	 */
2335 	if (direct_io && !can_do_direct) {
2336 		ocfs2_rw_unlock(inode, rw_level);
2337 
2338 		have_alloc_sem = 0;
2339 		rw_level = -1;
2340 
2341 		direct_io = 0;
2342 		goto relock;
2343 	}
2344 
2345 	if (unaligned_dio) {
2346 		/*
2347 		 * Wait on previous unaligned aio to complete before
2348 		 * proceeding.
2349 		 */
2350 		ocfs2_aiodio_wait(inode);
2351 
2352 		/* Mark the iocb as needing a decrement in ocfs2_dio_end_io */
2353 		atomic_inc(&OCFS2_I(inode)->ip_unaligned_aio);
2354 		ocfs2_iocb_set_unaligned_aio(iocb);
2355 	}
2356 
2357 	/*
2358 	 * To later detect whether a journal commit for sync writes is
2359 	 * necessary, we sample i_size, and cluster count here.
2360 	 */
2361 	old_size = i_size_read(inode);
2362 	old_clusters = OCFS2_I(inode)->ip_clusters;
2363 
2364 	/* communicate with ocfs2_dio_end_io */
2365 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2366 
2367 	ret = generic_segment_checks(iov, &nr_segs, &ocount,
2368 				     VERIFY_READ);
2369 	if (ret)
2370 		goto out_dio;
2371 
2372 	count = ocount;
2373 	ret = generic_write_checks(file, ppos, &count,
2374 				   S_ISBLK(inode->i_mode));
2375 	if (ret)
2376 		goto out_dio;
2377 
2378 	if (direct_io) {
2379 		written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2380 						    ppos, count, ocount);
2381 		if (written < 0) {
2382 			ret = written;
2383 			goto out_dio;
2384 		}
2385 	} else {
2386 		current->backing_dev_info = file->f_mapping->backing_dev_info;
2387 		written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2388 						      ppos, count, 0);
2389 		current->backing_dev_info = NULL;
2390 	}
2391 
2392 out_dio:
2393 	/* buffered aio wouldn't have proper lock coverage today */
2394 	BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2395 
2396 	if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2397 	    ((file->f_flags & O_DIRECT) && !direct_io)) {
2398 		ret = filemap_fdatawrite_range(file->f_mapping, pos,
2399 					       pos + count - 1);
2400 		if (ret < 0)
2401 			written = ret;
2402 
2403 		if (!ret && ((old_size != i_size_read(inode)) ||
2404 			     (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2405 			     has_refcount)) {
2406 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2407 			if (ret < 0)
2408 				written = ret;
2409 		}
2410 
2411 		if (!ret)
2412 			ret = filemap_fdatawait_range(file->f_mapping, pos,
2413 						      pos + count - 1);
2414 	}
2415 
2416 	/*
2417 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2418 	 * function pointer which is called when o_direct io completes so that
2419 	 * it can unlock our rw lock.
2420 	 * Unfortunately there are error cases which call end_io and others
2421 	 * that don't.  so we don't have to unlock the rw_lock if either an
2422 	 * async dio is going to do it in the future or an end_io after an
2423 	 * error has already done it.
2424 	 */
2425 	if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2426 		rw_level = -1;
2427 		have_alloc_sem = 0;
2428 		unaligned_dio = 0;
2429 	}
2430 
2431 	if (unaligned_dio) {
2432 		ocfs2_iocb_clear_unaligned_aio(iocb);
2433 		atomic_dec(&OCFS2_I(inode)->ip_unaligned_aio);
2434 	}
2435 
2436 out:
2437 	if (rw_level != -1)
2438 		ocfs2_rw_unlock(inode, rw_level);
2439 
2440 out_sems:
2441 	if (have_alloc_sem)
2442 		ocfs2_iocb_clear_sem_locked(iocb);
2443 
2444 	mutex_unlock(&inode->i_mutex);
2445 	sb_end_write(inode->i_sb);
2446 
2447 	if (written)
2448 		ret = written;
2449 	return ret;
2450 }
2451 
2452 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2453 				struct file *out,
2454 				struct splice_desc *sd)
2455 {
2456 	int ret;
2457 
2458 	ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2459 					    sd->total_len, 0, NULL, NULL);
2460 	if (ret < 0) {
2461 		mlog_errno(ret);
2462 		return ret;
2463 	}
2464 
2465 	return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2466 }
2467 
2468 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2469 				       struct file *out,
2470 				       loff_t *ppos,
2471 				       size_t len,
2472 				       unsigned int flags)
2473 {
2474 	int ret;
2475 	struct address_space *mapping = out->f_mapping;
2476 	struct inode *inode = mapping->host;
2477 	struct splice_desc sd = {
2478 		.total_len = len,
2479 		.flags = flags,
2480 		.pos = *ppos,
2481 		.u.file = out,
2482 	};
2483 
2484 
2485 	trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2486 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2487 			out->f_path.dentry->d_name.len,
2488 			out->f_path.dentry->d_name.name, len);
2489 
2490 	if (pipe->inode)
2491 		mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
2492 
2493 	splice_from_pipe_begin(&sd);
2494 	do {
2495 		ret = splice_from_pipe_next(pipe, &sd);
2496 		if (ret <= 0)
2497 			break;
2498 
2499 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2500 		ret = ocfs2_rw_lock(inode, 1);
2501 		if (ret < 0)
2502 			mlog_errno(ret);
2503 		else {
2504 			ret = ocfs2_splice_to_file(pipe, out, &sd);
2505 			ocfs2_rw_unlock(inode, 1);
2506 		}
2507 		mutex_unlock(&inode->i_mutex);
2508 	} while (ret > 0);
2509 	splice_from_pipe_end(pipe, &sd);
2510 
2511 	if (pipe->inode)
2512 		mutex_unlock(&pipe->inode->i_mutex);
2513 
2514 	if (sd.num_spliced)
2515 		ret = sd.num_spliced;
2516 
2517 	if (ret > 0) {
2518 		unsigned long nr_pages;
2519 		int err;
2520 
2521 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2522 
2523 		err = generic_write_sync(out, *ppos, ret);
2524 		if (err)
2525 			ret = err;
2526 		else
2527 			*ppos += ret;
2528 
2529 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
2530 	}
2531 
2532 	return ret;
2533 }
2534 
2535 static ssize_t ocfs2_file_splice_read(struct file *in,
2536 				      loff_t *ppos,
2537 				      struct pipe_inode_info *pipe,
2538 				      size_t len,
2539 				      unsigned int flags)
2540 {
2541 	int ret = 0, lock_level = 0;
2542 	struct inode *inode = in->f_path.dentry->d_inode;
2543 
2544 	trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2545 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2546 			in->f_path.dentry->d_name.len,
2547 			in->f_path.dentry->d_name.name, len);
2548 
2549 	/*
2550 	 * See the comment in ocfs2_file_aio_read()
2551 	 */
2552 	ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level);
2553 	if (ret < 0) {
2554 		mlog_errno(ret);
2555 		goto bail;
2556 	}
2557 	ocfs2_inode_unlock(inode, lock_level);
2558 
2559 	ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2560 
2561 bail:
2562 	return ret;
2563 }
2564 
2565 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2566 				   const struct iovec *iov,
2567 				   unsigned long nr_segs,
2568 				   loff_t pos)
2569 {
2570 	int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2571 	struct file *filp = iocb->ki_filp;
2572 	struct inode *inode = filp->f_path.dentry->d_inode;
2573 
2574 	trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2575 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2576 			filp->f_path.dentry->d_name.len,
2577 			filp->f_path.dentry->d_name.name, nr_segs);
2578 
2579 
2580 	if (!inode) {
2581 		ret = -EINVAL;
2582 		mlog_errno(ret);
2583 		goto bail;
2584 	}
2585 
2586 	ocfs2_iocb_clear_sem_locked(iocb);
2587 
2588 	/*
2589 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2590 	 * need locks to protect pending reads from racing with truncate.
2591 	 */
2592 	if (filp->f_flags & O_DIRECT) {
2593 		have_alloc_sem = 1;
2594 		ocfs2_iocb_set_sem_locked(iocb);
2595 
2596 		ret = ocfs2_rw_lock(inode, 0);
2597 		if (ret < 0) {
2598 			mlog_errno(ret);
2599 			goto bail;
2600 		}
2601 		rw_level = 0;
2602 		/* communicate with ocfs2_dio_end_io */
2603 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2604 	}
2605 
2606 	/*
2607 	 * We're fine letting folks race truncates and extending
2608 	 * writes with read across the cluster, just like they can
2609 	 * locally. Hence no rw_lock during read.
2610 	 *
2611 	 * Take and drop the meta data lock to update inode fields
2612 	 * like i_size. This allows the checks down below
2613 	 * generic_file_aio_read() a chance of actually working.
2614 	 */
2615 	ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level);
2616 	if (ret < 0) {
2617 		mlog_errno(ret);
2618 		goto bail;
2619 	}
2620 	ocfs2_inode_unlock(inode, lock_level);
2621 
2622 	ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2623 	trace_generic_file_aio_read_ret(ret);
2624 
2625 	/* buffered aio wouldn't have proper lock coverage today */
2626 	BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2627 
2628 	/* see ocfs2_file_aio_write */
2629 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2630 		rw_level = -1;
2631 		have_alloc_sem = 0;
2632 	}
2633 
2634 bail:
2635 	if (have_alloc_sem)
2636 		ocfs2_iocb_clear_sem_locked(iocb);
2637 
2638 	if (rw_level != -1)
2639 		ocfs2_rw_unlock(inode, rw_level);
2640 
2641 	return ret;
2642 }
2643 
2644 /* Refer generic_file_llseek_unlocked() */
2645 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int origin)
2646 {
2647 	struct inode *inode = file->f_mapping->host;
2648 	int ret = 0;
2649 
2650 	mutex_lock(&inode->i_mutex);
2651 
2652 	switch (origin) {
2653 	case SEEK_SET:
2654 		break;
2655 	case SEEK_END:
2656 		offset += inode->i_size;
2657 		break;
2658 	case SEEK_CUR:
2659 		if (offset == 0) {
2660 			offset = file->f_pos;
2661 			goto out;
2662 		}
2663 		offset += file->f_pos;
2664 		break;
2665 	case SEEK_DATA:
2666 	case SEEK_HOLE:
2667 		ret = ocfs2_seek_data_hole_offset(file, &offset, origin);
2668 		if (ret)
2669 			goto out;
2670 		break;
2671 	default:
2672 		ret = -EINVAL;
2673 		goto out;
2674 	}
2675 
2676 	if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET))
2677 		ret = -EINVAL;
2678 	if (!ret && offset > inode->i_sb->s_maxbytes)
2679 		ret = -EINVAL;
2680 	if (ret)
2681 		goto out;
2682 
2683 	if (offset != file->f_pos) {
2684 		file->f_pos = offset;
2685 		file->f_version = 0;
2686 	}
2687 
2688 out:
2689 	mutex_unlock(&inode->i_mutex);
2690 	if (ret)
2691 		return ret;
2692 	return offset;
2693 }
2694 
2695 const struct inode_operations ocfs2_file_iops = {
2696 	.setattr	= ocfs2_setattr,
2697 	.getattr	= ocfs2_getattr,
2698 	.permission	= ocfs2_permission,
2699 	.setxattr	= generic_setxattr,
2700 	.getxattr	= generic_getxattr,
2701 	.listxattr	= ocfs2_listxattr,
2702 	.removexattr	= generic_removexattr,
2703 	.fiemap		= ocfs2_fiemap,
2704 	.get_acl	= ocfs2_iop_get_acl,
2705 };
2706 
2707 const struct inode_operations ocfs2_special_file_iops = {
2708 	.setattr	= ocfs2_setattr,
2709 	.getattr	= ocfs2_getattr,
2710 	.permission	= ocfs2_permission,
2711 	.get_acl	= ocfs2_iop_get_acl,
2712 };
2713 
2714 /*
2715  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2716  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2717  */
2718 const struct file_operations ocfs2_fops = {
2719 	.llseek		= ocfs2_file_llseek,
2720 	.read		= do_sync_read,
2721 	.write		= do_sync_write,
2722 	.mmap		= ocfs2_mmap,
2723 	.fsync		= ocfs2_sync_file,
2724 	.release	= ocfs2_file_release,
2725 	.open		= ocfs2_file_open,
2726 	.aio_read	= ocfs2_file_aio_read,
2727 	.aio_write	= ocfs2_file_aio_write,
2728 	.unlocked_ioctl	= ocfs2_ioctl,
2729 #ifdef CONFIG_COMPAT
2730 	.compat_ioctl   = ocfs2_compat_ioctl,
2731 #endif
2732 	.lock		= ocfs2_lock,
2733 	.flock		= ocfs2_flock,
2734 	.splice_read	= ocfs2_file_splice_read,
2735 	.splice_write	= ocfs2_file_splice_write,
2736 	.fallocate	= ocfs2_fallocate,
2737 };
2738 
2739 const struct file_operations ocfs2_dops = {
2740 	.llseek		= generic_file_llseek,
2741 	.read		= generic_read_dir,
2742 	.readdir	= ocfs2_readdir,
2743 	.fsync		= ocfs2_sync_file,
2744 	.release	= ocfs2_dir_release,
2745 	.open		= ocfs2_dir_open,
2746 	.unlocked_ioctl	= ocfs2_ioctl,
2747 #ifdef CONFIG_COMPAT
2748 	.compat_ioctl   = ocfs2_compat_ioctl,
2749 #endif
2750 	.lock		= ocfs2_lock,
2751 	.flock		= ocfs2_flock,
2752 };
2753 
2754 /*
2755  * POSIX-lockless variants of our file_operations.
2756  *
2757  * These will be used if the underlying cluster stack does not support
2758  * posix file locking, if the user passes the "localflocks" mount
2759  * option, or if we have a local-only fs.
2760  *
2761  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2762  * so we still want it in the case of no stack support for
2763  * plocks. Internally, it will do the right thing when asked to ignore
2764  * the cluster.
2765  */
2766 const struct file_operations ocfs2_fops_no_plocks = {
2767 	.llseek		= ocfs2_file_llseek,
2768 	.read		= do_sync_read,
2769 	.write		= do_sync_write,
2770 	.mmap		= ocfs2_mmap,
2771 	.fsync		= ocfs2_sync_file,
2772 	.release	= ocfs2_file_release,
2773 	.open		= ocfs2_file_open,
2774 	.aio_read	= ocfs2_file_aio_read,
2775 	.aio_write	= ocfs2_file_aio_write,
2776 	.unlocked_ioctl	= ocfs2_ioctl,
2777 #ifdef CONFIG_COMPAT
2778 	.compat_ioctl   = ocfs2_compat_ioctl,
2779 #endif
2780 	.flock		= ocfs2_flock,
2781 	.splice_read	= ocfs2_file_splice_read,
2782 	.splice_write	= ocfs2_file_splice_write,
2783 	.fallocate	= ocfs2_fallocate,
2784 };
2785 
2786 const struct file_operations ocfs2_dops_no_plocks = {
2787 	.llseek		= generic_file_llseek,
2788 	.read		= generic_read_dir,
2789 	.readdir	= ocfs2_readdir,
2790 	.fsync		= ocfs2_sync_file,
2791 	.release	= ocfs2_dir_release,
2792 	.open		= ocfs2_dir_open,
2793 	.unlocked_ioctl	= ocfs2_ioctl,
2794 #ifdef CONFIG_COMPAT
2795 	.compat_ioctl   = ocfs2_compat_ioctl,
2796 #endif
2797 	.flock		= ocfs2_flock,
2798 };
2799