1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * file.c 6 * 7 * File open, close, extend, truncate 8 * 9 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 10 */ 11 12 #include <linux/capability.h> 13 #include <linux/fs.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/highmem.h> 17 #include <linux/pagemap.h> 18 #include <linux/uio.h> 19 #include <linux/sched.h> 20 #include <linux/splice.h> 21 #include <linux/mount.h> 22 #include <linux/writeback.h> 23 #include <linux/falloc.h> 24 #include <linux/quotaops.h> 25 #include <linux/blkdev.h> 26 #include <linux/backing-dev.h> 27 28 #include <cluster/masklog.h> 29 30 #include "ocfs2.h" 31 32 #include "alloc.h" 33 #include "aops.h" 34 #include "dir.h" 35 #include "dlmglue.h" 36 #include "extent_map.h" 37 #include "file.h" 38 #include "sysfile.h" 39 #include "inode.h" 40 #include "ioctl.h" 41 #include "journal.h" 42 #include "locks.h" 43 #include "mmap.h" 44 #include "suballoc.h" 45 #include "super.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "quota.h" 49 #include "refcounttree.h" 50 #include "ocfs2_trace.h" 51 52 #include "buffer_head_io.h" 53 54 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 55 { 56 struct ocfs2_file_private *fp; 57 58 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 59 if (!fp) 60 return -ENOMEM; 61 62 fp->fp_file = file; 63 mutex_init(&fp->fp_mutex); 64 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 65 file->private_data = fp; 66 67 return 0; 68 } 69 70 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 71 { 72 struct ocfs2_file_private *fp = file->private_data; 73 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 74 75 if (fp) { 76 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 77 ocfs2_lock_res_free(&fp->fp_flock); 78 kfree(fp); 79 file->private_data = NULL; 80 } 81 } 82 83 static int ocfs2_file_open(struct inode *inode, struct file *file) 84 { 85 int status; 86 int mode = file->f_flags; 87 struct ocfs2_inode_info *oi = OCFS2_I(inode); 88 89 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 90 (unsigned long long)oi->ip_blkno, 91 file->f_path.dentry->d_name.len, 92 file->f_path.dentry->d_name.name, mode); 93 94 if (file->f_mode & FMODE_WRITE) { 95 status = dquot_initialize(inode); 96 if (status) 97 goto leave; 98 } 99 100 spin_lock(&oi->ip_lock); 101 102 /* Check that the inode hasn't been wiped from disk by another 103 * node. If it hasn't then we're safe as long as we hold the 104 * spin lock until our increment of open count. */ 105 if (oi->ip_flags & OCFS2_INODE_DELETED) { 106 spin_unlock(&oi->ip_lock); 107 108 status = -ENOENT; 109 goto leave; 110 } 111 112 if (mode & O_DIRECT) 113 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 114 115 oi->ip_open_count++; 116 spin_unlock(&oi->ip_lock); 117 118 status = ocfs2_init_file_private(inode, file); 119 if (status) { 120 /* 121 * We want to set open count back if we're failing the 122 * open. 123 */ 124 spin_lock(&oi->ip_lock); 125 oi->ip_open_count--; 126 spin_unlock(&oi->ip_lock); 127 } 128 129 file->f_mode |= FMODE_NOWAIT; 130 131 leave: 132 return status; 133 } 134 135 static int ocfs2_file_release(struct inode *inode, struct file *file) 136 { 137 struct ocfs2_inode_info *oi = OCFS2_I(inode); 138 139 spin_lock(&oi->ip_lock); 140 if (!--oi->ip_open_count) 141 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 142 143 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 144 oi->ip_blkno, 145 file->f_path.dentry->d_name.len, 146 file->f_path.dentry->d_name.name, 147 oi->ip_open_count); 148 spin_unlock(&oi->ip_lock); 149 150 ocfs2_free_file_private(inode, file); 151 152 return 0; 153 } 154 155 static int ocfs2_dir_open(struct inode *inode, struct file *file) 156 { 157 return ocfs2_init_file_private(inode, file); 158 } 159 160 static int ocfs2_dir_release(struct inode *inode, struct file *file) 161 { 162 ocfs2_free_file_private(inode, file); 163 return 0; 164 } 165 166 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 167 int datasync) 168 { 169 int err = 0; 170 struct inode *inode = file->f_mapping->host; 171 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 172 struct ocfs2_inode_info *oi = OCFS2_I(inode); 173 journal_t *journal = osb->journal->j_journal; 174 int ret; 175 tid_t commit_tid; 176 bool needs_barrier = false; 177 178 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 179 oi->ip_blkno, 180 file->f_path.dentry->d_name.len, 181 file->f_path.dentry->d_name.name, 182 (unsigned long long)datasync); 183 184 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 185 return -EROFS; 186 187 err = file_write_and_wait_range(file, start, end); 188 if (err) 189 return err; 190 191 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 192 if (journal->j_flags & JBD2_BARRIER && 193 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 194 needs_barrier = true; 195 err = jbd2_complete_transaction(journal, commit_tid); 196 if (needs_barrier) { 197 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 198 if (!err) 199 err = ret; 200 } 201 202 if (err) 203 mlog_errno(err); 204 205 return (err < 0) ? -EIO : 0; 206 } 207 208 int ocfs2_should_update_atime(struct inode *inode, 209 struct vfsmount *vfsmnt) 210 { 211 struct timespec64 now; 212 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 213 214 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 215 return 0; 216 217 if ((inode->i_flags & S_NOATIME) || 218 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) 219 return 0; 220 221 /* 222 * We can be called with no vfsmnt structure - NFSD will 223 * sometimes do this. 224 * 225 * Note that our action here is different than touch_atime() - 226 * if we can't tell whether this is a noatime mount, then we 227 * don't know whether to trust the value of s_atime_quantum. 228 */ 229 if (vfsmnt == NULL) 230 return 0; 231 232 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 233 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 234 return 0; 235 236 if (vfsmnt->mnt_flags & MNT_RELATIME) { 237 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 238 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 239 return 1; 240 241 return 0; 242 } 243 244 now = current_time(inode); 245 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 246 return 0; 247 else 248 return 1; 249 } 250 251 int ocfs2_update_inode_atime(struct inode *inode, 252 struct buffer_head *bh) 253 { 254 int ret; 255 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 256 handle_t *handle; 257 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 258 259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 260 if (IS_ERR(handle)) { 261 ret = PTR_ERR(handle); 262 mlog_errno(ret); 263 goto out; 264 } 265 266 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 267 OCFS2_JOURNAL_ACCESS_WRITE); 268 if (ret) { 269 mlog_errno(ret); 270 goto out_commit; 271 } 272 273 /* 274 * Don't use ocfs2_mark_inode_dirty() here as we don't always 275 * have i_mutex to guard against concurrent changes to other 276 * inode fields. 277 */ 278 inode->i_atime = current_time(inode); 279 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 280 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 281 ocfs2_update_inode_fsync_trans(handle, inode, 0); 282 ocfs2_journal_dirty(handle, bh); 283 284 out_commit: 285 ocfs2_commit_trans(osb, handle); 286 out: 287 return ret; 288 } 289 290 int ocfs2_set_inode_size(handle_t *handle, 291 struct inode *inode, 292 struct buffer_head *fe_bh, 293 u64 new_i_size) 294 { 295 int status; 296 297 i_size_write(inode, new_i_size); 298 inode->i_blocks = ocfs2_inode_sector_count(inode); 299 inode->i_ctime = inode->i_mtime = current_time(inode); 300 301 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 302 if (status < 0) { 303 mlog_errno(status); 304 goto bail; 305 } 306 307 bail: 308 return status; 309 } 310 311 int ocfs2_simple_size_update(struct inode *inode, 312 struct buffer_head *di_bh, 313 u64 new_i_size) 314 { 315 int ret; 316 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 317 handle_t *handle = NULL; 318 319 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 320 if (IS_ERR(handle)) { 321 ret = PTR_ERR(handle); 322 mlog_errno(ret); 323 goto out; 324 } 325 326 ret = ocfs2_set_inode_size(handle, inode, di_bh, 327 new_i_size); 328 if (ret < 0) 329 mlog_errno(ret); 330 331 ocfs2_update_inode_fsync_trans(handle, inode, 0); 332 ocfs2_commit_trans(osb, handle); 333 out: 334 return ret; 335 } 336 337 static int ocfs2_cow_file_pos(struct inode *inode, 338 struct buffer_head *fe_bh, 339 u64 offset) 340 { 341 int status; 342 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 343 unsigned int num_clusters = 0; 344 unsigned int ext_flags = 0; 345 346 /* 347 * If the new offset is aligned to the range of the cluster, there is 348 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 349 * CoW either. 350 */ 351 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 352 return 0; 353 354 status = ocfs2_get_clusters(inode, cpos, &phys, 355 &num_clusters, &ext_flags); 356 if (status) { 357 mlog_errno(status); 358 goto out; 359 } 360 361 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 362 goto out; 363 364 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 365 366 out: 367 return status; 368 } 369 370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 371 struct inode *inode, 372 struct buffer_head *fe_bh, 373 u64 new_i_size) 374 { 375 int status; 376 handle_t *handle; 377 struct ocfs2_dinode *di; 378 u64 cluster_bytes; 379 380 /* 381 * We need to CoW the cluster contains the offset if it is reflinked 382 * since we will call ocfs2_zero_range_for_truncate later which will 383 * write "0" from offset to the end of the cluster. 384 */ 385 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 386 if (status) { 387 mlog_errno(status); 388 return status; 389 } 390 391 /* TODO: This needs to actually orphan the inode in this 392 * transaction. */ 393 394 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 395 if (IS_ERR(handle)) { 396 status = PTR_ERR(handle); 397 mlog_errno(status); 398 goto out; 399 } 400 401 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 402 OCFS2_JOURNAL_ACCESS_WRITE); 403 if (status < 0) { 404 mlog_errno(status); 405 goto out_commit; 406 } 407 408 /* 409 * Do this before setting i_size. 410 */ 411 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 412 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 413 cluster_bytes); 414 if (status) { 415 mlog_errno(status); 416 goto out_commit; 417 } 418 419 i_size_write(inode, new_i_size); 420 inode->i_ctime = inode->i_mtime = current_time(inode); 421 422 di = (struct ocfs2_dinode *) fe_bh->b_data; 423 di->i_size = cpu_to_le64(new_i_size); 424 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 425 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 426 ocfs2_update_inode_fsync_trans(handle, inode, 0); 427 428 ocfs2_journal_dirty(handle, fe_bh); 429 430 out_commit: 431 ocfs2_commit_trans(osb, handle); 432 out: 433 return status; 434 } 435 436 int ocfs2_truncate_file(struct inode *inode, 437 struct buffer_head *di_bh, 438 u64 new_i_size) 439 { 440 int status = 0; 441 struct ocfs2_dinode *fe = NULL; 442 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 443 444 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 445 * already validated it */ 446 fe = (struct ocfs2_dinode *) di_bh->b_data; 447 448 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 449 (unsigned long long)le64_to_cpu(fe->i_size), 450 (unsigned long long)new_i_size); 451 452 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 453 "Inode %llu, inode i_size = %lld != di " 454 "i_size = %llu, i_flags = 0x%x\n", 455 (unsigned long long)OCFS2_I(inode)->ip_blkno, 456 i_size_read(inode), 457 (unsigned long long)le64_to_cpu(fe->i_size), 458 le32_to_cpu(fe->i_flags)); 459 460 if (new_i_size > le64_to_cpu(fe->i_size)) { 461 trace_ocfs2_truncate_file_error( 462 (unsigned long long)le64_to_cpu(fe->i_size), 463 (unsigned long long)new_i_size); 464 status = -EINVAL; 465 mlog_errno(status); 466 goto bail; 467 } 468 469 down_write(&OCFS2_I(inode)->ip_alloc_sem); 470 471 ocfs2_resv_discard(&osb->osb_la_resmap, 472 &OCFS2_I(inode)->ip_la_data_resv); 473 474 /* 475 * The inode lock forced other nodes to sync and drop their 476 * pages, which (correctly) happens even if we have a truncate 477 * without allocation change - ocfs2 cluster sizes can be much 478 * greater than page size, so we have to truncate them 479 * anyway. 480 */ 481 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 482 truncate_inode_pages(inode->i_mapping, new_i_size); 483 484 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 485 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 486 i_size_read(inode), 1); 487 if (status) 488 mlog_errno(status); 489 490 goto bail_unlock_sem; 491 } 492 493 /* alright, we're going to need to do a full blown alloc size 494 * change. Orphan the inode so that recovery can complete the 495 * truncate if necessary. This does the task of marking 496 * i_size. */ 497 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 498 if (status < 0) { 499 mlog_errno(status); 500 goto bail_unlock_sem; 501 } 502 503 status = ocfs2_commit_truncate(osb, inode, di_bh); 504 if (status < 0) { 505 mlog_errno(status); 506 goto bail_unlock_sem; 507 } 508 509 /* TODO: orphan dir cleanup here. */ 510 bail_unlock_sem: 511 up_write(&OCFS2_I(inode)->ip_alloc_sem); 512 513 bail: 514 if (!status && OCFS2_I(inode)->ip_clusters == 0) 515 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 516 517 return status; 518 } 519 520 /* 521 * extend file allocation only here. 522 * we'll update all the disk stuff, and oip->alloc_size 523 * 524 * expect stuff to be locked, a transaction started and enough data / 525 * metadata reservations in the contexts. 526 * 527 * Will return -EAGAIN, and a reason if a restart is needed. 528 * If passed in, *reason will always be set, even in error. 529 */ 530 int ocfs2_add_inode_data(struct ocfs2_super *osb, 531 struct inode *inode, 532 u32 *logical_offset, 533 u32 clusters_to_add, 534 int mark_unwritten, 535 struct buffer_head *fe_bh, 536 handle_t *handle, 537 struct ocfs2_alloc_context *data_ac, 538 struct ocfs2_alloc_context *meta_ac, 539 enum ocfs2_alloc_restarted *reason_ret) 540 { 541 int ret; 542 struct ocfs2_extent_tree et; 543 544 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 545 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 546 clusters_to_add, mark_unwritten, 547 data_ac, meta_ac, reason_ret); 548 549 return ret; 550 } 551 552 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 553 u32 clusters_to_add, int mark_unwritten) 554 { 555 int status = 0; 556 int restart_func = 0; 557 int credits; 558 u32 prev_clusters; 559 struct buffer_head *bh = NULL; 560 struct ocfs2_dinode *fe = NULL; 561 handle_t *handle = NULL; 562 struct ocfs2_alloc_context *data_ac = NULL; 563 struct ocfs2_alloc_context *meta_ac = NULL; 564 enum ocfs2_alloc_restarted why = RESTART_NONE; 565 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 566 struct ocfs2_extent_tree et; 567 int did_quota = 0; 568 569 /* 570 * Unwritten extent only exists for file systems which 571 * support holes. 572 */ 573 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 574 575 status = ocfs2_read_inode_block(inode, &bh); 576 if (status < 0) { 577 mlog_errno(status); 578 goto leave; 579 } 580 fe = (struct ocfs2_dinode *) bh->b_data; 581 582 restart_all: 583 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 584 585 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 586 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 587 &data_ac, &meta_ac); 588 if (status) { 589 mlog_errno(status); 590 goto leave; 591 } 592 593 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 594 handle = ocfs2_start_trans(osb, credits); 595 if (IS_ERR(handle)) { 596 status = PTR_ERR(handle); 597 handle = NULL; 598 mlog_errno(status); 599 goto leave; 600 } 601 602 restarted_transaction: 603 trace_ocfs2_extend_allocation( 604 (unsigned long long)OCFS2_I(inode)->ip_blkno, 605 (unsigned long long)i_size_read(inode), 606 le32_to_cpu(fe->i_clusters), clusters_to_add, 607 why, restart_func); 608 609 status = dquot_alloc_space_nodirty(inode, 610 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 611 if (status) 612 goto leave; 613 did_quota = 1; 614 615 /* reserve a write to the file entry early on - that we if we 616 * run out of credits in the allocation path, we can still 617 * update i_size. */ 618 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 619 OCFS2_JOURNAL_ACCESS_WRITE); 620 if (status < 0) { 621 mlog_errno(status); 622 goto leave; 623 } 624 625 prev_clusters = OCFS2_I(inode)->ip_clusters; 626 627 status = ocfs2_add_inode_data(osb, 628 inode, 629 &logical_start, 630 clusters_to_add, 631 mark_unwritten, 632 bh, 633 handle, 634 data_ac, 635 meta_ac, 636 &why); 637 if ((status < 0) && (status != -EAGAIN)) { 638 if (status != -ENOSPC) 639 mlog_errno(status); 640 goto leave; 641 } 642 ocfs2_update_inode_fsync_trans(handle, inode, 1); 643 ocfs2_journal_dirty(handle, bh); 644 645 spin_lock(&OCFS2_I(inode)->ip_lock); 646 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 647 spin_unlock(&OCFS2_I(inode)->ip_lock); 648 /* Release unused quota reservation */ 649 dquot_free_space(inode, 650 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 651 did_quota = 0; 652 653 if (why != RESTART_NONE && clusters_to_add) { 654 if (why == RESTART_META) { 655 restart_func = 1; 656 status = 0; 657 } else { 658 BUG_ON(why != RESTART_TRANS); 659 660 status = ocfs2_allocate_extend_trans(handle, 1); 661 if (status < 0) { 662 /* handle still has to be committed at 663 * this point. */ 664 status = -ENOMEM; 665 mlog_errno(status); 666 goto leave; 667 } 668 goto restarted_transaction; 669 } 670 } 671 672 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 673 le32_to_cpu(fe->i_clusters), 674 (unsigned long long)le64_to_cpu(fe->i_size), 675 OCFS2_I(inode)->ip_clusters, 676 (unsigned long long)i_size_read(inode)); 677 678 leave: 679 if (status < 0 && did_quota) 680 dquot_free_space(inode, 681 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 682 if (handle) { 683 ocfs2_commit_trans(osb, handle); 684 handle = NULL; 685 } 686 if (data_ac) { 687 ocfs2_free_alloc_context(data_ac); 688 data_ac = NULL; 689 } 690 if (meta_ac) { 691 ocfs2_free_alloc_context(meta_ac); 692 meta_ac = NULL; 693 } 694 if ((!status) && restart_func) { 695 restart_func = 0; 696 goto restart_all; 697 } 698 brelse(bh); 699 bh = NULL; 700 701 return status; 702 } 703 704 /* 705 * While a write will already be ordering the data, a truncate will not. 706 * Thus, we need to explicitly order the zeroed pages. 707 */ 708 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 709 struct buffer_head *di_bh, 710 loff_t start_byte, 711 loff_t length) 712 { 713 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 714 handle_t *handle = NULL; 715 int ret = 0; 716 717 if (!ocfs2_should_order_data(inode)) 718 goto out; 719 720 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 721 if (IS_ERR(handle)) { 722 ret = -ENOMEM; 723 mlog_errno(ret); 724 goto out; 725 } 726 727 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); 728 if (ret < 0) { 729 mlog_errno(ret); 730 goto out; 731 } 732 733 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 734 OCFS2_JOURNAL_ACCESS_WRITE); 735 if (ret) 736 mlog_errno(ret); 737 ocfs2_update_inode_fsync_trans(handle, inode, 1); 738 739 out: 740 if (ret) { 741 if (!IS_ERR(handle)) 742 ocfs2_commit_trans(osb, handle); 743 handle = ERR_PTR(ret); 744 } 745 return handle; 746 } 747 748 /* Some parts of this taken from generic_cont_expand, which turned out 749 * to be too fragile to do exactly what we need without us having to 750 * worry about recursive locking in ->write_begin() and ->write_end(). */ 751 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 752 u64 abs_to, struct buffer_head *di_bh) 753 { 754 struct address_space *mapping = inode->i_mapping; 755 struct page *page; 756 unsigned long index = abs_from >> PAGE_SHIFT; 757 handle_t *handle; 758 int ret = 0; 759 unsigned zero_from, zero_to, block_start, block_end; 760 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 761 762 BUG_ON(abs_from >= abs_to); 763 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); 764 BUG_ON(abs_from & (inode->i_blkbits - 1)); 765 766 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh, 767 abs_from, 768 abs_to - abs_from); 769 if (IS_ERR(handle)) { 770 ret = PTR_ERR(handle); 771 goto out; 772 } 773 774 page = find_or_create_page(mapping, index, GFP_NOFS); 775 if (!page) { 776 ret = -ENOMEM; 777 mlog_errno(ret); 778 goto out_commit_trans; 779 } 780 781 /* Get the offsets within the page that we want to zero */ 782 zero_from = abs_from & (PAGE_SIZE - 1); 783 zero_to = abs_to & (PAGE_SIZE - 1); 784 if (!zero_to) 785 zero_to = PAGE_SIZE; 786 787 trace_ocfs2_write_zero_page( 788 (unsigned long long)OCFS2_I(inode)->ip_blkno, 789 (unsigned long long)abs_from, 790 (unsigned long long)abs_to, 791 index, zero_from, zero_to); 792 793 /* We know that zero_from is block aligned */ 794 for (block_start = zero_from; block_start < zero_to; 795 block_start = block_end) { 796 block_end = block_start + i_blocksize(inode); 797 798 /* 799 * block_start is block-aligned. Bump it by one to force 800 * __block_write_begin and block_commit_write to zero the 801 * whole block. 802 */ 803 ret = __block_write_begin(page, block_start + 1, 0, 804 ocfs2_get_block); 805 if (ret < 0) { 806 mlog_errno(ret); 807 goto out_unlock; 808 } 809 810 811 /* must not update i_size! */ 812 ret = block_commit_write(page, block_start + 1, 813 block_start + 1); 814 if (ret < 0) 815 mlog_errno(ret); 816 else 817 ret = 0; 818 } 819 820 /* 821 * fs-writeback will release the dirty pages without page lock 822 * whose offset are over inode size, the release happens at 823 * block_write_full_page(). 824 */ 825 i_size_write(inode, abs_to); 826 inode->i_blocks = ocfs2_inode_sector_count(inode); 827 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 828 inode->i_mtime = inode->i_ctime = current_time(inode); 829 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 830 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 831 di->i_mtime_nsec = di->i_ctime_nsec; 832 if (handle) { 833 ocfs2_journal_dirty(handle, di_bh); 834 ocfs2_update_inode_fsync_trans(handle, inode, 1); 835 } 836 837 out_unlock: 838 unlock_page(page); 839 put_page(page); 840 out_commit_trans: 841 if (handle) 842 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 843 out: 844 return ret; 845 } 846 847 /* 848 * Find the next range to zero. We do this in terms of bytes because 849 * that's what ocfs2_zero_extend() wants, and it is dealing with the 850 * pagecache. We may return multiple extents. 851 * 852 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 853 * needs to be zeroed. range_start and range_end return the next zeroing 854 * range. A subsequent call should pass the previous range_end as its 855 * zero_start. If range_end is 0, there's nothing to do. 856 * 857 * Unwritten extents are skipped over. Refcounted extents are CoWd. 858 */ 859 static int ocfs2_zero_extend_get_range(struct inode *inode, 860 struct buffer_head *di_bh, 861 u64 zero_start, u64 zero_end, 862 u64 *range_start, u64 *range_end) 863 { 864 int rc = 0, needs_cow = 0; 865 u32 p_cpos, zero_clusters = 0; 866 u32 zero_cpos = 867 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 868 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 869 unsigned int num_clusters = 0; 870 unsigned int ext_flags = 0; 871 872 while (zero_cpos < last_cpos) { 873 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 874 &num_clusters, &ext_flags); 875 if (rc) { 876 mlog_errno(rc); 877 goto out; 878 } 879 880 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 881 zero_clusters = num_clusters; 882 if (ext_flags & OCFS2_EXT_REFCOUNTED) 883 needs_cow = 1; 884 break; 885 } 886 887 zero_cpos += num_clusters; 888 } 889 if (!zero_clusters) { 890 *range_end = 0; 891 goto out; 892 } 893 894 while ((zero_cpos + zero_clusters) < last_cpos) { 895 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 896 &p_cpos, &num_clusters, 897 &ext_flags); 898 if (rc) { 899 mlog_errno(rc); 900 goto out; 901 } 902 903 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 904 break; 905 if (ext_flags & OCFS2_EXT_REFCOUNTED) 906 needs_cow = 1; 907 zero_clusters += num_clusters; 908 } 909 if ((zero_cpos + zero_clusters) > last_cpos) 910 zero_clusters = last_cpos - zero_cpos; 911 912 if (needs_cow) { 913 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 914 zero_clusters, UINT_MAX); 915 if (rc) { 916 mlog_errno(rc); 917 goto out; 918 } 919 } 920 921 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 922 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 923 zero_cpos + zero_clusters); 924 925 out: 926 return rc; 927 } 928 929 /* 930 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 931 * has made sure that the entire range needs zeroing. 932 */ 933 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 934 u64 range_end, struct buffer_head *di_bh) 935 { 936 int rc = 0; 937 u64 next_pos; 938 u64 zero_pos = range_start; 939 940 trace_ocfs2_zero_extend_range( 941 (unsigned long long)OCFS2_I(inode)->ip_blkno, 942 (unsigned long long)range_start, 943 (unsigned long long)range_end); 944 BUG_ON(range_start >= range_end); 945 946 while (zero_pos < range_end) { 947 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; 948 if (next_pos > range_end) 949 next_pos = range_end; 950 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 951 if (rc < 0) { 952 mlog_errno(rc); 953 break; 954 } 955 zero_pos = next_pos; 956 957 /* 958 * Very large extends have the potential to lock up 959 * the cpu for extended periods of time. 960 */ 961 cond_resched(); 962 } 963 964 return rc; 965 } 966 967 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 968 loff_t zero_to_size) 969 { 970 int ret = 0; 971 u64 zero_start, range_start = 0, range_end = 0; 972 struct super_block *sb = inode->i_sb; 973 974 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 975 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 976 (unsigned long long)zero_start, 977 (unsigned long long)i_size_read(inode)); 978 while (zero_start < zero_to_size) { 979 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 980 zero_to_size, 981 &range_start, 982 &range_end); 983 if (ret) { 984 mlog_errno(ret); 985 break; 986 } 987 if (!range_end) 988 break; 989 /* Trim the ends */ 990 if (range_start < zero_start) 991 range_start = zero_start; 992 if (range_end > zero_to_size) 993 range_end = zero_to_size; 994 995 ret = ocfs2_zero_extend_range(inode, range_start, 996 range_end, di_bh); 997 if (ret) { 998 mlog_errno(ret); 999 break; 1000 } 1001 zero_start = range_end; 1002 } 1003 1004 return ret; 1005 } 1006 1007 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1008 u64 new_i_size, u64 zero_to) 1009 { 1010 int ret; 1011 u32 clusters_to_add; 1012 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1013 1014 /* 1015 * Only quota files call this without a bh, and they can't be 1016 * refcounted. 1017 */ 1018 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); 1019 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1020 1021 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1022 if (clusters_to_add < oi->ip_clusters) 1023 clusters_to_add = 0; 1024 else 1025 clusters_to_add -= oi->ip_clusters; 1026 1027 if (clusters_to_add) { 1028 ret = ocfs2_extend_allocation(inode, oi->ip_clusters, 1029 clusters_to_add, 0); 1030 if (ret) { 1031 mlog_errno(ret); 1032 goto out; 1033 } 1034 } 1035 1036 /* 1037 * Call this even if we don't add any clusters to the tree. We 1038 * still need to zero the area between the old i_size and the 1039 * new i_size. 1040 */ 1041 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1042 if (ret < 0) 1043 mlog_errno(ret); 1044 1045 out: 1046 return ret; 1047 } 1048 1049 static int ocfs2_extend_file(struct inode *inode, 1050 struct buffer_head *di_bh, 1051 u64 new_i_size) 1052 { 1053 int ret = 0; 1054 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1055 1056 BUG_ON(!di_bh); 1057 1058 /* setattr sometimes calls us like this. */ 1059 if (new_i_size == 0) 1060 goto out; 1061 1062 if (i_size_read(inode) == new_i_size) 1063 goto out; 1064 BUG_ON(new_i_size < i_size_read(inode)); 1065 1066 /* 1067 * The alloc sem blocks people in read/write from reading our 1068 * allocation until we're done changing it. We depend on 1069 * i_mutex to block other extend/truncate calls while we're 1070 * here. We even have to hold it for sparse files because there 1071 * might be some tail zeroing. 1072 */ 1073 down_write(&oi->ip_alloc_sem); 1074 1075 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1076 /* 1077 * We can optimize small extends by keeping the inodes 1078 * inline data. 1079 */ 1080 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1081 up_write(&oi->ip_alloc_sem); 1082 goto out_update_size; 1083 } 1084 1085 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1086 if (ret) { 1087 up_write(&oi->ip_alloc_sem); 1088 mlog_errno(ret); 1089 goto out; 1090 } 1091 } 1092 1093 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1094 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1095 else 1096 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1097 new_i_size); 1098 1099 up_write(&oi->ip_alloc_sem); 1100 1101 if (ret < 0) { 1102 mlog_errno(ret); 1103 goto out; 1104 } 1105 1106 out_update_size: 1107 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1108 if (ret < 0) 1109 mlog_errno(ret); 1110 1111 out: 1112 return ret; 1113 } 1114 1115 int ocfs2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 1116 struct iattr *attr) 1117 { 1118 int status = 0, size_change; 1119 int inode_locked = 0; 1120 struct inode *inode = d_inode(dentry); 1121 struct super_block *sb = inode->i_sb; 1122 struct ocfs2_super *osb = OCFS2_SB(sb); 1123 struct buffer_head *bh = NULL; 1124 handle_t *handle = NULL; 1125 struct dquot *transfer_to[MAXQUOTAS] = { }; 1126 int qtype; 1127 int had_lock; 1128 struct ocfs2_lock_holder oh; 1129 1130 trace_ocfs2_setattr(inode, dentry, 1131 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1132 dentry->d_name.len, dentry->d_name.name, 1133 attr->ia_valid, attr->ia_mode, 1134 from_kuid(&init_user_ns, attr->ia_uid), 1135 from_kgid(&init_user_ns, attr->ia_gid)); 1136 1137 /* ensuring we don't even attempt to truncate a symlink */ 1138 if (S_ISLNK(inode->i_mode)) 1139 attr->ia_valid &= ~ATTR_SIZE; 1140 1141 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1142 | ATTR_GID | ATTR_UID | ATTR_MODE) 1143 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1144 return 0; 1145 1146 status = setattr_prepare(&init_user_ns, dentry, attr); 1147 if (status) 1148 return status; 1149 1150 if (is_quota_modification(inode, attr)) { 1151 status = dquot_initialize(inode); 1152 if (status) 1153 return status; 1154 } 1155 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1156 if (size_change) { 1157 /* 1158 * Here we should wait dio to finish before inode lock 1159 * to avoid a deadlock between ocfs2_setattr() and 1160 * ocfs2_dio_end_io_write() 1161 */ 1162 inode_dio_wait(inode); 1163 1164 status = ocfs2_rw_lock(inode, 1); 1165 if (status < 0) { 1166 mlog_errno(status); 1167 goto bail; 1168 } 1169 } 1170 1171 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); 1172 if (had_lock < 0) { 1173 status = had_lock; 1174 goto bail_unlock_rw; 1175 } else if (had_lock) { 1176 /* 1177 * As far as we know, ocfs2_setattr() could only be the first 1178 * VFS entry point in the call chain of recursive cluster 1179 * locking issue. 1180 * 1181 * For instance: 1182 * chmod_common() 1183 * notify_change() 1184 * ocfs2_setattr() 1185 * posix_acl_chmod() 1186 * ocfs2_iop_get_acl() 1187 * 1188 * But, we're not 100% sure if it's always true, because the 1189 * ordering of the VFS entry points in the call chain is out 1190 * of our control. So, we'd better dump the stack here to 1191 * catch the other cases of recursive locking. 1192 */ 1193 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1194 dump_stack(); 1195 } 1196 inode_locked = 1; 1197 1198 if (size_change) { 1199 status = inode_newsize_ok(inode, attr->ia_size); 1200 if (status) 1201 goto bail_unlock; 1202 1203 if (i_size_read(inode) >= attr->ia_size) { 1204 if (ocfs2_should_order_data(inode)) { 1205 status = ocfs2_begin_ordered_truncate(inode, 1206 attr->ia_size); 1207 if (status) 1208 goto bail_unlock; 1209 } 1210 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1211 } else 1212 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1213 if (status < 0) { 1214 if (status != -ENOSPC) 1215 mlog_errno(status); 1216 status = -ENOSPC; 1217 goto bail_unlock; 1218 } 1219 } 1220 1221 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1222 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1223 /* 1224 * Gather pointers to quota structures so that allocation / 1225 * freeing of quota structures happens here and not inside 1226 * dquot_transfer() where we have problems with lock ordering 1227 */ 1228 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1229 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1230 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1231 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1232 if (IS_ERR(transfer_to[USRQUOTA])) { 1233 status = PTR_ERR(transfer_to[USRQUOTA]); 1234 transfer_to[USRQUOTA] = NULL; 1235 goto bail_unlock; 1236 } 1237 } 1238 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1239 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1240 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1241 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1242 if (IS_ERR(transfer_to[GRPQUOTA])) { 1243 status = PTR_ERR(transfer_to[GRPQUOTA]); 1244 transfer_to[GRPQUOTA] = NULL; 1245 goto bail_unlock; 1246 } 1247 } 1248 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1249 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1250 2 * ocfs2_quota_trans_credits(sb)); 1251 if (IS_ERR(handle)) { 1252 status = PTR_ERR(handle); 1253 mlog_errno(status); 1254 goto bail_unlock_alloc; 1255 } 1256 status = __dquot_transfer(inode, transfer_to); 1257 if (status < 0) 1258 goto bail_commit; 1259 } else { 1260 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1261 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1262 if (IS_ERR(handle)) { 1263 status = PTR_ERR(handle); 1264 mlog_errno(status); 1265 goto bail_unlock_alloc; 1266 } 1267 } 1268 1269 setattr_copy(&init_user_ns, inode, attr); 1270 mark_inode_dirty(inode); 1271 1272 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1273 if (status < 0) 1274 mlog_errno(status); 1275 1276 bail_commit: 1277 ocfs2_commit_trans(osb, handle); 1278 bail_unlock_alloc: 1279 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1280 bail_unlock: 1281 if (status && inode_locked) { 1282 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1283 inode_locked = 0; 1284 } 1285 bail_unlock_rw: 1286 if (size_change) 1287 ocfs2_rw_unlock(inode, 1); 1288 bail: 1289 1290 /* Release quota pointers in case we acquired them */ 1291 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1292 dqput(transfer_to[qtype]); 1293 1294 if (!status && attr->ia_valid & ATTR_MODE) { 1295 status = ocfs2_acl_chmod(inode, bh); 1296 if (status < 0) 1297 mlog_errno(status); 1298 } 1299 if (inode_locked) 1300 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1301 1302 brelse(bh); 1303 return status; 1304 } 1305 1306 int ocfs2_getattr(struct user_namespace *mnt_userns, const struct path *path, 1307 struct kstat *stat, u32 request_mask, unsigned int flags) 1308 { 1309 struct inode *inode = d_inode(path->dentry); 1310 struct super_block *sb = path->dentry->d_sb; 1311 struct ocfs2_super *osb = sb->s_fs_info; 1312 int err; 1313 1314 err = ocfs2_inode_revalidate(path->dentry); 1315 if (err) { 1316 if (err != -ENOENT) 1317 mlog_errno(err); 1318 goto bail; 1319 } 1320 1321 generic_fillattr(&init_user_ns, inode, stat); 1322 /* 1323 * If there is inline data in the inode, the inode will normally not 1324 * have data blocks allocated (it may have an external xattr block). 1325 * Report at least one sector for such files, so tools like tar, rsync, 1326 * others don't incorrectly think the file is completely sparse. 1327 */ 1328 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1329 stat->blocks += (stat->size + 511)>>9; 1330 1331 /* We set the blksize from the cluster size for performance */ 1332 stat->blksize = osb->s_clustersize; 1333 1334 bail: 1335 return err; 1336 } 1337 1338 int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode, 1339 int mask) 1340 { 1341 int ret, had_lock; 1342 struct ocfs2_lock_holder oh; 1343 1344 if (mask & MAY_NOT_BLOCK) 1345 return -ECHILD; 1346 1347 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); 1348 if (had_lock < 0) { 1349 ret = had_lock; 1350 goto out; 1351 } else if (had_lock) { 1352 /* See comments in ocfs2_setattr() for details. 1353 * The call chain of this case could be: 1354 * do_sys_open() 1355 * may_open() 1356 * inode_permission() 1357 * ocfs2_permission() 1358 * ocfs2_iop_get_acl() 1359 */ 1360 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1361 dump_stack(); 1362 } 1363 1364 ret = generic_permission(&init_user_ns, inode, mask); 1365 1366 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); 1367 out: 1368 return ret; 1369 } 1370 1371 static int __ocfs2_write_remove_suid(struct inode *inode, 1372 struct buffer_head *bh) 1373 { 1374 int ret; 1375 handle_t *handle; 1376 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1377 struct ocfs2_dinode *di; 1378 1379 trace_ocfs2_write_remove_suid( 1380 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1381 inode->i_mode); 1382 1383 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1384 if (IS_ERR(handle)) { 1385 ret = PTR_ERR(handle); 1386 mlog_errno(ret); 1387 goto out; 1388 } 1389 1390 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1391 OCFS2_JOURNAL_ACCESS_WRITE); 1392 if (ret < 0) { 1393 mlog_errno(ret); 1394 goto out_trans; 1395 } 1396 1397 inode->i_mode &= ~S_ISUID; 1398 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1399 inode->i_mode &= ~S_ISGID; 1400 1401 di = (struct ocfs2_dinode *) bh->b_data; 1402 di->i_mode = cpu_to_le16(inode->i_mode); 1403 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1404 1405 ocfs2_journal_dirty(handle, bh); 1406 1407 out_trans: 1408 ocfs2_commit_trans(osb, handle); 1409 out: 1410 return ret; 1411 } 1412 1413 static int ocfs2_write_remove_suid(struct inode *inode) 1414 { 1415 int ret; 1416 struct buffer_head *bh = NULL; 1417 1418 ret = ocfs2_read_inode_block(inode, &bh); 1419 if (ret < 0) { 1420 mlog_errno(ret); 1421 goto out; 1422 } 1423 1424 ret = __ocfs2_write_remove_suid(inode, bh); 1425 out: 1426 brelse(bh); 1427 return ret; 1428 } 1429 1430 /* 1431 * Allocate enough extents to cover the region starting at byte offset 1432 * start for len bytes. Existing extents are skipped, any extents 1433 * added are marked as "unwritten". 1434 */ 1435 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1436 u64 start, u64 len) 1437 { 1438 int ret; 1439 u32 cpos, phys_cpos, clusters, alloc_size; 1440 u64 end = start + len; 1441 struct buffer_head *di_bh = NULL; 1442 1443 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1444 ret = ocfs2_read_inode_block(inode, &di_bh); 1445 if (ret) { 1446 mlog_errno(ret); 1447 goto out; 1448 } 1449 1450 /* 1451 * Nothing to do if the requested reservation range 1452 * fits within the inode. 1453 */ 1454 if (ocfs2_size_fits_inline_data(di_bh, end)) 1455 goto out; 1456 1457 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1458 if (ret) { 1459 mlog_errno(ret); 1460 goto out; 1461 } 1462 } 1463 1464 /* 1465 * We consider both start and len to be inclusive. 1466 */ 1467 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1468 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1469 clusters -= cpos; 1470 1471 while (clusters) { 1472 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1473 &alloc_size, NULL); 1474 if (ret) { 1475 mlog_errno(ret); 1476 goto out; 1477 } 1478 1479 /* 1480 * Hole or existing extent len can be arbitrary, so 1481 * cap it to our own allocation request. 1482 */ 1483 if (alloc_size > clusters) 1484 alloc_size = clusters; 1485 1486 if (phys_cpos) { 1487 /* 1488 * We already have an allocation at this 1489 * region so we can safely skip it. 1490 */ 1491 goto next; 1492 } 1493 1494 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1495 if (ret) { 1496 if (ret != -ENOSPC) 1497 mlog_errno(ret); 1498 goto out; 1499 } 1500 1501 next: 1502 cpos += alloc_size; 1503 clusters -= alloc_size; 1504 } 1505 1506 ret = 0; 1507 out: 1508 1509 brelse(di_bh); 1510 return ret; 1511 } 1512 1513 /* 1514 * Truncate a byte range, avoiding pages within partial clusters. This 1515 * preserves those pages for the zeroing code to write to. 1516 */ 1517 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1518 u64 byte_len) 1519 { 1520 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1521 loff_t start, end; 1522 struct address_space *mapping = inode->i_mapping; 1523 1524 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1525 end = byte_start + byte_len; 1526 end = end & ~(osb->s_clustersize - 1); 1527 1528 if (start < end) { 1529 unmap_mapping_range(mapping, start, end - start, 0); 1530 truncate_inode_pages_range(mapping, start, end - 1); 1531 } 1532 } 1533 1534 static int ocfs2_zero_partial_clusters(struct inode *inode, 1535 u64 start, u64 len) 1536 { 1537 int ret = 0; 1538 u64 tmpend = 0; 1539 u64 end = start + len; 1540 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1541 unsigned int csize = osb->s_clustersize; 1542 handle_t *handle; 1543 1544 /* 1545 * The "start" and "end" values are NOT necessarily part of 1546 * the range whose allocation is being deleted. Rather, this 1547 * is what the user passed in with the request. We must zero 1548 * partial clusters here. There's no need to worry about 1549 * physical allocation - the zeroing code knows to skip holes. 1550 */ 1551 trace_ocfs2_zero_partial_clusters( 1552 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1553 (unsigned long long)start, (unsigned long long)end); 1554 1555 /* 1556 * If both edges are on a cluster boundary then there's no 1557 * zeroing required as the region is part of the allocation to 1558 * be truncated. 1559 */ 1560 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1561 goto out; 1562 1563 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1564 if (IS_ERR(handle)) { 1565 ret = PTR_ERR(handle); 1566 mlog_errno(ret); 1567 goto out; 1568 } 1569 1570 /* 1571 * If start is on a cluster boundary and end is somewhere in another 1572 * cluster, we have not COWed the cluster starting at start, unless 1573 * end is also within the same cluster. So, in this case, we skip this 1574 * first call to ocfs2_zero_range_for_truncate() truncate and move on 1575 * to the next one. 1576 */ 1577 if ((start & (csize - 1)) != 0) { 1578 /* 1579 * We want to get the byte offset of the end of the 1st 1580 * cluster. 1581 */ 1582 tmpend = (u64)osb->s_clustersize + 1583 (start & ~(osb->s_clustersize - 1)); 1584 if (tmpend > end) 1585 tmpend = end; 1586 1587 trace_ocfs2_zero_partial_clusters_range1( 1588 (unsigned long long)start, 1589 (unsigned long long)tmpend); 1590 1591 ret = ocfs2_zero_range_for_truncate(inode, handle, start, 1592 tmpend); 1593 if (ret) 1594 mlog_errno(ret); 1595 } 1596 1597 if (tmpend < end) { 1598 /* 1599 * This may make start and end equal, but the zeroing 1600 * code will skip any work in that case so there's no 1601 * need to catch it up here. 1602 */ 1603 start = end & ~(osb->s_clustersize - 1); 1604 1605 trace_ocfs2_zero_partial_clusters_range2( 1606 (unsigned long long)start, (unsigned long long)end); 1607 1608 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1609 if (ret) 1610 mlog_errno(ret); 1611 } 1612 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1613 1614 ocfs2_commit_trans(osb, handle); 1615 out: 1616 return ret; 1617 } 1618 1619 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1620 { 1621 int i; 1622 struct ocfs2_extent_rec *rec = NULL; 1623 1624 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1625 1626 rec = &el->l_recs[i]; 1627 1628 if (le32_to_cpu(rec->e_cpos) < pos) 1629 break; 1630 } 1631 1632 return i; 1633 } 1634 1635 /* 1636 * Helper to calculate the punching pos and length in one run, we handle the 1637 * following three cases in order: 1638 * 1639 * - remove the entire record 1640 * - remove a partial record 1641 * - no record needs to be removed (hole-punching completed) 1642 */ 1643 static void ocfs2_calc_trunc_pos(struct inode *inode, 1644 struct ocfs2_extent_list *el, 1645 struct ocfs2_extent_rec *rec, 1646 u32 trunc_start, u32 *trunc_cpos, 1647 u32 *trunc_len, u32 *trunc_end, 1648 u64 *blkno, int *done) 1649 { 1650 int ret = 0; 1651 u32 coff, range; 1652 1653 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1654 1655 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1656 /* 1657 * remove an entire extent record. 1658 */ 1659 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1660 /* 1661 * Skip holes if any. 1662 */ 1663 if (range < *trunc_end) 1664 *trunc_end = range; 1665 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1666 *blkno = le64_to_cpu(rec->e_blkno); 1667 *trunc_end = le32_to_cpu(rec->e_cpos); 1668 } else if (range > trunc_start) { 1669 /* 1670 * remove a partial extent record, which means we're 1671 * removing the last extent record. 1672 */ 1673 *trunc_cpos = trunc_start; 1674 /* 1675 * skip hole if any. 1676 */ 1677 if (range < *trunc_end) 1678 *trunc_end = range; 1679 *trunc_len = *trunc_end - trunc_start; 1680 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1681 *blkno = le64_to_cpu(rec->e_blkno) + 1682 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1683 *trunc_end = trunc_start; 1684 } else { 1685 /* 1686 * It may have two following possibilities: 1687 * 1688 * - last record has been removed 1689 * - trunc_start was within a hole 1690 * 1691 * both two cases mean the completion of hole punching. 1692 */ 1693 ret = 1; 1694 } 1695 1696 *done = ret; 1697 } 1698 1699 int ocfs2_remove_inode_range(struct inode *inode, 1700 struct buffer_head *di_bh, u64 byte_start, 1701 u64 byte_len) 1702 { 1703 int ret = 0, flags = 0, done = 0, i; 1704 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1705 u32 cluster_in_el; 1706 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1707 struct ocfs2_cached_dealloc_ctxt dealloc; 1708 struct address_space *mapping = inode->i_mapping; 1709 struct ocfs2_extent_tree et; 1710 struct ocfs2_path *path = NULL; 1711 struct ocfs2_extent_list *el = NULL; 1712 struct ocfs2_extent_rec *rec = NULL; 1713 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1714 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1715 1716 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1717 ocfs2_init_dealloc_ctxt(&dealloc); 1718 1719 trace_ocfs2_remove_inode_range( 1720 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1721 (unsigned long long)byte_start, 1722 (unsigned long long)byte_len); 1723 1724 if (byte_len == 0) 1725 return 0; 1726 1727 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1728 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1729 byte_start + byte_len, 0); 1730 if (ret) { 1731 mlog_errno(ret); 1732 goto out; 1733 } 1734 /* 1735 * There's no need to get fancy with the page cache 1736 * truncate of an inline-data inode. We're talking 1737 * about less than a page here, which will be cached 1738 * in the dinode buffer anyway. 1739 */ 1740 unmap_mapping_range(mapping, 0, 0, 0); 1741 truncate_inode_pages(mapping, 0); 1742 goto out; 1743 } 1744 1745 /* 1746 * For reflinks, we may need to CoW 2 clusters which might be 1747 * partially zero'd later, if hole's start and end offset were 1748 * within one cluster(means is not exactly aligned to clustersize). 1749 */ 1750 1751 if (ocfs2_is_refcount_inode(inode)) { 1752 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1753 if (ret) { 1754 mlog_errno(ret); 1755 goto out; 1756 } 1757 1758 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1759 if (ret) { 1760 mlog_errno(ret); 1761 goto out; 1762 } 1763 } 1764 1765 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1766 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1767 cluster_in_el = trunc_end; 1768 1769 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1770 if (ret) { 1771 mlog_errno(ret); 1772 goto out; 1773 } 1774 1775 path = ocfs2_new_path_from_et(&et); 1776 if (!path) { 1777 ret = -ENOMEM; 1778 mlog_errno(ret); 1779 goto out; 1780 } 1781 1782 while (trunc_end > trunc_start) { 1783 1784 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1785 cluster_in_el); 1786 if (ret) { 1787 mlog_errno(ret); 1788 goto out; 1789 } 1790 1791 el = path_leaf_el(path); 1792 1793 i = ocfs2_find_rec(el, trunc_end); 1794 /* 1795 * Need to go to previous extent block. 1796 */ 1797 if (i < 0) { 1798 if (path->p_tree_depth == 0) 1799 break; 1800 1801 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1802 path, 1803 &cluster_in_el); 1804 if (ret) { 1805 mlog_errno(ret); 1806 goto out; 1807 } 1808 1809 /* 1810 * We've reached the leftmost extent block, 1811 * it's safe to leave. 1812 */ 1813 if (cluster_in_el == 0) 1814 break; 1815 1816 /* 1817 * The 'pos' searched for previous extent block is 1818 * always one cluster less than actual trunc_end. 1819 */ 1820 trunc_end = cluster_in_el + 1; 1821 1822 ocfs2_reinit_path(path, 1); 1823 1824 continue; 1825 1826 } else 1827 rec = &el->l_recs[i]; 1828 1829 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1830 &trunc_len, &trunc_end, &blkno, &done); 1831 if (done) 1832 break; 1833 1834 flags = rec->e_flags; 1835 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1836 1837 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1838 phys_cpos, trunc_len, flags, 1839 &dealloc, refcount_loc, false); 1840 if (ret < 0) { 1841 mlog_errno(ret); 1842 goto out; 1843 } 1844 1845 cluster_in_el = trunc_end; 1846 1847 ocfs2_reinit_path(path, 1); 1848 } 1849 1850 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1851 1852 out: 1853 ocfs2_free_path(path); 1854 ocfs2_schedule_truncate_log_flush(osb, 1); 1855 ocfs2_run_deallocs(osb, &dealloc); 1856 1857 return ret; 1858 } 1859 1860 /* 1861 * Parts of this function taken from xfs_change_file_space() 1862 */ 1863 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1864 loff_t f_pos, unsigned int cmd, 1865 struct ocfs2_space_resv *sr, 1866 int change_size) 1867 { 1868 int ret; 1869 s64 llen; 1870 loff_t size; 1871 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1872 struct buffer_head *di_bh = NULL; 1873 handle_t *handle; 1874 unsigned long long max_off = inode->i_sb->s_maxbytes; 1875 1876 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1877 return -EROFS; 1878 1879 inode_lock(inode); 1880 1881 /* 1882 * This prevents concurrent writes on other nodes 1883 */ 1884 ret = ocfs2_rw_lock(inode, 1); 1885 if (ret) { 1886 mlog_errno(ret); 1887 goto out; 1888 } 1889 1890 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1891 if (ret) { 1892 mlog_errno(ret); 1893 goto out_rw_unlock; 1894 } 1895 1896 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1897 ret = -EPERM; 1898 goto out_inode_unlock; 1899 } 1900 1901 switch (sr->l_whence) { 1902 case 0: /*SEEK_SET*/ 1903 break; 1904 case 1: /*SEEK_CUR*/ 1905 sr->l_start += f_pos; 1906 break; 1907 case 2: /*SEEK_END*/ 1908 sr->l_start += i_size_read(inode); 1909 break; 1910 default: 1911 ret = -EINVAL; 1912 goto out_inode_unlock; 1913 } 1914 sr->l_whence = 0; 1915 1916 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1917 1918 if (sr->l_start < 0 1919 || sr->l_start > max_off 1920 || (sr->l_start + llen) < 0 1921 || (sr->l_start + llen) > max_off) { 1922 ret = -EINVAL; 1923 goto out_inode_unlock; 1924 } 1925 size = sr->l_start + sr->l_len; 1926 1927 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1928 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1929 if (sr->l_len <= 0) { 1930 ret = -EINVAL; 1931 goto out_inode_unlock; 1932 } 1933 } 1934 1935 if (file && should_remove_suid(file->f_path.dentry)) { 1936 ret = __ocfs2_write_remove_suid(inode, di_bh); 1937 if (ret) { 1938 mlog_errno(ret); 1939 goto out_inode_unlock; 1940 } 1941 } 1942 1943 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1944 switch (cmd) { 1945 case OCFS2_IOC_RESVSP: 1946 case OCFS2_IOC_RESVSP64: 1947 /* 1948 * This takes unsigned offsets, but the signed ones we 1949 * pass have been checked against overflow above. 1950 */ 1951 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1952 sr->l_len); 1953 break; 1954 case OCFS2_IOC_UNRESVSP: 1955 case OCFS2_IOC_UNRESVSP64: 1956 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1957 sr->l_len); 1958 break; 1959 default: 1960 ret = -EINVAL; 1961 } 1962 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1963 if (ret) { 1964 mlog_errno(ret); 1965 goto out_inode_unlock; 1966 } 1967 1968 /* 1969 * We update c/mtime for these changes 1970 */ 1971 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1972 if (IS_ERR(handle)) { 1973 ret = PTR_ERR(handle); 1974 mlog_errno(ret); 1975 goto out_inode_unlock; 1976 } 1977 1978 if (change_size && i_size_read(inode) < size) 1979 i_size_write(inode, size); 1980 1981 inode->i_ctime = inode->i_mtime = current_time(inode); 1982 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1983 if (ret < 0) 1984 mlog_errno(ret); 1985 1986 if (file && (file->f_flags & O_SYNC)) 1987 handle->h_sync = 1; 1988 1989 ocfs2_commit_trans(osb, handle); 1990 1991 out_inode_unlock: 1992 brelse(di_bh); 1993 ocfs2_inode_unlock(inode, 1); 1994 out_rw_unlock: 1995 ocfs2_rw_unlock(inode, 1); 1996 1997 out: 1998 inode_unlock(inode); 1999 return ret; 2000 } 2001 2002 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 2003 struct ocfs2_space_resv *sr) 2004 { 2005 struct inode *inode = file_inode(file); 2006 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2007 int ret; 2008 2009 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 2010 !ocfs2_writes_unwritten_extents(osb)) 2011 return -ENOTTY; 2012 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 2013 !ocfs2_sparse_alloc(osb)) 2014 return -ENOTTY; 2015 2016 if (!S_ISREG(inode->i_mode)) 2017 return -EINVAL; 2018 2019 if (!(file->f_mode & FMODE_WRITE)) 2020 return -EBADF; 2021 2022 ret = mnt_want_write_file(file); 2023 if (ret) 2024 return ret; 2025 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2026 mnt_drop_write_file(file); 2027 return ret; 2028 } 2029 2030 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2031 loff_t len) 2032 { 2033 struct inode *inode = file_inode(file); 2034 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2035 struct ocfs2_space_resv sr; 2036 int change_size = 1; 2037 int cmd = OCFS2_IOC_RESVSP64; 2038 2039 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2040 return -EOPNOTSUPP; 2041 if (!ocfs2_writes_unwritten_extents(osb)) 2042 return -EOPNOTSUPP; 2043 2044 if (mode & FALLOC_FL_KEEP_SIZE) 2045 change_size = 0; 2046 2047 if (mode & FALLOC_FL_PUNCH_HOLE) 2048 cmd = OCFS2_IOC_UNRESVSP64; 2049 2050 sr.l_whence = 0; 2051 sr.l_start = (s64)offset; 2052 sr.l_len = (s64)len; 2053 2054 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2055 change_size); 2056 } 2057 2058 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2059 size_t count) 2060 { 2061 int ret = 0; 2062 unsigned int extent_flags; 2063 u32 cpos, clusters, extent_len, phys_cpos; 2064 struct super_block *sb = inode->i_sb; 2065 2066 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2067 !ocfs2_is_refcount_inode(inode) || 2068 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2069 return 0; 2070 2071 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2072 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2073 2074 while (clusters) { 2075 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2076 &extent_flags); 2077 if (ret < 0) { 2078 mlog_errno(ret); 2079 goto out; 2080 } 2081 2082 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2083 ret = 1; 2084 break; 2085 } 2086 2087 if (extent_len > clusters) 2088 extent_len = clusters; 2089 2090 clusters -= extent_len; 2091 cpos += extent_len; 2092 } 2093 out: 2094 return ret; 2095 } 2096 2097 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2098 { 2099 int blockmask = inode->i_sb->s_blocksize - 1; 2100 loff_t final_size = pos + count; 2101 2102 if ((pos & blockmask) || (final_size & blockmask)) 2103 return 1; 2104 return 0; 2105 } 2106 2107 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode, 2108 struct buffer_head **di_bh, 2109 int meta_level, 2110 int write_sem, 2111 int wait) 2112 { 2113 int ret = 0; 2114 2115 if (wait) 2116 ret = ocfs2_inode_lock(inode, di_bh, meta_level); 2117 else 2118 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level); 2119 if (ret < 0) 2120 goto out; 2121 2122 if (wait) { 2123 if (write_sem) 2124 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2125 else 2126 down_read(&OCFS2_I(inode)->ip_alloc_sem); 2127 } else { 2128 if (write_sem) 2129 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2130 else 2131 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2132 2133 if (!ret) { 2134 ret = -EAGAIN; 2135 goto out_unlock; 2136 } 2137 } 2138 2139 return ret; 2140 2141 out_unlock: 2142 brelse(*di_bh); 2143 *di_bh = NULL; 2144 ocfs2_inode_unlock(inode, meta_level); 2145 out: 2146 return ret; 2147 } 2148 2149 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode, 2150 struct buffer_head **di_bh, 2151 int meta_level, 2152 int write_sem) 2153 { 2154 if (write_sem) 2155 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2156 else 2157 up_read(&OCFS2_I(inode)->ip_alloc_sem); 2158 2159 brelse(*di_bh); 2160 *di_bh = NULL; 2161 2162 if (meta_level >= 0) 2163 ocfs2_inode_unlock(inode, meta_level); 2164 } 2165 2166 static int ocfs2_prepare_inode_for_write(struct file *file, 2167 loff_t pos, size_t count, int wait) 2168 { 2169 int ret = 0, meta_level = 0, overwrite_io = 0; 2170 int write_sem = 0; 2171 struct dentry *dentry = file->f_path.dentry; 2172 struct inode *inode = d_inode(dentry); 2173 struct buffer_head *di_bh = NULL; 2174 u32 cpos; 2175 u32 clusters; 2176 2177 /* 2178 * We start with a read level meta lock and only jump to an ex 2179 * if we need to make modifications here. 2180 */ 2181 for(;;) { 2182 ret = ocfs2_inode_lock_for_extent_tree(inode, 2183 &di_bh, 2184 meta_level, 2185 write_sem, 2186 wait); 2187 if (ret < 0) { 2188 if (ret != -EAGAIN) 2189 mlog_errno(ret); 2190 goto out; 2191 } 2192 2193 /* 2194 * Check if IO will overwrite allocated blocks in case 2195 * IOCB_NOWAIT flag is set. 2196 */ 2197 if (!wait && !overwrite_io) { 2198 overwrite_io = 1; 2199 2200 ret = ocfs2_overwrite_io(inode, di_bh, pos, count); 2201 if (ret < 0) { 2202 if (ret != -EAGAIN) 2203 mlog_errno(ret); 2204 goto out_unlock; 2205 } 2206 } 2207 2208 /* Clear suid / sgid if necessary. We do this here 2209 * instead of later in the write path because 2210 * remove_suid() calls ->setattr without any hint that 2211 * we may have already done our cluster locking. Since 2212 * ocfs2_setattr() *must* take cluster locks to 2213 * proceed, this will lead us to recursively lock the 2214 * inode. There's also the dinode i_size state which 2215 * can be lost via setattr during extending writes (we 2216 * set inode->i_size at the end of a write. */ 2217 if (should_remove_suid(dentry)) { 2218 if (meta_level == 0) { 2219 ocfs2_inode_unlock_for_extent_tree(inode, 2220 &di_bh, 2221 meta_level, 2222 write_sem); 2223 meta_level = 1; 2224 continue; 2225 } 2226 2227 ret = ocfs2_write_remove_suid(inode); 2228 if (ret < 0) { 2229 mlog_errno(ret); 2230 goto out_unlock; 2231 } 2232 } 2233 2234 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2235 if (ret == 1) { 2236 ocfs2_inode_unlock_for_extent_tree(inode, 2237 &di_bh, 2238 meta_level, 2239 write_sem); 2240 meta_level = 1; 2241 write_sem = 1; 2242 ret = ocfs2_inode_lock_for_extent_tree(inode, 2243 &di_bh, 2244 meta_level, 2245 write_sem, 2246 wait); 2247 if (ret < 0) { 2248 if (ret != -EAGAIN) 2249 mlog_errno(ret); 2250 goto out; 2251 } 2252 2253 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2254 clusters = 2255 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2256 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2257 } 2258 2259 if (ret < 0) { 2260 if (ret != -EAGAIN) 2261 mlog_errno(ret); 2262 goto out_unlock; 2263 } 2264 2265 break; 2266 } 2267 2268 out_unlock: 2269 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2270 pos, count, wait); 2271 2272 ocfs2_inode_unlock_for_extent_tree(inode, 2273 &di_bh, 2274 meta_level, 2275 write_sem); 2276 2277 out: 2278 return ret; 2279 } 2280 2281 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2282 struct iov_iter *from) 2283 { 2284 int rw_level; 2285 ssize_t written = 0; 2286 ssize_t ret; 2287 size_t count = iov_iter_count(from); 2288 struct file *file = iocb->ki_filp; 2289 struct inode *inode = file_inode(file); 2290 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2291 int full_coherency = !(osb->s_mount_opt & 2292 OCFS2_MOUNT_COHERENCY_BUFFERED); 2293 void *saved_ki_complete = NULL; 2294 int append_write = ((iocb->ki_pos + count) >= 2295 i_size_read(inode) ? 1 : 0); 2296 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2297 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2298 2299 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, 2300 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2301 file->f_path.dentry->d_name.len, 2302 file->f_path.dentry->d_name.name, 2303 (unsigned int)from->nr_segs); /* GRRRRR */ 2304 2305 if (!direct_io && nowait) 2306 return -EOPNOTSUPP; 2307 2308 if (count == 0) 2309 return 0; 2310 2311 if (nowait) { 2312 if (!inode_trylock(inode)) 2313 return -EAGAIN; 2314 } else 2315 inode_lock(inode); 2316 2317 /* 2318 * Concurrent O_DIRECT writes are allowed with 2319 * mount_option "coherency=buffered". 2320 * For append write, we must take rw EX. 2321 */ 2322 rw_level = (!direct_io || full_coherency || append_write); 2323 2324 if (nowait) 2325 ret = ocfs2_try_rw_lock(inode, rw_level); 2326 else 2327 ret = ocfs2_rw_lock(inode, rw_level); 2328 if (ret < 0) { 2329 if (ret != -EAGAIN) 2330 mlog_errno(ret); 2331 goto out_mutex; 2332 } 2333 2334 /* 2335 * O_DIRECT writes with "coherency=full" need to take EX cluster 2336 * inode_lock to guarantee coherency. 2337 */ 2338 if (direct_io && full_coherency) { 2339 /* 2340 * We need to take and drop the inode lock to force 2341 * other nodes to drop their caches. Buffered I/O 2342 * already does this in write_begin(). 2343 */ 2344 if (nowait) 2345 ret = ocfs2_try_inode_lock(inode, NULL, 1); 2346 else 2347 ret = ocfs2_inode_lock(inode, NULL, 1); 2348 if (ret < 0) { 2349 if (ret != -EAGAIN) 2350 mlog_errno(ret); 2351 goto out; 2352 } 2353 2354 ocfs2_inode_unlock(inode, 1); 2355 } 2356 2357 ret = generic_write_checks(iocb, from); 2358 if (ret <= 0) { 2359 if (ret) 2360 mlog_errno(ret); 2361 goto out; 2362 } 2363 count = ret; 2364 2365 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); 2366 if (ret < 0) { 2367 if (ret != -EAGAIN) 2368 mlog_errno(ret); 2369 goto out; 2370 } 2371 2372 if (direct_io && !is_sync_kiocb(iocb) && 2373 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { 2374 /* 2375 * Make it a sync io if it's an unaligned aio. 2376 */ 2377 saved_ki_complete = xchg(&iocb->ki_complete, NULL); 2378 } 2379 2380 /* communicate with ocfs2_dio_end_io */ 2381 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2382 2383 written = __generic_file_write_iter(iocb, from); 2384 /* buffered aio wouldn't have proper lock coverage today */ 2385 BUG_ON(written == -EIOCBQUEUED && !direct_io); 2386 2387 /* 2388 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2389 * function pointer which is called when o_direct io completes so that 2390 * it can unlock our rw lock. 2391 * Unfortunately there are error cases which call end_io and others 2392 * that don't. so we don't have to unlock the rw_lock if either an 2393 * async dio is going to do it in the future or an end_io after an 2394 * error has already done it. 2395 */ 2396 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2397 rw_level = -1; 2398 } 2399 2400 if (unlikely(written <= 0)) 2401 goto out; 2402 2403 if (((file->f_flags & O_DSYNC) && !direct_io) || 2404 IS_SYNC(inode)) { 2405 ret = filemap_fdatawrite_range(file->f_mapping, 2406 iocb->ki_pos - written, 2407 iocb->ki_pos - 1); 2408 if (ret < 0) 2409 written = ret; 2410 2411 if (!ret) { 2412 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2413 if (ret < 0) 2414 written = ret; 2415 } 2416 2417 if (!ret) 2418 ret = filemap_fdatawait_range(file->f_mapping, 2419 iocb->ki_pos - written, 2420 iocb->ki_pos - 1); 2421 } 2422 2423 out: 2424 if (saved_ki_complete) 2425 xchg(&iocb->ki_complete, saved_ki_complete); 2426 2427 if (rw_level != -1) 2428 ocfs2_rw_unlock(inode, rw_level); 2429 2430 out_mutex: 2431 inode_unlock(inode); 2432 2433 if (written) 2434 ret = written; 2435 return ret; 2436 } 2437 2438 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2439 struct iov_iter *to) 2440 { 2441 int ret = 0, rw_level = -1, lock_level = 0; 2442 struct file *filp = iocb->ki_filp; 2443 struct inode *inode = file_inode(filp); 2444 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2445 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2446 2447 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, 2448 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2449 filp->f_path.dentry->d_name.len, 2450 filp->f_path.dentry->d_name.name, 2451 to->nr_segs); /* GRRRRR */ 2452 2453 2454 if (!inode) { 2455 ret = -EINVAL; 2456 mlog_errno(ret); 2457 goto bail; 2458 } 2459 2460 if (!direct_io && nowait) 2461 return -EOPNOTSUPP; 2462 2463 /* 2464 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2465 * need locks to protect pending reads from racing with truncate. 2466 */ 2467 if (direct_io) { 2468 if (nowait) 2469 ret = ocfs2_try_rw_lock(inode, 0); 2470 else 2471 ret = ocfs2_rw_lock(inode, 0); 2472 2473 if (ret < 0) { 2474 if (ret != -EAGAIN) 2475 mlog_errno(ret); 2476 goto bail; 2477 } 2478 rw_level = 0; 2479 /* communicate with ocfs2_dio_end_io */ 2480 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2481 } 2482 2483 /* 2484 * We're fine letting folks race truncates and extending 2485 * writes with read across the cluster, just like they can 2486 * locally. Hence no rw_lock during read. 2487 * 2488 * Take and drop the meta data lock to update inode fields 2489 * like i_size. This allows the checks down below 2490 * generic_file_read_iter() a chance of actually working. 2491 */ 2492 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, 2493 !nowait); 2494 if (ret < 0) { 2495 if (ret != -EAGAIN) 2496 mlog_errno(ret); 2497 goto bail; 2498 } 2499 ocfs2_inode_unlock(inode, lock_level); 2500 2501 ret = generic_file_read_iter(iocb, to); 2502 trace_generic_file_read_iter_ret(ret); 2503 2504 /* buffered aio wouldn't have proper lock coverage today */ 2505 BUG_ON(ret == -EIOCBQUEUED && !direct_io); 2506 2507 /* see ocfs2_file_write_iter */ 2508 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2509 rw_level = -1; 2510 } 2511 2512 bail: 2513 if (rw_level != -1) 2514 ocfs2_rw_unlock(inode, rw_level); 2515 2516 return ret; 2517 } 2518 2519 /* Refer generic_file_llseek_unlocked() */ 2520 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2521 { 2522 struct inode *inode = file->f_mapping->host; 2523 int ret = 0; 2524 2525 inode_lock(inode); 2526 2527 switch (whence) { 2528 case SEEK_SET: 2529 break; 2530 case SEEK_END: 2531 /* SEEK_END requires the OCFS2 inode lock for the file 2532 * because it references the file's size. 2533 */ 2534 ret = ocfs2_inode_lock(inode, NULL, 0); 2535 if (ret < 0) { 2536 mlog_errno(ret); 2537 goto out; 2538 } 2539 offset += i_size_read(inode); 2540 ocfs2_inode_unlock(inode, 0); 2541 break; 2542 case SEEK_CUR: 2543 if (offset == 0) { 2544 offset = file->f_pos; 2545 goto out; 2546 } 2547 offset += file->f_pos; 2548 break; 2549 case SEEK_DATA: 2550 case SEEK_HOLE: 2551 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2552 if (ret) 2553 goto out; 2554 break; 2555 default: 2556 ret = -EINVAL; 2557 goto out; 2558 } 2559 2560 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2561 2562 out: 2563 inode_unlock(inode); 2564 if (ret) 2565 return ret; 2566 return offset; 2567 } 2568 2569 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, 2570 struct file *file_out, loff_t pos_out, 2571 loff_t len, unsigned int remap_flags) 2572 { 2573 struct inode *inode_in = file_inode(file_in); 2574 struct inode *inode_out = file_inode(file_out); 2575 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); 2576 struct buffer_head *in_bh = NULL, *out_bh = NULL; 2577 bool same_inode = (inode_in == inode_out); 2578 loff_t remapped = 0; 2579 ssize_t ret; 2580 2581 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 2582 return -EINVAL; 2583 if (!ocfs2_refcount_tree(osb)) 2584 return -EOPNOTSUPP; 2585 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 2586 return -EROFS; 2587 2588 /* Lock both files against IO */ 2589 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); 2590 if (ret) 2591 return ret; 2592 2593 /* Check file eligibility and prepare for block sharing. */ 2594 ret = -EINVAL; 2595 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || 2596 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) 2597 goto out_unlock; 2598 2599 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 2600 &len, remap_flags); 2601 if (ret < 0 || len == 0) 2602 goto out_unlock; 2603 2604 /* Lock out changes to the allocation maps and remap. */ 2605 down_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2606 if (!same_inode) 2607 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, 2608 SINGLE_DEPTH_NESTING); 2609 2610 /* Zap any page cache for the destination file's range. */ 2611 truncate_inode_pages_range(&inode_out->i_data, 2612 round_down(pos_out, PAGE_SIZE), 2613 round_up(pos_out + len, PAGE_SIZE) - 1); 2614 2615 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, 2616 inode_out, out_bh, pos_out, len); 2617 up_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2618 if (!same_inode) 2619 up_write(&OCFS2_I(inode_out)->ip_alloc_sem); 2620 if (remapped < 0) { 2621 ret = remapped; 2622 mlog_errno(ret); 2623 goto out_unlock; 2624 } 2625 2626 /* 2627 * Empty the extent map so that we may get the right extent 2628 * record from the disk. 2629 */ 2630 ocfs2_extent_map_trunc(inode_in, 0); 2631 ocfs2_extent_map_trunc(inode_out, 0); 2632 2633 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); 2634 if (ret) { 2635 mlog_errno(ret); 2636 goto out_unlock; 2637 } 2638 2639 out_unlock: 2640 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); 2641 return remapped > 0 ? remapped : ret; 2642 } 2643 2644 const struct inode_operations ocfs2_file_iops = { 2645 .setattr = ocfs2_setattr, 2646 .getattr = ocfs2_getattr, 2647 .permission = ocfs2_permission, 2648 .listxattr = ocfs2_listxattr, 2649 .fiemap = ocfs2_fiemap, 2650 .get_acl = ocfs2_iop_get_acl, 2651 .set_acl = ocfs2_iop_set_acl, 2652 .fileattr_get = ocfs2_fileattr_get, 2653 .fileattr_set = ocfs2_fileattr_set, 2654 }; 2655 2656 const struct inode_operations ocfs2_special_file_iops = { 2657 .setattr = ocfs2_setattr, 2658 .getattr = ocfs2_getattr, 2659 .permission = ocfs2_permission, 2660 .get_acl = ocfs2_iop_get_acl, 2661 .set_acl = ocfs2_iop_set_acl, 2662 }; 2663 2664 /* 2665 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2666 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2667 */ 2668 const struct file_operations ocfs2_fops = { 2669 .llseek = ocfs2_file_llseek, 2670 .mmap = ocfs2_mmap, 2671 .fsync = ocfs2_sync_file, 2672 .release = ocfs2_file_release, 2673 .open = ocfs2_file_open, 2674 .read_iter = ocfs2_file_read_iter, 2675 .write_iter = ocfs2_file_write_iter, 2676 .unlocked_ioctl = ocfs2_ioctl, 2677 #ifdef CONFIG_COMPAT 2678 .compat_ioctl = ocfs2_compat_ioctl, 2679 #endif 2680 .lock = ocfs2_lock, 2681 .flock = ocfs2_flock, 2682 .splice_read = generic_file_splice_read, 2683 .splice_write = iter_file_splice_write, 2684 .fallocate = ocfs2_fallocate, 2685 .remap_file_range = ocfs2_remap_file_range, 2686 }; 2687 2688 const struct file_operations ocfs2_dops = { 2689 .llseek = generic_file_llseek, 2690 .read = generic_read_dir, 2691 .iterate = ocfs2_readdir, 2692 .fsync = ocfs2_sync_file, 2693 .release = ocfs2_dir_release, 2694 .open = ocfs2_dir_open, 2695 .unlocked_ioctl = ocfs2_ioctl, 2696 #ifdef CONFIG_COMPAT 2697 .compat_ioctl = ocfs2_compat_ioctl, 2698 #endif 2699 .lock = ocfs2_lock, 2700 .flock = ocfs2_flock, 2701 }; 2702 2703 /* 2704 * POSIX-lockless variants of our file_operations. 2705 * 2706 * These will be used if the underlying cluster stack does not support 2707 * posix file locking, if the user passes the "localflocks" mount 2708 * option, or if we have a local-only fs. 2709 * 2710 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2711 * so we still want it in the case of no stack support for 2712 * plocks. Internally, it will do the right thing when asked to ignore 2713 * the cluster. 2714 */ 2715 const struct file_operations ocfs2_fops_no_plocks = { 2716 .llseek = ocfs2_file_llseek, 2717 .mmap = ocfs2_mmap, 2718 .fsync = ocfs2_sync_file, 2719 .release = ocfs2_file_release, 2720 .open = ocfs2_file_open, 2721 .read_iter = ocfs2_file_read_iter, 2722 .write_iter = ocfs2_file_write_iter, 2723 .unlocked_ioctl = ocfs2_ioctl, 2724 #ifdef CONFIG_COMPAT 2725 .compat_ioctl = ocfs2_compat_ioctl, 2726 #endif 2727 .flock = ocfs2_flock, 2728 .splice_read = generic_file_splice_read, 2729 .splice_write = iter_file_splice_write, 2730 .fallocate = ocfs2_fallocate, 2731 .remap_file_range = ocfs2_remap_file_range, 2732 }; 2733 2734 const struct file_operations ocfs2_dops_no_plocks = { 2735 .llseek = generic_file_llseek, 2736 .read = generic_read_dir, 2737 .iterate = ocfs2_readdir, 2738 .fsync = ocfs2_sync_file, 2739 .release = ocfs2_dir_release, 2740 .open = ocfs2_dir_open, 2741 .unlocked_ioctl = ocfs2_ioctl, 2742 #ifdef CONFIG_COMPAT 2743 .compat_ioctl = ocfs2_compat_ioctl, 2744 #endif 2745 .flock = ocfs2_flock, 2746 }; 2747