1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * file.c 5 * 6 * File open, close, extend, truncate 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/capability.h> 27 #include <linux/fs.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/highmem.h> 31 #include <linux/pagemap.h> 32 #include <linux/uio.h> 33 #include <linux/sched.h> 34 #include <linux/splice.h> 35 #include <linux/mount.h> 36 #include <linux/writeback.h> 37 #include <linux/falloc.h> 38 #include <linux/quotaops.h> 39 #include <linux/blkdev.h> 40 41 #include <cluster/masklog.h> 42 43 #include "ocfs2.h" 44 45 #include "alloc.h" 46 #include "aops.h" 47 #include "dir.h" 48 #include "dlmglue.h" 49 #include "extent_map.h" 50 #include "file.h" 51 #include "sysfile.h" 52 #include "inode.h" 53 #include "ioctl.h" 54 #include "journal.h" 55 #include "locks.h" 56 #include "mmap.h" 57 #include "suballoc.h" 58 #include "super.h" 59 #include "xattr.h" 60 #include "acl.h" 61 #include "quota.h" 62 #include "refcounttree.h" 63 #include "ocfs2_trace.h" 64 65 #include "buffer_head_io.h" 66 67 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 68 { 69 struct ocfs2_file_private *fp; 70 71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 72 if (!fp) 73 return -ENOMEM; 74 75 fp->fp_file = file; 76 mutex_init(&fp->fp_mutex); 77 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 78 file->private_data = fp; 79 80 return 0; 81 } 82 83 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 84 { 85 struct ocfs2_file_private *fp = file->private_data; 86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 87 88 if (fp) { 89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 90 ocfs2_lock_res_free(&fp->fp_flock); 91 kfree(fp); 92 file->private_data = NULL; 93 } 94 } 95 96 static int ocfs2_file_open(struct inode *inode, struct file *file) 97 { 98 int status; 99 int mode = file->f_flags; 100 struct ocfs2_inode_info *oi = OCFS2_I(inode); 101 102 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 103 (unsigned long long)OCFS2_I(inode)->ip_blkno, 104 file->f_path.dentry->d_name.len, 105 file->f_path.dentry->d_name.name, mode); 106 107 if (file->f_mode & FMODE_WRITE) 108 dquot_initialize(inode); 109 110 spin_lock(&oi->ip_lock); 111 112 /* Check that the inode hasn't been wiped from disk by another 113 * node. If it hasn't then we're safe as long as we hold the 114 * spin lock until our increment of open count. */ 115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { 116 spin_unlock(&oi->ip_lock); 117 118 status = -ENOENT; 119 goto leave; 120 } 121 122 if (mode & O_DIRECT) 123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 124 125 oi->ip_open_count++; 126 spin_unlock(&oi->ip_lock); 127 128 status = ocfs2_init_file_private(inode, file); 129 if (status) { 130 /* 131 * We want to set open count back if we're failing the 132 * open. 133 */ 134 spin_lock(&oi->ip_lock); 135 oi->ip_open_count--; 136 spin_unlock(&oi->ip_lock); 137 } 138 139 leave: 140 return status; 141 } 142 143 static int ocfs2_file_release(struct inode *inode, struct file *file) 144 { 145 struct ocfs2_inode_info *oi = OCFS2_I(inode); 146 147 spin_lock(&oi->ip_lock); 148 if (!--oi->ip_open_count) 149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 150 151 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 152 oi->ip_blkno, 153 file->f_path.dentry->d_name.len, 154 file->f_path.dentry->d_name.name, 155 oi->ip_open_count); 156 spin_unlock(&oi->ip_lock); 157 158 ocfs2_free_file_private(inode, file); 159 160 return 0; 161 } 162 163 static int ocfs2_dir_open(struct inode *inode, struct file *file) 164 { 165 return ocfs2_init_file_private(inode, file); 166 } 167 168 static int ocfs2_dir_release(struct inode *inode, struct file *file) 169 { 170 ocfs2_free_file_private(inode, file); 171 return 0; 172 } 173 174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 175 int datasync) 176 { 177 int err = 0; 178 journal_t *journal; 179 struct inode *inode = file->f_mapping->host; 180 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 181 182 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 183 OCFS2_I(inode)->ip_blkno, 184 file->f_path.dentry->d_name.len, 185 file->f_path.dentry->d_name.name, 186 (unsigned long long)datasync); 187 188 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 189 if (err) 190 return err; 191 192 /* 193 * Probably don't need the i_mutex at all in here, just putting it here 194 * to be consistent with how fsync used to be called, someone more 195 * familiar with the fs could possibly remove it. 196 */ 197 mutex_lock(&inode->i_mutex); 198 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) { 199 /* 200 * We still have to flush drive's caches to get data to the 201 * platter 202 */ 203 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 204 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 205 goto bail; 206 } 207 208 journal = osb->journal->j_journal; 209 err = jbd2_journal_force_commit(journal); 210 211 bail: 212 if (err) 213 mlog_errno(err); 214 mutex_unlock(&inode->i_mutex); 215 216 return (err < 0) ? -EIO : 0; 217 } 218 219 int ocfs2_should_update_atime(struct inode *inode, 220 struct vfsmount *vfsmnt) 221 { 222 struct timespec now; 223 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 224 225 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 226 return 0; 227 228 if ((inode->i_flags & S_NOATIME) || 229 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) 230 return 0; 231 232 /* 233 * We can be called with no vfsmnt structure - NFSD will 234 * sometimes do this. 235 * 236 * Note that our action here is different than touch_atime() - 237 * if we can't tell whether this is a noatime mount, then we 238 * don't know whether to trust the value of s_atime_quantum. 239 */ 240 if (vfsmnt == NULL) 241 return 0; 242 243 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 244 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 245 return 0; 246 247 if (vfsmnt->mnt_flags & MNT_RELATIME) { 248 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 249 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 250 return 1; 251 252 return 0; 253 } 254 255 now = CURRENT_TIME; 256 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 257 return 0; 258 else 259 return 1; 260 } 261 262 int ocfs2_update_inode_atime(struct inode *inode, 263 struct buffer_head *bh) 264 { 265 int ret; 266 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 267 handle_t *handle; 268 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 269 270 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 271 if (IS_ERR(handle)) { 272 ret = PTR_ERR(handle); 273 mlog_errno(ret); 274 goto out; 275 } 276 277 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 278 OCFS2_JOURNAL_ACCESS_WRITE); 279 if (ret) { 280 mlog_errno(ret); 281 goto out_commit; 282 } 283 284 /* 285 * Don't use ocfs2_mark_inode_dirty() here as we don't always 286 * have i_mutex to guard against concurrent changes to other 287 * inode fields. 288 */ 289 inode->i_atime = CURRENT_TIME; 290 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 291 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 292 ocfs2_journal_dirty(handle, bh); 293 294 out_commit: 295 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 296 out: 297 return ret; 298 } 299 300 static int ocfs2_set_inode_size(handle_t *handle, 301 struct inode *inode, 302 struct buffer_head *fe_bh, 303 u64 new_i_size) 304 { 305 int status; 306 307 i_size_write(inode, new_i_size); 308 inode->i_blocks = ocfs2_inode_sector_count(inode); 309 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 310 311 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 312 if (status < 0) { 313 mlog_errno(status); 314 goto bail; 315 } 316 317 bail: 318 return status; 319 } 320 321 int ocfs2_simple_size_update(struct inode *inode, 322 struct buffer_head *di_bh, 323 u64 new_i_size) 324 { 325 int ret; 326 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 327 handle_t *handle = NULL; 328 329 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 330 if (IS_ERR(handle)) { 331 ret = PTR_ERR(handle); 332 mlog_errno(ret); 333 goto out; 334 } 335 336 ret = ocfs2_set_inode_size(handle, inode, di_bh, 337 new_i_size); 338 if (ret < 0) 339 mlog_errno(ret); 340 341 ocfs2_commit_trans(osb, handle); 342 out: 343 return ret; 344 } 345 346 static int ocfs2_cow_file_pos(struct inode *inode, 347 struct buffer_head *fe_bh, 348 u64 offset) 349 { 350 int status; 351 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 352 unsigned int num_clusters = 0; 353 unsigned int ext_flags = 0; 354 355 /* 356 * If the new offset is aligned to the range of the cluster, there is 357 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 358 * CoW either. 359 */ 360 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 361 return 0; 362 363 status = ocfs2_get_clusters(inode, cpos, &phys, 364 &num_clusters, &ext_flags); 365 if (status) { 366 mlog_errno(status); 367 goto out; 368 } 369 370 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 371 goto out; 372 373 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 374 375 out: 376 return status; 377 } 378 379 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 380 struct inode *inode, 381 struct buffer_head *fe_bh, 382 u64 new_i_size) 383 { 384 int status; 385 handle_t *handle; 386 struct ocfs2_dinode *di; 387 u64 cluster_bytes; 388 389 /* 390 * We need to CoW the cluster contains the offset if it is reflinked 391 * since we will call ocfs2_zero_range_for_truncate later which will 392 * write "0" from offset to the end of the cluster. 393 */ 394 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 395 if (status) { 396 mlog_errno(status); 397 return status; 398 } 399 400 /* TODO: This needs to actually orphan the inode in this 401 * transaction. */ 402 403 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 404 if (IS_ERR(handle)) { 405 status = PTR_ERR(handle); 406 mlog_errno(status); 407 goto out; 408 } 409 410 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 411 OCFS2_JOURNAL_ACCESS_WRITE); 412 if (status < 0) { 413 mlog_errno(status); 414 goto out_commit; 415 } 416 417 /* 418 * Do this before setting i_size. 419 */ 420 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 421 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 422 cluster_bytes); 423 if (status) { 424 mlog_errno(status); 425 goto out_commit; 426 } 427 428 i_size_write(inode, new_i_size); 429 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 430 431 di = (struct ocfs2_dinode *) fe_bh->b_data; 432 di->i_size = cpu_to_le64(new_i_size); 433 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 434 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 435 436 ocfs2_journal_dirty(handle, fe_bh); 437 438 out_commit: 439 ocfs2_commit_trans(osb, handle); 440 out: 441 return status; 442 } 443 444 static int ocfs2_truncate_file(struct inode *inode, 445 struct buffer_head *di_bh, 446 u64 new_i_size) 447 { 448 int status = 0; 449 struct ocfs2_dinode *fe = NULL; 450 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 451 452 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 453 * already validated it */ 454 fe = (struct ocfs2_dinode *) di_bh->b_data; 455 456 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 457 (unsigned long long)le64_to_cpu(fe->i_size), 458 (unsigned long long)new_i_size); 459 460 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 461 "Inode %llu, inode i_size = %lld != di " 462 "i_size = %llu, i_flags = 0x%x\n", 463 (unsigned long long)OCFS2_I(inode)->ip_blkno, 464 i_size_read(inode), 465 (unsigned long long)le64_to_cpu(fe->i_size), 466 le32_to_cpu(fe->i_flags)); 467 468 if (new_i_size > le64_to_cpu(fe->i_size)) { 469 trace_ocfs2_truncate_file_error( 470 (unsigned long long)le64_to_cpu(fe->i_size), 471 (unsigned long long)new_i_size); 472 status = -EINVAL; 473 mlog_errno(status); 474 goto bail; 475 } 476 477 /* lets handle the simple truncate cases before doing any more 478 * cluster locking. */ 479 if (new_i_size == le64_to_cpu(fe->i_size)) 480 goto bail; 481 482 down_write(&OCFS2_I(inode)->ip_alloc_sem); 483 484 ocfs2_resv_discard(&osb->osb_la_resmap, 485 &OCFS2_I(inode)->ip_la_data_resv); 486 487 /* 488 * The inode lock forced other nodes to sync and drop their 489 * pages, which (correctly) happens even if we have a truncate 490 * without allocation change - ocfs2 cluster sizes can be much 491 * greater than page size, so we have to truncate them 492 * anyway. 493 */ 494 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 495 truncate_inode_pages(inode->i_mapping, new_i_size); 496 497 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 498 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 499 i_size_read(inode), 1); 500 if (status) 501 mlog_errno(status); 502 503 goto bail_unlock_sem; 504 } 505 506 /* alright, we're going to need to do a full blown alloc size 507 * change. Orphan the inode so that recovery can complete the 508 * truncate if necessary. This does the task of marking 509 * i_size. */ 510 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 511 if (status < 0) { 512 mlog_errno(status); 513 goto bail_unlock_sem; 514 } 515 516 status = ocfs2_commit_truncate(osb, inode, di_bh); 517 if (status < 0) { 518 mlog_errno(status); 519 goto bail_unlock_sem; 520 } 521 522 /* TODO: orphan dir cleanup here. */ 523 bail_unlock_sem: 524 up_write(&OCFS2_I(inode)->ip_alloc_sem); 525 526 bail: 527 if (!status && OCFS2_I(inode)->ip_clusters == 0) 528 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 529 530 return status; 531 } 532 533 /* 534 * extend file allocation only here. 535 * we'll update all the disk stuff, and oip->alloc_size 536 * 537 * expect stuff to be locked, a transaction started and enough data / 538 * metadata reservations in the contexts. 539 * 540 * Will return -EAGAIN, and a reason if a restart is needed. 541 * If passed in, *reason will always be set, even in error. 542 */ 543 int ocfs2_add_inode_data(struct ocfs2_super *osb, 544 struct inode *inode, 545 u32 *logical_offset, 546 u32 clusters_to_add, 547 int mark_unwritten, 548 struct buffer_head *fe_bh, 549 handle_t *handle, 550 struct ocfs2_alloc_context *data_ac, 551 struct ocfs2_alloc_context *meta_ac, 552 enum ocfs2_alloc_restarted *reason_ret) 553 { 554 int ret; 555 struct ocfs2_extent_tree et; 556 557 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 558 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 559 clusters_to_add, mark_unwritten, 560 data_ac, meta_ac, reason_ret); 561 562 return ret; 563 } 564 565 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 566 u32 clusters_to_add, int mark_unwritten) 567 { 568 int status = 0; 569 int restart_func = 0; 570 int credits; 571 u32 prev_clusters; 572 struct buffer_head *bh = NULL; 573 struct ocfs2_dinode *fe = NULL; 574 handle_t *handle = NULL; 575 struct ocfs2_alloc_context *data_ac = NULL; 576 struct ocfs2_alloc_context *meta_ac = NULL; 577 enum ocfs2_alloc_restarted why; 578 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 579 struct ocfs2_extent_tree et; 580 int did_quota = 0; 581 582 /* 583 * Unwritten extent only exists for file systems which 584 * support holes. 585 */ 586 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 587 588 status = ocfs2_read_inode_block(inode, &bh); 589 if (status < 0) { 590 mlog_errno(status); 591 goto leave; 592 } 593 fe = (struct ocfs2_dinode *) bh->b_data; 594 595 restart_all: 596 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 597 598 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 599 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 600 &data_ac, &meta_ac); 601 if (status) { 602 mlog_errno(status); 603 goto leave; 604 } 605 606 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 607 handle = ocfs2_start_trans(osb, credits); 608 if (IS_ERR(handle)) { 609 status = PTR_ERR(handle); 610 handle = NULL; 611 mlog_errno(status); 612 goto leave; 613 } 614 615 restarted_transaction: 616 trace_ocfs2_extend_allocation( 617 (unsigned long long)OCFS2_I(inode)->ip_blkno, 618 (unsigned long long)i_size_read(inode), 619 le32_to_cpu(fe->i_clusters), clusters_to_add, 620 why, restart_func); 621 622 status = dquot_alloc_space_nodirty(inode, 623 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 624 if (status) 625 goto leave; 626 did_quota = 1; 627 628 /* reserve a write to the file entry early on - that we if we 629 * run out of credits in the allocation path, we can still 630 * update i_size. */ 631 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 632 OCFS2_JOURNAL_ACCESS_WRITE); 633 if (status < 0) { 634 mlog_errno(status); 635 goto leave; 636 } 637 638 prev_clusters = OCFS2_I(inode)->ip_clusters; 639 640 status = ocfs2_add_inode_data(osb, 641 inode, 642 &logical_start, 643 clusters_to_add, 644 mark_unwritten, 645 bh, 646 handle, 647 data_ac, 648 meta_ac, 649 &why); 650 if ((status < 0) && (status != -EAGAIN)) { 651 if (status != -ENOSPC) 652 mlog_errno(status); 653 goto leave; 654 } 655 656 ocfs2_journal_dirty(handle, bh); 657 658 spin_lock(&OCFS2_I(inode)->ip_lock); 659 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 660 spin_unlock(&OCFS2_I(inode)->ip_lock); 661 /* Release unused quota reservation */ 662 dquot_free_space(inode, 663 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 664 did_quota = 0; 665 666 if (why != RESTART_NONE && clusters_to_add) { 667 if (why == RESTART_META) { 668 restart_func = 1; 669 status = 0; 670 } else { 671 BUG_ON(why != RESTART_TRANS); 672 673 status = ocfs2_allocate_extend_trans(handle, 1); 674 if (status < 0) { 675 /* handle still has to be committed at 676 * this point. */ 677 status = -ENOMEM; 678 mlog_errno(status); 679 goto leave; 680 } 681 goto restarted_transaction; 682 } 683 } 684 685 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 686 le32_to_cpu(fe->i_clusters), 687 (unsigned long long)le64_to_cpu(fe->i_size), 688 OCFS2_I(inode)->ip_clusters, 689 (unsigned long long)i_size_read(inode)); 690 691 leave: 692 if (status < 0 && did_quota) 693 dquot_free_space(inode, 694 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 695 if (handle) { 696 ocfs2_commit_trans(osb, handle); 697 handle = NULL; 698 } 699 if (data_ac) { 700 ocfs2_free_alloc_context(data_ac); 701 data_ac = NULL; 702 } 703 if (meta_ac) { 704 ocfs2_free_alloc_context(meta_ac); 705 meta_ac = NULL; 706 } 707 if ((!status) && restart_func) { 708 restart_func = 0; 709 goto restart_all; 710 } 711 brelse(bh); 712 bh = NULL; 713 714 return status; 715 } 716 717 /* 718 * While a write will already be ordering the data, a truncate will not. 719 * Thus, we need to explicitly order the zeroed pages. 720 */ 721 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode) 722 { 723 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 724 handle_t *handle = NULL; 725 int ret = 0; 726 727 if (!ocfs2_should_order_data(inode)) 728 goto out; 729 730 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 731 if (IS_ERR(handle)) { 732 ret = -ENOMEM; 733 mlog_errno(ret); 734 goto out; 735 } 736 737 ret = ocfs2_jbd2_file_inode(handle, inode); 738 if (ret < 0) 739 mlog_errno(ret); 740 741 out: 742 if (ret) { 743 if (!IS_ERR(handle)) 744 ocfs2_commit_trans(osb, handle); 745 handle = ERR_PTR(ret); 746 } 747 return handle; 748 } 749 750 /* Some parts of this taken from generic_cont_expand, which turned out 751 * to be too fragile to do exactly what we need without us having to 752 * worry about recursive locking in ->write_begin() and ->write_end(). */ 753 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 754 u64 abs_to) 755 { 756 struct address_space *mapping = inode->i_mapping; 757 struct page *page; 758 unsigned long index = abs_from >> PAGE_CACHE_SHIFT; 759 handle_t *handle = NULL; 760 int ret = 0; 761 unsigned zero_from, zero_to, block_start, block_end; 762 763 BUG_ON(abs_from >= abs_to); 764 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT)); 765 BUG_ON(abs_from & (inode->i_blkbits - 1)); 766 767 page = find_or_create_page(mapping, index, GFP_NOFS); 768 if (!page) { 769 ret = -ENOMEM; 770 mlog_errno(ret); 771 goto out; 772 } 773 774 /* Get the offsets within the page that we want to zero */ 775 zero_from = abs_from & (PAGE_CACHE_SIZE - 1); 776 zero_to = abs_to & (PAGE_CACHE_SIZE - 1); 777 if (!zero_to) 778 zero_to = PAGE_CACHE_SIZE; 779 780 trace_ocfs2_write_zero_page( 781 (unsigned long long)OCFS2_I(inode)->ip_blkno, 782 (unsigned long long)abs_from, 783 (unsigned long long)abs_to, 784 index, zero_from, zero_to); 785 786 /* We know that zero_from is block aligned */ 787 for (block_start = zero_from; block_start < zero_to; 788 block_start = block_end) { 789 block_end = block_start + (1 << inode->i_blkbits); 790 791 /* 792 * block_start is block-aligned. Bump it by one to force 793 * __block_write_begin and block_commit_write to zero the 794 * whole block. 795 */ 796 ret = __block_write_begin(page, block_start + 1, 0, 797 ocfs2_get_block); 798 if (ret < 0) { 799 mlog_errno(ret); 800 goto out_unlock; 801 } 802 803 if (!handle) { 804 handle = ocfs2_zero_start_ordered_transaction(inode); 805 if (IS_ERR(handle)) { 806 ret = PTR_ERR(handle); 807 handle = NULL; 808 break; 809 } 810 } 811 812 /* must not update i_size! */ 813 ret = block_commit_write(page, block_start + 1, 814 block_start + 1); 815 if (ret < 0) 816 mlog_errno(ret); 817 else 818 ret = 0; 819 } 820 821 if (handle) 822 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 823 824 out_unlock: 825 unlock_page(page); 826 page_cache_release(page); 827 out: 828 return ret; 829 } 830 831 /* 832 * Find the next range to zero. We do this in terms of bytes because 833 * that's what ocfs2_zero_extend() wants, and it is dealing with the 834 * pagecache. We may return multiple extents. 835 * 836 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 837 * needs to be zeroed. range_start and range_end return the next zeroing 838 * range. A subsequent call should pass the previous range_end as its 839 * zero_start. If range_end is 0, there's nothing to do. 840 * 841 * Unwritten extents are skipped over. Refcounted extents are CoWd. 842 */ 843 static int ocfs2_zero_extend_get_range(struct inode *inode, 844 struct buffer_head *di_bh, 845 u64 zero_start, u64 zero_end, 846 u64 *range_start, u64 *range_end) 847 { 848 int rc = 0, needs_cow = 0; 849 u32 p_cpos, zero_clusters = 0; 850 u32 zero_cpos = 851 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 852 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 853 unsigned int num_clusters = 0; 854 unsigned int ext_flags = 0; 855 856 while (zero_cpos < last_cpos) { 857 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 858 &num_clusters, &ext_flags); 859 if (rc) { 860 mlog_errno(rc); 861 goto out; 862 } 863 864 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 865 zero_clusters = num_clusters; 866 if (ext_flags & OCFS2_EXT_REFCOUNTED) 867 needs_cow = 1; 868 break; 869 } 870 871 zero_cpos += num_clusters; 872 } 873 if (!zero_clusters) { 874 *range_end = 0; 875 goto out; 876 } 877 878 while ((zero_cpos + zero_clusters) < last_cpos) { 879 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 880 &p_cpos, &num_clusters, 881 &ext_flags); 882 if (rc) { 883 mlog_errno(rc); 884 goto out; 885 } 886 887 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 888 break; 889 if (ext_flags & OCFS2_EXT_REFCOUNTED) 890 needs_cow = 1; 891 zero_clusters += num_clusters; 892 } 893 if ((zero_cpos + zero_clusters) > last_cpos) 894 zero_clusters = last_cpos - zero_cpos; 895 896 if (needs_cow) { 897 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 898 zero_clusters, UINT_MAX); 899 if (rc) { 900 mlog_errno(rc); 901 goto out; 902 } 903 } 904 905 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 906 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 907 zero_cpos + zero_clusters); 908 909 out: 910 return rc; 911 } 912 913 /* 914 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 915 * has made sure that the entire range needs zeroing. 916 */ 917 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 918 u64 range_end) 919 { 920 int rc = 0; 921 u64 next_pos; 922 u64 zero_pos = range_start; 923 924 trace_ocfs2_zero_extend_range( 925 (unsigned long long)OCFS2_I(inode)->ip_blkno, 926 (unsigned long long)range_start, 927 (unsigned long long)range_end); 928 BUG_ON(range_start >= range_end); 929 930 while (zero_pos < range_end) { 931 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE; 932 if (next_pos > range_end) 933 next_pos = range_end; 934 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos); 935 if (rc < 0) { 936 mlog_errno(rc); 937 break; 938 } 939 zero_pos = next_pos; 940 941 /* 942 * Very large extends have the potential to lock up 943 * the cpu for extended periods of time. 944 */ 945 cond_resched(); 946 } 947 948 return rc; 949 } 950 951 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 952 loff_t zero_to_size) 953 { 954 int ret = 0; 955 u64 zero_start, range_start = 0, range_end = 0; 956 struct super_block *sb = inode->i_sb; 957 958 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 959 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 960 (unsigned long long)zero_start, 961 (unsigned long long)i_size_read(inode)); 962 while (zero_start < zero_to_size) { 963 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 964 zero_to_size, 965 &range_start, 966 &range_end); 967 if (ret) { 968 mlog_errno(ret); 969 break; 970 } 971 if (!range_end) 972 break; 973 /* Trim the ends */ 974 if (range_start < zero_start) 975 range_start = zero_start; 976 if (range_end > zero_to_size) 977 range_end = zero_to_size; 978 979 ret = ocfs2_zero_extend_range(inode, range_start, 980 range_end); 981 if (ret) { 982 mlog_errno(ret); 983 break; 984 } 985 zero_start = range_end; 986 } 987 988 return ret; 989 } 990 991 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 992 u64 new_i_size, u64 zero_to) 993 { 994 int ret; 995 u32 clusters_to_add; 996 struct ocfs2_inode_info *oi = OCFS2_I(inode); 997 998 /* 999 * Only quota files call this without a bh, and they can't be 1000 * refcounted. 1001 */ 1002 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL)); 1003 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1004 1005 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1006 if (clusters_to_add < oi->ip_clusters) 1007 clusters_to_add = 0; 1008 else 1009 clusters_to_add -= oi->ip_clusters; 1010 1011 if (clusters_to_add) { 1012 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters, 1013 clusters_to_add, 0); 1014 if (ret) { 1015 mlog_errno(ret); 1016 goto out; 1017 } 1018 } 1019 1020 /* 1021 * Call this even if we don't add any clusters to the tree. We 1022 * still need to zero the area between the old i_size and the 1023 * new i_size. 1024 */ 1025 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1026 if (ret < 0) 1027 mlog_errno(ret); 1028 1029 out: 1030 return ret; 1031 } 1032 1033 static int ocfs2_extend_file(struct inode *inode, 1034 struct buffer_head *di_bh, 1035 u64 new_i_size) 1036 { 1037 int ret = 0; 1038 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1039 1040 BUG_ON(!di_bh); 1041 1042 /* setattr sometimes calls us like this. */ 1043 if (new_i_size == 0) 1044 goto out; 1045 1046 if (i_size_read(inode) == new_i_size) 1047 goto out; 1048 BUG_ON(new_i_size < i_size_read(inode)); 1049 1050 /* 1051 * The alloc sem blocks people in read/write from reading our 1052 * allocation until we're done changing it. We depend on 1053 * i_mutex to block other extend/truncate calls while we're 1054 * here. We even have to hold it for sparse files because there 1055 * might be some tail zeroing. 1056 */ 1057 down_write(&oi->ip_alloc_sem); 1058 1059 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1060 /* 1061 * We can optimize small extends by keeping the inodes 1062 * inline data. 1063 */ 1064 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1065 up_write(&oi->ip_alloc_sem); 1066 goto out_update_size; 1067 } 1068 1069 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1070 if (ret) { 1071 up_write(&oi->ip_alloc_sem); 1072 mlog_errno(ret); 1073 goto out; 1074 } 1075 } 1076 1077 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1078 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1079 else 1080 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1081 new_i_size); 1082 1083 up_write(&oi->ip_alloc_sem); 1084 1085 if (ret < 0) { 1086 mlog_errno(ret); 1087 goto out; 1088 } 1089 1090 out_update_size: 1091 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1092 if (ret < 0) 1093 mlog_errno(ret); 1094 1095 out: 1096 return ret; 1097 } 1098 1099 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) 1100 { 1101 int status = 0, size_change; 1102 struct inode *inode = dentry->d_inode; 1103 struct super_block *sb = inode->i_sb; 1104 struct ocfs2_super *osb = OCFS2_SB(sb); 1105 struct buffer_head *bh = NULL; 1106 handle_t *handle = NULL; 1107 struct dquot *transfer_to[MAXQUOTAS] = { }; 1108 int qtype; 1109 1110 trace_ocfs2_setattr(inode, dentry, 1111 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1112 dentry->d_name.len, dentry->d_name.name, 1113 attr->ia_valid, attr->ia_mode, 1114 from_kuid(&init_user_ns, attr->ia_uid), 1115 from_kgid(&init_user_ns, attr->ia_gid)); 1116 1117 /* ensuring we don't even attempt to truncate a symlink */ 1118 if (S_ISLNK(inode->i_mode)) 1119 attr->ia_valid &= ~ATTR_SIZE; 1120 1121 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1122 | ATTR_GID | ATTR_UID | ATTR_MODE) 1123 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1124 return 0; 1125 1126 status = inode_change_ok(inode, attr); 1127 if (status) 1128 return status; 1129 1130 if (is_quota_modification(inode, attr)) 1131 dquot_initialize(inode); 1132 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1133 if (size_change) { 1134 status = ocfs2_rw_lock(inode, 1); 1135 if (status < 0) { 1136 mlog_errno(status); 1137 goto bail; 1138 } 1139 } 1140 1141 status = ocfs2_inode_lock(inode, &bh, 1); 1142 if (status < 0) { 1143 if (status != -ENOENT) 1144 mlog_errno(status); 1145 goto bail_unlock_rw; 1146 } 1147 1148 if (size_change && attr->ia_size != i_size_read(inode)) { 1149 status = inode_newsize_ok(inode, attr->ia_size); 1150 if (status) 1151 goto bail_unlock; 1152 1153 inode_dio_wait(inode); 1154 1155 if (i_size_read(inode) > attr->ia_size) { 1156 if (ocfs2_should_order_data(inode)) { 1157 status = ocfs2_begin_ordered_truncate(inode, 1158 attr->ia_size); 1159 if (status) 1160 goto bail_unlock; 1161 } 1162 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1163 } else 1164 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1165 if (status < 0) { 1166 if (status != -ENOSPC) 1167 mlog_errno(status); 1168 status = -ENOSPC; 1169 goto bail_unlock; 1170 } 1171 } 1172 1173 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1174 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1175 /* 1176 * Gather pointers to quota structures so that allocation / 1177 * freeing of quota structures happens here and not inside 1178 * dquot_transfer() where we have problems with lock ordering 1179 */ 1180 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1181 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1182 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1183 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1184 if (!transfer_to[USRQUOTA]) { 1185 status = -ESRCH; 1186 goto bail_unlock; 1187 } 1188 } 1189 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1190 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1191 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1192 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1193 if (!transfer_to[GRPQUOTA]) { 1194 status = -ESRCH; 1195 goto bail_unlock; 1196 } 1197 } 1198 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1199 2 * ocfs2_quota_trans_credits(sb)); 1200 if (IS_ERR(handle)) { 1201 status = PTR_ERR(handle); 1202 mlog_errno(status); 1203 goto bail_unlock; 1204 } 1205 status = __dquot_transfer(inode, transfer_to); 1206 if (status < 0) 1207 goto bail_commit; 1208 } else { 1209 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1210 if (IS_ERR(handle)) { 1211 status = PTR_ERR(handle); 1212 mlog_errno(status); 1213 goto bail_unlock; 1214 } 1215 } 1216 1217 setattr_copy(inode, attr); 1218 mark_inode_dirty(inode); 1219 1220 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1221 if (status < 0) 1222 mlog_errno(status); 1223 1224 bail_commit: 1225 ocfs2_commit_trans(osb, handle); 1226 bail_unlock: 1227 ocfs2_inode_unlock(inode, 1); 1228 bail_unlock_rw: 1229 if (size_change) 1230 ocfs2_rw_unlock(inode, 1); 1231 bail: 1232 brelse(bh); 1233 1234 /* Release quota pointers in case we acquired them */ 1235 for (qtype = 0; qtype < MAXQUOTAS; qtype++) 1236 dqput(transfer_to[qtype]); 1237 1238 if (!status && attr->ia_valid & ATTR_MODE) { 1239 status = ocfs2_acl_chmod(inode); 1240 if (status < 0) 1241 mlog_errno(status); 1242 } 1243 1244 return status; 1245 } 1246 1247 int ocfs2_getattr(struct vfsmount *mnt, 1248 struct dentry *dentry, 1249 struct kstat *stat) 1250 { 1251 struct inode *inode = dentry->d_inode; 1252 struct super_block *sb = dentry->d_inode->i_sb; 1253 struct ocfs2_super *osb = sb->s_fs_info; 1254 int err; 1255 1256 err = ocfs2_inode_revalidate(dentry); 1257 if (err) { 1258 if (err != -ENOENT) 1259 mlog_errno(err); 1260 goto bail; 1261 } 1262 1263 generic_fillattr(inode, stat); 1264 1265 /* We set the blksize from the cluster size for performance */ 1266 stat->blksize = osb->s_clustersize; 1267 1268 bail: 1269 return err; 1270 } 1271 1272 int ocfs2_permission(struct inode *inode, int mask) 1273 { 1274 int ret; 1275 1276 if (mask & MAY_NOT_BLOCK) 1277 return -ECHILD; 1278 1279 ret = ocfs2_inode_lock(inode, NULL, 0); 1280 if (ret) { 1281 if (ret != -ENOENT) 1282 mlog_errno(ret); 1283 goto out; 1284 } 1285 1286 ret = generic_permission(inode, mask); 1287 1288 ocfs2_inode_unlock(inode, 0); 1289 out: 1290 return ret; 1291 } 1292 1293 static int __ocfs2_write_remove_suid(struct inode *inode, 1294 struct buffer_head *bh) 1295 { 1296 int ret; 1297 handle_t *handle; 1298 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1299 struct ocfs2_dinode *di; 1300 1301 trace_ocfs2_write_remove_suid( 1302 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1303 inode->i_mode); 1304 1305 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1306 if (IS_ERR(handle)) { 1307 ret = PTR_ERR(handle); 1308 mlog_errno(ret); 1309 goto out; 1310 } 1311 1312 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1313 OCFS2_JOURNAL_ACCESS_WRITE); 1314 if (ret < 0) { 1315 mlog_errno(ret); 1316 goto out_trans; 1317 } 1318 1319 inode->i_mode &= ~S_ISUID; 1320 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1321 inode->i_mode &= ~S_ISGID; 1322 1323 di = (struct ocfs2_dinode *) bh->b_data; 1324 di->i_mode = cpu_to_le16(inode->i_mode); 1325 1326 ocfs2_journal_dirty(handle, bh); 1327 1328 out_trans: 1329 ocfs2_commit_trans(osb, handle); 1330 out: 1331 return ret; 1332 } 1333 1334 /* 1335 * Will look for holes and unwritten extents in the range starting at 1336 * pos for count bytes (inclusive). 1337 */ 1338 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos, 1339 size_t count) 1340 { 1341 int ret = 0; 1342 unsigned int extent_flags; 1343 u32 cpos, clusters, extent_len, phys_cpos; 1344 struct super_block *sb = inode->i_sb; 1345 1346 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 1347 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 1348 1349 while (clusters) { 1350 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 1351 &extent_flags); 1352 if (ret < 0) { 1353 mlog_errno(ret); 1354 goto out; 1355 } 1356 1357 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) { 1358 ret = 1; 1359 break; 1360 } 1361 1362 if (extent_len > clusters) 1363 extent_len = clusters; 1364 1365 clusters -= extent_len; 1366 cpos += extent_len; 1367 } 1368 out: 1369 return ret; 1370 } 1371 1372 static int ocfs2_write_remove_suid(struct inode *inode) 1373 { 1374 int ret; 1375 struct buffer_head *bh = NULL; 1376 1377 ret = ocfs2_read_inode_block(inode, &bh); 1378 if (ret < 0) { 1379 mlog_errno(ret); 1380 goto out; 1381 } 1382 1383 ret = __ocfs2_write_remove_suid(inode, bh); 1384 out: 1385 brelse(bh); 1386 return ret; 1387 } 1388 1389 /* 1390 * Allocate enough extents to cover the region starting at byte offset 1391 * start for len bytes. Existing extents are skipped, any extents 1392 * added are marked as "unwritten". 1393 */ 1394 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1395 u64 start, u64 len) 1396 { 1397 int ret; 1398 u32 cpos, phys_cpos, clusters, alloc_size; 1399 u64 end = start + len; 1400 struct buffer_head *di_bh = NULL; 1401 1402 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1403 ret = ocfs2_read_inode_block(inode, &di_bh); 1404 if (ret) { 1405 mlog_errno(ret); 1406 goto out; 1407 } 1408 1409 /* 1410 * Nothing to do if the requested reservation range 1411 * fits within the inode. 1412 */ 1413 if (ocfs2_size_fits_inline_data(di_bh, end)) 1414 goto out; 1415 1416 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1417 if (ret) { 1418 mlog_errno(ret); 1419 goto out; 1420 } 1421 } 1422 1423 /* 1424 * We consider both start and len to be inclusive. 1425 */ 1426 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1427 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1428 clusters -= cpos; 1429 1430 while (clusters) { 1431 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1432 &alloc_size, NULL); 1433 if (ret) { 1434 mlog_errno(ret); 1435 goto out; 1436 } 1437 1438 /* 1439 * Hole or existing extent len can be arbitrary, so 1440 * cap it to our own allocation request. 1441 */ 1442 if (alloc_size > clusters) 1443 alloc_size = clusters; 1444 1445 if (phys_cpos) { 1446 /* 1447 * We already have an allocation at this 1448 * region so we can safely skip it. 1449 */ 1450 goto next; 1451 } 1452 1453 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1454 if (ret) { 1455 if (ret != -ENOSPC) 1456 mlog_errno(ret); 1457 goto out; 1458 } 1459 1460 next: 1461 cpos += alloc_size; 1462 clusters -= alloc_size; 1463 } 1464 1465 ret = 0; 1466 out: 1467 1468 brelse(di_bh); 1469 return ret; 1470 } 1471 1472 /* 1473 * Truncate a byte range, avoiding pages within partial clusters. This 1474 * preserves those pages for the zeroing code to write to. 1475 */ 1476 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1477 u64 byte_len) 1478 { 1479 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1480 loff_t start, end; 1481 struct address_space *mapping = inode->i_mapping; 1482 1483 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1484 end = byte_start + byte_len; 1485 end = end & ~(osb->s_clustersize - 1); 1486 1487 if (start < end) { 1488 unmap_mapping_range(mapping, start, end - start, 0); 1489 truncate_inode_pages_range(mapping, start, end - 1); 1490 } 1491 } 1492 1493 static int ocfs2_zero_partial_clusters(struct inode *inode, 1494 u64 start, u64 len) 1495 { 1496 int ret = 0; 1497 u64 tmpend, end = start + len; 1498 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1499 unsigned int csize = osb->s_clustersize; 1500 handle_t *handle; 1501 1502 /* 1503 * The "start" and "end" values are NOT necessarily part of 1504 * the range whose allocation is being deleted. Rather, this 1505 * is what the user passed in with the request. We must zero 1506 * partial clusters here. There's no need to worry about 1507 * physical allocation - the zeroing code knows to skip holes. 1508 */ 1509 trace_ocfs2_zero_partial_clusters( 1510 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1511 (unsigned long long)start, (unsigned long long)end); 1512 1513 /* 1514 * If both edges are on a cluster boundary then there's no 1515 * zeroing required as the region is part of the allocation to 1516 * be truncated. 1517 */ 1518 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1519 goto out; 1520 1521 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1522 if (IS_ERR(handle)) { 1523 ret = PTR_ERR(handle); 1524 mlog_errno(ret); 1525 goto out; 1526 } 1527 1528 /* 1529 * We want to get the byte offset of the end of the 1st cluster. 1530 */ 1531 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1)); 1532 if (tmpend > end) 1533 tmpend = end; 1534 1535 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start, 1536 (unsigned long long)tmpend); 1537 1538 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend); 1539 if (ret) 1540 mlog_errno(ret); 1541 1542 if (tmpend < end) { 1543 /* 1544 * This may make start and end equal, but the zeroing 1545 * code will skip any work in that case so there's no 1546 * need to catch it up here. 1547 */ 1548 start = end & ~(osb->s_clustersize - 1); 1549 1550 trace_ocfs2_zero_partial_clusters_range2( 1551 (unsigned long long)start, (unsigned long long)end); 1552 1553 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1554 if (ret) 1555 mlog_errno(ret); 1556 } 1557 1558 ocfs2_commit_trans(osb, handle); 1559 out: 1560 return ret; 1561 } 1562 1563 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1564 { 1565 int i; 1566 struct ocfs2_extent_rec *rec = NULL; 1567 1568 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1569 1570 rec = &el->l_recs[i]; 1571 1572 if (le32_to_cpu(rec->e_cpos) < pos) 1573 break; 1574 } 1575 1576 return i; 1577 } 1578 1579 /* 1580 * Helper to calculate the punching pos and length in one run, we handle the 1581 * following three cases in order: 1582 * 1583 * - remove the entire record 1584 * - remove a partial record 1585 * - no record needs to be removed (hole-punching completed) 1586 */ 1587 static void ocfs2_calc_trunc_pos(struct inode *inode, 1588 struct ocfs2_extent_list *el, 1589 struct ocfs2_extent_rec *rec, 1590 u32 trunc_start, u32 *trunc_cpos, 1591 u32 *trunc_len, u32 *trunc_end, 1592 u64 *blkno, int *done) 1593 { 1594 int ret = 0; 1595 u32 coff, range; 1596 1597 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1598 1599 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1600 /* 1601 * remove an entire extent record. 1602 */ 1603 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1604 /* 1605 * Skip holes if any. 1606 */ 1607 if (range < *trunc_end) 1608 *trunc_end = range; 1609 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1610 *blkno = le64_to_cpu(rec->e_blkno); 1611 *trunc_end = le32_to_cpu(rec->e_cpos); 1612 } else if (range > trunc_start) { 1613 /* 1614 * remove a partial extent record, which means we're 1615 * removing the last extent record. 1616 */ 1617 *trunc_cpos = trunc_start; 1618 /* 1619 * skip hole if any. 1620 */ 1621 if (range < *trunc_end) 1622 *trunc_end = range; 1623 *trunc_len = *trunc_end - trunc_start; 1624 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1625 *blkno = le64_to_cpu(rec->e_blkno) + 1626 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1627 *trunc_end = trunc_start; 1628 } else { 1629 /* 1630 * It may have two following possibilities: 1631 * 1632 * - last record has been removed 1633 * - trunc_start was within a hole 1634 * 1635 * both two cases mean the completion of hole punching. 1636 */ 1637 ret = 1; 1638 } 1639 1640 *done = ret; 1641 } 1642 1643 static int ocfs2_remove_inode_range(struct inode *inode, 1644 struct buffer_head *di_bh, u64 byte_start, 1645 u64 byte_len) 1646 { 1647 int ret = 0, flags = 0, done = 0, i; 1648 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1649 u32 cluster_in_el; 1650 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1651 struct ocfs2_cached_dealloc_ctxt dealloc; 1652 struct address_space *mapping = inode->i_mapping; 1653 struct ocfs2_extent_tree et; 1654 struct ocfs2_path *path = NULL; 1655 struct ocfs2_extent_list *el = NULL; 1656 struct ocfs2_extent_rec *rec = NULL; 1657 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1658 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1659 1660 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1661 ocfs2_init_dealloc_ctxt(&dealloc); 1662 1663 trace_ocfs2_remove_inode_range( 1664 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1665 (unsigned long long)byte_start, 1666 (unsigned long long)byte_len); 1667 1668 if (byte_len == 0) 1669 return 0; 1670 1671 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1672 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1673 byte_start + byte_len, 0); 1674 if (ret) { 1675 mlog_errno(ret); 1676 goto out; 1677 } 1678 /* 1679 * There's no need to get fancy with the page cache 1680 * truncate of an inline-data inode. We're talking 1681 * about less than a page here, which will be cached 1682 * in the dinode buffer anyway. 1683 */ 1684 unmap_mapping_range(mapping, 0, 0, 0); 1685 truncate_inode_pages(mapping, 0); 1686 goto out; 1687 } 1688 1689 /* 1690 * For reflinks, we may need to CoW 2 clusters which might be 1691 * partially zero'd later, if hole's start and end offset were 1692 * within one cluster(means is not exactly aligned to clustersize). 1693 */ 1694 1695 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) { 1696 1697 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1698 if (ret) { 1699 mlog_errno(ret); 1700 goto out; 1701 } 1702 1703 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1704 if (ret) { 1705 mlog_errno(ret); 1706 goto out; 1707 } 1708 } 1709 1710 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1711 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1712 cluster_in_el = trunc_end; 1713 1714 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1715 if (ret) { 1716 mlog_errno(ret); 1717 goto out; 1718 } 1719 1720 path = ocfs2_new_path_from_et(&et); 1721 if (!path) { 1722 ret = -ENOMEM; 1723 mlog_errno(ret); 1724 goto out; 1725 } 1726 1727 while (trunc_end > trunc_start) { 1728 1729 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1730 cluster_in_el); 1731 if (ret) { 1732 mlog_errno(ret); 1733 goto out; 1734 } 1735 1736 el = path_leaf_el(path); 1737 1738 i = ocfs2_find_rec(el, trunc_end); 1739 /* 1740 * Need to go to previous extent block. 1741 */ 1742 if (i < 0) { 1743 if (path->p_tree_depth == 0) 1744 break; 1745 1746 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1747 path, 1748 &cluster_in_el); 1749 if (ret) { 1750 mlog_errno(ret); 1751 goto out; 1752 } 1753 1754 /* 1755 * We've reached the leftmost extent block, 1756 * it's safe to leave. 1757 */ 1758 if (cluster_in_el == 0) 1759 break; 1760 1761 /* 1762 * The 'pos' searched for previous extent block is 1763 * always one cluster less than actual trunc_end. 1764 */ 1765 trunc_end = cluster_in_el + 1; 1766 1767 ocfs2_reinit_path(path, 1); 1768 1769 continue; 1770 1771 } else 1772 rec = &el->l_recs[i]; 1773 1774 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1775 &trunc_len, &trunc_end, &blkno, &done); 1776 if (done) 1777 break; 1778 1779 flags = rec->e_flags; 1780 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1781 1782 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1783 phys_cpos, trunc_len, flags, 1784 &dealloc, refcount_loc); 1785 if (ret < 0) { 1786 mlog_errno(ret); 1787 goto out; 1788 } 1789 1790 cluster_in_el = trunc_end; 1791 1792 ocfs2_reinit_path(path, 1); 1793 } 1794 1795 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1796 1797 out: 1798 ocfs2_free_path(path); 1799 ocfs2_schedule_truncate_log_flush(osb, 1); 1800 ocfs2_run_deallocs(osb, &dealloc); 1801 1802 return ret; 1803 } 1804 1805 /* 1806 * Parts of this function taken from xfs_change_file_space() 1807 */ 1808 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1809 loff_t f_pos, unsigned int cmd, 1810 struct ocfs2_space_resv *sr, 1811 int change_size) 1812 { 1813 int ret; 1814 s64 llen; 1815 loff_t size; 1816 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1817 struct buffer_head *di_bh = NULL; 1818 handle_t *handle; 1819 unsigned long long max_off = inode->i_sb->s_maxbytes; 1820 1821 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1822 return -EROFS; 1823 1824 mutex_lock(&inode->i_mutex); 1825 1826 /* 1827 * This prevents concurrent writes on other nodes 1828 */ 1829 ret = ocfs2_rw_lock(inode, 1); 1830 if (ret) { 1831 mlog_errno(ret); 1832 goto out; 1833 } 1834 1835 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1836 if (ret) { 1837 mlog_errno(ret); 1838 goto out_rw_unlock; 1839 } 1840 1841 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1842 ret = -EPERM; 1843 goto out_inode_unlock; 1844 } 1845 1846 switch (sr->l_whence) { 1847 case 0: /*SEEK_SET*/ 1848 break; 1849 case 1: /*SEEK_CUR*/ 1850 sr->l_start += f_pos; 1851 break; 1852 case 2: /*SEEK_END*/ 1853 sr->l_start += i_size_read(inode); 1854 break; 1855 default: 1856 ret = -EINVAL; 1857 goto out_inode_unlock; 1858 } 1859 sr->l_whence = 0; 1860 1861 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1862 1863 if (sr->l_start < 0 1864 || sr->l_start > max_off 1865 || (sr->l_start + llen) < 0 1866 || (sr->l_start + llen) > max_off) { 1867 ret = -EINVAL; 1868 goto out_inode_unlock; 1869 } 1870 size = sr->l_start + sr->l_len; 1871 1872 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) { 1873 if (sr->l_len <= 0) { 1874 ret = -EINVAL; 1875 goto out_inode_unlock; 1876 } 1877 } 1878 1879 if (file && should_remove_suid(file->f_path.dentry)) { 1880 ret = __ocfs2_write_remove_suid(inode, di_bh); 1881 if (ret) { 1882 mlog_errno(ret); 1883 goto out_inode_unlock; 1884 } 1885 } 1886 1887 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1888 switch (cmd) { 1889 case OCFS2_IOC_RESVSP: 1890 case OCFS2_IOC_RESVSP64: 1891 /* 1892 * This takes unsigned offsets, but the signed ones we 1893 * pass have been checked against overflow above. 1894 */ 1895 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1896 sr->l_len); 1897 break; 1898 case OCFS2_IOC_UNRESVSP: 1899 case OCFS2_IOC_UNRESVSP64: 1900 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1901 sr->l_len); 1902 break; 1903 default: 1904 ret = -EINVAL; 1905 } 1906 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1907 if (ret) { 1908 mlog_errno(ret); 1909 goto out_inode_unlock; 1910 } 1911 1912 /* 1913 * We update c/mtime for these changes 1914 */ 1915 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1916 if (IS_ERR(handle)) { 1917 ret = PTR_ERR(handle); 1918 mlog_errno(ret); 1919 goto out_inode_unlock; 1920 } 1921 1922 if (change_size && i_size_read(inode) < size) 1923 i_size_write(inode, size); 1924 1925 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 1926 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1927 if (ret < 0) 1928 mlog_errno(ret); 1929 1930 if (file && (file->f_flags & O_SYNC)) 1931 handle->h_sync = 1; 1932 1933 ocfs2_commit_trans(osb, handle); 1934 1935 out_inode_unlock: 1936 brelse(di_bh); 1937 ocfs2_inode_unlock(inode, 1); 1938 out_rw_unlock: 1939 ocfs2_rw_unlock(inode, 1); 1940 1941 out: 1942 mutex_unlock(&inode->i_mutex); 1943 return ret; 1944 } 1945 1946 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 1947 struct ocfs2_space_resv *sr) 1948 { 1949 struct inode *inode = file_inode(file); 1950 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1951 int ret; 1952 1953 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 1954 !ocfs2_writes_unwritten_extents(osb)) 1955 return -ENOTTY; 1956 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 1957 !ocfs2_sparse_alloc(osb)) 1958 return -ENOTTY; 1959 1960 if (!S_ISREG(inode->i_mode)) 1961 return -EINVAL; 1962 1963 if (!(file->f_mode & FMODE_WRITE)) 1964 return -EBADF; 1965 1966 ret = mnt_want_write_file(file); 1967 if (ret) 1968 return ret; 1969 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 1970 mnt_drop_write_file(file); 1971 return ret; 1972 } 1973 1974 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 1975 loff_t len) 1976 { 1977 struct inode *inode = file_inode(file); 1978 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1979 struct ocfs2_space_resv sr; 1980 int change_size = 1; 1981 int cmd = OCFS2_IOC_RESVSP64; 1982 1983 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 1984 return -EOPNOTSUPP; 1985 if (!ocfs2_writes_unwritten_extents(osb)) 1986 return -EOPNOTSUPP; 1987 1988 if (mode & FALLOC_FL_KEEP_SIZE) 1989 change_size = 0; 1990 1991 if (mode & FALLOC_FL_PUNCH_HOLE) 1992 cmd = OCFS2_IOC_UNRESVSP64; 1993 1994 sr.l_whence = 0; 1995 sr.l_start = (s64)offset; 1996 sr.l_len = (s64)len; 1997 1998 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 1999 change_size); 2000 } 2001 2002 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2003 size_t count) 2004 { 2005 int ret = 0; 2006 unsigned int extent_flags; 2007 u32 cpos, clusters, extent_len, phys_cpos; 2008 struct super_block *sb = inode->i_sb; 2009 2010 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2011 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) || 2012 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2013 return 0; 2014 2015 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2016 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2017 2018 while (clusters) { 2019 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2020 &extent_flags); 2021 if (ret < 0) { 2022 mlog_errno(ret); 2023 goto out; 2024 } 2025 2026 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2027 ret = 1; 2028 break; 2029 } 2030 2031 if (extent_len > clusters) 2032 extent_len = clusters; 2033 2034 clusters -= extent_len; 2035 cpos += extent_len; 2036 } 2037 out: 2038 return ret; 2039 } 2040 2041 static void ocfs2_aiodio_wait(struct inode *inode) 2042 { 2043 wait_queue_head_t *wq = ocfs2_ioend_wq(inode); 2044 2045 wait_event(*wq, (atomic_read(&OCFS2_I(inode)->ip_unaligned_aio) == 0)); 2046 } 2047 2048 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2049 { 2050 int blockmask = inode->i_sb->s_blocksize - 1; 2051 loff_t final_size = pos + count; 2052 2053 if ((pos & blockmask) || (final_size & blockmask)) 2054 return 1; 2055 return 0; 2056 } 2057 2058 static int ocfs2_prepare_inode_for_refcount(struct inode *inode, 2059 struct file *file, 2060 loff_t pos, size_t count, 2061 int *meta_level) 2062 { 2063 int ret; 2064 struct buffer_head *di_bh = NULL; 2065 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2066 u32 clusters = 2067 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2068 2069 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2070 if (ret) { 2071 mlog_errno(ret); 2072 goto out; 2073 } 2074 2075 *meta_level = 1; 2076 2077 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2078 if (ret) 2079 mlog_errno(ret); 2080 out: 2081 brelse(di_bh); 2082 return ret; 2083 } 2084 2085 static int ocfs2_prepare_inode_for_write(struct file *file, 2086 loff_t *ppos, 2087 size_t count, 2088 int appending, 2089 int *direct_io, 2090 int *has_refcount) 2091 { 2092 int ret = 0, meta_level = 0; 2093 struct dentry *dentry = file->f_path.dentry; 2094 struct inode *inode = dentry->d_inode; 2095 loff_t saved_pos = 0, end; 2096 2097 /* 2098 * We start with a read level meta lock and only jump to an ex 2099 * if we need to make modifications here. 2100 */ 2101 for(;;) { 2102 ret = ocfs2_inode_lock(inode, NULL, meta_level); 2103 if (ret < 0) { 2104 meta_level = -1; 2105 mlog_errno(ret); 2106 goto out; 2107 } 2108 2109 /* Clear suid / sgid if necessary. We do this here 2110 * instead of later in the write path because 2111 * remove_suid() calls ->setattr without any hint that 2112 * we may have already done our cluster locking. Since 2113 * ocfs2_setattr() *must* take cluster locks to 2114 * proceed, this will lead us to recursively lock the 2115 * inode. There's also the dinode i_size state which 2116 * can be lost via setattr during extending writes (we 2117 * set inode->i_size at the end of a write. */ 2118 if (should_remove_suid(dentry)) { 2119 if (meta_level == 0) { 2120 ocfs2_inode_unlock(inode, meta_level); 2121 meta_level = 1; 2122 continue; 2123 } 2124 2125 ret = ocfs2_write_remove_suid(inode); 2126 if (ret < 0) { 2127 mlog_errno(ret); 2128 goto out_unlock; 2129 } 2130 } 2131 2132 /* work on a copy of ppos until we're sure that we won't have 2133 * to recalculate it due to relocking. */ 2134 if (appending) 2135 saved_pos = i_size_read(inode); 2136 else 2137 saved_pos = *ppos; 2138 2139 end = saved_pos + count; 2140 2141 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count); 2142 if (ret == 1) { 2143 ocfs2_inode_unlock(inode, meta_level); 2144 meta_level = -1; 2145 2146 ret = ocfs2_prepare_inode_for_refcount(inode, 2147 file, 2148 saved_pos, 2149 count, 2150 &meta_level); 2151 if (has_refcount) 2152 *has_refcount = 1; 2153 if (direct_io) 2154 *direct_io = 0; 2155 } 2156 2157 if (ret < 0) { 2158 mlog_errno(ret); 2159 goto out_unlock; 2160 } 2161 2162 /* 2163 * Skip the O_DIRECT checks if we don't need 2164 * them. 2165 */ 2166 if (!direct_io || !(*direct_io)) 2167 break; 2168 2169 /* 2170 * There's no sane way to do direct writes to an inode 2171 * with inline data. 2172 */ 2173 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2174 *direct_io = 0; 2175 break; 2176 } 2177 2178 /* 2179 * Allowing concurrent direct writes means 2180 * i_size changes wouldn't be synchronized, so 2181 * one node could wind up truncating another 2182 * nodes writes. 2183 */ 2184 if (end > i_size_read(inode)) { 2185 *direct_io = 0; 2186 break; 2187 } 2188 2189 /* 2190 * We don't fill holes during direct io, so 2191 * check for them here. If any are found, the 2192 * caller will have to retake some cluster 2193 * locks and initiate the io as buffered. 2194 */ 2195 ret = ocfs2_check_range_for_holes(inode, saved_pos, count); 2196 if (ret == 1) { 2197 *direct_io = 0; 2198 ret = 0; 2199 } else if (ret < 0) 2200 mlog_errno(ret); 2201 break; 2202 } 2203 2204 if (appending) 2205 *ppos = saved_pos; 2206 2207 out_unlock: 2208 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2209 saved_pos, appending, count, 2210 direct_io, has_refcount); 2211 2212 if (meta_level >= 0) 2213 ocfs2_inode_unlock(inode, meta_level); 2214 2215 out: 2216 return ret; 2217 } 2218 2219 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb, 2220 const struct iovec *iov, 2221 unsigned long nr_segs, 2222 loff_t pos) 2223 { 2224 int ret, direct_io, appending, rw_level, have_alloc_sem = 0; 2225 int can_do_direct, has_refcount = 0; 2226 ssize_t written = 0; 2227 size_t ocount; /* original count */ 2228 size_t count; /* after file limit checks */ 2229 loff_t old_size, *ppos = &iocb->ki_pos; 2230 u32 old_clusters; 2231 struct file *file = iocb->ki_filp; 2232 struct inode *inode = file_inode(file); 2233 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2234 int full_coherency = !(osb->s_mount_opt & 2235 OCFS2_MOUNT_COHERENCY_BUFFERED); 2236 int unaligned_dio = 0; 2237 2238 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry, 2239 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2240 file->f_path.dentry->d_name.len, 2241 file->f_path.dentry->d_name.name, 2242 (unsigned int)nr_segs); 2243 2244 if (iocb->ki_nbytes == 0) 2245 return 0; 2246 2247 appending = file->f_flags & O_APPEND ? 1 : 0; 2248 direct_io = file->f_flags & O_DIRECT ? 1 : 0; 2249 2250 mutex_lock(&inode->i_mutex); 2251 2252 ocfs2_iocb_clear_sem_locked(iocb); 2253 2254 relock: 2255 /* to match setattr's i_mutex -> rw_lock ordering */ 2256 if (direct_io) { 2257 have_alloc_sem = 1; 2258 /* communicate with ocfs2_dio_end_io */ 2259 ocfs2_iocb_set_sem_locked(iocb); 2260 } 2261 2262 /* 2263 * Concurrent O_DIRECT writes are allowed with 2264 * mount_option "coherency=buffered". 2265 */ 2266 rw_level = (!direct_io || full_coherency); 2267 2268 ret = ocfs2_rw_lock(inode, rw_level); 2269 if (ret < 0) { 2270 mlog_errno(ret); 2271 goto out_sems; 2272 } 2273 2274 /* 2275 * O_DIRECT writes with "coherency=full" need to take EX cluster 2276 * inode_lock to guarantee coherency. 2277 */ 2278 if (direct_io && full_coherency) { 2279 /* 2280 * We need to take and drop the inode lock to force 2281 * other nodes to drop their caches. Buffered I/O 2282 * already does this in write_begin(). 2283 */ 2284 ret = ocfs2_inode_lock(inode, NULL, 1); 2285 if (ret < 0) { 2286 mlog_errno(ret); 2287 goto out; 2288 } 2289 2290 ocfs2_inode_unlock(inode, 1); 2291 } 2292 2293 can_do_direct = direct_io; 2294 ret = ocfs2_prepare_inode_for_write(file, ppos, 2295 iocb->ki_nbytes, appending, 2296 &can_do_direct, &has_refcount); 2297 if (ret < 0) { 2298 mlog_errno(ret); 2299 goto out; 2300 } 2301 2302 if (direct_io && !is_sync_kiocb(iocb)) 2303 unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_nbytes, 2304 *ppos); 2305 2306 /* 2307 * We can't complete the direct I/O as requested, fall back to 2308 * buffered I/O. 2309 */ 2310 if (direct_io && !can_do_direct) { 2311 ocfs2_rw_unlock(inode, rw_level); 2312 2313 have_alloc_sem = 0; 2314 rw_level = -1; 2315 2316 direct_io = 0; 2317 goto relock; 2318 } 2319 2320 if (unaligned_dio) { 2321 /* 2322 * Wait on previous unaligned aio to complete before 2323 * proceeding. 2324 */ 2325 ocfs2_aiodio_wait(inode); 2326 2327 /* Mark the iocb as needing a decrement in ocfs2_dio_end_io */ 2328 atomic_inc(&OCFS2_I(inode)->ip_unaligned_aio); 2329 ocfs2_iocb_set_unaligned_aio(iocb); 2330 } 2331 2332 /* 2333 * To later detect whether a journal commit for sync writes is 2334 * necessary, we sample i_size, and cluster count here. 2335 */ 2336 old_size = i_size_read(inode); 2337 old_clusters = OCFS2_I(inode)->ip_clusters; 2338 2339 /* communicate with ocfs2_dio_end_io */ 2340 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2341 2342 ret = generic_segment_checks(iov, &nr_segs, &ocount, 2343 VERIFY_READ); 2344 if (ret) 2345 goto out_dio; 2346 2347 count = ocount; 2348 ret = generic_write_checks(file, ppos, &count, 2349 S_ISBLK(inode->i_mode)); 2350 if (ret) 2351 goto out_dio; 2352 2353 if (direct_io) { 2354 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos, 2355 ppos, count, ocount); 2356 if (written < 0) { 2357 ret = written; 2358 goto out_dio; 2359 } 2360 } else { 2361 current->backing_dev_info = file->f_mapping->backing_dev_info; 2362 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos, 2363 ppos, count, 0); 2364 current->backing_dev_info = NULL; 2365 } 2366 2367 out_dio: 2368 /* buffered aio wouldn't have proper lock coverage today */ 2369 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT)); 2370 2371 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) || 2372 ((file->f_flags & O_DIRECT) && !direct_io)) { 2373 ret = filemap_fdatawrite_range(file->f_mapping, pos, 2374 pos + count - 1); 2375 if (ret < 0) 2376 written = ret; 2377 2378 if (!ret && ((old_size != i_size_read(inode)) || 2379 (old_clusters != OCFS2_I(inode)->ip_clusters) || 2380 has_refcount)) { 2381 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2382 if (ret < 0) 2383 written = ret; 2384 } 2385 2386 if (!ret) 2387 ret = filemap_fdatawait_range(file->f_mapping, pos, 2388 pos + count - 1); 2389 } 2390 2391 /* 2392 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2393 * function pointer which is called when o_direct io completes so that 2394 * it can unlock our rw lock. 2395 * Unfortunately there are error cases which call end_io and others 2396 * that don't. so we don't have to unlock the rw_lock if either an 2397 * async dio is going to do it in the future or an end_io after an 2398 * error has already done it. 2399 */ 2400 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2401 rw_level = -1; 2402 have_alloc_sem = 0; 2403 unaligned_dio = 0; 2404 } 2405 2406 if (unaligned_dio) { 2407 ocfs2_iocb_clear_unaligned_aio(iocb); 2408 atomic_dec(&OCFS2_I(inode)->ip_unaligned_aio); 2409 } 2410 2411 out: 2412 if (rw_level != -1) 2413 ocfs2_rw_unlock(inode, rw_level); 2414 2415 out_sems: 2416 if (have_alloc_sem) 2417 ocfs2_iocb_clear_sem_locked(iocb); 2418 2419 mutex_unlock(&inode->i_mutex); 2420 2421 if (written) 2422 ret = written; 2423 return ret; 2424 } 2425 2426 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe, 2427 struct file *out, 2428 struct splice_desc *sd) 2429 { 2430 int ret; 2431 2432 ret = ocfs2_prepare_inode_for_write(out, &sd->pos, 2433 sd->total_len, 0, NULL, NULL); 2434 if (ret < 0) { 2435 mlog_errno(ret); 2436 return ret; 2437 } 2438 2439 return splice_from_pipe_feed(pipe, sd, pipe_to_file); 2440 } 2441 2442 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe, 2443 struct file *out, 2444 loff_t *ppos, 2445 size_t len, 2446 unsigned int flags) 2447 { 2448 int ret; 2449 struct address_space *mapping = out->f_mapping; 2450 struct inode *inode = mapping->host; 2451 struct splice_desc sd = { 2452 .total_len = len, 2453 .flags = flags, 2454 .pos = *ppos, 2455 .u.file = out, 2456 }; 2457 2458 2459 trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry, 2460 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2461 out->f_path.dentry->d_name.len, 2462 out->f_path.dentry->d_name.name, len); 2463 2464 pipe_lock(pipe); 2465 2466 splice_from_pipe_begin(&sd); 2467 do { 2468 ret = splice_from_pipe_next(pipe, &sd); 2469 if (ret <= 0) 2470 break; 2471 2472 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2473 ret = ocfs2_rw_lock(inode, 1); 2474 if (ret < 0) 2475 mlog_errno(ret); 2476 else { 2477 ret = ocfs2_splice_to_file(pipe, out, &sd); 2478 ocfs2_rw_unlock(inode, 1); 2479 } 2480 mutex_unlock(&inode->i_mutex); 2481 } while (ret > 0); 2482 splice_from_pipe_end(pipe, &sd); 2483 2484 pipe_unlock(pipe); 2485 2486 if (sd.num_spliced) 2487 ret = sd.num_spliced; 2488 2489 if (ret > 0) { 2490 int err; 2491 2492 err = generic_write_sync(out, *ppos, ret); 2493 if (err) 2494 ret = err; 2495 else 2496 *ppos += ret; 2497 2498 balance_dirty_pages_ratelimited(mapping); 2499 } 2500 2501 return ret; 2502 } 2503 2504 static ssize_t ocfs2_file_splice_read(struct file *in, 2505 loff_t *ppos, 2506 struct pipe_inode_info *pipe, 2507 size_t len, 2508 unsigned int flags) 2509 { 2510 int ret = 0, lock_level = 0; 2511 struct inode *inode = file_inode(in); 2512 2513 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, 2514 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2515 in->f_path.dentry->d_name.len, 2516 in->f_path.dentry->d_name.name, len); 2517 2518 /* 2519 * See the comment in ocfs2_file_aio_read() 2520 */ 2521 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level); 2522 if (ret < 0) { 2523 mlog_errno(ret); 2524 goto bail; 2525 } 2526 ocfs2_inode_unlock(inode, lock_level); 2527 2528 ret = generic_file_splice_read(in, ppos, pipe, len, flags); 2529 2530 bail: 2531 return ret; 2532 } 2533 2534 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb, 2535 const struct iovec *iov, 2536 unsigned long nr_segs, 2537 loff_t pos) 2538 { 2539 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0; 2540 struct file *filp = iocb->ki_filp; 2541 struct inode *inode = file_inode(filp); 2542 2543 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry, 2544 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2545 filp->f_path.dentry->d_name.len, 2546 filp->f_path.dentry->d_name.name, nr_segs); 2547 2548 2549 if (!inode) { 2550 ret = -EINVAL; 2551 mlog_errno(ret); 2552 goto bail; 2553 } 2554 2555 ocfs2_iocb_clear_sem_locked(iocb); 2556 2557 /* 2558 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2559 * need locks to protect pending reads from racing with truncate. 2560 */ 2561 if (filp->f_flags & O_DIRECT) { 2562 have_alloc_sem = 1; 2563 ocfs2_iocb_set_sem_locked(iocb); 2564 2565 ret = ocfs2_rw_lock(inode, 0); 2566 if (ret < 0) { 2567 mlog_errno(ret); 2568 goto bail; 2569 } 2570 rw_level = 0; 2571 /* communicate with ocfs2_dio_end_io */ 2572 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2573 } 2574 2575 /* 2576 * We're fine letting folks race truncates and extending 2577 * writes with read across the cluster, just like they can 2578 * locally. Hence no rw_lock during read. 2579 * 2580 * Take and drop the meta data lock to update inode fields 2581 * like i_size. This allows the checks down below 2582 * generic_file_aio_read() a chance of actually working. 2583 */ 2584 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level); 2585 if (ret < 0) { 2586 mlog_errno(ret); 2587 goto bail; 2588 } 2589 ocfs2_inode_unlock(inode, lock_level); 2590 2591 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos); 2592 trace_generic_file_aio_read_ret(ret); 2593 2594 /* buffered aio wouldn't have proper lock coverage today */ 2595 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT)); 2596 2597 /* see ocfs2_file_aio_write */ 2598 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2599 rw_level = -1; 2600 have_alloc_sem = 0; 2601 } 2602 2603 bail: 2604 if (have_alloc_sem) 2605 ocfs2_iocb_clear_sem_locked(iocb); 2606 2607 if (rw_level != -1) 2608 ocfs2_rw_unlock(inode, rw_level); 2609 2610 return ret; 2611 } 2612 2613 /* Refer generic_file_llseek_unlocked() */ 2614 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2615 { 2616 struct inode *inode = file->f_mapping->host; 2617 int ret = 0; 2618 2619 mutex_lock(&inode->i_mutex); 2620 2621 switch (whence) { 2622 case SEEK_SET: 2623 break; 2624 case SEEK_END: 2625 offset += inode->i_size; 2626 break; 2627 case SEEK_CUR: 2628 if (offset == 0) { 2629 offset = file->f_pos; 2630 goto out; 2631 } 2632 offset += file->f_pos; 2633 break; 2634 case SEEK_DATA: 2635 case SEEK_HOLE: 2636 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2637 if (ret) 2638 goto out; 2639 break; 2640 default: 2641 ret = -EINVAL; 2642 goto out; 2643 } 2644 2645 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2646 2647 out: 2648 mutex_unlock(&inode->i_mutex); 2649 if (ret) 2650 return ret; 2651 return offset; 2652 } 2653 2654 const struct inode_operations ocfs2_file_iops = { 2655 .setattr = ocfs2_setattr, 2656 .getattr = ocfs2_getattr, 2657 .permission = ocfs2_permission, 2658 .setxattr = generic_setxattr, 2659 .getxattr = generic_getxattr, 2660 .listxattr = ocfs2_listxattr, 2661 .removexattr = generic_removexattr, 2662 .fiemap = ocfs2_fiemap, 2663 .get_acl = ocfs2_iop_get_acl, 2664 }; 2665 2666 const struct inode_operations ocfs2_special_file_iops = { 2667 .setattr = ocfs2_setattr, 2668 .getattr = ocfs2_getattr, 2669 .permission = ocfs2_permission, 2670 .get_acl = ocfs2_iop_get_acl, 2671 }; 2672 2673 /* 2674 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2675 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2676 */ 2677 const struct file_operations ocfs2_fops = { 2678 .llseek = ocfs2_file_llseek, 2679 .read = do_sync_read, 2680 .write = do_sync_write, 2681 .mmap = ocfs2_mmap, 2682 .fsync = ocfs2_sync_file, 2683 .release = ocfs2_file_release, 2684 .open = ocfs2_file_open, 2685 .aio_read = ocfs2_file_aio_read, 2686 .aio_write = ocfs2_file_aio_write, 2687 .unlocked_ioctl = ocfs2_ioctl, 2688 #ifdef CONFIG_COMPAT 2689 .compat_ioctl = ocfs2_compat_ioctl, 2690 #endif 2691 .lock = ocfs2_lock, 2692 .flock = ocfs2_flock, 2693 .splice_read = ocfs2_file_splice_read, 2694 .splice_write = ocfs2_file_splice_write, 2695 .fallocate = ocfs2_fallocate, 2696 }; 2697 2698 const struct file_operations ocfs2_dops = { 2699 .llseek = generic_file_llseek, 2700 .read = generic_read_dir, 2701 .iterate = ocfs2_readdir, 2702 .fsync = ocfs2_sync_file, 2703 .release = ocfs2_dir_release, 2704 .open = ocfs2_dir_open, 2705 .unlocked_ioctl = ocfs2_ioctl, 2706 #ifdef CONFIG_COMPAT 2707 .compat_ioctl = ocfs2_compat_ioctl, 2708 #endif 2709 .lock = ocfs2_lock, 2710 .flock = ocfs2_flock, 2711 }; 2712 2713 /* 2714 * POSIX-lockless variants of our file_operations. 2715 * 2716 * These will be used if the underlying cluster stack does not support 2717 * posix file locking, if the user passes the "localflocks" mount 2718 * option, or if we have a local-only fs. 2719 * 2720 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2721 * so we still want it in the case of no stack support for 2722 * plocks. Internally, it will do the right thing when asked to ignore 2723 * the cluster. 2724 */ 2725 const struct file_operations ocfs2_fops_no_plocks = { 2726 .llseek = ocfs2_file_llseek, 2727 .read = do_sync_read, 2728 .write = do_sync_write, 2729 .mmap = ocfs2_mmap, 2730 .fsync = ocfs2_sync_file, 2731 .release = ocfs2_file_release, 2732 .open = ocfs2_file_open, 2733 .aio_read = ocfs2_file_aio_read, 2734 .aio_write = ocfs2_file_aio_write, 2735 .unlocked_ioctl = ocfs2_ioctl, 2736 #ifdef CONFIG_COMPAT 2737 .compat_ioctl = ocfs2_compat_ioctl, 2738 #endif 2739 .flock = ocfs2_flock, 2740 .splice_read = ocfs2_file_splice_read, 2741 .splice_write = ocfs2_file_splice_write, 2742 .fallocate = ocfs2_fallocate, 2743 }; 2744 2745 const struct file_operations ocfs2_dops_no_plocks = { 2746 .llseek = generic_file_llseek, 2747 .read = generic_read_dir, 2748 .iterate = ocfs2_readdir, 2749 .fsync = ocfs2_sync_file, 2750 .release = ocfs2_dir_release, 2751 .open = ocfs2_dir_open, 2752 .unlocked_ioctl = ocfs2_ioctl, 2753 #ifdef CONFIG_COMPAT 2754 .compat_ioctl = ocfs2_compat_ioctl, 2755 #endif 2756 .flock = ocfs2_flock, 2757 }; 2758