1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * file.c 4 * 5 * File open, close, extend, truncate 6 * 7 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/capability.h> 11 #include <linux/fs.h> 12 #include <linux/types.h> 13 #include <linux/slab.h> 14 #include <linux/highmem.h> 15 #include <linux/pagemap.h> 16 #include <linux/uio.h> 17 #include <linux/sched.h> 18 #include <linux/splice.h> 19 #include <linux/mount.h> 20 #include <linux/writeback.h> 21 #include <linux/falloc.h> 22 #include <linux/quotaops.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 26 #include <cluster/masklog.h> 27 28 #include "ocfs2.h" 29 30 #include "alloc.h" 31 #include "aops.h" 32 #include "dir.h" 33 #include "dlmglue.h" 34 #include "extent_map.h" 35 #include "file.h" 36 #include "sysfile.h" 37 #include "inode.h" 38 #include "ioctl.h" 39 #include "journal.h" 40 #include "locks.h" 41 #include "mmap.h" 42 #include "suballoc.h" 43 #include "super.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "quota.h" 47 #include "refcounttree.h" 48 #include "ocfs2_trace.h" 49 50 #include "buffer_head_io.h" 51 52 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 53 { 54 struct ocfs2_file_private *fp; 55 56 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 57 if (!fp) 58 return -ENOMEM; 59 60 fp->fp_file = file; 61 mutex_init(&fp->fp_mutex); 62 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 63 file->private_data = fp; 64 65 return 0; 66 } 67 68 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 69 { 70 struct ocfs2_file_private *fp = file->private_data; 71 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 72 73 if (fp) { 74 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 75 ocfs2_lock_res_free(&fp->fp_flock); 76 kfree(fp); 77 file->private_data = NULL; 78 } 79 } 80 81 static int ocfs2_file_open(struct inode *inode, struct file *file) 82 { 83 int status; 84 int mode = file->f_flags; 85 struct ocfs2_inode_info *oi = OCFS2_I(inode); 86 87 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 88 (unsigned long long)oi->ip_blkno, 89 file->f_path.dentry->d_name.len, 90 file->f_path.dentry->d_name.name, mode); 91 92 if (file->f_mode & FMODE_WRITE) { 93 status = dquot_initialize(inode); 94 if (status) 95 goto leave; 96 } 97 98 spin_lock(&oi->ip_lock); 99 100 /* Check that the inode hasn't been wiped from disk by another 101 * node. If it hasn't then we're safe as long as we hold the 102 * spin lock until our increment of open count. */ 103 if (oi->ip_flags & OCFS2_INODE_DELETED) { 104 spin_unlock(&oi->ip_lock); 105 106 status = -ENOENT; 107 goto leave; 108 } 109 110 if (mode & O_DIRECT) 111 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 112 113 oi->ip_open_count++; 114 spin_unlock(&oi->ip_lock); 115 116 status = ocfs2_init_file_private(inode, file); 117 if (status) { 118 /* 119 * We want to set open count back if we're failing the 120 * open. 121 */ 122 spin_lock(&oi->ip_lock); 123 oi->ip_open_count--; 124 spin_unlock(&oi->ip_lock); 125 } 126 127 file->f_mode |= FMODE_NOWAIT; 128 129 leave: 130 return status; 131 } 132 133 static int ocfs2_file_release(struct inode *inode, struct file *file) 134 { 135 struct ocfs2_inode_info *oi = OCFS2_I(inode); 136 137 spin_lock(&oi->ip_lock); 138 if (!--oi->ip_open_count) 139 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 140 141 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 142 oi->ip_blkno, 143 file->f_path.dentry->d_name.len, 144 file->f_path.dentry->d_name.name, 145 oi->ip_open_count); 146 spin_unlock(&oi->ip_lock); 147 148 ocfs2_free_file_private(inode, file); 149 150 return 0; 151 } 152 153 static int ocfs2_dir_open(struct inode *inode, struct file *file) 154 { 155 return ocfs2_init_file_private(inode, file); 156 } 157 158 static int ocfs2_dir_release(struct inode *inode, struct file *file) 159 { 160 ocfs2_free_file_private(inode, file); 161 return 0; 162 } 163 164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 165 int datasync) 166 { 167 int err = 0; 168 struct inode *inode = file->f_mapping->host; 169 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 170 struct ocfs2_inode_info *oi = OCFS2_I(inode); 171 journal_t *journal = osb->journal->j_journal; 172 int ret; 173 tid_t commit_tid; 174 bool needs_barrier = false; 175 176 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 177 oi->ip_blkno, 178 file->f_path.dentry->d_name.len, 179 file->f_path.dentry->d_name.name, 180 (unsigned long long)datasync); 181 182 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 183 return -EROFS; 184 185 err = file_write_and_wait_range(file, start, end); 186 if (err) 187 return err; 188 189 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 190 if (journal->j_flags & JBD2_BARRIER && 191 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 192 needs_barrier = true; 193 err = jbd2_complete_transaction(journal, commit_tid); 194 if (needs_barrier) { 195 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 196 if (!err) 197 err = ret; 198 } 199 200 if (err) 201 mlog_errno(err); 202 203 return (err < 0) ? -EIO : 0; 204 } 205 206 int ocfs2_should_update_atime(struct inode *inode, 207 struct vfsmount *vfsmnt) 208 { 209 struct timespec64 now; 210 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 211 212 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 213 return 0; 214 215 if ((inode->i_flags & S_NOATIME) || 216 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) 217 return 0; 218 219 /* 220 * We can be called with no vfsmnt structure - NFSD will 221 * sometimes do this. 222 * 223 * Note that our action here is different than touch_atime() - 224 * if we can't tell whether this is a noatime mount, then we 225 * don't know whether to trust the value of s_atime_quantum. 226 */ 227 if (vfsmnt == NULL) 228 return 0; 229 230 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 231 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 232 return 0; 233 234 if (vfsmnt->mnt_flags & MNT_RELATIME) { 235 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 236 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 237 return 1; 238 239 return 0; 240 } 241 242 now = current_time(inode); 243 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 244 return 0; 245 else 246 return 1; 247 } 248 249 int ocfs2_update_inode_atime(struct inode *inode, 250 struct buffer_head *bh) 251 { 252 int ret; 253 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 254 handle_t *handle; 255 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 256 257 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 258 if (IS_ERR(handle)) { 259 ret = PTR_ERR(handle); 260 mlog_errno(ret); 261 goto out; 262 } 263 264 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 265 OCFS2_JOURNAL_ACCESS_WRITE); 266 if (ret) { 267 mlog_errno(ret); 268 goto out_commit; 269 } 270 271 /* 272 * Don't use ocfs2_mark_inode_dirty() here as we don't always 273 * have i_rwsem to guard against concurrent changes to other 274 * inode fields. 275 */ 276 inode->i_atime = current_time(inode); 277 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 278 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 279 ocfs2_update_inode_fsync_trans(handle, inode, 0); 280 ocfs2_journal_dirty(handle, bh); 281 282 out_commit: 283 ocfs2_commit_trans(osb, handle); 284 out: 285 return ret; 286 } 287 288 int ocfs2_set_inode_size(handle_t *handle, 289 struct inode *inode, 290 struct buffer_head *fe_bh, 291 u64 new_i_size) 292 { 293 int status; 294 295 i_size_write(inode, new_i_size); 296 inode->i_blocks = ocfs2_inode_sector_count(inode); 297 inode->i_ctime = inode->i_mtime = current_time(inode); 298 299 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 300 if (status < 0) { 301 mlog_errno(status); 302 goto bail; 303 } 304 305 bail: 306 return status; 307 } 308 309 int ocfs2_simple_size_update(struct inode *inode, 310 struct buffer_head *di_bh, 311 u64 new_i_size) 312 { 313 int ret; 314 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 315 handle_t *handle = NULL; 316 317 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 318 if (IS_ERR(handle)) { 319 ret = PTR_ERR(handle); 320 mlog_errno(ret); 321 goto out; 322 } 323 324 ret = ocfs2_set_inode_size(handle, inode, di_bh, 325 new_i_size); 326 if (ret < 0) 327 mlog_errno(ret); 328 329 ocfs2_update_inode_fsync_trans(handle, inode, 0); 330 ocfs2_commit_trans(osb, handle); 331 out: 332 return ret; 333 } 334 335 static int ocfs2_cow_file_pos(struct inode *inode, 336 struct buffer_head *fe_bh, 337 u64 offset) 338 { 339 int status; 340 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 341 unsigned int num_clusters = 0; 342 unsigned int ext_flags = 0; 343 344 /* 345 * If the new offset is aligned to the range of the cluster, there is 346 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 347 * CoW either. 348 */ 349 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 350 return 0; 351 352 status = ocfs2_get_clusters(inode, cpos, &phys, 353 &num_clusters, &ext_flags); 354 if (status) { 355 mlog_errno(status); 356 goto out; 357 } 358 359 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 360 goto out; 361 362 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 363 364 out: 365 return status; 366 } 367 368 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 369 struct inode *inode, 370 struct buffer_head *fe_bh, 371 u64 new_i_size) 372 { 373 int status; 374 handle_t *handle; 375 struct ocfs2_dinode *di; 376 u64 cluster_bytes; 377 378 /* 379 * We need to CoW the cluster contains the offset if it is reflinked 380 * since we will call ocfs2_zero_range_for_truncate later which will 381 * write "0" from offset to the end of the cluster. 382 */ 383 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 384 if (status) { 385 mlog_errno(status); 386 return status; 387 } 388 389 /* TODO: This needs to actually orphan the inode in this 390 * transaction. */ 391 392 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 393 if (IS_ERR(handle)) { 394 status = PTR_ERR(handle); 395 mlog_errno(status); 396 goto out; 397 } 398 399 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 400 OCFS2_JOURNAL_ACCESS_WRITE); 401 if (status < 0) { 402 mlog_errno(status); 403 goto out_commit; 404 } 405 406 /* 407 * Do this before setting i_size. 408 */ 409 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 410 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 411 cluster_bytes); 412 if (status) { 413 mlog_errno(status); 414 goto out_commit; 415 } 416 417 i_size_write(inode, new_i_size); 418 inode->i_ctime = inode->i_mtime = current_time(inode); 419 420 di = (struct ocfs2_dinode *) fe_bh->b_data; 421 di->i_size = cpu_to_le64(new_i_size); 422 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 423 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 424 ocfs2_update_inode_fsync_trans(handle, inode, 0); 425 426 ocfs2_journal_dirty(handle, fe_bh); 427 428 out_commit: 429 ocfs2_commit_trans(osb, handle); 430 out: 431 return status; 432 } 433 434 int ocfs2_truncate_file(struct inode *inode, 435 struct buffer_head *di_bh, 436 u64 new_i_size) 437 { 438 int status = 0; 439 struct ocfs2_dinode *fe = NULL; 440 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 441 442 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 443 * already validated it */ 444 fe = (struct ocfs2_dinode *) di_bh->b_data; 445 446 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 447 (unsigned long long)le64_to_cpu(fe->i_size), 448 (unsigned long long)new_i_size); 449 450 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 451 "Inode %llu, inode i_size = %lld != di " 452 "i_size = %llu, i_flags = 0x%x\n", 453 (unsigned long long)OCFS2_I(inode)->ip_blkno, 454 i_size_read(inode), 455 (unsigned long long)le64_to_cpu(fe->i_size), 456 le32_to_cpu(fe->i_flags)); 457 458 if (new_i_size > le64_to_cpu(fe->i_size)) { 459 trace_ocfs2_truncate_file_error( 460 (unsigned long long)le64_to_cpu(fe->i_size), 461 (unsigned long long)new_i_size); 462 status = -EINVAL; 463 mlog_errno(status); 464 goto bail; 465 } 466 467 down_write(&OCFS2_I(inode)->ip_alloc_sem); 468 469 ocfs2_resv_discard(&osb->osb_la_resmap, 470 &OCFS2_I(inode)->ip_la_data_resv); 471 472 /* 473 * The inode lock forced other nodes to sync and drop their 474 * pages, which (correctly) happens even if we have a truncate 475 * without allocation change - ocfs2 cluster sizes can be much 476 * greater than page size, so we have to truncate them 477 * anyway. 478 */ 479 480 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 481 unmap_mapping_range(inode->i_mapping, 482 new_i_size + PAGE_SIZE - 1, 0, 1); 483 truncate_inode_pages(inode->i_mapping, new_i_size); 484 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 485 i_size_read(inode), 1); 486 if (status) 487 mlog_errno(status); 488 489 goto bail_unlock_sem; 490 } 491 492 /* alright, we're going to need to do a full blown alloc size 493 * change. Orphan the inode so that recovery can complete the 494 * truncate if necessary. This does the task of marking 495 * i_size. */ 496 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 497 if (status < 0) { 498 mlog_errno(status); 499 goto bail_unlock_sem; 500 } 501 502 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 503 truncate_inode_pages(inode->i_mapping, new_i_size); 504 505 status = ocfs2_commit_truncate(osb, inode, di_bh); 506 if (status < 0) { 507 mlog_errno(status); 508 goto bail_unlock_sem; 509 } 510 511 /* TODO: orphan dir cleanup here. */ 512 bail_unlock_sem: 513 up_write(&OCFS2_I(inode)->ip_alloc_sem); 514 515 bail: 516 if (!status && OCFS2_I(inode)->ip_clusters == 0) 517 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 518 519 return status; 520 } 521 522 /* 523 * extend file allocation only here. 524 * we'll update all the disk stuff, and oip->alloc_size 525 * 526 * expect stuff to be locked, a transaction started and enough data / 527 * metadata reservations in the contexts. 528 * 529 * Will return -EAGAIN, and a reason if a restart is needed. 530 * If passed in, *reason will always be set, even in error. 531 */ 532 int ocfs2_add_inode_data(struct ocfs2_super *osb, 533 struct inode *inode, 534 u32 *logical_offset, 535 u32 clusters_to_add, 536 int mark_unwritten, 537 struct buffer_head *fe_bh, 538 handle_t *handle, 539 struct ocfs2_alloc_context *data_ac, 540 struct ocfs2_alloc_context *meta_ac, 541 enum ocfs2_alloc_restarted *reason_ret) 542 { 543 struct ocfs2_extent_tree et; 544 545 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 546 return ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 547 clusters_to_add, mark_unwritten, 548 data_ac, meta_ac, reason_ret); 549 } 550 551 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 552 u32 clusters_to_add, int mark_unwritten) 553 { 554 int status = 0; 555 int restart_func = 0; 556 int credits; 557 u32 prev_clusters; 558 struct buffer_head *bh = NULL; 559 struct ocfs2_dinode *fe = NULL; 560 handle_t *handle = NULL; 561 struct ocfs2_alloc_context *data_ac = NULL; 562 struct ocfs2_alloc_context *meta_ac = NULL; 563 enum ocfs2_alloc_restarted why = RESTART_NONE; 564 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 565 struct ocfs2_extent_tree et; 566 int did_quota = 0; 567 568 /* 569 * Unwritten extent only exists for file systems which 570 * support holes. 571 */ 572 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 573 574 status = ocfs2_read_inode_block(inode, &bh); 575 if (status < 0) { 576 mlog_errno(status); 577 goto leave; 578 } 579 fe = (struct ocfs2_dinode *) bh->b_data; 580 581 restart_all: 582 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 583 584 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 585 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 586 &data_ac, &meta_ac); 587 if (status) { 588 mlog_errno(status); 589 goto leave; 590 } 591 592 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 593 handle = ocfs2_start_trans(osb, credits); 594 if (IS_ERR(handle)) { 595 status = PTR_ERR(handle); 596 handle = NULL; 597 mlog_errno(status); 598 goto leave; 599 } 600 601 restarted_transaction: 602 trace_ocfs2_extend_allocation( 603 (unsigned long long)OCFS2_I(inode)->ip_blkno, 604 (unsigned long long)i_size_read(inode), 605 le32_to_cpu(fe->i_clusters), clusters_to_add, 606 why, restart_func); 607 608 status = dquot_alloc_space_nodirty(inode, 609 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 610 if (status) 611 goto leave; 612 did_quota = 1; 613 614 /* reserve a write to the file entry early on - that we if we 615 * run out of credits in the allocation path, we can still 616 * update i_size. */ 617 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 618 OCFS2_JOURNAL_ACCESS_WRITE); 619 if (status < 0) { 620 mlog_errno(status); 621 goto leave; 622 } 623 624 prev_clusters = OCFS2_I(inode)->ip_clusters; 625 626 status = ocfs2_add_inode_data(osb, 627 inode, 628 &logical_start, 629 clusters_to_add, 630 mark_unwritten, 631 bh, 632 handle, 633 data_ac, 634 meta_ac, 635 &why); 636 if ((status < 0) && (status != -EAGAIN)) { 637 if (status != -ENOSPC) 638 mlog_errno(status); 639 goto leave; 640 } 641 ocfs2_update_inode_fsync_trans(handle, inode, 1); 642 ocfs2_journal_dirty(handle, bh); 643 644 spin_lock(&OCFS2_I(inode)->ip_lock); 645 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 646 spin_unlock(&OCFS2_I(inode)->ip_lock); 647 /* Release unused quota reservation */ 648 dquot_free_space(inode, 649 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 650 did_quota = 0; 651 652 if (why != RESTART_NONE && clusters_to_add) { 653 if (why == RESTART_META) { 654 restart_func = 1; 655 status = 0; 656 } else { 657 BUG_ON(why != RESTART_TRANS); 658 659 status = ocfs2_allocate_extend_trans(handle, 1); 660 if (status < 0) { 661 /* handle still has to be committed at 662 * this point. */ 663 status = -ENOMEM; 664 mlog_errno(status); 665 goto leave; 666 } 667 goto restarted_transaction; 668 } 669 } 670 671 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 672 le32_to_cpu(fe->i_clusters), 673 (unsigned long long)le64_to_cpu(fe->i_size), 674 OCFS2_I(inode)->ip_clusters, 675 (unsigned long long)i_size_read(inode)); 676 677 leave: 678 if (status < 0 && did_quota) 679 dquot_free_space(inode, 680 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 681 if (handle) { 682 ocfs2_commit_trans(osb, handle); 683 handle = NULL; 684 } 685 if (data_ac) { 686 ocfs2_free_alloc_context(data_ac); 687 data_ac = NULL; 688 } 689 if (meta_ac) { 690 ocfs2_free_alloc_context(meta_ac); 691 meta_ac = NULL; 692 } 693 if ((!status) && restart_func) { 694 restart_func = 0; 695 goto restart_all; 696 } 697 brelse(bh); 698 bh = NULL; 699 700 return status; 701 } 702 703 /* 704 * While a write will already be ordering the data, a truncate will not. 705 * Thus, we need to explicitly order the zeroed pages. 706 */ 707 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 708 struct buffer_head *di_bh, 709 loff_t start_byte, 710 loff_t length) 711 { 712 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 713 handle_t *handle = NULL; 714 int ret = 0; 715 716 if (!ocfs2_should_order_data(inode)) 717 goto out; 718 719 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 720 if (IS_ERR(handle)) { 721 ret = -ENOMEM; 722 mlog_errno(ret); 723 goto out; 724 } 725 726 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); 727 if (ret < 0) { 728 mlog_errno(ret); 729 goto out; 730 } 731 732 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 733 OCFS2_JOURNAL_ACCESS_WRITE); 734 if (ret) 735 mlog_errno(ret); 736 ocfs2_update_inode_fsync_trans(handle, inode, 1); 737 738 out: 739 if (ret) { 740 if (!IS_ERR(handle)) 741 ocfs2_commit_trans(osb, handle); 742 handle = ERR_PTR(ret); 743 } 744 return handle; 745 } 746 747 /* Some parts of this taken from generic_cont_expand, which turned out 748 * to be too fragile to do exactly what we need without us having to 749 * worry about recursive locking in ->write_begin() and ->write_end(). */ 750 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 751 u64 abs_to, struct buffer_head *di_bh) 752 { 753 struct address_space *mapping = inode->i_mapping; 754 struct page *page; 755 unsigned long index = abs_from >> PAGE_SHIFT; 756 handle_t *handle; 757 int ret = 0; 758 unsigned zero_from, zero_to, block_start, block_end; 759 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 760 761 BUG_ON(abs_from >= abs_to); 762 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); 763 BUG_ON(abs_from & (inode->i_blkbits - 1)); 764 765 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh, 766 abs_from, 767 abs_to - abs_from); 768 if (IS_ERR(handle)) { 769 ret = PTR_ERR(handle); 770 goto out; 771 } 772 773 page = find_or_create_page(mapping, index, GFP_NOFS); 774 if (!page) { 775 ret = -ENOMEM; 776 mlog_errno(ret); 777 goto out_commit_trans; 778 } 779 780 /* Get the offsets within the page that we want to zero */ 781 zero_from = abs_from & (PAGE_SIZE - 1); 782 zero_to = abs_to & (PAGE_SIZE - 1); 783 if (!zero_to) 784 zero_to = PAGE_SIZE; 785 786 trace_ocfs2_write_zero_page( 787 (unsigned long long)OCFS2_I(inode)->ip_blkno, 788 (unsigned long long)abs_from, 789 (unsigned long long)abs_to, 790 index, zero_from, zero_to); 791 792 /* We know that zero_from is block aligned */ 793 for (block_start = zero_from; block_start < zero_to; 794 block_start = block_end) { 795 block_end = block_start + i_blocksize(inode); 796 797 /* 798 * block_start is block-aligned. Bump it by one to force 799 * __block_write_begin and block_commit_write to zero the 800 * whole block. 801 */ 802 ret = __block_write_begin(page, block_start + 1, 0, 803 ocfs2_get_block); 804 if (ret < 0) { 805 mlog_errno(ret); 806 goto out_unlock; 807 } 808 809 810 /* must not update i_size! */ 811 ret = block_commit_write(page, block_start + 1, 812 block_start + 1); 813 if (ret < 0) 814 mlog_errno(ret); 815 else 816 ret = 0; 817 } 818 819 /* 820 * fs-writeback will release the dirty pages without page lock 821 * whose offset are over inode size, the release happens at 822 * block_write_full_page(). 823 */ 824 i_size_write(inode, abs_to); 825 inode->i_blocks = ocfs2_inode_sector_count(inode); 826 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 827 inode->i_mtime = inode->i_ctime = current_time(inode); 828 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 829 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 830 di->i_mtime_nsec = di->i_ctime_nsec; 831 if (handle) { 832 ocfs2_journal_dirty(handle, di_bh); 833 ocfs2_update_inode_fsync_trans(handle, inode, 1); 834 } 835 836 out_unlock: 837 unlock_page(page); 838 put_page(page); 839 out_commit_trans: 840 if (handle) 841 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 842 out: 843 return ret; 844 } 845 846 /* 847 * Find the next range to zero. We do this in terms of bytes because 848 * that's what ocfs2_zero_extend() wants, and it is dealing with the 849 * pagecache. We may return multiple extents. 850 * 851 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 852 * needs to be zeroed. range_start and range_end return the next zeroing 853 * range. A subsequent call should pass the previous range_end as its 854 * zero_start. If range_end is 0, there's nothing to do. 855 * 856 * Unwritten extents are skipped over. Refcounted extents are CoWd. 857 */ 858 static int ocfs2_zero_extend_get_range(struct inode *inode, 859 struct buffer_head *di_bh, 860 u64 zero_start, u64 zero_end, 861 u64 *range_start, u64 *range_end) 862 { 863 int rc = 0, needs_cow = 0; 864 u32 p_cpos, zero_clusters = 0; 865 u32 zero_cpos = 866 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 867 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 868 unsigned int num_clusters = 0; 869 unsigned int ext_flags = 0; 870 871 while (zero_cpos < last_cpos) { 872 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 873 &num_clusters, &ext_flags); 874 if (rc) { 875 mlog_errno(rc); 876 goto out; 877 } 878 879 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 880 zero_clusters = num_clusters; 881 if (ext_flags & OCFS2_EXT_REFCOUNTED) 882 needs_cow = 1; 883 break; 884 } 885 886 zero_cpos += num_clusters; 887 } 888 if (!zero_clusters) { 889 *range_end = 0; 890 goto out; 891 } 892 893 while ((zero_cpos + zero_clusters) < last_cpos) { 894 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 895 &p_cpos, &num_clusters, 896 &ext_flags); 897 if (rc) { 898 mlog_errno(rc); 899 goto out; 900 } 901 902 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 903 break; 904 if (ext_flags & OCFS2_EXT_REFCOUNTED) 905 needs_cow = 1; 906 zero_clusters += num_clusters; 907 } 908 if ((zero_cpos + zero_clusters) > last_cpos) 909 zero_clusters = last_cpos - zero_cpos; 910 911 if (needs_cow) { 912 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 913 zero_clusters, UINT_MAX); 914 if (rc) { 915 mlog_errno(rc); 916 goto out; 917 } 918 } 919 920 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 921 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 922 zero_cpos + zero_clusters); 923 924 out: 925 return rc; 926 } 927 928 /* 929 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 930 * has made sure that the entire range needs zeroing. 931 */ 932 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 933 u64 range_end, struct buffer_head *di_bh) 934 { 935 int rc = 0; 936 u64 next_pos; 937 u64 zero_pos = range_start; 938 939 trace_ocfs2_zero_extend_range( 940 (unsigned long long)OCFS2_I(inode)->ip_blkno, 941 (unsigned long long)range_start, 942 (unsigned long long)range_end); 943 BUG_ON(range_start >= range_end); 944 945 while (zero_pos < range_end) { 946 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; 947 if (next_pos > range_end) 948 next_pos = range_end; 949 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 950 if (rc < 0) { 951 mlog_errno(rc); 952 break; 953 } 954 zero_pos = next_pos; 955 956 /* 957 * Very large extends have the potential to lock up 958 * the cpu for extended periods of time. 959 */ 960 cond_resched(); 961 } 962 963 return rc; 964 } 965 966 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 967 loff_t zero_to_size) 968 { 969 int ret = 0; 970 u64 zero_start, range_start = 0, range_end = 0; 971 struct super_block *sb = inode->i_sb; 972 973 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 974 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 975 (unsigned long long)zero_start, 976 (unsigned long long)i_size_read(inode)); 977 while (zero_start < zero_to_size) { 978 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 979 zero_to_size, 980 &range_start, 981 &range_end); 982 if (ret) { 983 mlog_errno(ret); 984 break; 985 } 986 if (!range_end) 987 break; 988 /* Trim the ends */ 989 if (range_start < zero_start) 990 range_start = zero_start; 991 if (range_end > zero_to_size) 992 range_end = zero_to_size; 993 994 ret = ocfs2_zero_extend_range(inode, range_start, 995 range_end, di_bh); 996 if (ret) { 997 mlog_errno(ret); 998 break; 999 } 1000 zero_start = range_end; 1001 } 1002 1003 return ret; 1004 } 1005 1006 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1007 u64 new_i_size, u64 zero_to) 1008 { 1009 int ret; 1010 u32 clusters_to_add; 1011 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1012 1013 /* 1014 * Only quota files call this without a bh, and they can't be 1015 * refcounted. 1016 */ 1017 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); 1018 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1019 1020 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1021 if (clusters_to_add < oi->ip_clusters) 1022 clusters_to_add = 0; 1023 else 1024 clusters_to_add -= oi->ip_clusters; 1025 1026 if (clusters_to_add) { 1027 ret = ocfs2_extend_allocation(inode, oi->ip_clusters, 1028 clusters_to_add, 0); 1029 if (ret) { 1030 mlog_errno(ret); 1031 goto out; 1032 } 1033 } 1034 1035 /* 1036 * Call this even if we don't add any clusters to the tree. We 1037 * still need to zero the area between the old i_size and the 1038 * new i_size. 1039 */ 1040 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1041 if (ret < 0) 1042 mlog_errno(ret); 1043 1044 out: 1045 return ret; 1046 } 1047 1048 static int ocfs2_extend_file(struct inode *inode, 1049 struct buffer_head *di_bh, 1050 u64 new_i_size) 1051 { 1052 int ret = 0; 1053 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1054 1055 BUG_ON(!di_bh); 1056 1057 /* setattr sometimes calls us like this. */ 1058 if (new_i_size == 0) 1059 goto out; 1060 1061 if (i_size_read(inode) == new_i_size) 1062 goto out; 1063 BUG_ON(new_i_size < i_size_read(inode)); 1064 1065 /* 1066 * The alloc sem blocks people in read/write from reading our 1067 * allocation until we're done changing it. We depend on 1068 * i_rwsem to block other extend/truncate calls while we're 1069 * here. We even have to hold it for sparse files because there 1070 * might be some tail zeroing. 1071 */ 1072 down_write(&oi->ip_alloc_sem); 1073 1074 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1075 /* 1076 * We can optimize small extends by keeping the inodes 1077 * inline data. 1078 */ 1079 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1080 up_write(&oi->ip_alloc_sem); 1081 goto out_update_size; 1082 } 1083 1084 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1085 if (ret) { 1086 up_write(&oi->ip_alloc_sem); 1087 mlog_errno(ret); 1088 goto out; 1089 } 1090 } 1091 1092 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1093 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1094 else 1095 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1096 new_i_size); 1097 1098 up_write(&oi->ip_alloc_sem); 1099 1100 if (ret < 0) { 1101 mlog_errno(ret); 1102 goto out; 1103 } 1104 1105 out_update_size: 1106 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1107 if (ret < 0) 1108 mlog_errno(ret); 1109 1110 out: 1111 return ret; 1112 } 1113 1114 int ocfs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1115 struct iattr *attr) 1116 { 1117 int status = 0, size_change; 1118 int inode_locked = 0; 1119 struct inode *inode = d_inode(dentry); 1120 struct super_block *sb = inode->i_sb; 1121 struct ocfs2_super *osb = OCFS2_SB(sb); 1122 struct buffer_head *bh = NULL; 1123 handle_t *handle = NULL; 1124 struct dquot *transfer_to[MAXQUOTAS] = { }; 1125 int qtype; 1126 int had_lock; 1127 struct ocfs2_lock_holder oh; 1128 1129 trace_ocfs2_setattr(inode, dentry, 1130 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1131 dentry->d_name.len, dentry->d_name.name, 1132 attr->ia_valid, attr->ia_mode, 1133 from_kuid(&init_user_ns, attr->ia_uid), 1134 from_kgid(&init_user_ns, attr->ia_gid)); 1135 1136 /* ensuring we don't even attempt to truncate a symlink */ 1137 if (S_ISLNK(inode->i_mode)) 1138 attr->ia_valid &= ~ATTR_SIZE; 1139 1140 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1141 | ATTR_GID | ATTR_UID | ATTR_MODE) 1142 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1143 return 0; 1144 1145 status = setattr_prepare(&nop_mnt_idmap, dentry, attr); 1146 if (status) 1147 return status; 1148 1149 if (is_quota_modification(&nop_mnt_idmap, inode, attr)) { 1150 status = dquot_initialize(inode); 1151 if (status) 1152 return status; 1153 } 1154 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1155 if (size_change) { 1156 /* 1157 * Here we should wait dio to finish before inode lock 1158 * to avoid a deadlock between ocfs2_setattr() and 1159 * ocfs2_dio_end_io_write() 1160 */ 1161 inode_dio_wait(inode); 1162 1163 status = ocfs2_rw_lock(inode, 1); 1164 if (status < 0) { 1165 mlog_errno(status); 1166 goto bail; 1167 } 1168 } 1169 1170 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); 1171 if (had_lock < 0) { 1172 status = had_lock; 1173 goto bail_unlock_rw; 1174 } else if (had_lock) { 1175 /* 1176 * As far as we know, ocfs2_setattr() could only be the first 1177 * VFS entry point in the call chain of recursive cluster 1178 * locking issue. 1179 * 1180 * For instance: 1181 * chmod_common() 1182 * notify_change() 1183 * ocfs2_setattr() 1184 * posix_acl_chmod() 1185 * ocfs2_iop_get_acl() 1186 * 1187 * But, we're not 100% sure if it's always true, because the 1188 * ordering of the VFS entry points in the call chain is out 1189 * of our control. So, we'd better dump the stack here to 1190 * catch the other cases of recursive locking. 1191 */ 1192 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1193 dump_stack(); 1194 } 1195 inode_locked = 1; 1196 1197 if (size_change) { 1198 status = inode_newsize_ok(inode, attr->ia_size); 1199 if (status) 1200 goto bail_unlock; 1201 1202 if (i_size_read(inode) >= attr->ia_size) { 1203 if (ocfs2_should_order_data(inode)) { 1204 status = ocfs2_begin_ordered_truncate(inode, 1205 attr->ia_size); 1206 if (status) 1207 goto bail_unlock; 1208 } 1209 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1210 } else 1211 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1212 if (status < 0) { 1213 if (status != -ENOSPC) 1214 mlog_errno(status); 1215 status = -ENOSPC; 1216 goto bail_unlock; 1217 } 1218 } 1219 1220 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1221 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1222 /* 1223 * Gather pointers to quota structures so that allocation / 1224 * freeing of quota structures happens here and not inside 1225 * dquot_transfer() where we have problems with lock ordering 1226 */ 1227 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1228 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1229 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1230 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1231 if (IS_ERR(transfer_to[USRQUOTA])) { 1232 status = PTR_ERR(transfer_to[USRQUOTA]); 1233 transfer_to[USRQUOTA] = NULL; 1234 goto bail_unlock; 1235 } 1236 } 1237 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1238 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1239 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1240 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1241 if (IS_ERR(transfer_to[GRPQUOTA])) { 1242 status = PTR_ERR(transfer_to[GRPQUOTA]); 1243 transfer_to[GRPQUOTA] = NULL; 1244 goto bail_unlock; 1245 } 1246 } 1247 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1248 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1249 2 * ocfs2_quota_trans_credits(sb)); 1250 if (IS_ERR(handle)) { 1251 status = PTR_ERR(handle); 1252 mlog_errno(status); 1253 goto bail_unlock_alloc; 1254 } 1255 status = __dquot_transfer(inode, transfer_to); 1256 if (status < 0) 1257 goto bail_commit; 1258 } else { 1259 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1260 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1261 if (IS_ERR(handle)) { 1262 status = PTR_ERR(handle); 1263 mlog_errno(status); 1264 goto bail_unlock_alloc; 1265 } 1266 } 1267 1268 setattr_copy(&nop_mnt_idmap, inode, attr); 1269 mark_inode_dirty(inode); 1270 1271 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1272 if (status < 0) 1273 mlog_errno(status); 1274 1275 bail_commit: 1276 ocfs2_commit_trans(osb, handle); 1277 bail_unlock_alloc: 1278 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1279 bail_unlock: 1280 if (status && inode_locked) { 1281 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1282 inode_locked = 0; 1283 } 1284 bail_unlock_rw: 1285 if (size_change) 1286 ocfs2_rw_unlock(inode, 1); 1287 bail: 1288 1289 /* Release quota pointers in case we acquired them */ 1290 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1291 dqput(transfer_to[qtype]); 1292 1293 if (!status && attr->ia_valid & ATTR_MODE) { 1294 status = ocfs2_acl_chmod(inode, bh); 1295 if (status < 0) 1296 mlog_errno(status); 1297 } 1298 if (inode_locked) 1299 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1300 1301 brelse(bh); 1302 return status; 1303 } 1304 1305 int ocfs2_getattr(struct mnt_idmap *idmap, const struct path *path, 1306 struct kstat *stat, u32 request_mask, unsigned int flags) 1307 { 1308 struct inode *inode = d_inode(path->dentry); 1309 struct super_block *sb = path->dentry->d_sb; 1310 struct ocfs2_super *osb = sb->s_fs_info; 1311 int err; 1312 1313 err = ocfs2_inode_revalidate(path->dentry); 1314 if (err) { 1315 if (err != -ENOENT) 1316 mlog_errno(err); 1317 goto bail; 1318 } 1319 1320 generic_fillattr(&nop_mnt_idmap, inode, stat); 1321 /* 1322 * If there is inline data in the inode, the inode will normally not 1323 * have data blocks allocated (it may have an external xattr block). 1324 * Report at least one sector for such files, so tools like tar, rsync, 1325 * others don't incorrectly think the file is completely sparse. 1326 */ 1327 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1328 stat->blocks += (stat->size + 511)>>9; 1329 1330 /* We set the blksize from the cluster size for performance */ 1331 stat->blksize = osb->s_clustersize; 1332 1333 bail: 1334 return err; 1335 } 1336 1337 int ocfs2_permission(struct mnt_idmap *idmap, struct inode *inode, 1338 int mask) 1339 { 1340 int ret, had_lock; 1341 struct ocfs2_lock_holder oh; 1342 1343 if (mask & MAY_NOT_BLOCK) 1344 return -ECHILD; 1345 1346 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); 1347 if (had_lock < 0) { 1348 ret = had_lock; 1349 goto out; 1350 } else if (had_lock) { 1351 /* See comments in ocfs2_setattr() for details. 1352 * The call chain of this case could be: 1353 * do_sys_open() 1354 * may_open() 1355 * inode_permission() 1356 * ocfs2_permission() 1357 * ocfs2_iop_get_acl() 1358 */ 1359 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1360 dump_stack(); 1361 } 1362 1363 ret = generic_permission(&nop_mnt_idmap, inode, mask); 1364 1365 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); 1366 out: 1367 return ret; 1368 } 1369 1370 static int __ocfs2_write_remove_suid(struct inode *inode, 1371 struct buffer_head *bh) 1372 { 1373 int ret; 1374 handle_t *handle; 1375 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1376 struct ocfs2_dinode *di; 1377 1378 trace_ocfs2_write_remove_suid( 1379 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1380 inode->i_mode); 1381 1382 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1383 if (IS_ERR(handle)) { 1384 ret = PTR_ERR(handle); 1385 mlog_errno(ret); 1386 goto out; 1387 } 1388 1389 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1390 OCFS2_JOURNAL_ACCESS_WRITE); 1391 if (ret < 0) { 1392 mlog_errno(ret); 1393 goto out_trans; 1394 } 1395 1396 inode->i_mode &= ~S_ISUID; 1397 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1398 inode->i_mode &= ~S_ISGID; 1399 1400 di = (struct ocfs2_dinode *) bh->b_data; 1401 di->i_mode = cpu_to_le16(inode->i_mode); 1402 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1403 1404 ocfs2_journal_dirty(handle, bh); 1405 1406 out_trans: 1407 ocfs2_commit_trans(osb, handle); 1408 out: 1409 return ret; 1410 } 1411 1412 static int ocfs2_write_remove_suid(struct inode *inode) 1413 { 1414 int ret; 1415 struct buffer_head *bh = NULL; 1416 1417 ret = ocfs2_read_inode_block(inode, &bh); 1418 if (ret < 0) { 1419 mlog_errno(ret); 1420 goto out; 1421 } 1422 1423 ret = __ocfs2_write_remove_suid(inode, bh); 1424 out: 1425 brelse(bh); 1426 return ret; 1427 } 1428 1429 /* 1430 * Allocate enough extents to cover the region starting at byte offset 1431 * start for len bytes. Existing extents are skipped, any extents 1432 * added are marked as "unwritten". 1433 */ 1434 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1435 u64 start, u64 len) 1436 { 1437 int ret; 1438 u32 cpos, phys_cpos, clusters, alloc_size; 1439 u64 end = start + len; 1440 struct buffer_head *di_bh = NULL; 1441 1442 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1443 ret = ocfs2_read_inode_block(inode, &di_bh); 1444 if (ret) { 1445 mlog_errno(ret); 1446 goto out; 1447 } 1448 1449 /* 1450 * Nothing to do if the requested reservation range 1451 * fits within the inode. 1452 */ 1453 if (ocfs2_size_fits_inline_data(di_bh, end)) 1454 goto out; 1455 1456 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1457 if (ret) { 1458 mlog_errno(ret); 1459 goto out; 1460 } 1461 } 1462 1463 /* 1464 * We consider both start and len to be inclusive. 1465 */ 1466 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1467 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1468 clusters -= cpos; 1469 1470 while (clusters) { 1471 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1472 &alloc_size, NULL); 1473 if (ret) { 1474 mlog_errno(ret); 1475 goto out; 1476 } 1477 1478 /* 1479 * Hole or existing extent len can be arbitrary, so 1480 * cap it to our own allocation request. 1481 */ 1482 if (alloc_size > clusters) 1483 alloc_size = clusters; 1484 1485 if (phys_cpos) { 1486 /* 1487 * We already have an allocation at this 1488 * region so we can safely skip it. 1489 */ 1490 goto next; 1491 } 1492 1493 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1494 if (ret) { 1495 if (ret != -ENOSPC) 1496 mlog_errno(ret); 1497 goto out; 1498 } 1499 1500 next: 1501 cpos += alloc_size; 1502 clusters -= alloc_size; 1503 } 1504 1505 ret = 0; 1506 out: 1507 1508 brelse(di_bh); 1509 return ret; 1510 } 1511 1512 /* 1513 * Truncate a byte range, avoiding pages within partial clusters. This 1514 * preserves those pages for the zeroing code to write to. 1515 */ 1516 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1517 u64 byte_len) 1518 { 1519 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1520 loff_t start, end; 1521 struct address_space *mapping = inode->i_mapping; 1522 1523 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1524 end = byte_start + byte_len; 1525 end = end & ~(osb->s_clustersize - 1); 1526 1527 if (start < end) { 1528 unmap_mapping_range(mapping, start, end - start, 0); 1529 truncate_inode_pages_range(mapping, start, end - 1); 1530 } 1531 } 1532 1533 /* 1534 * zero out partial blocks of one cluster. 1535 * 1536 * start: file offset where zero starts, will be made upper block aligned. 1537 * len: it will be trimmed to the end of current cluster if "start + len" 1538 * is bigger than it. 1539 */ 1540 static int ocfs2_zeroout_partial_cluster(struct inode *inode, 1541 u64 start, u64 len) 1542 { 1543 int ret; 1544 u64 start_block, end_block, nr_blocks; 1545 u64 p_block, offset; 1546 u32 cluster, p_cluster, nr_clusters; 1547 struct super_block *sb = inode->i_sb; 1548 u64 end = ocfs2_align_bytes_to_clusters(sb, start); 1549 1550 if (start + len < end) 1551 end = start + len; 1552 1553 start_block = ocfs2_blocks_for_bytes(sb, start); 1554 end_block = ocfs2_blocks_for_bytes(sb, end); 1555 nr_blocks = end_block - start_block; 1556 if (!nr_blocks) 1557 return 0; 1558 1559 cluster = ocfs2_bytes_to_clusters(sb, start); 1560 ret = ocfs2_get_clusters(inode, cluster, &p_cluster, 1561 &nr_clusters, NULL); 1562 if (ret) 1563 return ret; 1564 if (!p_cluster) 1565 return 0; 1566 1567 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster); 1568 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset; 1569 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS); 1570 } 1571 1572 static int ocfs2_zero_partial_clusters(struct inode *inode, 1573 u64 start, u64 len) 1574 { 1575 int ret = 0; 1576 u64 tmpend = 0; 1577 u64 end = start + len; 1578 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1579 unsigned int csize = osb->s_clustersize; 1580 handle_t *handle; 1581 loff_t isize = i_size_read(inode); 1582 1583 /* 1584 * The "start" and "end" values are NOT necessarily part of 1585 * the range whose allocation is being deleted. Rather, this 1586 * is what the user passed in with the request. We must zero 1587 * partial clusters here. There's no need to worry about 1588 * physical allocation - the zeroing code knows to skip holes. 1589 */ 1590 trace_ocfs2_zero_partial_clusters( 1591 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1592 (unsigned long long)start, (unsigned long long)end); 1593 1594 /* 1595 * If both edges are on a cluster boundary then there's no 1596 * zeroing required as the region is part of the allocation to 1597 * be truncated. 1598 */ 1599 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1600 goto out; 1601 1602 /* No page cache for EOF blocks, issue zero out to disk. */ 1603 if (end > isize) { 1604 /* 1605 * zeroout eof blocks in last cluster starting from 1606 * "isize" even "start" > "isize" because it is 1607 * complicated to zeroout just at "start" as "start" 1608 * may be not aligned with block size, buffer write 1609 * would be required to do that, but out of eof buffer 1610 * write is not supported. 1611 */ 1612 ret = ocfs2_zeroout_partial_cluster(inode, isize, 1613 end - isize); 1614 if (ret) { 1615 mlog_errno(ret); 1616 goto out; 1617 } 1618 if (start >= isize) 1619 goto out; 1620 end = isize; 1621 } 1622 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1623 if (IS_ERR(handle)) { 1624 ret = PTR_ERR(handle); 1625 mlog_errno(ret); 1626 goto out; 1627 } 1628 1629 /* 1630 * If start is on a cluster boundary and end is somewhere in another 1631 * cluster, we have not COWed the cluster starting at start, unless 1632 * end is also within the same cluster. So, in this case, we skip this 1633 * first call to ocfs2_zero_range_for_truncate() truncate and move on 1634 * to the next one. 1635 */ 1636 if ((start & (csize - 1)) != 0) { 1637 /* 1638 * We want to get the byte offset of the end of the 1st 1639 * cluster. 1640 */ 1641 tmpend = (u64)osb->s_clustersize + 1642 (start & ~(osb->s_clustersize - 1)); 1643 if (tmpend > end) 1644 tmpend = end; 1645 1646 trace_ocfs2_zero_partial_clusters_range1( 1647 (unsigned long long)start, 1648 (unsigned long long)tmpend); 1649 1650 ret = ocfs2_zero_range_for_truncate(inode, handle, start, 1651 tmpend); 1652 if (ret) 1653 mlog_errno(ret); 1654 } 1655 1656 if (tmpend < end) { 1657 /* 1658 * This may make start and end equal, but the zeroing 1659 * code will skip any work in that case so there's no 1660 * need to catch it up here. 1661 */ 1662 start = end & ~(osb->s_clustersize - 1); 1663 1664 trace_ocfs2_zero_partial_clusters_range2( 1665 (unsigned long long)start, (unsigned long long)end); 1666 1667 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1668 if (ret) 1669 mlog_errno(ret); 1670 } 1671 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1672 1673 ocfs2_commit_trans(osb, handle); 1674 out: 1675 return ret; 1676 } 1677 1678 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1679 { 1680 int i; 1681 struct ocfs2_extent_rec *rec = NULL; 1682 1683 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1684 1685 rec = &el->l_recs[i]; 1686 1687 if (le32_to_cpu(rec->e_cpos) < pos) 1688 break; 1689 } 1690 1691 return i; 1692 } 1693 1694 /* 1695 * Helper to calculate the punching pos and length in one run, we handle the 1696 * following three cases in order: 1697 * 1698 * - remove the entire record 1699 * - remove a partial record 1700 * - no record needs to be removed (hole-punching completed) 1701 */ 1702 static void ocfs2_calc_trunc_pos(struct inode *inode, 1703 struct ocfs2_extent_list *el, 1704 struct ocfs2_extent_rec *rec, 1705 u32 trunc_start, u32 *trunc_cpos, 1706 u32 *trunc_len, u32 *trunc_end, 1707 u64 *blkno, int *done) 1708 { 1709 int ret = 0; 1710 u32 coff, range; 1711 1712 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1713 1714 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1715 /* 1716 * remove an entire extent record. 1717 */ 1718 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1719 /* 1720 * Skip holes if any. 1721 */ 1722 if (range < *trunc_end) 1723 *trunc_end = range; 1724 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1725 *blkno = le64_to_cpu(rec->e_blkno); 1726 *trunc_end = le32_to_cpu(rec->e_cpos); 1727 } else if (range > trunc_start) { 1728 /* 1729 * remove a partial extent record, which means we're 1730 * removing the last extent record. 1731 */ 1732 *trunc_cpos = trunc_start; 1733 /* 1734 * skip hole if any. 1735 */ 1736 if (range < *trunc_end) 1737 *trunc_end = range; 1738 *trunc_len = *trunc_end - trunc_start; 1739 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1740 *blkno = le64_to_cpu(rec->e_blkno) + 1741 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1742 *trunc_end = trunc_start; 1743 } else { 1744 /* 1745 * It may have two following possibilities: 1746 * 1747 * - last record has been removed 1748 * - trunc_start was within a hole 1749 * 1750 * both two cases mean the completion of hole punching. 1751 */ 1752 ret = 1; 1753 } 1754 1755 *done = ret; 1756 } 1757 1758 int ocfs2_remove_inode_range(struct inode *inode, 1759 struct buffer_head *di_bh, u64 byte_start, 1760 u64 byte_len) 1761 { 1762 int ret = 0, flags = 0, done = 0, i; 1763 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1764 u32 cluster_in_el; 1765 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1766 struct ocfs2_cached_dealloc_ctxt dealloc; 1767 struct address_space *mapping = inode->i_mapping; 1768 struct ocfs2_extent_tree et; 1769 struct ocfs2_path *path = NULL; 1770 struct ocfs2_extent_list *el = NULL; 1771 struct ocfs2_extent_rec *rec = NULL; 1772 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1773 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1774 1775 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1776 ocfs2_init_dealloc_ctxt(&dealloc); 1777 1778 trace_ocfs2_remove_inode_range( 1779 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1780 (unsigned long long)byte_start, 1781 (unsigned long long)byte_len); 1782 1783 if (byte_len == 0) 1784 return 0; 1785 1786 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1787 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1788 byte_start + byte_len, 0); 1789 if (ret) { 1790 mlog_errno(ret); 1791 goto out; 1792 } 1793 /* 1794 * There's no need to get fancy with the page cache 1795 * truncate of an inline-data inode. We're talking 1796 * about less than a page here, which will be cached 1797 * in the dinode buffer anyway. 1798 */ 1799 unmap_mapping_range(mapping, 0, 0, 0); 1800 truncate_inode_pages(mapping, 0); 1801 goto out; 1802 } 1803 1804 /* 1805 * For reflinks, we may need to CoW 2 clusters which might be 1806 * partially zero'd later, if hole's start and end offset were 1807 * within one cluster(means is not exactly aligned to clustersize). 1808 */ 1809 1810 if (ocfs2_is_refcount_inode(inode)) { 1811 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1812 if (ret) { 1813 mlog_errno(ret); 1814 goto out; 1815 } 1816 1817 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1818 if (ret) { 1819 mlog_errno(ret); 1820 goto out; 1821 } 1822 } 1823 1824 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1825 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1826 cluster_in_el = trunc_end; 1827 1828 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1829 if (ret) { 1830 mlog_errno(ret); 1831 goto out; 1832 } 1833 1834 path = ocfs2_new_path_from_et(&et); 1835 if (!path) { 1836 ret = -ENOMEM; 1837 mlog_errno(ret); 1838 goto out; 1839 } 1840 1841 while (trunc_end > trunc_start) { 1842 1843 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1844 cluster_in_el); 1845 if (ret) { 1846 mlog_errno(ret); 1847 goto out; 1848 } 1849 1850 el = path_leaf_el(path); 1851 1852 i = ocfs2_find_rec(el, trunc_end); 1853 /* 1854 * Need to go to previous extent block. 1855 */ 1856 if (i < 0) { 1857 if (path->p_tree_depth == 0) 1858 break; 1859 1860 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1861 path, 1862 &cluster_in_el); 1863 if (ret) { 1864 mlog_errno(ret); 1865 goto out; 1866 } 1867 1868 /* 1869 * We've reached the leftmost extent block, 1870 * it's safe to leave. 1871 */ 1872 if (cluster_in_el == 0) 1873 break; 1874 1875 /* 1876 * The 'pos' searched for previous extent block is 1877 * always one cluster less than actual trunc_end. 1878 */ 1879 trunc_end = cluster_in_el + 1; 1880 1881 ocfs2_reinit_path(path, 1); 1882 1883 continue; 1884 1885 } else 1886 rec = &el->l_recs[i]; 1887 1888 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1889 &trunc_len, &trunc_end, &blkno, &done); 1890 if (done) 1891 break; 1892 1893 flags = rec->e_flags; 1894 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1895 1896 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1897 phys_cpos, trunc_len, flags, 1898 &dealloc, refcount_loc, false); 1899 if (ret < 0) { 1900 mlog_errno(ret); 1901 goto out; 1902 } 1903 1904 cluster_in_el = trunc_end; 1905 1906 ocfs2_reinit_path(path, 1); 1907 } 1908 1909 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1910 1911 out: 1912 ocfs2_free_path(path); 1913 ocfs2_schedule_truncate_log_flush(osb, 1); 1914 ocfs2_run_deallocs(osb, &dealloc); 1915 1916 return ret; 1917 } 1918 1919 /* 1920 * Parts of this function taken from xfs_change_file_space() 1921 */ 1922 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1923 loff_t f_pos, unsigned int cmd, 1924 struct ocfs2_space_resv *sr, 1925 int change_size) 1926 { 1927 int ret; 1928 s64 llen; 1929 loff_t size, orig_isize; 1930 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1931 struct buffer_head *di_bh = NULL; 1932 handle_t *handle; 1933 unsigned long long max_off = inode->i_sb->s_maxbytes; 1934 1935 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1936 return -EROFS; 1937 1938 inode_lock(inode); 1939 1940 /* 1941 * This prevents concurrent writes on other nodes 1942 */ 1943 ret = ocfs2_rw_lock(inode, 1); 1944 if (ret) { 1945 mlog_errno(ret); 1946 goto out; 1947 } 1948 1949 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1950 if (ret) { 1951 mlog_errno(ret); 1952 goto out_rw_unlock; 1953 } 1954 1955 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1956 ret = -EPERM; 1957 goto out_inode_unlock; 1958 } 1959 1960 switch (sr->l_whence) { 1961 case 0: /*SEEK_SET*/ 1962 break; 1963 case 1: /*SEEK_CUR*/ 1964 sr->l_start += f_pos; 1965 break; 1966 case 2: /*SEEK_END*/ 1967 sr->l_start += i_size_read(inode); 1968 break; 1969 default: 1970 ret = -EINVAL; 1971 goto out_inode_unlock; 1972 } 1973 sr->l_whence = 0; 1974 1975 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1976 1977 if (sr->l_start < 0 1978 || sr->l_start > max_off 1979 || (sr->l_start + llen) < 0 1980 || (sr->l_start + llen) > max_off) { 1981 ret = -EINVAL; 1982 goto out_inode_unlock; 1983 } 1984 size = sr->l_start + sr->l_len; 1985 1986 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1987 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1988 if (sr->l_len <= 0) { 1989 ret = -EINVAL; 1990 goto out_inode_unlock; 1991 } 1992 } 1993 1994 if (file && setattr_should_drop_suidgid(&nop_mnt_idmap, file_inode(file))) { 1995 ret = __ocfs2_write_remove_suid(inode, di_bh); 1996 if (ret) { 1997 mlog_errno(ret); 1998 goto out_inode_unlock; 1999 } 2000 } 2001 2002 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2003 switch (cmd) { 2004 case OCFS2_IOC_RESVSP: 2005 case OCFS2_IOC_RESVSP64: 2006 /* 2007 * This takes unsigned offsets, but the signed ones we 2008 * pass have been checked against overflow above. 2009 */ 2010 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 2011 sr->l_len); 2012 break; 2013 case OCFS2_IOC_UNRESVSP: 2014 case OCFS2_IOC_UNRESVSP64: 2015 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 2016 sr->l_len); 2017 break; 2018 default: 2019 ret = -EINVAL; 2020 } 2021 2022 orig_isize = i_size_read(inode); 2023 /* zeroout eof blocks in the cluster. */ 2024 if (!ret && change_size && orig_isize < size) { 2025 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize, 2026 size - orig_isize); 2027 if (!ret) 2028 i_size_write(inode, size); 2029 } 2030 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2031 if (ret) { 2032 mlog_errno(ret); 2033 goto out_inode_unlock; 2034 } 2035 2036 /* 2037 * We update c/mtime for these changes 2038 */ 2039 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 2040 if (IS_ERR(handle)) { 2041 ret = PTR_ERR(handle); 2042 mlog_errno(ret); 2043 goto out_inode_unlock; 2044 } 2045 2046 inode->i_ctime = inode->i_mtime = current_time(inode); 2047 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 2048 if (ret < 0) 2049 mlog_errno(ret); 2050 2051 if (file && (file->f_flags & O_SYNC)) 2052 handle->h_sync = 1; 2053 2054 ocfs2_commit_trans(osb, handle); 2055 2056 out_inode_unlock: 2057 brelse(di_bh); 2058 ocfs2_inode_unlock(inode, 1); 2059 out_rw_unlock: 2060 ocfs2_rw_unlock(inode, 1); 2061 2062 out: 2063 inode_unlock(inode); 2064 return ret; 2065 } 2066 2067 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 2068 struct ocfs2_space_resv *sr) 2069 { 2070 struct inode *inode = file_inode(file); 2071 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2072 int ret; 2073 2074 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 2075 !ocfs2_writes_unwritten_extents(osb)) 2076 return -ENOTTY; 2077 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 2078 !ocfs2_sparse_alloc(osb)) 2079 return -ENOTTY; 2080 2081 if (!S_ISREG(inode->i_mode)) 2082 return -EINVAL; 2083 2084 if (!(file->f_mode & FMODE_WRITE)) 2085 return -EBADF; 2086 2087 ret = mnt_want_write_file(file); 2088 if (ret) 2089 return ret; 2090 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2091 mnt_drop_write_file(file); 2092 return ret; 2093 } 2094 2095 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2096 loff_t len) 2097 { 2098 struct inode *inode = file_inode(file); 2099 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2100 struct ocfs2_space_resv sr; 2101 int change_size = 1; 2102 int cmd = OCFS2_IOC_RESVSP64; 2103 int ret = 0; 2104 2105 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2106 return -EOPNOTSUPP; 2107 if (!ocfs2_writes_unwritten_extents(osb)) 2108 return -EOPNOTSUPP; 2109 2110 if (mode & FALLOC_FL_KEEP_SIZE) { 2111 change_size = 0; 2112 } else { 2113 ret = inode_newsize_ok(inode, offset + len); 2114 if (ret) 2115 return ret; 2116 } 2117 2118 if (mode & FALLOC_FL_PUNCH_HOLE) 2119 cmd = OCFS2_IOC_UNRESVSP64; 2120 2121 sr.l_whence = 0; 2122 sr.l_start = (s64)offset; 2123 sr.l_len = (s64)len; 2124 2125 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2126 change_size); 2127 } 2128 2129 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2130 size_t count) 2131 { 2132 int ret = 0; 2133 unsigned int extent_flags; 2134 u32 cpos, clusters, extent_len, phys_cpos; 2135 struct super_block *sb = inode->i_sb; 2136 2137 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2138 !ocfs2_is_refcount_inode(inode) || 2139 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2140 return 0; 2141 2142 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2143 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2144 2145 while (clusters) { 2146 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2147 &extent_flags); 2148 if (ret < 0) { 2149 mlog_errno(ret); 2150 goto out; 2151 } 2152 2153 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2154 ret = 1; 2155 break; 2156 } 2157 2158 if (extent_len > clusters) 2159 extent_len = clusters; 2160 2161 clusters -= extent_len; 2162 cpos += extent_len; 2163 } 2164 out: 2165 return ret; 2166 } 2167 2168 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2169 { 2170 int blockmask = inode->i_sb->s_blocksize - 1; 2171 loff_t final_size = pos + count; 2172 2173 if ((pos & blockmask) || (final_size & blockmask)) 2174 return 1; 2175 return 0; 2176 } 2177 2178 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode, 2179 struct buffer_head **di_bh, 2180 int meta_level, 2181 int write_sem, 2182 int wait) 2183 { 2184 int ret = 0; 2185 2186 if (wait) 2187 ret = ocfs2_inode_lock(inode, di_bh, meta_level); 2188 else 2189 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level); 2190 if (ret < 0) 2191 goto out; 2192 2193 if (wait) { 2194 if (write_sem) 2195 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2196 else 2197 down_read(&OCFS2_I(inode)->ip_alloc_sem); 2198 } else { 2199 if (write_sem) 2200 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2201 else 2202 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2203 2204 if (!ret) { 2205 ret = -EAGAIN; 2206 goto out_unlock; 2207 } 2208 } 2209 2210 return ret; 2211 2212 out_unlock: 2213 brelse(*di_bh); 2214 *di_bh = NULL; 2215 ocfs2_inode_unlock(inode, meta_level); 2216 out: 2217 return ret; 2218 } 2219 2220 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode, 2221 struct buffer_head **di_bh, 2222 int meta_level, 2223 int write_sem) 2224 { 2225 if (write_sem) 2226 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2227 else 2228 up_read(&OCFS2_I(inode)->ip_alloc_sem); 2229 2230 brelse(*di_bh); 2231 *di_bh = NULL; 2232 2233 if (meta_level >= 0) 2234 ocfs2_inode_unlock(inode, meta_level); 2235 } 2236 2237 static int ocfs2_prepare_inode_for_write(struct file *file, 2238 loff_t pos, size_t count, int wait) 2239 { 2240 int ret = 0, meta_level = 0, overwrite_io = 0; 2241 int write_sem = 0; 2242 struct dentry *dentry = file->f_path.dentry; 2243 struct inode *inode = d_inode(dentry); 2244 struct buffer_head *di_bh = NULL; 2245 u32 cpos; 2246 u32 clusters; 2247 2248 /* 2249 * We start with a read level meta lock and only jump to an ex 2250 * if we need to make modifications here. 2251 */ 2252 for(;;) { 2253 ret = ocfs2_inode_lock_for_extent_tree(inode, 2254 &di_bh, 2255 meta_level, 2256 write_sem, 2257 wait); 2258 if (ret < 0) { 2259 if (ret != -EAGAIN) 2260 mlog_errno(ret); 2261 goto out; 2262 } 2263 2264 /* 2265 * Check if IO will overwrite allocated blocks in case 2266 * IOCB_NOWAIT flag is set. 2267 */ 2268 if (!wait && !overwrite_io) { 2269 overwrite_io = 1; 2270 2271 ret = ocfs2_overwrite_io(inode, di_bh, pos, count); 2272 if (ret < 0) { 2273 if (ret != -EAGAIN) 2274 mlog_errno(ret); 2275 goto out_unlock; 2276 } 2277 } 2278 2279 /* Clear suid / sgid if necessary. We do this here 2280 * instead of later in the write path because 2281 * remove_suid() calls ->setattr without any hint that 2282 * we may have already done our cluster locking. Since 2283 * ocfs2_setattr() *must* take cluster locks to 2284 * proceed, this will lead us to recursively lock the 2285 * inode. There's also the dinode i_size state which 2286 * can be lost via setattr during extending writes (we 2287 * set inode->i_size at the end of a write. */ 2288 if (setattr_should_drop_suidgid(&nop_mnt_idmap, inode)) { 2289 if (meta_level == 0) { 2290 ocfs2_inode_unlock_for_extent_tree(inode, 2291 &di_bh, 2292 meta_level, 2293 write_sem); 2294 meta_level = 1; 2295 continue; 2296 } 2297 2298 ret = ocfs2_write_remove_suid(inode); 2299 if (ret < 0) { 2300 mlog_errno(ret); 2301 goto out_unlock; 2302 } 2303 } 2304 2305 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2306 if (ret == 1) { 2307 ocfs2_inode_unlock_for_extent_tree(inode, 2308 &di_bh, 2309 meta_level, 2310 write_sem); 2311 meta_level = 1; 2312 write_sem = 1; 2313 ret = ocfs2_inode_lock_for_extent_tree(inode, 2314 &di_bh, 2315 meta_level, 2316 write_sem, 2317 wait); 2318 if (ret < 0) { 2319 if (ret != -EAGAIN) 2320 mlog_errno(ret); 2321 goto out; 2322 } 2323 2324 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2325 clusters = 2326 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2327 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2328 } 2329 2330 if (ret < 0) { 2331 if (ret != -EAGAIN) 2332 mlog_errno(ret); 2333 goto out_unlock; 2334 } 2335 2336 break; 2337 } 2338 2339 out_unlock: 2340 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2341 pos, count, wait); 2342 2343 ocfs2_inode_unlock_for_extent_tree(inode, 2344 &di_bh, 2345 meta_level, 2346 write_sem); 2347 2348 out: 2349 return ret; 2350 } 2351 2352 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2353 struct iov_iter *from) 2354 { 2355 int rw_level; 2356 ssize_t written = 0; 2357 ssize_t ret; 2358 size_t count = iov_iter_count(from); 2359 struct file *file = iocb->ki_filp; 2360 struct inode *inode = file_inode(file); 2361 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2362 int full_coherency = !(osb->s_mount_opt & 2363 OCFS2_MOUNT_COHERENCY_BUFFERED); 2364 void *saved_ki_complete = NULL; 2365 int append_write = ((iocb->ki_pos + count) >= 2366 i_size_read(inode) ? 1 : 0); 2367 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2368 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2369 2370 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, 2371 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2372 file->f_path.dentry->d_name.len, 2373 file->f_path.dentry->d_name.name, 2374 (unsigned int)from->nr_segs); /* GRRRRR */ 2375 2376 if (!direct_io && nowait) 2377 return -EOPNOTSUPP; 2378 2379 if (count == 0) 2380 return 0; 2381 2382 if (nowait) { 2383 if (!inode_trylock(inode)) 2384 return -EAGAIN; 2385 } else 2386 inode_lock(inode); 2387 2388 /* 2389 * Concurrent O_DIRECT writes are allowed with 2390 * mount_option "coherency=buffered". 2391 * For append write, we must take rw EX. 2392 */ 2393 rw_level = (!direct_io || full_coherency || append_write); 2394 2395 if (nowait) 2396 ret = ocfs2_try_rw_lock(inode, rw_level); 2397 else 2398 ret = ocfs2_rw_lock(inode, rw_level); 2399 if (ret < 0) { 2400 if (ret != -EAGAIN) 2401 mlog_errno(ret); 2402 goto out_mutex; 2403 } 2404 2405 /* 2406 * O_DIRECT writes with "coherency=full" need to take EX cluster 2407 * inode_lock to guarantee coherency. 2408 */ 2409 if (direct_io && full_coherency) { 2410 /* 2411 * We need to take and drop the inode lock to force 2412 * other nodes to drop their caches. Buffered I/O 2413 * already does this in write_begin(). 2414 */ 2415 if (nowait) 2416 ret = ocfs2_try_inode_lock(inode, NULL, 1); 2417 else 2418 ret = ocfs2_inode_lock(inode, NULL, 1); 2419 if (ret < 0) { 2420 if (ret != -EAGAIN) 2421 mlog_errno(ret); 2422 goto out; 2423 } 2424 2425 ocfs2_inode_unlock(inode, 1); 2426 } 2427 2428 ret = generic_write_checks(iocb, from); 2429 if (ret <= 0) { 2430 if (ret) 2431 mlog_errno(ret); 2432 goto out; 2433 } 2434 count = ret; 2435 2436 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); 2437 if (ret < 0) { 2438 if (ret != -EAGAIN) 2439 mlog_errno(ret); 2440 goto out; 2441 } 2442 2443 if (direct_io && !is_sync_kiocb(iocb) && 2444 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { 2445 /* 2446 * Make it a sync io if it's an unaligned aio. 2447 */ 2448 saved_ki_complete = xchg(&iocb->ki_complete, NULL); 2449 } 2450 2451 /* communicate with ocfs2_dio_end_io */ 2452 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2453 2454 written = __generic_file_write_iter(iocb, from); 2455 /* buffered aio wouldn't have proper lock coverage today */ 2456 BUG_ON(written == -EIOCBQUEUED && !direct_io); 2457 2458 /* 2459 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2460 * function pointer which is called when o_direct io completes so that 2461 * it can unlock our rw lock. 2462 * Unfortunately there are error cases which call end_io and others 2463 * that don't. so we don't have to unlock the rw_lock if either an 2464 * async dio is going to do it in the future or an end_io after an 2465 * error has already done it. 2466 */ 2467 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2468 rw_level = -1; 2469 } 2470 2471 if (unlikely(written <= 0)) 2472 goto out; 2473 2474 if (((file->f_flags & O_DSYNC) && !direct_io) || 2475 IS_SYNC(inode)) { 2476 ret = filemap_fdatawrite_range(file->f_mapping, 2477 iocb->ki_pos - written, 2478 iocb->ki_pos - 1); 2479 if (ret < 0) 2480 written = ret; 2481 2482 if (!ret) { 2483 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2484 if (ret < 0) 2485 written = ret; 2486 } 2487 2488 if (!ret) 2489 ret = filemap_fdatawait_range(file->f_mapping, 2490 iocb->ki_pos - written, 2491 iocb->ki_pos - 1); 2492 } 2493 2494 out: 2495 if (saved_ki_complete) 2496 xchg(&iocb->ki_complete, saved_ki_complete); 2497 2498 if (rw_level != -1) 2499 ocfs2_rw_unlock(inode, rw_level); 2500 2501 out_mutex: 2502 inode_unlock(inode); 2503 2504 if (written) 2505 ret = written; 2506 return ret; 2507 } 2508 2509 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2510 struct iov_iter *to) 2511 { 2512 int ret = 0, rw_level = -1, lock_level = 0; 2513 struct file *filp = iocb->ki_filp; 2514 struct inode *inode = file_inode(filp); 2515 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2516 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2517 2518 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, 2519 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2520 filp->f_path.dentry->d_name.len, 2521 filp->f_path.dentry->d_name.name, 2522 to->nr_segs); /* GRRRRR */ 2523 2524 2525 if (!inode) { 2526 ret = -EINVAL; 2527 mlog_errno(ret); 2528 goto bail; 2529 } 2530 2531 if (!direct_io && nowait) 2532 return -EOPNOTSUPP; 2533 2534 /* 2535 * buffered reads protect themselves in ->read_folio(). O_DIRECT reads 2536 * need locks to protect pending reads from racing with truncate. 2537 */ 2538 if (direct_io) { 2539 if (nowait) 2540 ret = ocfs2_try_rw_lock(inode, 0); 2541 else 2542 ret = ocfs2_rw_lock(inode, 0); 2543 2544 if (ret < 0) { 2545 if (ret != -EAGAIN) 2546 mlog_errno(ret); 2547 goto bail; 2548 } 2549 rw_level = 0; 2550 /* communicate with ocfs2_dio_end_io */ 2551 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2552 } 2553 2554 /* 2555 * We're fine letting folks race truncates and extending 2556 * writes with read across the cluster, just like they can 2557 * locally. Hence no rw_lock during read. 2558 * 2559 * Take and drop the meta data lock to update inode fields 2560 * like i_size. This allows the checks down below 2561 * copy_splice_read() a chance of actually working. 2562 */ 2563 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, 2564 !nowait); 2565 if (ret < 0) { 2566 if (ret != -EAGAIN) 2567 mlog_errno(ret); 2568 goto bail; 2569 } 2570 ocfs2_inode_unlock(inode, lock_level); 2571 2572 ret = generic_file_read_iter(iocb, to); 2573 trace_generic_file_read_iter_ret(ret); 2574 2575 /* buffered aio wouldn't have proper lock coverage today */ 2576 BUG_ON(ret == -EIOCBQUEUED && !direct_io); 2577 2578 /* see ocfs2_file_write_iter */ 2579 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2580 rw_level = -1; 2581 } 2582 2583 bail: 2584 if (rw_level != -1) 2585 ocfs2_rw_unlock(inode, rw_level); 2586 2587 return ret; 2588 } 2589 2590 static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos, 2591 struct pipe_inode_info *pipe, 2592 size_t len, unsigned int flags) 2593 { 2594 struct inode *inode = file_inode(in); 2595 ssize_t ret = 0; 2596 int lock_level = 0; 2597 2598 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, 2599 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2600 in->f_path.dentry->d_name.len, 2601 in->f_path.dentry->d_name.name, 2602 flags); 2603 2604 /* 2605 * We're fine letting folks race truncates and extending writes with 2606 * read across the cluster, just like they can locally. Hence no 2607 * rw_lock during read. 2608 * 2609 * Take and drop the meta data lock to update inode fields like i_size. 2610 * This allows the checks down below filemap_splice_read() a chance of 2611 * actually working. 2612 */ 2613 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level, 1); 2614 if (ret < 0) { 2615 if (ret != -EAGAIN) 2616 mlog_errno(ret); 2617 goto bail; 2618 } 2619 ocfs2_inode_unlock(inode, lock_level); 2620 2621 ret = filemap_splice_read(in, ppos, pipe, len, flags); 2622 trace_filemap_splice_read_ret(ret); 2623 bail: 2624 return ret; 2625 } 2626 2627 /* Refer generic_file_llseek_unlocked() */ 2628 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2629 { 2630 struct inode *inode = file->f_mapping->host; 2631 int ret = 0; 2632 2633 inode_lock(inode); 2634 2635 switch (whence) { 2636 case SEEK_SET: 2637 break; 2638 case SEEK_END: 2639 /* SEEK_END requires the OCFS2 inode lock for the file 2640 * because it references the file's size. 2641 */ 2642 ret = ocfs2_inode_lock(inode, NULL, 0); 2643 if (ret < 0) { 2644 mlog_errno(ret); 2645 goto out; 2646 } 2647 offset += i_size_read(inode); 2648 ocfs2_inode_unlock(inode, 0); 2649 break; 2650 case SEEK_CUR: 2651 if (offset == 0) { 2652 offset = file->f_pos; 2653 goto out; 2654 } 2655 offset += file->f_pos; 2656 break; 2657 case SEEK_DATA: 2658 case SEEK_HOLE: 2659 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2660 if (ret) 2661 goto out; 2662 break; 2663 default: 2664 ret = -EINVAL; 2665 goto out; 2666 } 2667 2668 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2669 2670 out: 2671 inode_unlock(inode); 2672 if (ret) 2673 return ret; 2674 return offset; 2675 } 2676 2677 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, 2678 struct file *file_out, loff_t pos_out, 2679 loff_t len, unsigned int remap_flags) 2680 { 2681 struct inode *inode_in = file_inode(file_in); 2682 struct inode *inode_out = file_inode(file_out); 2683 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); 2684 struct buffer_head *in_bh = NULL, *out_bh = NULL; 2685 bool same_inode = (inode_in == inode_out); 2686 loff_t remapped = 0; 2687 ssize_t ret; 2688 2689 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 2690 return -EINVAL; 2691 if (!ocfs2_refcount_tree(osb)) 2692 return -EOPNOTSUPP; 2693 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 2694 return -EROFS; 2695 2696 /* Lock both files against IO */ 2697 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); 2698 if (ret) 2699 return ret; 2700 2701 /* Check file eligibility and prepare for block sharing. */ 2702 ret = -EINVAL; 2703 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || 2704 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) 2705 goto out_unlock; 2706 2707 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 2708 &len, remap_flags); 2709 if (ret < 0 || len == 0) 2710 goto out_unlock; 2711 2712 /* Lock out changes to the allocation maps and remap. */ 2713 down_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2714 if (!same_inode) 2715 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, 2716 SINGLE_DEPTH_NESTING); 2717 2718 /* Zap any page cache for the destination file's range. */ 2719 truncate_inode_pages_range(&inode_out->i_data, 2720 round_down(pos_out, PAGE_SIZE), 2721 round_up(pos_out + len, PAGE_SIZE) - 1); 2722 2723 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, 2724 inode_out, out_bh, pos_out, len); 2725 up_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2726 if (!same_inode) 2727 up_write(&OCFS2_I(inode_out)->ip_alloc_sem); 2728 if (remapped < 0) { 2729 ret = remapped; 2730 mlog_errno(ret); 2731 goto out_unlock; 2732 } 2733 2734 /* 2735 * Empty the extent map so that we may get the right extent 2736 * record from the disk. 2737 */ 2738 ocfs2_extent_map_trunc(inode_in, 0); 2739 ocfs2_extent_map_trunc(inode_out, 0); 2740 2741 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); 2742 if (ret) { 2743 mlog_errno(ret); 2744 goto out_unlock; 2745 } 2746 2747 out_unlock: 2748 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); 2749 return remapped > 0 ? remapped : ret; 2750 } 2751 2752 const struct inode_operations ocfs2_file_iops = { 2753 .setattr = ocfs2_setattr, 2754 .getattr = ocfs2_getattr, 2755 .permission = ocfs2_permission, 2756 .listxattr = ocfs2_listxattr, 2757 .fiemap = ocfs2_fiemap, 2758 .get_inode_acl = ocfs2_iop_get_acl, 2759 .set_acl = ocfs2_iop_set_acl, 2760 .fileattr_get = ocfs2_fileattr_get, 2761 .fileattr_set = ocfs2_fileattr_set, 2762 }; 2763 2764 const struct inode_operations ocfs2_special_file_iops = { 2765 .setattr = ocfs2_setattr, 2766 .getattr = ocfs2_getattr, 2767 .permission = ocfs2_permission, 2768 .get_inode_acl = ocfs2_iop_get_acl, 2769 .set_acl = ocfs2_iop_set_acl, 2770 }; 2771 2772 /* 2773 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2774 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2775 */ 2776 const struct file_operations ocfs2_fops = { 2777 .llseek = ocfs2_file_llseek, 2778 .mmap = ocfs2_mmap, 2779 .fsync = ocfs2_sync_file, 2780 .release = ocfs2_file_release, 2781 .open = ocfs2_file_open, 2782 .read_iter = ocfs2_file_read_iter, 2783 .write_iter = ocfs2_file_write_iter, 2784 .unlocked_ioctl = ocfs2_ioctl, 2785 #ifdef CONFIG_COMPAT 2786 .compat_ioctl = ocfs2_compat_ioctl, 2787 #endif 2788 .lock = ocfs2_lock, 2789 .flock = ocfs2_flock, 2790 .splice_read = ocfs2_file_splice_read, 2791 .splice_write = iter_file_splice_write, 2792 .fallocate = ocfs2_fallocate, 2793 .remap_file_range = ocfs2_remap_file_range, 2794 }; 2795 2796 WRAP_DIR_ITER(ocfs2_readdir) // FIXME! 2797 const struct file_operations ocfs2_dops = { 2798 .llseek = generic_file_llseek, 2799 .read = generic_read_dir, 2800 .iterate_shared = shared_ocfs2_readdir, 2801 .fsync = ocfs2_sync_file, 2802 .release = ocfs2_dir_release, 2803 .open = ocfs2_dir_open, 2804 .unlocked_ioctl = ocfs2_ioctl, 2805 #ifdef CONFIG_COMPAT 2806 .compat_ioctl = ocfs2_compat_ioctl, 2807 #endif 2808 .lock = ocfs2_lock, 2809 .flock = ocfs2_flock, 2810 }; 2811 2812 /* 2813 * POSIX-lockless variants of our file_operations. 2814 * 2815 * These will be used if the underlying cluster stack does not support 2816 * posix file locking, if the user passes the "localflocks" mount 2817 * option, or if we have a local-only fs. 2818 * 2819 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2820 * so we still want it in the case of no stack support for 2821 * plocks. Internally, it will do the right thing when asked to ignore 2822 * the cluster. 2823 */ 2824 const struct file_operations ocfs2_fops_no_plocks = { 2825 .llseek = ocfs2_file_llseek, 2826 .mmap = ocfs2_mmap, 2827 .fsync = ocfs2_sync_file, 2828 .release = ocfs2_file_release, 2829 .open = ocfs2_file_open, 2830 .read_iter = ocfs2_file_read_iter, 2831 .write_iter = ocfs2_file_write_iter, 2832 .unlocked_ioctl = ocfs2_ioctl, 2833 #ifdef CONFIG_COMPAT 2834 .compat_ioctl = ocfs2_compat_ioctl, 2835 #endif 2836 .flock = ocfs2_flock, 2837 .splice_read = filemap_splice_read, 2838 .splice_write = iter_file_splice_write, 2839 .fallocate = ocfs2_fallocate, 2840 .remap_file_range = ocfs2_remap_file_range, 2841 }; 2842 2843 const struct file_operations ocfs2_dops_no_plocks = { 2844 .llseek = generic_file_llseek, 2845 .read = generic_read_dir, 2846 .iterate_shared = shared_ocfs2_readdir, 2847 .fsync = ocfs2_sync_file, 2848 .release = ocfs2_dir_release, 2849 .open = ocfs2_dir_open, 2850 .unlocked_ioctl = ocfs2_ioctl, 2851 #ifdef CONFIG_COMPAT 2852 .compat_ioctl = ocfs2_compat_ioctl, 2853 #endif 2854 .flock = ocfs2_flock, 2855 }; 2856