xref: /openbmc/linux/fs/ocfs2/file.c (revision 4800cd83)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 
41 #define MLOG_MASK_PREFIX ML_INODE
42 #include <cluster/masklog.h>
43 
44 #include "ocfs2.h"
45 
46 #include "alloc.h"
47 #include "aops.h"
48 #include "dir.h"
49 #include "dlmglue.h"
50 #include "extent_map.h"
51 #include "file.h"
52 #include "sysfile.h"
53 #include "inode.h"
54 #include "ioctl.h"
55 #include "journal.h"
56 #include "locks.h"
57 #include "mmap.h"
58 #include "suballoc.h"
59 #include "super.h"
60 #include "xattr.h"
61 #include "acl.h"
62 #include "quota.h"
63 #include "refcounttree.h"
64 
65 #include "buffer_head_io.h"
66 
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 	struct ocfs2_file_private *fp;
70 
71 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 	if (!fp)
73 		return -ENOMEM;
74 
75 	fp->fp_file = file;
76 	mutex_init(&fp->fp_mutex);
77 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 	file->private_data = fp;
79 
80 	return 0;
81 }
82 
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 	struct ocfs2_file_private *fp = file->private_data;
86 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87 
88 	if (fp) {
89 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 		ocfs2_lock_res_free(&fp->fp_flock);
91 		kfree(fp);
92 		file->private_data = NULL;
93 	}
94 }
95 
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 	int status;
99 	int mode = file->f_flags;
100 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
101 
102 	mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file,
103 		   file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name);
104 
105 	if (file->f_mode & FMODE_WRITE)
106 		dquot_initialize(inode);
107 
108 	spin_lock(&oi->ip_lock);
109 
110 	/* Check that the inode hasn't been wiped from disk by another
111 	 * node. If it hasn't then we're safe as long as we hold the
112 	 * spin lock until our increment of open count. */
113 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
114 		spin_unlock(&oi->ip_lock);
115 
116 		status = -ENOENT;
117 		goto leave;
118 	}
119 
120 	if (mode & O_DIRECT)
121 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
122 
123 	oi->ip_open_count++;
124 	spin_unlock(&oi->ip_lock);
125 
126 	status = ocfs2_init_file_private(inode, file);
127 	if (status) {
128 		/*
129 		 * We want to set open count back if we're failing the
130 		 * open.
131 		 */
132 		spin_lock(&oi->ip_lock);
133 		oi->ip_open_count--;
134 		spin_unlock(&oi->ip_lock);
135 	}
136 
137 leave:
138 	mlog_exit(status);
139 	return status;
140 }
141 
142 static int ocfs2_file_release(struct inode *inode, struct file *file)
143 {
144 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
145 
146 	mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file,
147 		       file->f_path.dentry->d_name.len,
148 		       file->f_path.dentry->d_name.name);
149 
150 	spin_lock(&oi->ip_lock);
151 	if (!--oi->ip_open_count)
152 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
153 	spin_unlock(&oi->ip_lock);
154 
155 	ocfs2_free_file_private(inode, file);
156 
157 	mlog_exit(0);
158 
159 	return 0;
160 }
161 
162 static int ocfs2_dir_open(struct inode *inode, struct file *file)
163 {
164 	return ocfs2_init_file_private(inode, file);
165 }
166 
167 static int ocfs2_dir_release(struct inode *inode, struct file *file)
168 {
169 	ocfs2_free_file_private(inode, file);
170 	return 0;
171 }
172 
173 static int ocfs2_sync_file(struct file *file, int datasync)
174 {
175 	int err = 0;
176 	journal_t *journal;
177 	struct inode *inode = file->f_mapping->host;
178 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
179 
180 	mlog_entry("(0x%p, %d, 0x%p, '%.*s')\n", file, datasync,
181 		   file->f_path.dentry, file->f_path.dentry->d_name.len,
182 		   file->f_path.dentry->d_name.name);
183 
184 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
185 		/*
186 		 * We still have to flush drive's caches to get data to the
187 		 * platter
188 		 */
189 		if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
190 			blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
191 		goto bail;
192 	}
193 
194 	journal = osb->journal->j_journal;
195 	err = jbd2_journal_force_commit(journal);
196 
197 bail:
198 	mlog_exit(err);
199 
200 	return (err < 0) ? -EIO : 0;
201 }
202 
203 int ocfs2_should_update_atime(struct inode *inode,
204 			      struct vfsmount *vfsmnt)
205 {
206 	struct timespec now;
207 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
208 
209 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
210 		return 0;
211 
212 	if ((inode->i_flags & S_NOATIME) ||
213 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
214 		return 0;
215 
216 	/*
217 	 * We can be called with no vfsmnt structure - NFSD will
218 	 * sometimes do this.
219 	 *
220 	 * Note that our action here is different than touch_atime() -
221 	 * if we can't tell whether this is a noatime mount, then we
222 	 * don't know whether to trust the value of s_atime_quantum.
223 	 */
224 	if (vfsmnt == NULL)
225 		return 0;
226 
227 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
228 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
229 		return 0;
230 
231 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
232 		if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
233 		    (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
234 			return 1;
235 
236 		return 0;
237 	}
238 
239 	now = CURRENT_TIME;
240 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
241 		return 0;
242 	else
243 		return 1;
244 }
245 
246 int ocfs2_update_inode_atime(struct inode *inode,
247 			     struct buffer_head *bh)
248 {
249 	int ret;
250 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
251 	handle_t *handle;
252 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
253 
254 	mlog_entry_void();
255 
256 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
257 	if (IS_ERR(handle)) {
258 		ret = PTR_ERR(handle);
259 		mlog_errno(ret);
260 		goto out;
261 	}
262 
263 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
264 				      OCFS2_JOURNAL_ACCESS_WRITE);
265 	if (ret) {
266 		mlog_errno(ret);
267 		goto out_commit;
268 	}
269 
270 	/*
271 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
272 	 * have i_mutex to guard against concurrent changes to other
273 	 * inode fields.
274 	 */
275 	inode->i_atime = CURRENT_TIME;
276 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
277 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
278 	ocfs2_journal_dirty(handle, bh);
279 
280 out_commit:
281 	ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
282 out:
283 	mlog_exit(ret);
284 	return ret;
285 }
286 
287 static int ocfs2_set_inode_size(handle_t *handle,
288 				struct inode *inode,
289 				struct buffer_head *fe_bh,
290 				u64 new_i_size)
291 {
292 	int status;
293 
294 	mlog_entry_void();
295 	i_size_write(inode, new_i_size);
296 	inode->i_blocks = ocfs2_inode_sector_count(inode);
297 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
298 
299 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
300 	if (status < 0) {
301 		mlog_errno(status);
302 		goto bail;
303 	}
304 
305 bail:
306 	mlog_exit(status);
307 	return status;
308 }
309 
310 int ocfs2_simple_size_update(struct inode *inode,
311 			     struct buffer_head *di_bh,
312 			     u64 new_i_size)
313 {
314 	int ret;
315 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
316 	handle_t *handle = NULL;
317 
318 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
319 	if (IS_ERR(handle)) {
320 		ret = PTR_ERR(handle);
321 		mlog_errno(ret);
322 		goto out;
323 	}
324 
325 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
326 				   new_i_size);
327 	if (ret < 0)
328 		mlog_errno(ret);
329 
330 	ocfs2_commit_trans(osb, handle);
331 out:
332 	return ret;
333 }
334 
335 static int ocfs2_cow_file_pos(struct inode *inode,
336 			      struct buffer_head *fe_bh,
337 			      u64 offset)
338 {
339 	int status;
340 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
341 	unsigned int num_clusters = 0;
342 	unsigned int ext_flags = 0;
343 
344 	/*
345 	 * If the new offset is aligned to the range of the cluster, there is
346 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
347 	 * CoW either.
348 	 */
349 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
350 		return 0;
351 
352 	status = ocfs2_get_clusters(inode, cpos, &phys,
353 				    &num_clusters, &ext_flags);
354 	if (status) {
355 		mlog_errno(status);
356 		goto out;
357 	}
358 
359 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
360 		goto out;
361 
362 	return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1);
363 
364 out:
365 	return status;
366 }
367 
368 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
369 				     struct inode *inode,
370 				     struct buffer_head *fe_bh,
371 				     u64 new_i_size)
372 {
373 	int status;
374 	handle_t *handle;
375 	struct ocfs2_dinode *di;
376 	u64 cluster_bytes;
377 
378 	mlog_entry_void();
379 
380 	/*
381 	 * We need to CoW the cluster contains the offset if it is reflinked
382 	 * since we will call ocfs2_zero_range_for_truncate later which will
383 	 * write "0" from offset to the end of the cluster.
384 	 */
385 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
386 	if (status) {
387 		mlog_errno(status);
388 		return status;
389 	}
390 
391 	/* TODO: This needs to actually orphan the inode in this
392 	 * transaction. */
393 
394 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
395 	if (IS_ERR(handle)) {
396 		status = PTR_ERR(handle);
397 		mlog_errno(status);
398 		goto out;
399 	}
400 
401 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
402 					 OCFS2_JOURNAL_ACCESS_WRITE);
403 	if (status < 0) {
404 		mlog_errno(status);
405 		goto out_commit;
406 	}
407 
408 	/*
409 	 * Do this before setting i_size.
410 	 */
411 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
412 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
413 					       cluster_bytes);
414 	if (status) {
415 		mlog_errno(status);
416 		goto out_commit;
417 	}
418 
419 	i_size_write(inode, new_i_size);
420 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
421 
422 	di = (struct ocfs2_dinode *) fe_bh->b_data;
423 	di->i_size = cpu_to_le64(new_i_size);
424 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
425 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
426 
427 	ocfs2_journal_dirty(handle, fe_bh);
428 
429 out_commit:
430 	ocfs2_commit_trans(osb, handle);
431 out:
432 
433 	mlog_exit(status);
434 	return status;
435 }
436 
437 static int ocfs2_truncate_file(struct inode *inode,
438 			       struct buffer_head *di_bh,
439 			       u64 new_i_size)
440 {
441 	int status = 0;
442 	struct ocfs2_dinode *fe = NULL;
443 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
444 
445 	mlog_entry("(inode = %llu, new_i_size = %llu\n",
446 		   (unsigned long long)OCFS2_I(inode)->ip_blkno,
447 		   (unsigned long long)new_i_size);
448 
449 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
450 	 * already validated it */
451 	fe = (struct ocfs2_dinode *) di_bh->b_data;
452 
453 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
454 			"Inode %llu, inode i_size = %lld != di "
455 			"i_size = %llu, i_flags = 0x%x\n",
456 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
457 			i_size_read(inode),
458 			(unsigned long long)le64_to_cpu(fe->i_size),
459 			le32_to_cpu(fe->i_flags));
460 
461 	if (new_i_size > le64_to_cpu(fe->i_size)) {
462 		mlog(0, "asked to truncate file with size (%llu) to size (%llu)!\n",
463 		     (unsigned long long)le64_to_cpu(fe->i_size),
464 		     (unsigned long long)new_i_size);
465 		status = -EINVAL;
466 		mlog_errno(status);
467 		goto bail;
468 	}
469 
470 	mlog(0, "inode %llu, i_size = %llu, new_i_size = %llu\n",
471 	     (unsigned long long)le64_to_cpu(fe->i_blkno),
472 	     (unsigned long long)le64_to_cpu(fe->i_size),
473 	     (unsigned long long)new_i_size);
474 
475 	/* lets handle the simple truncate cases before doing any more
476 	 * cluster locking. */
477 	if (new_i_size == le64_to_cpu(fe->i_size))
478 		goto bail;
479 
480 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
481 
482 	ocfs2_resv_discard(&osb->osb_la_resmap,
483 			   &OCFS2_I(inode)->ip_la_data_resv);
484 
485 	/*
486 	 * The inode lock forced other nodes to sync and drop their
487 	 * pages, which (correctly) happens even if we have a truncate
488 	 * without allocation change - ocfs2 cluster sizes can be much
489 	 * greater than page size, so we have to truncate them
490 	 * anyway.
491 	 */
492 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
493 	truncate_inode_pages(inode->i_mapping, new_i_size);
494 
495 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
496 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
497 					       i_size_read(inode), 1);
498 		if (status)
499 			mlog_errno(status);
500 
501 		goto bail_unlock_sem;
502 	}
503 
504 	/* alright, we're going to need to do a full blown alloc size
505 	 * change. Orphan the inode so that recovery can complete the
506 	 * truncate if necessary. This does the task of marking
507 	 * i_size. */
508 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
509 	if (status < 0) {
510 		mlog_errno(status);
511 		goto bail_unlock_sem;
512 	}
513 
514 	status = ocfs2_commit_truncate(osb, inode, di_bh);
515 	if (status < 0) {
516 		mlog_errno(status);
517 		goto bail_unlock_sem;
518 	}
519 
520 	/* TODO: orphan dir cleanup here. */
521 bail_unlock_sem:
522 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
523 
524 bail:
525 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
526 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
527 
528 	mlog_exit(status);
529 	return status;
530 }
531 
532 /*
533  * extend file allocation only here.
534  * we'll update all the disk stuff, and oip->alloc_size
535  *
536  * expect stuff to be locked, a transaction started and enough data /
537  * metadata reservations in the contexts.
538  *
539  * Will return -EAGAIN, and a reason if a restart is needed.
540  * If passed in, *reason will always be set, even in error.
541  */
542 int ocfs2_add_inode_data(struct ocfs2_super *osb,
543 			 struct inode *inode,
544 			 u32 *logical_offset,
545 			 u32 clusters_to_add,
546 			 int mark_unwritten,
547 			 struct buffer_head *fe_bh,
548 			 handle_t *handle,
549 			 struct ocfs2_alloc_context *data_ac,
550 			 struct ocfs2_alloc_context *meta_ac,
551 			 enum ocfs2_alloc_restarted *reason_ret)
552 {
553 	int ret;
554 	struct ocfs2_extent_tree et;
555 
556 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
557 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
558 					  clusters_to_add, mark_unwritten,
559 					  data_ac, meta_ac, reason_ret);
560 
561 	return ret;
562 }
563 
564 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
565 				     u32 clusters_to_add, int mark_unwritten)
566 {
567 	int status = 0;
568 	int restart_func = 0;
569 	int credits;
570 	u32 prev_clusters;
571 	struct buffer_head *bh = NULL;
572 	struct ocfs2_dinode *fe = NULL;
573 	handle_t *handle = NULL;
574 	struct ocfs2_alloc_context *data_ac = NULL;
575 	struct ocfs2_alloc_context *meta_ac = NULL;
576 	enum ocfs2_alloc_restarted why;
577 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
578 	struct ocfs2_extent_tree et;
579 	int did_quota = 0;
580 
581 	mlog_entry("(clusters_to_add = %u)\n", clusters_to_add);
582 
583 	/*
584 	 * This function only exists for file systems which don't
585 	 * support holes.
586 	 */
587 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
588 
589 	status = ocfs2_read_inode_block(inode, &bh);
590 	if (status < 0) {
591 		mlog_errno(status);
592 		goto leave;
593 	}
594 	fe = (struct ocfs2_dinode *) bh->b_data;
595 
596 restart_all:
597 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
598 
599 	mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u, "
600 	     "clusters_to_add = %u\n",
601 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
602 	     (long long)i_size_read(inode), le32_to_cpu(fe->i_clusters),
603 	     clusters_to_add);
604 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
605 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
606 				       &data_ac, &meta_ac);
607 	if (status) {
608 		mlog_errno(status);
609 		goto leave;
610 	}
611 
612 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list,
613 					    clusters_to_add);
614 	handle = ocfs2_start_trans(osb, credits);
615 	if (IS_ERR(handle)) {
616 		status = PTR_ERR(handle);
617 		handle = NULL;
618 		mlog_errno(status);
619 		goto leave;
620 	}
621 
622 restarted_transaction:
623 	status = dquot_alloc_space_nodirty(inode,
624 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
625 	if (status)
626 		goto leave;
627 	did_quota = 1;
628 
629 	/* reserve a write to the file entry early on - that we if we
630 	 * run out of credits in the allocation path, we can still
631 	 * update i_size. */
632 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
633 					 OCFS2_JOURNAL_ACCESS_WRITE);
634 	if (status < 0) {
635 		mlog_errno(status);
636 		goto leave;
637 	}
638 
639 	prev_clusters = OCFS2_I(inode)->ip_clusters;
640 
641 	status = ocfs2_add_inode_data(osb,
642 				      inode,
643 				      &logical_start,
644 				      clusters_to_add,
645 				      mark_unwritten,
646 				      bh,
647 				      handle,
648 				      data_ac,
649 				      meta_ac,
650 				      &why);
651 	if ((status < 0) && (status != -EAGAIN)) {
652 		if (status != -ENOSPC)
653 			mlog_errno(status);
654 		goto leave;
655 	}
656 
657 	ocfs2_journal_dirty(handle, bh);
658 
659 	spin_lock(&OCFS2_I(inode)->ip_lock);
660 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
661 	spin_unlock(&OCFS2_I(inode)->ip_lock);
662 	/* Release unused quota reservation */
663 	dquot_free_space(inode,
664 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
665 	did_quota = 0;
666 
667 	if (why != RESTART_NONE && clusters_to_add) {
668 		if (why == RESTART_META) {
669 			mlog(0, "restarting function.\n");
670 			restart_func = 1;
671 			status = 0;
672 		} else {
673 			BUG_ON(why != RESTART_TRANS);
674 
675 			mlog(0, "restarting transaction.\n");
676 			/* TODO: This can be more intelligent. */
677 			credits = ocfs2_calc_extend_credits(osb->sb,
678 							    &fe->id2.i_list,
679 							    clusters_to_add);
680 			status = ocfs2_extend_trans(handle, credits);
681 			if (status < 0) {
682 				/* handle still has to be committed at
683 				 * this point. */
684 				status = -ENOMEM;
685 				mlog_errno(status);
686 				goto leave;
687 			}
688 			goto restarted_transaction;
689 		}
690 	}
691 
692 	mlog(0, "fe: i_clusters = %u, i_size=%llu\n",
693 	     le32_to_cpu(fe->i_clusters),
694 	     (unsigned long long)le64_to_cpu(fe->i_size));
695 	mlog(0, "inode: ip_clusters=%u, i_size=%lld\n",
696 	     OCFS2_I(inode)->ip_clusters, (long long)i_size_read(inode));
697 
698 leave:
699 	if (status < 0 && did_quota)
700 		dquot_free_space(inode,
701 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
702 	if (handle) {
703 		ocfs2_commit_trans(osb, handle);
704 		handle = NULL;
705 	}
706 	if (data_ac) {
707 		ocfs2_free_alloc_context(data_ac);
708 		data_ac = NULL;
709 	}
710 	if (meta_ac) {
711 		ocfs2_free_alloc_context(meta_ac);
712 		meta_ac = NULL;
713 	}
714 	if ((!status) && restart_func) {
715 		restart_func = 0;
716 		goto restart_all;
717 	}
718 	brelse(bh);
719 	bh = NULL;
720 
721 	mlog_exit(status);
722 	return status;
723 }
724 
725 /*
726  * While a write will already be ordering the data, a truncate will not.
727  * Thus, we need to explicitly order the zeroed pages.
728  */
729 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
730 {
731 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
732 	handle_t *handle = NULL;
733 	int ret = 0;
734 
735 	if (!ocfs2_should_order_data(inode))
736 		goto out;
737 
738 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
739 	if (IS_ERR(handle)) {
740 		ret = -ENOMEM;
741 		mlog_errno(ret);
742 		goto out;
743 	}
744 
745 	ret = ocfs2_jbd2_file_inode(handle, inode);
746 	if (ret < 0)
747 		mlog_errno(ret);
748 
749 out:
750 	if (ret) {
751 		if (!IS_ERR(handle))
752 			ocfs2_commit_trans(osb, handle);
753 		handle = ERR_PTR(ret);
754 	}
755 	return handle;
756 }
757 
758 /* Some parts of this taken from generic_cont_expand, which turned out
759  * to be too fragile to do exactly what we need without us having to
760  * worry about recursive locking in ->write_begin() and ->write_end(). */
761 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
762 				 u64 abs_to)
763 {
764 	struct address_space *mapping = inode->i_mapping;
765 	struct page *page;
766 	unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
767 	handle_t *handle = NULL;
768 	int ret = 0;
769 	unsigned zero_from, zero_to, block_start, block_end;
770 
771 	BUG_ON(abs_from >= abs_to);
772 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
773 	BUG_ON(abs_from & (inode->i_blkbits - 1));
774 
775 	page = find_or_create_page(mapping, index, GFP_NOFS);
776 	if (!page) {
777 		ret = -ENOMEM;
778 		mlog_errno(ret);
779 		goto out;
780 	}
781 
782 	/* Get the offsets within the page that we want to zero */
783 	zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
784 	zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
785 	if (!zero_to)
786 		zero_to = PAGE_CACHE_SIZE;
787 
788 	mlog(0,
789 	     "abs_from = %llu, abs_to = %llu, index = %lu, zero_from = %u, zero_to = %u\n",
790 	     (unsigned long long)abs_from, (unsigned long long)abs_to,
791 	     index, zero_from, zero_to);
792 
793 	/* We know that zero_from is block aligned */
794 	for (block_start = zero_from; block_start < zero_to;
795 	     block_start = block_end) {
796 		block_end = block_start + (1 << inode->i_blkbits);
797 
798 		/*
799 		 * block_start is block-aligned.  Bump it by one to force
800 		 * __block_write_begin and block_commit_write to zero the
801 		 * whole block.
802 		 */
803 		ret = __block_write_begin(page, block_start + 1, 0,
804 					  ocfs2_get_block);
805 		if (ret < 0) {
806 			mlog_errno(ret);
807 			goto out_unlock;
808 		}
809 
810 		if (!handle) {
811 			handle = ocfs2_zero_start_ordered_transaction(inode);
812 			if (IS_ERR(handle)) {
813 				ret = PTR_ERR(handle);
814 				handle = NULL;
815 				break;
816 			}
817 		}
818 
819 		/* must not update i_size! */
820 		ret = block_commit_write(page, block_start + 1,
821 					 block_start + 1);
822 		if (ret < 0)
823 			mlog_errno(ret);
824 		else
825 			ret = 0;
826 	}
827 
828 	if (handle)
829 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
830 
831 out_unlock:
832 	unlock_page(page);
833 	page_cache_release(page);
834 out:
835 	return ret;
836 }
837 
838 /*
839  * Find the next range to zero.  We do this in terms of bytes because
840  * that's what ocfs2_zero_extend() wants, and it is dealing with the
841  * pagecache.  We may return multiple extents.
842  *
843  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
844  * needs to be zeroed.  range_start and range_end return the next zeroing
845  * range.  A subsequent call should pass the previous range_end as its
846  * zero_start.  If range_end is 0, there's nothing to do.
847  *
848  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
849  */
850 static int ocfs2_zero_extend_get_range(struct inode *inode,
851 				       struct buffer_head *di_bh,
852 				       u64 zero_start, u64 zero_end,
853 				       u64 *range_start, u64 *range_end)
854 {
855 	int rc = 0, needs_cow = 0;
856 	u32 p_cpos, zero_clusters = 0;
857 	u32 zero_cpos =
858 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
859 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
860 	unsigned int num_clusters = 0;
861 	unsigned int ext_flags = 0;
862 
863 	while (zero_cpos < last_cpos) {
864 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
865 					&num_clusters, &ext_flags);
866 		if (rc) {
867 			mlog_errno(rc);
868 			goto out;
869 		}
870 
871 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
872 			zero_clusters = num_clusters;
873 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
874 				needs_cow = 1;
875 			break;
876 		}
877 
878 		zero_cpos += num_clusters;
879 	}
880 	if (!zero_clusters) {
881 		*range_end = 0;
882 		goto out;
883 	}
884 
885 	while ((zero_cpos + zero_clusters) < last_cpos) {
886 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
887 					&p_cpos, &num_clusters,
888 					&ext_flags);
889 		if (rc) {
890 			mlog_errno(rc);
891 			goto out;
892 		}
893 
894 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
895 			break;
896 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
897 			needs_cow = 1;
898 		zero_clusters += num_clusters;
899 	}
900 	if ((zero_cpos + zero_clusters) > last_cpos)
901 		zero_clusters = last_cpos - zero_cpos;
902 
903 	if (needs_cow) {
904 		rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos,
905 					zero_clusters, UINT_MAX);
906 		if (rc) {
907 			mlog_errno(rc);
908 			goto out;
909 		}
910 	}
911 
912 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
913 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
914 					     zero_cpos + zero_clusters);
915 
916 out:
917 	return rc;
918 }
919 
920 /*
921  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
922  * has made sure that the entire range needs zeroing.
923  */
924 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
925 				   u64 range_end)
926 {
927 	int rc = 0;
928 	u64 next_pos;
929 	u64 zero_pos = range_start;
930 
931 	mlog(0, "range_start = %llu, range_end = %llu\n",
932 	     (unsigned long long)range_start,
933 	     (unsigned long long)range_end);
934 	BUG_ON(range_start >= range_end);
935 
936 	while (zero_pos < range_end) {
937 		next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
938 		if (next_pos > range_end)
939 			next_pos = range_end;
940 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
941 		if (rc < 0) {
942 			mlog_errno(rc);
943 			break;
944 		}
945 		zero_pos = next_pos;
946 
947 		/*
948 		 * Very large extends have the potential to lock up
949 		 * the cpu for extended periods of time.
950 		 */
951 		cond_resched();
952 	}
953 
954 	return rc;
955 }
956 
957 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
958 		      loff_t zero_to_size)
959 {
960 	int ret = 0;
961 	u64 zero_start, range_start = 0, range_end = 0;
962 	struct super_block *sb = inode->i_sb;
963 
964 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
965 	mlog(0, "zero_start %llu for i_size %llu\n",
966 	     (unsigned long long)zero_start,
967 	     (unsigned long long)i_size_read(inode));
968 	while (zero_start < zero_to_size) {
969 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
970 						  zero_to_size,
971 						  &range_start,
972 						  &range_end);
973 		if (ret) {
974 			mlog_errno(ret);
975 			break;
976 		}
977 		if (!range_end)
978 			break;
979 		/* Trim the ends */
980 		if (range_start < zero_start)
981 			range_start = zero_start;
982 		if (range_end > zero_to_size)
983 			range_end = zero_to_size;
984 
985 		ret = ocfs2_zero_extend_range(inode, range_start,
986 					      range_end);
987 		if (ret) {
988 			mlog_errno(ret);
989 			break;
990 		}
991 		zero_start = range_end;
992 	}
993 
994 	return ret;
995 }
996 
997 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
998 			  u64 new_i_size, u64 zero_to)
999 {
1000 	int ret;
1001 	u32 clusters_to_add;
1002 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1003 
1004 	/*
1005 	 * Only quota files call this without a bh, and they can't be
1006 	 * refcounted.
1007 	 */
1008 	BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1009 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1010 
1011 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1012 	if (clusters_to_add < oi->ip_clusters)
1013 		clusters_to_add = 0;
1014 	else
1015 		clusters_to_add -= oi->ip_clusters;
1016 
1017 	if (clusters_to_add) {
1018 		ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1019 						clusters_to_add, 0);
1020 		if (ret) {
1021 			mlog_errno(ret);
1022 			goto out;
1023 		}
1024 	}
1025 
1026 	/*
1027 	 * Call this even if we don't add any clusters to the tree. We
1028 	 * still need to zero the area between the old i_size and the
1029 	 * new i_size.
1030 	 */
1031 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1032 	if (ret < 0)
1033 		mlog_errno(ret);
1034 
1035 out:
1036 	return ret;
1037 }
1038 
1039 static int ocfs2_extend_file(struct inode *inode,
1040 			     struct buffer_head *di_bh,
1041 			     u64 new_i_size)
1042 {
1043 	int ret = 0;
1044 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1045 
1046 	BUG_ON(!di_bh);
1047 
1048 	/* setattr sometimes calls us like this. */
1049 	if (new_i_size == 0)
1050 		goto out;
1051 
1052 	if (i_size_read(inode) == new_i_size)
1053 		goto out;
1054 	BUG_ON(new_i_size < i_size_read(inode));
1055 
1056 	/*
1057 	 * The alloc sem blocks people in read/write from reading our
1058 	 * allocation until we're done changing it. We depend on
1059 	 * i_mutex to block other extend/truncate calls while we're
1060 	 * here.  We even have to hold it for sparse files because there
1061 	 * might be some tail zeroing.
1062 	 */
1063 	down_write(&oi->ip_alloc_sem);
1064 
1065 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1066 		/*
1067 		 * We can optimize small extends by keeping the inodes
1068 		 * inline data.
1069 		 */
1070 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1071 			up_write(&oi->ip_alloc_sem);
1072 			goto out_update_size;
1073 		}
1074 
1075 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1076 		if (ret) {
1077 			up_write(&oi->ip_alloc_sem);
1078 			mlog_errno(ret);
1079 			goto out;
1080 		}
1081 	}
1082 
1083 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1084 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1085 	else
1086 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1087 					    new_i_size);
1088 
1089 	up_write(&oi->ip_alloc_sem);
1090 
1091 	if (ret < 0) {
1092 		mlog_errno(ret);
1093 		goto out;
1094 	}
1095 
1096 out_update_size:
1097 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1098 	if (ret < 0)
1099 		mlog_errno(ret);
1100 
1101 out:
1102 	return ret;
1103 }
1104 
1105 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1106 {
1107 	int status = 0, size_change;
1108 	struct inode *inode = dentry->d_inode;
1109 	struct super_block *sb = inode->i_sb;
1110 	struct ocfs2_super *osb = OCFS2_SB(sb);
1111 	struct buffer_head *bh = NULL;
1112 	handle_t *handle = NULL;
1113 	struct dquot *transfer_to[MAXQUOTAS] = { };
1114 	int qtype;
1115 
1116 	mlog_entry("(0x%p, '%.*s')\n", dentry,
1117 	           dentry->d_name.len, dentry->d_name.name);
1118 
1119 	/* ensuring we don't even attempt to truncate a symlink */
1120 	if (S_ISLNK(inode->i_mode))
1121 		attr->ia_valid &= ~ATTR_SIZE;
1122 
1123 	if (attr->ia_valid & ATTR_MODE)
1124 		mlog(0, "mode change: %d\n", attr->ia_mode);
1125 	if (attr->ia_valid & ATTR_UID)
1126 		mlog(0, "uid change: %d\n", attr->ia_uid);
1127 	if (attr->ia_valid & ATTR_GID)
1128 		mlog(0, "gid change: %d\n", attr->ia_gid);
1129 	if (attr->ia_valid & ATTR_SIZE)
1130 		mlog(0, "size change...\n");
1131 	if (attr->ia_valid & (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME))
1132 		mlog(0, "time change...\n");
1133 
1134 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1135 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1136 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) {
1137 		mlog(0, "can't handle attrs: 0x%x\n", attr->ia_valid);
1138 		return 0;
1139 	}
1140 
1141 	status = inode_change_ok(inode, attr);
1142 	if (status)
1143 		return status;
1144 
1145 	if (is_quota_modification(inode, attr))
1146 		dquot_initialize(inode);
1147 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1148 	if (size_change) {
1149 		status = ocfs2_rw_lock(inode, 1);
1150 		if (status < 0) {
1151 			mlog_errno(status);
1152 			goto bail;
1153 		}
1154 	}
1155 
1156 	status = ocfs2_inode_lock(inode, &bh, 1);
1157 	if (status < 0) {
1158 		if (status != -ENOENT)
1159 			mlog_errno(status);
1160 		goto bail_unlock_rw;
1161 	}
1162 
1163 	if (size_change && attr->ia_size != i_size_read(inode)) {
1164 		status = inode_newsize_ok(inode, attr->ia_size);
1165 		if (status)
1166 			goto bail_unlock;
1167 
1168 		if (i_size_read(inode) > attr->ia_size) {
1169 			if (ocfs2_should_order_data(inode)) {
1170 				status = ocfs2_begin_ordered_truncate(inode,
1171 								      attr->ia_size);
1172 				if (status)
1173 					goto bail_unlock;
1174 			}
1175 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1176 		} else
1177 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1178 		if (status < 0) {
1179 			if (status != -ENOSPC)
1180 				mlog_errno(status);
1181 			status = -ENOSPC;
1182 			goto bail_unlock;
1183 		}
1184 	}
1185 
1186 	if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
1187 	    (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
1188 		/*
1189 		 * Gather pointers to quota structures so that allocation /
1190 		 * freeing of quota structures happens here and not inside
1191 		 * dquot_transfer() where we have problems with lock ordering
1192 		 */
1193 		if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid
1194 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1195 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1196 			transfer_to[USRQUOTA] = dqget(sb, attr->ia_uid,
1197 						      USRQUOTA);
1198 			if (!transfer_to[USRQUOTA]) {
1199 				status = -ESRCH;
1200 				goto bail_unlock;
1201 			}
1202 		}
1203 		if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid
1204 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1205 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1206 			transfer_to[GRPQUOTA] = dqget(sb, attr->ia_gid,
1207 						      GRPQUOTA);
1208 			if (!transfer_to[GRPQUOTA]) {
1209 				status = -ESRCH;
1210 				goto bail_unlock;
1211 			}
1212 		}
1213 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1214 					   2 * ocfs2_quota_trans_credits(sb));
1215 		if (IS_ERR(handle)) {
1216 			status = PTR_ERR(handle);
1217 			mlog_errno(status);
1218 			goto bail_unlock;
1219 		}
1220 		status = __dquot_transfer(inode, transfer_to);
1221 		if (status < 0)
1222 			goto bail_commit;
1223 	} else {
1224 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1225 		if (IS_ERR(handle)) {
1226 			status = PTR_ERR(handle);
1227 			mlog_errno(status);
1228 			goto bail_unlock;
1229 		}
1230 	}
1231 
1232 	/*
1233 	 * This will intentionally not wind up calling truncate_setsize(),
1234 	 * since all the work for a size change has been done above.
1235 	 * Otherwise, we could get into problems with truncate as
1236 	 * ip_alloc_sem is used there to protect against i_size
1237 	 * changes.
1238 	 *
1239 	 * XXX: this means the conditional below can probably be removed.
1240 	 */
1241 	if ((attr->ia_valid & ATTR_SIZE) &&
1242 	    attr->ia_size != i_size_read(inode)) {
1243 		status = vmtruncate(inode, attr->ia_size);
1244 		if (status) {
1245 			mlog_errno(status);
1246 			goto bail_commit;
1247 		}
1248 	}
1249 
1250 	setattr_copy(inode, attr);
1251 	mark_inode_dirty(inode);
1252 
1253 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1254 	if (status < 0)
1255 		mlog_errno(status);
1256 
1257 bail_commit:
1258 	ocfs2_commit_trans(osb, handle);
1259 bail_unlock:
1260 	ocfs2_inode_unlock(inode, 1);
1261 bail_unlock_rw:
1262 	if (size_change)
1263 		ocfs2_rw_unlock(inode, 1);
1264 bail:
1265 	brelse(bh);
1266 
1267 	/* Release quota pointers in case we acquired them */
1268 	for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1269 		dqput(transfer_to[qtype]);
1270 
1271 	if (!status && attr->ia_valid & ATTR_MODE) {
1272 		status = ocfs2_acl_chmod(inode);
1273 		if (status < 0)
1274 			mlog_errno(status);
1275 	}
1276 
1277 	mlog_exit(status);
1278 	return status;
1279 }
1280 
1281 int ocfs2_getattr(struct vfsmount *mnt,
1282 		  struct dentry *dentry,
1283 		  struct kstat *stat)
1284 {
1285 	struct inode *inode = dentry->d_inode;
1286 	struct super_block *sb = dentry->d_inode->i_sb;
1287 	struct ocfs2_super *osb = sb->s_fs_info;
1288 	int err;
1289 
1290 	mlog_entry_void();
1291 
1292 	err = ocfs2_inode_revalidate(dentry);
1293 	if (err) {
1294 		if (err != -ENOENT)
1295 			mlog_errno(err);
1296 		goto bail;
1297 	}
1298 
1299 	generic_fillattr(inode, stat);
1300 
1301 	/* We set the blksize from the cluster size for performance */
1302 	stat->blksize = osb->s_clustersize;
1303 
1304 bail:
1305 	mlog_exit(err);
1306 
1307 	return err;
1308 }
1309 
1310 int ocfs2_permission(struct inode *inode, int mask, unsigned int flags)
1311 {
1312 	int ret;
1313 
1314 	if (flags & IPERM_FLAG_RCU)
1315 		return -ECHILD;
1316 
1317 	mlog_entry_void();
1318 
1319 	ret = ocfs2_inode_lock(inode, NULL, 0);
1320 	if (ret) {
1321 		if (ret != -ENOENT)
1322 			mlog_errno(ret);
1323 		goto out;
1324 	}
1325 
1326 	ret = generic_permission(inode, mask, flags, ocfs2_check_acl);
1327 
1328 	ocfs2_inode_unlock(inode, 0);
1329 out:
1330 	mlog_exit(ret);
1331 	return ret;
1332 }
1333 
1334 static int __ocfs2_write_remove_suid(struct inode *inode,
1335 				     struct buffer_head *bh)
1336 {
1337 	int ret;
1338 	handle_t *handle;
1339 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1340 	struct ocfs2_dinode *di;
1341 
1342 	mlog_entry("(Inode %llu, mode 0%o)\n",
1343 		   (unsigned long long)OCFS2_I(inode)->ip_blkno, inode->i_mode);
1344 
1345 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1346 	if (IS_ERR(handle)) {
1347 		ret = PTR_ERR(handle);
1348 		mlog_errno(ret);
1349 		goto out;
1350 	}
1351 
1352 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1353 				      OCFS2_JOURNAL_ACCESS_WRITE);
1354 	if (ret < 0) {
1355 		mlog_errno(ret);
1356 		goto out_trans;
1357 	}
1358 
1359 	inode->i_mode &= ~S_ISUID;
1360 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1361 		inode->i_mode &= ~S_ISGID;
1362 
1363 	di = (struct ocfs2_dinode *) bh->b_data;
1364 	di->i_mode = cpu_to_le16(inode->i_mode);
1365 
1366 	ocfs2_journal_dirty(handle, bh);
1367 
1368 out_trans:
1369 	ocfs2_commit_trans(osb, handle);
1370 out:
1371 	mlog_exit(ret);
1372 	return ret;
1373 }
1374 
1375 /*
1376  * Will look for holes and unwritten extents in the range starting at
1377  * pos for count bytes (inclusive).
1378  */
1379 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1380 				       size_t count)
1381 {
1382 	int ret = 0;
1383 	unsigned int extent_flags;
1384 	u32 cpos, clusters, extent_len, phys_cpos;
1385 	struct super_block *sb = inode->i_sb;
1386 
1387 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1388 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1389 
1390 	while (clusters) {
1391 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1392 					 &extent_flags);
1393 		if (ret < 0) {
1394 			mlog_errno(ret);
1395 			goto out;
1396 		}
1397 
1398 		if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1399 			ret = 1;
1400 			break;
1401 		}
1402 
1403 		if (extent_len > clusters)
1404 			extent_len = clusters;
1405 
1406 		clusters -= extent_len;
1407 		cpos += extent_len;
1408 	}
1409 out:
1410 	return ret;
1411 }
1412 
1413 static int ocfs2_write_remove_suid(struct inode *inode)
1414 {
1415 	int ret;
1416 	struct buffer_head *bh = NULL;
1417 
1418 	ret = ocfs2_read_inode_block(inode, &bh);
1419 	if (ret < 0) {
1420 		mlog_errno(ret);
1421 		goto out;
1422 	}
1423 
1424 	ret =  __ocfs2_write_remove_suid(inode, bh);
1425 out:
1426 	brelse(bh);
1427 	return ret;
1428 }
1429 
1430 /*
1431  * Allocate enough extents to cover the region starting at byte offset
1432  * start for len bytes. Existing extents are skipped, any extents
1433  * added are marked as "unwritten".
1434  */
1435 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1436 					    u64 start, u64 len)
1437 {
1438 	int ret;
1439 	u32 cpos, phys_cpos, clusters, alloc_size;
1440 	u64 end = start + len;
1441 	struct buffer_head *di_bh = NULL;
1442 
1443 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1444 		ret = ocfs2_read_inode_block(inode, &di_bh);
1445 		if (ret) {
1446 			mlog_errno(ret);
1447 			goto out;
1448 		}
1449 
1450 		/*
1451 		 * Nothing to do if the requested reservation range
1452 		 * fits within the inode.
1453 		 */
1454 		if (ocfs2_size_fits_inline_data(di_bh, end))
1455 			goto out;
1456 
1457 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1458 		if (ret) {
1459 			mlog_errno(ret);
1460 			goto out;
1461 		}
1462 	}
1463 
1464 	/*
1465 	 * We consider both start and len to be inclusive.
1466 	 */
1467 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1468 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1469 	clusters -= cpos;
1470 
1471 	while (clusters) {
1472 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1473 					 &alloc_size, NULL);
1474 		if (ret) {
1475 			mlog_errno(ret);
1476 			goto out;
1477 		}
1478 
1479 		/*
1480 		 * Hole or existing extent len can be arbitrary, so
1481 		 * cap it to our own allocation request.
1482 		 */
1483 		if (alloc_size > clusters)
1484 			alloc_size = clusters;
1485 
1486 		if (phys_cpos) {
1487 			/*
1488 			 * We already have an allocation at this
1489 			 * region so we can safely skip it.
1490 			 */
1491 			goto next;
1492 		}
1493 
1494 		ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1495 		if (ret) {
1496 			if (ret != -ENOSPC)
1497 				mlog_errno(ret);
1498 			goto out;
1499 		}
1500 
1501 next:
1502 		cpos += alloc_size;
1503 		clusters -= alloc_size;
1504 	}
1505 
1506 	ret = 0;
1507 out:
1508 
1509 	brelse(di_bh);
1510 	return ret;
1511 }
1512 
1513 /*
1514  * Truncate a byte range, avoiding pages within partial clusters. This
1515  * preserves those pages for the zeroing code to write to.
1516  */
1517 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1518 					 u64 byte_len)
1519 {
1520 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1521 	loff_t start, end;
1522 	struct address_space *mapping = inode->i_mapping;
1523 
1524 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1525 	end = byte_start + byte_len;
1526 	end = end & ~(osb->s_clustersize - 1);
1527 
1528 	if (start < end) {
1529 		unmap_mapping_range(mapping, start, end - start, 0);
1530 		truncate_inode_pages_range(mapping, start, end - 1);
1531 	}
1532 }
1533 
1534 static int ocfs2_zero_partial_clusters(struct inode *inode,
1535 				       u64 start, u64 len)
1536 {
1537 	int ret = 0;
1538 	u64 tmpend, end = start + len;
1539 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1540 	unsigned int csize = osb->s_clustersize;
1541 	handle_t *handle;
1542 
1543 	/*
1544 	 * The "start" and "end" values are NOT necessarily part of
1545 	 * the range whose allocation is being deleted. Rather, this
1546 	 * is what the user passed in with the request. We must zero
1547 	 * partial clusters here. There's no need to worry about
1548 	 * physical allocation - the zeroing code knows to skip holes.
1549 	 */
1550 	mlog(0, "byte start: %llu, end: %llu\n",
1551 	     (unsigned long long)start, (unsigned long long)end);
1552 
1553 	/*
1554 	 * If both edges are on a cluster boundary then there's no
1555 	 * zeroing required as the region is part of the allocation to
1556 	 * be truncated.
1557 	 */
1558 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1559 		goto out;
1560 
1561 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1562 	if (IS_ERR(handle)) {
1563 		ret = PTR_ERR(handle);
1564 		mlog_errno(ret);
1565 		goto out;
1566 	}
1567 
1568 	/*
1569 	 * We want to get the byte offset of the end of the 1st cluster.
1570 	 */
1571 	tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1572 	if (tmpend > end)
1573 		tmpend = end;
1574 
1575 	mlog(0, "1st range: start: %llu, tmpend: %llu\n",
1576 	     (unsigned long long)start, (unsigned long long)tmpend);
1577 
1578 	ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1579 	if (ret)
1580 		mlog_errno(ret);
1581 
1582 	if (tmpend < end) {
1583 		/*
1584 		 * This may make start and end equal, but the zeroing
1585 		 * code will skip any work in that case so there's no
1586 		 * need to catch it up here.
1587 		 */
1588 		start = end & ~(osb->s_clustersize - 1);
1589 
1590 		mlog(0, "2nd range: start: %llu, end: %llu\n",
1591 		     (unsigned long long)start, (unsigned long long)end);
1592 
1593 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1594 		if (ret)
1595 			mlog_errno(ret);
1596 	}
1597 
1598 	ocfs2_commit_trans(osb, handle);
1599 out:
1600 	return ret;
1601 }
1602 
1603 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1604 {
1605 	int i;
1606 	struct ocfs2_extent_rec *rec = NULL;
1607 
1608 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1609 
1610 		rec = &el->l_recs[i];
1611 
1612 		if (le32_to_cpu(rec->e_cpos) < pos)
1613 			break;
1614 	}
1615 
1616 	return i;
1617 }
1618 
1619 /*
1620  * Helper to calculate the punching pos and length in one run, we handle the
1621  * following three cases in order:
1622  *
1623  * - remove the entire record
1624  * - remove a partial record
1625  * - no record needs to be removed (hole-punching completed)
1626 */
1627 static void ocfs2_calc_trunc_pos(struct inode *inode,
1628 				 struct ocfs2_extent_list *el,
1629 				 struct ocfs2_extent_rec *rec,
1630 				 u32 trunc_start, u32 *trunc_cpos,
1631 				 u32 *trunc_len, u32 *trunc_end,
1632 				 u64 *blkno, int *done)
1633 {
1634 	int ret = 0;
1635 	u32 coff, range;
1636 
1637 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1638 
1639 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1640 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1641 		/*
1642 		 * Skip holes if any.
1643 		 */
1644 		if (range < *trunc_end)
1645 			*trunc_end = range;
1646 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1647 		*blkno = le64_to_cpu(rec->e_blkno);
1648 		*trunc_end = le32_to_cpu(rec->e_cpos);
1649 	} else if (range > trunc_start) {
1650 		*trunc_cpos = trunc_start;
1651 		*trunc_len = *trunc_end - trunc_start;
1652 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1653 		*blkno = le64_to_cpu(rec->e_blkno) +
1654 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1655 		*trunc_end = trunc_start;
1656 	} else {
1657 		/*
1658 		 * It may have two following possibilities:
1659 		 *
1660 		 * - last record has been removed
1661 		 * - trunc_start was within a hole
1662 		 *
1663 		 * both two cases mean the completion of hole punching.
1664 		 */
1665 		ret = 1;
1666 	}
1667 
1668 	*done = ret;
1669 }
1670 
1671 static int ocfs2_remove_inode_range(struct inode *inode,
1672 				    struct buffer_head *di_bh, u64 byte_start,
1673 				    u64 byte_len)
1674 {
1675 	int ret = 0, flags = 0, done = 0, i;
1676 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1677 	u32 cluster_in_el;
1678 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1679 	struct ocfs2_cached_dealloc_ctxt dealloc;
1680 	struct address_space *mapping = inode->i_mapping;
1681 	struct ocfs2_extent_tree et;
1682 	struct ocfs2_path *path = NULL;
1683 	struct ocfs2_extent_list *el = NULL;
1684 	struct ocfs2_extent_rec *rec = NULL;
1685 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1686 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1687 
1688 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1689 	ocfs2_init_dealloc_ctxt(&dealloc);
1690 
1691 	if (byte_len == 0)
1692 		return 0;
1693 
1694 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1695 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1696 					    byte_start + byte_len, 0);
1697 		if (ret) {
1698 			mlog_errno(ret);
1699 			goto out;
1700 		}
1701 		/*
1702 		 * There's no need to get fancy with the page cache
1703 		 * truncate of an inline-data inode. We're talking
1704 		 * about less than a page here, which will be cached
1705 		 * in the dinode buffer anyway.
1706 		 */
1707 		unmap_mapping_range(mapping, 0, 0, 0);
1708 		truncate_inode_pages(mapping, 0);
1709 		goto out;
1710 	}
1711 
1712 	/*
1713 	 * For reflinks, we may need to CoW 2 clusters which might be
1714 	 * partially zero'd later, if hole's start and end offset were
1715 	 * within one cluster(means is not exactly aligned to clustersize).
1716 	 */
1717 
1718 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1719 
1720 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1721 		if (ret) {
1722 			mlog_errno(ret);
1723 			goto out;
1724 		}
1725 
1726 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1727 		if (ret) {
1728 			mlog_errno(ret);
1729 			goto out;
1730 		}
1731 	}
1732 
1733 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1734 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1735 	cluster_in_el = trunc_end;
1736 
1737 	mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, cend: %u\n",
1738 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1739 	     (unsigned long long)byte_start,
1740 	     (unsigned long long)byte_len, trunc_start, trunc_end);
1741 
1742 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1743 	if (ret) {
1744 		mlog_errno(ret);
1745 		goto out;
1746 	}
1747 
1748 	path = ocfs2_new_path_from_et(&et);
1749 	if (!path) {
1750 		ret = -ENOMEM;
1751 		mlog_errno(ret);
1752 		goto out;
1753 	}
1754 
1755 	while (trunc_end > trunc_start) {
1756 
1757 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1758 				      cluster_in_el);
1759 		if (ret) {
1760 			mlog_errno(ret);
1761 			goto out;
1762 		}
1763 
1764 		el = path_leaf_el(path);
1765 
1766 		i = ocfs2_find_rec(el, trunc_end);
1767 		/*
1768 		 * Need to go to previous extent block.
1769 		 */
1770 		if (i < 0) {
1771 			if (path->p_tree_depth == 0)
1772 				break;
1773 
1774 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1775 							    path,
1776 							    &cluster_in_el);
1777 			if (ret) {
1778 				mlog_errno(ret);
1779 				goto out;
1780 			}
1781 
1782 			/*
1783 			 * We've reached the leftmost extent block,
1784 			 * it's safe to leave.
1785 			 */
1786 			if (cluster_in_el == 0)
1787 				break;
1788 
1789 			/*
1790 			 * The 'pos' searched for previous extent block is
1791 			 * always one cluster less than actual trunc_end.
1792 			 */
1793 			trunc_end = cluster_in_el + 1;
1794 
1795 			ocfs2_reinit_path(path, 1);
1796 
1797 			continue;
1798 
1799 		} else
1800 			rec = &el->l_recs[i];
1801 
1802 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1803 				     &trunc_len, &trunc_end, &blkno, &done);
1804 		if (done)
1805 			break;
1806 
1807 		flags = rec->e_flags;
1808 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1809 
1810 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1811 					       phys_cpos, trunc_len, flags,
1812 					       &dealloc, refcount_loc);
1813 		if (ret < 0) {
1814 			mlog_errno(ret);
1815 			goto out;
1816 		}
1817 
1818 		cluster_in_el = trunc_end;
1819 
1820 		ocfs2_reinit_path(path, 1);
1821 	}
1822 
1823 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1824 
1825 out:
1826 	ocfs2_schedule_truncate_log_flush(osb, 1);
1827 	ocfs2_run_deallocs(osb, &dealloc);
1828 
1829 	return ret;
1830 }
1831 
1832 /*
1833  * Parts of this function taken from xfs_change_file_space()
1834  */
1835 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1836 				     loff_t f_pos, unsigned int cmd,
1837 				     struct ocfs2_space_resv *sr,
1838 				     int change_size)
1839 {
1840 	int ret;
1841 	s64 llen;
1842 	loff_t size;
1843 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1844 	struct buffer_head *di_bh = NULL;
1845 	handle_t *handle;
1846 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1847 
1848 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1849 		return -EROFS;
1850 
1851 	mutex_lock(&inode->i_mutex);
1852 
1853 	/*
1854 	 * This prevents concurrent writes on other nodes
1855 	 */
1856 	ret = ocfs2_rw_lock(inode, 1);
1857 	if (ret) {
1858 		mlog_errno(ret);
1859 		goto out;
1860 	}
1861 
1862 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1863 	if (ret) {
1864 		mlog_errno(ret);
1865 		goto out_rw_unlock;
1866 	}
1867 
1868 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1869 		ret = -EPERM;
1870 		goto out_inode_unlock;
1871 	}
1872 
1873 	switch (sr->l_whence) {
1874 	case 0: /*SEEK_SET*/
1875 		break;
1876 	case 1: /*SEEK_CUR*/
1877 		sr->l_start += f_pos;
1878 		break;
1879 	case 2: /*SEEK_END*/
1880 		sr->l_start += i_size_read(inode);
1881 		break;
1882 	default:
1883 		ret = -EINVAL;
1884 		goto out_inode_unlock;
1885 	}
1886 	sr->l_whence = 0;
1887 
1888 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1889 
1890 	if (sr->l_start < 0
1891 	    || sr->l_start > max_off
1892 	    || (sr->l_start + llen) < 0
1893 	    || (sr->l_start + llen) > max_off) {
1894 		ret = -EINVAL;
1895 		goto out_inode_unlock;
1896 	}
1897 	size = sr->l_start + sr->l_len;
1898 
1899 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1900 		if (sr->l_len <= 0) {
1901 			ret = -EINVAL;
1902 			goto out_inode_unlock;
1903 		}
1904 	}
1905 
1906 	if (file && should_remove_suid(file->f_path.dentry)) {
1907 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1908 		if (ret) {
1909 			mlog_errno(ret);
1910 			goto out_inode_unlock;
1911 		}
1912 	}
1913 
1914 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1915 	switch (cmd) {
1916 	case OCFS2_IOC_RESVSP:
1917 	case OCFS2_IOC_RESVSP64:
1918 		/*
1919 		 * This takes unsigned offsets, but the signed ones we
1920 		 * pass have been checked against overflow above.
1921 		 */
1922 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1923 						       sr->l_len);
1924 		break;
1925 	case OCFS2_IOC_UNRESVSP:
1926 	case OCFS2_IOC_UNRESVSP64:
1927 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1928 					       sr->l_len);
1929 		break;
1930 	default:
1931 		ret = -EINVAL;
1932 	}
1933 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1934 	if (ret) {
1935 		mlog_errno(ret);
1936 		goto out_inode_unlock;
1937 	}
1938 
1939 	/*
1940 	 * We update c/mtime for these changes
1941 	 */
1942 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1943 	if (IS_ERR(handle)) {
1944 		ret = PTR_ERR(handle);
1945 		mlog_errno(ret);
1946 		goto out_inode_unlock;
1947 	}
1948 
1949 	if (change_size && i_size_read(inode) < size)
1950 		i_size_write(inode, size);
1951 
1952 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1953 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1954 	if (ret < 0)
1955 		mlog_errno(ret);
1956 
1957 	ocfs2_commit_trans(osb, handle);
1958 
1959 out_inode_unlock:
1960 	brelse(di_bh);
1961 	ocfs2_inode_unlock(inode, 1);
1962 out_rw_unlock:
1963 	ocfs2_rw_unlock(inode, 1);
1964 
1965 out:
1966 	mutex_unlock(&inode->i_mutex);
1967 	return ret;
1968 }
1969 
1970 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1971 			    struct ocfs2_space_resv *sr)
1972 {
1973 	struct inode *inode = file->f_path.dentry->d_inode;
1974 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1975 
1976 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1977 	    !ocfs2_writes_unwritten_extents(osb))
1978 		return -ENOTTY;
1979 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1980 		 !ocfs2_sparse_alloc(osb))
1981 		return -ENOTTY;
1982 
1983 	if (!S_ISREG(inode->i_mode))
1984 		return -EINVAL;
1985 
1986 	if (!(file->f_mode & FMODE_WRITE))
1987 		return -EBADF;
1988 
1989 	return __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1990 }
1991 
1992 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1993 			    loff_t len)
1994 {
1995 	struct inode *inode = file->f_path.dentry->d_inode;
1996 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1997 	struct ocfs2_space_resv sr;
1998 	int change_size = 1;
1999 	int cmd = OCFS2_IOC_RESVSP64;
2000 
2001 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2002 		return -EOPNOTSUPP;
2003 	if (!ocfs2_writes_unwritten_extents(osb))
2004 		return -EOPNOTSUPP;
2005 
2006 	if (mode & FALLOC_FL_KEEP_SIZE)
2007 		change_size = 0;
2008 
2009 	if (mode & FALLOC_FL_PUNCH_HOLE)
2010 		cmd = OCFS2_IOC_UNRESVSP64;
2011 
2012 	sr.l_whence = 0;
2013 	sr.l_start = (s64)offset;
2014 	sr.l_len = (s64)len;
2015 
2016 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2017 					 change_size);
2018 }
2019 
2020 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2021 				   size_t count)
2022 {
2023 	int ret = 0;
2024 	unsigned int extent_flags;
2025 	u32 cpos, clusters, extent_len, phys_cpos;
2026 	struct super_block *sb = inode->i_sb;
2027 
2028 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2029 	    !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2030 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2031 		return 0;
2032 
2033 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2034 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2035 
2036 	while (clusters) {
2037 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2038 					 &extent_flags);
2039 		if (ret < 0) {
2040 			mlog_errno(ret);
2041 			goto out;
2042 		}
2043 
2044 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2045 			ret = 1;
2046 			break;
2047 		}
2048 
2049 		if (extent_len > clusters)
2050 			extent_len = clusters;
2051 
2052 		clusters -= extent_len;
2053 		cpos += extent_len;
2054 	}
2055 out:
2056 	return ret;
2057 }
2058 
2059 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2060 					    struct file *file,
2061 					    loff_t pos, size_t count,
2062 					    int *meta_level)
2063 {
2064 	int ret;
2065 	struct buffer_head *di_bh = NULL;
2066 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2067 	u32 clusters =
2068 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2069 
2070 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2071 	if (ret) {
2072 		mlog_errno(ret);
2073 		goto out;
2074 	}
2075 
2076 	*meta_level = 1;
2077 
2078 	ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX);
2079 	if (ret)
2080 		mlog_errno(ret);
2081 out:
2082 	brelse(di_bh);
2083 	return ret;
2084 }
2085 
2086 static int ocfs2_prepare_inode_for_write(struct file *file,
2087 					 loff_t *ppos,
2088 					 size_t count,
2089 					 int appending,
2090 					 int *direct_io,
2091 					 int *has_refcount)
2092 {
2093 	int ret = 0, meta_level = 0;
2094 	struct dentry *dentry = file->f_path.dentry;
2095 	struct inode *inode = dentry->d_inode;
2096 	loff_t saved_pos, end;
2097 
2098 	/*
2099 	 * We start with a read level meta lock and only jump to an ex
2100 	 * if we need to make modifications here.
2101 	 */
2102 	for(;;) {
2103 		ret = ocfs2_inode_lock(inode, NULL, meta_level);
2104 		if (ret < 0) {
2105 			meta_level = -1;
2106 			mlog_errno(ret);
2107 			goto out;
2108 		}
2109 
2110 		/* Clear suid / sgid if necessary. We do this here
2111 		 * instead of later in the write path because
2112 		 * remove_suid() calls ->setattr without any hint that
2113 		 * we may have already done our cluster locking. Since
2114 		 * ocfs2_setattr() *must* take cluster locks to
2115 		 * proceeed, this will lead us to recursively lock the
2116 		 * inode. There's also the dinode i_size state which
2117 		 * can be lost via setattr during extending writes (we
2118 		 * set inode->i_size at the end of a write. */
2119 		if (should_remove_suid(dentry)) {
2120 			if (meta_level == 0) {
2121 				ocfs2_inode_unlock(inode, meta_level);
2122 				meta_level = 1;
2123 				continue;
2124 			}
2125 
2126 			ret = ocfs2_write_remove_suid(inode);
2127 			if (ret < 0) {
2128 				mlog_errno(ret);
2129 				goto out_unlock;
2130 			}
2131 		}
2132 
2133 		/* work on a copy of ppos until we're sure that we won't have
2134 		 * to recalculate it due to relocking. */
2135 		if (appending) {
2136 			saved_pos = i_size_read(inode);
2137 			mlog(0, "O_APPEND: inode->i_size=%llu\n", saved_pos);
2138 		} else {
2139 			saved_pos = *ppos;
2140 		}
2141 
2142 		end = saved_pos + count;
2143 
2144 		ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2145 		if (ret == 1) {
2146 			ocfs2_inode_unlock(inode, meta_level);
2147 			meta_level = -1;
2148 
2149 			ret = ocfs2_prepare_inode_for_refcount(inode,
2150 							       file,
2151 							       saved_pos,
2152 							       count,
2153 							       &meta_level);
2154 			if (has_refcount)
2155 				*has_refcount = 1;
2156 			if (direct_io)
2157 				*direct_io = 0;
2158 		}
2159 
2160 		if (ret < 0) {
2161 			mlog_errno(ret);
2162 			goto out_unlock;
2163 		}
2164 
2165 		/*
2166 		 * Skip the O_DIRECT checks if we don't need
2167 		 * them.
2168 		 */
2169 		if (!direct_io || !(*direct_io))
2170 			break;
2171 
2172 		/*
2173 		 * There's no sane way to do direct writes to an inode
2174 		 * with inline data.
2175 		 */
2176 		if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2177 			*direct_io = 0;
2178 			break;
2179 		}
2180 
2181 		/*
2182 		 * Allowing concurrent direct writes means
2183 		 * i_size changes wouldn't be synchronized, so
2184 		 * one node could wind up truncating another
2185 		 * nodes writes.
2186 		 */
2187 		if (end > i_size_read(inode)) {
2188 			*direct_io = 0;
2189 			break;
2190 		}
2191 
2192 		/*
2193 		 * We don't fill holes during direct io, so
2194 		 * check for them here. If any are found, the
2195 		 * caller will have to retake some cluster
2196 		 * locks and initiate the io as buffered.
2197 		 */
2198 		ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2199 		if (ret == 1) {
2200 			*direct_io = 0;
2201 			ret = 0;
2202 		} else if (ret < 0)
2203 			mlog_errno(ret);
2204 		break;
2205 	}
2206 
2207 	if (appending)
2208 		*ppos = saved_pos;
2209 
2210 out_unlock:
2211 	if (meta_level >= 0)
2212 		ocfs2_inode_unlock(inode, meta_level);
2213 
2214 out:
2215 	return ret;
2216 }
2217 
2218 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2219 				    const struct iovec *iov,
2220 				    unsigned long nr_segs,
2221 				    loff_t pos)
2222 {
2223 	int ret, direct_io, appending, rw_level, have_alloc_sem  = 0;
2224 	int can_do_direct, has_refcount = 0;
2225 	ssize_t written = 0;
2226 	size_t ocount;		/* original count */
2227 	size_t count;		/* after file limit checks */
2228 	loff_t old_size, *ppos = &iocb->ki_pos;
2229 	u32 old_clusters;
2230 	struct file *file = iocb->ki_filp;
2231 	struct inode *inode = file->f_path.dentry->d_inode;
2232 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2233 	int full_coherency = !(osb->s_mount_opt &
2234 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2235 
2236 	mlog_entry("(0x%p, %u, '%.*s')\n", file,
2237 		   (unsigned int)nr_segs,
2238 		   file->f_path.dentry->d_name.len,
2239 		   file->f_path.dentry->d_name.name);
2240 
2241 	if (iocb->ki_left == 0)
2242 		return 0;
2243 
2244 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2245 
2246 	appending = file->f_flags & O_APPEND ? 1 : 0;
2247 	direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2248 
2249 	mutex_lock(&inode->i_mutex);
2250 
2251 	ocfs2_iocb_clear_sem_locked(iocb);
2252 
2253 relock:
2254 	/* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */
2255 	if (direct_io) {
2256 		down_read(&inode->i_alloc_sem);
2257 		have_alloc_sem = 1;
2258 		/* communicate with ocfs2_dio_end_io */
2259 		ocfs2_iocb_set_sem_locked(iocb);
2260 	}
2261 
2262 	/*
2263 	 * Concurrent O_DIRECT writes are allowed with
2264 	 * mount_option "coherency=buffered".
2265 	 */
2266 	rw_level = (!direct_io || full_coherency);
2267 
2268 	ret = ocfs2_rw_lock(inode, rw_level);
2269 	if (ret < 0) {
2270 		mlog_errno(ret);
2271 		goto out_sems;
2272 	}
2273 
2274 	/*
2275 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2276 	 * inode_lock to guarantee coherency.
2277 	 */
2278 	if (direct_io && full_coherency) {
2279 		/*
2280 		 * We need to take and drop the inode lock to force
2281 		 * other nodes to drop their caches.  Buffered I/O
2282 		 * already does this in write_begin().
2283 		 */
2284 		ret = ocfs2_inode_lock(inode, NULL, 1);
2285 		if (ret < 0) {
2286 			mlog_errno(ret);
2287 			goto out_sems;
2288 		}
2289 
2290 		ocfs2_inode_unlock(inode, 1);
2291 	}
2292 
2293 	can_do_direct = direct_io;
2294 	ret = ocfs2_prepare_inode_for_write(file, ppos,
2295 					    iocb->ki_left, appending,
2296 					    &can_do_direct, &has_refcount);
2297 	if (ret < 0) {
2298 		mlog_errno(ret);
2299 		goto out;
2300 	}
2301 
2302 	/*
2303 	 * We can't complete the direct I/O as requested, fall back to
2304 	 * buffered I/O.
2305 	 */
2306 	if (direct_io && !can_do_direct) {
2307 		ocfs2_rw_unlock(inode, rw_level);
2308 		up_read(&inode->i_alloc_sem);
2309 
2310 		have_alloc_sem = 0;
2311 		rw_level = -1;
2312 
2313 		direct_io = 0;
2314 		goto relock;
2315 	}
2316 
2317 	/*
2318 	 * To later detect whether a journal commit for sync writes is
2319 	 * necessary, we sample i_size, and cluster count here.
2320 	 */
2321 	old_size = i_size_read(inode);
2322 	old_clusters = OCFS2_I(inode)->ip_clusters;
2323 
2324 	/* communicate with ocfs2_dio_end_io */
2325 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2326 
2327 	ret = generic_segment_checks(iov, &nr_segs, &ocount,
2328 				     VERIFY_READ);
2329 	if (ret)
2330 		goto out_dio;
2331 
2332 	count = ocount;
2333 	ret = generic_write_checks(file, ppos, &count,
2334 				   S_ISBLK(inode->i_mode));
2335 	if (ret)
2336 		goto out_dio;
2337 
2338 	if (direct_io) {
2339 		written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2340 						    ppos, count, ocount);
2341 		if (written < 0) {
2342 			ret = written;
2343 			goto out_dio;
2344 		}
2345 	} else {
2346 		current->backing_dev_info = file->f_mapping->backing_dev_info;
2347 		written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2348 						      ppos, count, 0);
2349 		current->backing_dev_info = NULL;
2350 	}
2351 
2352 out_dio:
2353 	/* buffered aio wouldn't have proper lock coverage today */
2354 	BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2355 
2356 	if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2357 	    ((file->f_flags & O_DIRECT) && !direct_io)) {
2358 		ret = filemap_fdatawrite_range(file->f_mapping, pos,
2359 					       pos + count - 1);
2360 		if (ret < 0)
2361 			written = ret;
2362 
2363 		if (!ret && ((old_size != i_size_read(inode)) ||
2364 			     (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2365 			     has_refcount)) {
2366 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2367 			if (ret < 0)
2368 				written = ret;
2369 		}
2370 
2371 		if (!ret)
2372 			ret = filemap_fdatawait_range(file->f_mapping, pos,
2373 						      pos + count - 1);
2374 	}
2375 
2376 	/*
2377 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2378 	 * function pointer which is called when o_direct io completes so that
2379 	 * it can unlock our rw lock.  (it's the clustered equivalent of
2380 	 * i_alloc_sem; protects truncate from racing with pending ios).
2381 	 * Unfortunately there are error cases which call end_io and others
2382 	 * that don't.  so we don't have to unlock the rw_lock if either an
2383 	 * async dio is going to do it in the future or an end_io after an
2384 	 * error has already done it.
2385 	 */
2386 	if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2387 		rw_level = -1;
2388 		have_alloc_sem = 0;
2389 	}
2390 
2391 out:
2392 	if (rw_level != -1)
2393 		ocfs2_rw_unlock(inode, rw_level);
2394 
2395 out_sems:
2396 	if (have_alloc_sem) {
2397 		up_read(&inode->i_alloc_sem);
2398 		ocfs2_iocb_clear_sem_locked(iocb);
2399 	}
2400 
2401 	mutex_unlock(&inode->i_mutex);
2402 
2403 	if (written)
2404 		ret = written;
2405 	mlog_exit(ret);
2406 	return ret;
2407 }
2408 
2409 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2410 				struct file *out,
2411 				struct splice_desc *sd)
2412 {
2413 	int ret;
2414 
2415 	ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2416 					    sd->total_len, 0, NULL, NULL);
2417 	if (ret < 0) {
2418 		mlog_errno(ret);
2419 		return ret;
2420 	}
2421 
2422 	return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2423 }
2424 
2425 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2426 				       struct file *out,
2427 				       loff_t *ppos,
2428 				       size_t len,
2429 				       unsigned int flags)
2430 {
2431 	int ret;
2432 	struct address_space *mapping = out->f_mapping;
2433 	struct inode *inode = mapping->host;
2434 	struct splice_desc sd = {
2435 		.total_len = len,
2436 		.flags = flags,
2437 		.pos = *ppos,
2438 		.u.file = out,
2439 	};
2440 
2441 	mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", out, pipe,
2442 		   (unsigned int)len,
2443 		   out->f_path.dentry->d_name.len,
2444 		   out->f_path.dentry->d_name.name);
2445 
2446 	if (pipe->inode)
2447 		mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
2448 
2449 	splice_from_pipe_begin(&sd);
2450 	do {
2451 		ret = splice_from_pipe_next(pipe, &sd);
2452 		if (ret <= 0)
2453 			break;
2454 
2455 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2456 		ret = ocfs2_rw_lock(inode, 1);
2457 		if (ret < 0)
2458 			mlog_errno(ret);
2459 		else {
2460 			ret = ocfs2_splice_to_file(pipe, out, &sd);
2461 			ocfs2_rw_unlock(inode, 1);
2462 		}
2463 		mutex_unlock(&inode->i_mutex);
2464 	} while (ret > 0);
2465 	splice_from_pipe_end(pipe, &sd);
2466 
2467 	if (pipe->inode)
2468 		mutex_unlock(&pipe->inode->i_mutex);
2469 
2470 	if (sd.num_spliced)
2471 		ret = sd.num_spliced;
2472 
2473 	if (ret > 0) {
2474 		unsigned long nr_pages;
2475 		int err;
2476 
2477 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2478 
2479 		err = generic_write_sync(out, *ppos, ret);
2480 		if (err)
2481 			ret = err;
2482 		else
2483 			*ppos += ret;
2484 
2485 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
2486 	}
2487 
2488 	mlog_exit(ret);
2489 	return ret;
2490 }
2491 
2492 static ssize_t ocfs2_file_splice_read(struct file *in,
2493 				      loff_t *ppos,
2494 				      struct pipe_inode_info *pipe,
2495 				      size_t len,
2496 				      unsigned int flags)
2497 {
2498 	int ret = 0, lock_level = 0;
2499 	struct inode *inode = in->f_path.dentry->d_inode;
2500 
2501 	mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", in, pipe,
2502 		   (unsigned int)len,
2503 		   in->f_path.dentry->d_name.len,
2504 		   in->f_path.dentry->d_name.name);
2505 
2506 	/*
2507 	 * See the comment in ocfs2_file_aio_read()
2508 	 */
2509 	ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level);
2510 	if (ret < 0) {
2511 		mlog_errno(ret);
2512 		goto bail;
2513 	}
2514 	ocfs2_inode_unlock(inode, lock_level);
2515 
2516 	ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2517 
2518 bail:
2519 	mlog_exit(ret);
2520 	return ret;
2521 }
2522 
2523 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2524 				   const struct iovec *iov,
2525 				   unsigned long nr_segs,
2526 				   loff_t pos)
2527 {
2528 	int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2529 	struct file *filp = iocb->ki_filp;
2530 	struct inode *inode = filp->f_path.dentry->d_inode;
2531 
2532 	mlog_entry("(0x%p, %u, '%.*s')\n", filp,
2533 		   (unsigned int)nr_segs,
2534 		   filp->f_path.dentry->d_name.len,
2535 		   filp->f_path.dentry->d_name.name);
2536 
2537 	if (!inode) {
2538 		ret = -EINVAL;
2539 		mlog_errno(ret);
2540 		goto bail;
2541 	}
2542 
2543 	ocfs2_iocb_clear_sem_locked(iocb);
2544 
2545 	/*
2546 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2547 	 * need locks to protect pending reads from racing with truncate.
2548 	 */
2549 	if (filp->f_flags & O_DIRECT) {
2550 		down_read(&inode->i_alloc_sem);
2551 		have_alloc_sem = 1;
2552 		ocfs2_iocb_set_sem_locked(iocb);
2553 
2554 		ret = ocfs2_rw_lock(inode, 0);
2555 		if (ret < 0) {
2556 			mlog_errno(ret);
2557 			goto bail;
2558 		}
2559 		rw_level = 0;
2560 		/* communicate with ocfs2_dio_end_io */
2561 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2562 	}
2563 
2564 	/*
2565 	 * We're fine letting folks race truncates and extending
2566 	 * writes with read across the cluster, just like they can
2567 	 * locally. Hence no rw_lock during read.
2568 	 *
2569 	 * Take and drop the meta data lock to update inode fields
2570 	 * like i_size. This allows the checks down below
2571 	 * generic_file_aio_read() a chance of actually working.
2572 	 */
2573 	ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level);
2574 	if (ret < 0) {
2575 		mlog_errno(ret);
2576 		goto bail;
2577 	}
2578 	ocfs2_inode_unlock(inode, lock_level);
2579 
2580 	ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2581 	if (ret == -EINVAL)
2582 		mlog(0, "generic_file_aio_read returned -EINVAL\n");
2583 
2584 	/* buffered aio wouldn't have proper lock coverage today */
2585 	BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2586 
2587 	/* see ocfs2_file_aio_write */
2588 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2589 		rw_level = -1;
2590 		have_alloc_sem = 0;
2591 	}
2592 
2593 bail:
2594 	if (have_alloc_sem) {
2595 		up_read(&inode->i_alloc_sem);
2596 		ocfs2_iocb_clear_sem_locked(iocb);
2597 	}
2598 	if (rw_level != -1)
2599 		ocfs2_rw_unlock(inode, rw_level);
2600 	mlog_exit(ret);
2601 
2602 	return ret;
2603 }
2604 
2605 const struct inode_operations ocfs2_file_iops = {
2606 	.setattr	= ocfs2_setattr,
2607 	.getattr	= ocfs2_getattr,
2608 	.permission	= ocfs2_permission,
2609 	.setxattr	= generic_setxattr,
2610 	.getxattr	= generic_getxattr,
2611 	.listxattr	= ocfs2_listxattr,
2612 	.removexattr	= generic_removexattr,
2613 	.fiemap		= ocfs2_fiemap,
2614 };
2615 
2616 const struct inode_operations ocfs2_special_file_iops = {
2617 	.setattr	= ocfs2_setattr,
2618 	.getattr	= ocfs2_getattr,
2619 	.permission	= ocfs2_permission,
2620 };
2621 
2622 /*
2623  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2624  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2625  */
2626 const struct file_operations ocfs2_fops = {
2627 	.llseek		= generic_file_llseek,
2628 	.read		= do_sync_read,
2629 	.write		= do_sync_write,
2630 	.mmap		= ocfs2_mmap,
2631 	.fsync		= ocfs2_sync_file,
2632 	.release	= ocfs2_file_release,
2633 	.open		= ocfs2_file_open,
2634 	.aio_read	= ocfs2_file_aio_read,
2635 	.aio_write	= ocfs2_file_aio_write,
2636 	.unlocked_ioctl	= ocfs2_ioctl,
2637 #ifdef CONFIG_COMPAT
2638 	.compat_ioctl   = ocfs2_compat_ioctl,
2639 #endif
2640 	.lock		= ocfs2_lock,
2641 	.flock		= ocfs2_flock,
2642 	.splice_read	= ocfs2_file_splice_read,
2643 	.splice_write	= ocfs2_file_splice_write,
2644 	.fallocate	= ocfs2_fallocate,
2645 };
2646 
2647 const struct file_operations ocfs2_dops = {
2648 	.llseek		= generic_file_llseek,
2649 	.read		= generic_read_dir,
2650 	.readdir	= ocfs2_readdir,
2651 	.fsync		= ocfs2_sync_file,
2652 	.release	= ocfs2_dir_release,
2653 	.open		= ocfs2_dir_open,
2654 	.unlocked_ioctl	= ocfs2_ioctl,
2655 #ifdef CONFIG_COMPAT
2656 	.compat_ioctl   = ocfs2_compat_ioctl,
2657 #endif
2658 	.lock		= ocfs2_lock,
2659 	.flock		= ocfs2_flock,
2660 };
2661 
2662 /*
2663  * POSIX-lockless variants of our file_operations.
2664  *
2665  * These will be used if the underlying cluster stack does not support
2666  * posix file locking, if the user passes the "localflocks" mount
2667  * option, or if we have a local-only fs.
2668  *
2669  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2670  * so we still want it in the case of no stack support for
2671  * plocks. Internally, it will do the right thing when asked to ignore
2672  * the cluster.
2673  */
2674 const struct file_operations ocfs2_fops_no_plocks = {
2675 	.llseek		= generic_file_llseek,
2676 	.read		= do_sync_read,
2677 	.write		= do_sync_write,
2678 	.mmap		= ocfs2_mmap,
2679 	.fsync		= ocfs2_sync_file,
2680 	.release	= ocfs2_file_release,
2681 	.open		= ocfs2_file_open,
2682 	.aio_read	= ocfs2_file_aio_read,
2683 	.aio_write	= ocfs2_file_aio_write,
2684 	.unlocked_ioctl	= ocfs2_ioctl,
2685 #ifdef CONFIG_COMPAT
2686 	.compat_ioctl   = ocfs2_compat_ioctl,
2687 #endif
2688 	.flock		= ocfs2_flock,
2689 	.splice_read	= ocfs2_file_splice_read,
2690 	.splice_write	= ocfs2_file_splice_write,
2691 };
2692 
2693 const struct file_operations ocfs2_dops_no_plocks = {
2694 	.llseek		= generic_file_llseek,
2695 	.read		= generic_read_dir,
2696 	.readdir	= ocfs2_readdir,
2697 	.fsync		= ocfs2_sync_file,
2698 	.release	= ocfs2_dir_release,
2699 	.open		= ocfs2_dir_open,
2700 	.unlocked_ioctl	= ocfs2_ioctl,
2701 #ifdef CONFIG_COMPAT
2702 	.compat_ioctl   = ocfs2_compat_ioctl,
2703 #endif
2704 	.flock		= ocfs2_flock,
2705 };
2706