1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * file.c 5 * 6 * File open, close, extend, truncate 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/capability.h> 27 #include <linux/fs.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/highmem.h> 31 #include <linux/pagemap.h> 32 #include <linux/uio.h> 33 #include <linux/sched.h> 34 #include <linux/splice.h> 35 #include <linux/mount.h> 36 #include <linux/writeback.h> 37 #include <linux/falloc.h> 38 #include <linux/quotaops.h> 39 #include <linux/blkdev.h> 40 #include <linux/backing-dev.h> 41 42 #include <cluster/masklog.h> 43 44 #include "ocfs2.h" 45 46 #include "alloc.h" 47 #include "aops.h" 48 #include "dir.h" 49 #include "dlmglue.h" 50 #include "extent_map.h" 51 #include "file.h" 52 #include "sysfile.h" 53 #include "inode.h" 54 #include "ioctl.h" 55 #include "journal.h" 56 #include "locks.h" 57 #include "mmap.h" 58 #include "suballoc.h" 59 #include "super.h" 60 #include "xattr.h" 61 #include "acl.h" 62 #include "quota.h" 63 #include "refcounttree.h" 64 #include "ocfs2_trace.h" 65 66 #include "buffer_head_io.h" 67 68 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 69 { 70 struct ocfs2_file_private *fp; 71 72 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 73 if (!fp) 74 return -ENOMEM; 75 76 fp->fp_file = file; 77 mutex_init(&fp->fp_mutex); 78 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 79 file->private_data = fp; 80 81 return 0; 82 } 83 84 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 85 { 86 struct ocfs2_file_private *fp = file->private_data; 87 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 88 89 if (fp) { 90 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 91 ocfs2_lock_res_free(&fp->fp_flock); 92 kfree(fp); 93 file->private_data = NULL; 94 } 95 } 96 97 static int ocfs2_file_open(struct inode *inode, struct file *file) 98 { 99 int status; 100 int mode = file->f_flags; 101 struct ocfs2_inode_info *oi = OCFS2_I(inode); 102 103 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 104 (unsigned long long)oi->ip_blkno, 105 file->f_path.dentry->d_name.len, 106 file->f_path.dentry->d_name.name, mode); 107 108 if (file->f_mode & FMODE_WRITE) { 109 status = dquot_initialize(inode); 110 if (status) 111 goto leave; 112 } 113 114 spin_lock(&oi->ip_lock); 115 116 /* Check that the inode hasn't been wiped from disk by another 117 * node. If it hasn't then we're safe as long as we hold the 118 * spin lock until our increment of open count. */ 119 if (oi->ip_flags & OCFS2_INODE_DELETED) { 120 spin_unlock(&oi->ip_lock); 121 122 status = -ENOENT; 123 goto leave; 124 } 125 126 if (mode & O_DIRECT) 127 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 128 129 oi->ip_open_count++; 130 spin_unlock(&oi->ip_lock); 131 132 status = ocfs2_init_file_private(inode, file); 133 if (status) { 134 /* 135 * We want to set open count back if we're failing the 136 * open. 137 */ 138 spin_lock(&oi->ip_lock); 139 oi->ip_open_count--; 140 spin_unlock(&oi->ip_lock); 141 } 142 143 file->f_mode |= FMODE_NOWAIT; 144 145 leave: 146 return status; 147 } 148 149 static int ocfs2_file_release(struct inode *inode, struct file *file) 150 { 151 struct ocfs2_inode_info *oi = OCFS2_I(inode); 152 153 spin_lock(&oi->ip_lock); 154 if (!--oi->ip_open_count) 155 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 156 157 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 158 oi->ip_blkno, 159 file->f_path.dentry->d_name.len, 160 file->f_path.dentry->d_name.name, 161 oi->ip_open_count); 162 spin_unlock(&oi->ip_lock); 163 164 ocfs2_free_file_private(inode, file); 165 166 return 0; 167 } 168 169 static int ocfs2_dir_open(struct inode *inode, struct file *file) 170 { 171 return ocfs2_init_file_private(inode, file); 172 } 173 174 static int ocfs2_dir_release(struct inode *inode, struct file *file) 175 { 176 ocfs2_free_file_private(inode, file); 177 return 0; 178 } 179 180 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 181 int datasync) 182 { 183 int err = 0; 184 struct inode *inode = file->f_mapping->host; 185 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 186 struct ocfs2_inode_info *oi = OCFS2_I(inode); 187 journal_t *journal = osb->journal->j_journal; 188 int ret; 189 tid_t commit_tid; 190 bool needs_barrier = false; 191 192 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 193 oi->ip_blkno, 194 file->f_path.dentry->d_name.len, 195 file->f_path.dentry->d_name.name, 196 (unsigned long long)datasync); 197 198 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 199 return -EROFS; 200 201 err = file_write_and_wait_range(file, start, end); 202 if (err) 203 return err; 204 205 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 206 if (journal->j_flags & JBD2_BARRIER && 207 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 208 needs_barrier = true; 209 err = jbd2_complete_transaction(journal, commit_tid); 210 if (needs_barrier) { 211 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 212 if (!err) 213 err = ret; 214 } 215 216 if (err) 217 mlog_errno(err); 218 219 return (err < 0) ? -EIO : 0; 220 } 221 222 int ocfs2_should_update_atime(struct inode *inode, 223 struct vfsmount *vfsmnt) 224 { 225 struct timespec64 now; 226 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 227 228 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 229 return 0; 230 231 if ((inode->i_flags & S_NOATIME) || 232 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) 233 return 0; 234 235 /* 236 * We can be called with no vfsmnt structure - NFSD will 237 * sometimes do this. 238 * 239 * Note that our action here is different than touch_atime() - 240 * if we can't tell whether this is a noatime mount, then we 241 * don't know whether to trust the value of s_atime_quantum. 242 */ 243 if (vfsmnt == NULL) 244 return 0; 245 246 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 247 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 248 return 0; 249 250 if (vfsmnt->mnt_flags & MNT_RELATIME) { 251 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 252 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 253 return 1; 254 255 return 0; 256 } 257 258 now = current_time(inode); 259 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 260 return 0; 261 else 262 return 1; 263 } 264 265 int ocfs2_update_inode_atime(struct inode *inode, 266 struct buffer_head *bh) 267 { 268 int ret; 269 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 270 handle_t *handle; 271 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 272 273 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 274 if (IS_ERR(handle)) { 275 ret = PTR_ERR(handle); 276 mlog_errno(ret); 277 goto out; 278 } 279 280 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 281 OCFS2_JOURNAL_ACCESS_WRITE); 282 if (ret) { 283 mlog_errno(ret); 284 goto out_commit; 285 } 286 287 /* 288 * Don't use ocfs2_mark_inode_dirty() here as we don't always 289 * have i_mutex to guard against concurrent changes to other 290 * inode fields. 291 */ 292 inode->i_atime = current_time(inode); 293 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 294 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 295 ocfs2_update_inode_fsync_trans(handle, inode, 0); 296 ocfs2_journal_dirty(handle, bh); 297 298 out_commit: 299 ocfs2_commit_trans(osb, handle); 300 out: 301 return ret; 302 } 303 304 int ocfs2_set_inode_size(handle_t *handle, 305 struct inode *inode, 306 struct buffer_head *fe_bh, 307 u64 new_i_size) 308 { 309 int status; 310 311 i_size_write(inode, new_i_size); 312 inode->i_blocks = ocfs2_inode_sector_count(inode); 313 inode->i_ctime = inode->i_mtime = current_time(inode); 314 315 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 316 if (status < 0) { 317 mlog_errno(status); 318 goto bail; 319 } 320 321 bail: 322 return status; 323 } 324 325 int ocfs2_simple_size_update(struct inode *inode, 326 struct buffer_head *di_bh, 327 u64 new_i_size) 328 { 329 int ret; 330 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 331 handle_t *handle = NULL; 332 333 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 334 if (IS_ERR(handle)) { 335 ret = PTR_ERR(handle); 336 mlog_errno(ret); 337 goto out; 338 } 339 340 ret = ocfs2_set_inode_size(handle, inode, di_bh, 341 new_i_size); 342 if (ret < 0) 343 mlog_errno(ret); 344 345 ocfs2_update_inode_fsync_trans(handle, inode, 0); 346 ocfs2_commit_trans(osb, handle); 347 out: 348 return ret; 349 } 350 351 static int ocfs2_cow_file_pos(struct inode *inode, 352 struct buffer_head *fe_bh, 353 u64 offset) 354 { 355 int status; 356 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 357 unsigned int num_clusters = 0; 358 unsigned int ext_flags = 0; 359 360 /* 361 * If the new offset is aligned to the range of the cluster, there is 362 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 363 * CoW either. 364 */ 365 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 366 return 0; 367 368 status = ocfs2_get_clusters(inode, cpos, &phys, 369 &num_clusters, &ext_flags); 370 if (status) { 371 mlog_errno(status); 372 goto out; 373 } 374 375 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 376 goto out; 377 378 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 379 380 out: 381 return status; 382 } 383 384 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 385 struct inode *inode, 386 struct buffer_head *fe_bh, 387 u64 new_i_size) 388 { 389 int status; 390 handle_t *handle; 391 struct ocfs2_dinode *di; 392 u64 cluster_bytes; 393 394 /* 395 * We need to CoW the cluster contains the offset if it is reflinked 396 * since we will call ocfs2_zero_range_for_truncate later which will 397 * write "0" from offset to the end of the cluster. 398 */ 399 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 400 if (status) { 401 mlog_errno(status); 402 return status; 403 } 404 405 /* TODO: This needs to actually orphan the inode in this 406 * transaction. */ 407 408 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 409 if (IS_ERR(handle)) { 410 status = PTR_ERR(handle); 411 mlog_errno(status); 412 goto out; 413 } 414 415 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 416 OCFS2_JOURNAL_ACCESS_WRITE); 417 if (status < 0) { 418 mlog_errno(status); 419 goto out_commit; 420 } 421 422 /* 423 * Do this before setting i_size. 424 */ 425 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 426 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 427 cluster_bytes); 428 if (status) { 429 mlog_errno(status); 430 goto out_commit; 431 } 432 433 i_size_write(inode, new_i_size); 434 inode->i_ctime = inode->i_mtime = current_time(inode); 435 436 di = (struct ocfs2_dinode *) fe_bh->b_data; 437 di->i_size = cpu_to_le64(new_i_size); 438 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 439 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 440 ocfs2_update_inode_fsync_trans(handle, inode, 0); 441 442 ocfs2_journal_dirty(handle, fe_bh); 443 444 out_commit: 445 ocfs2_commit_trans(osb, handle); 446 out: 447 return status; 448 } 449 450 int ocfs2_truncate_file(struct inode *inode, 451 struct buffer_head *di_bh, 452 u64 new_i_size) 453 { 454 int status = 0; 455 struct ocfs2_dinode *fe = NULL; 456 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 457 458 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 459 * already validated it */ 460 fe = (struct ocfs2_dinode *) di_bh->b_data; 461 462 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 463 (unsigned long long)le64_to_cpu(fe->i_size), 464 (unsigned long long)new_i_size); 465 466 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 467 "Inode %llu, inode i_size = %lld != di " 468 "i_size = %llu, i_flags = 0x%x\n", 469 (unsigned long long)OCFS2_I(inode)->ip_blkno, 470 i_size_read(inode), 471 (unsigned long long)le64_to_cpu(fe->i_size), 472 le32_to_cpu(fe->i_flags)); 473 474 if (new_i_size > le64_to_cpu(fe->i_size)) { 475 trace_ocfs2_truncate_file_error( 476 (unsigned long long)le64_to_cpu(fe->i_size), 477 (unsigned long long)new_i_size); 478 status = -EINVAL; 479 mlog_errno(status); 480 goto bail; 481 } 482 483 down_write(&OCFS2_I(inode)->ip_alloc_sem); 484 485 ocfs2_resv_discard(&osb->osb_la_resmap, 486 &OCFS2_I(inode)->ip_la_data_resv); 487 488 /* 489 * The inode lock forced other nodes to sync and drop their 490 * pages, which (correctly) happens even if we have a truncate 491 * without allocation change - ocfs2 cluster sizes can be much 492 * greater than page size, so we have to truncate them 493 * anyway. 494 */ 495 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 496 truncate_inode_pages(inode->i_mapping, new_i_size); 497 498 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 499 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 500 i_size_read(inode), 1); 501 if (status) 502 mlog_errno(status); 503 504 goto bail_unlock_sem; 505 } 506 507 /* alright, we're going to need to do a full blown alloc size 508 * change. Orphan the inode so that recovery can complete the 509 * truncate if necessary. This does the task of marking 510 * i_size. */ 511 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 512 if (status < 0) { 513 mlog_errno(status); 514 goto bail_unlock_sem; 515 } 516 517 status = ocfs2_commit_truncate(osb, inode, di_bh); 518 if (status < 0) { 519 mlog_errno(status); 520 goto bail_unlock_sem; 521 } 522 523 /* TODO: orphan dir cleanup here. */ 524 bail_unlock_sem: 525 up_write(&OCFS2_I(inode)->ip_alloc_sem); 526 527 bail: 528 if (!status && OCFS2_I(inode)->ip_clusters == 0) 529 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 530 531 return status; 532 } 533 534 /* 535 * extend file allocation only here. 536 * we'll update all the disk stuff, and oip->alloc_size 537 * 538 * expect stuff to be locked, a transaction started and enough data / 539 * metadata reservations in the contexts. 540 * 541 * Will return -EAGAIN, and a reason if a restart is needed. 542 * If passed in, *reason will always be set, even in error. 543 */ 544 int ocfs2_add_inode_data(struct ocfs2_super *osb, 545 struct inode *inode, 546 u32 *logical_offset, 547 u32 clusters_to_add, 548 int mark_unwritten, 549 struct buffer_head *fe_bh, 550 handle_t *handle, 551 struct ocfs2_alloc_context *data_ac, 552 struct ocfs2_alloc_context *meta_ac, 553 enum ocfs2_alloc_restarted *reason_ret) 554 { 555 int ret; 556 struct ocfs2_extent_tree et; 557 558 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 559 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 560 clusters_to_add, mark_unwritten, 561 data_ac, meta_ac, reason_ret); 562 563 return ret; 564 } 565 566 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 567 u32 clusters_to_add, int mark_unwritten) 568 { 569 int status = 0; 570 int restart_func = 0; 571 int credits; 572 u32 prev_clusters; 573 struct buffer_head *bh = NULL; 574 struct ocfs2_dinode *fe = NULL; 575 handle_t *handle = NULL; 576 struct ocfs2_alloc_context *data_ac = NULL; 577 struct ocfs2_alloc_context *meta_ac = NULL; 578 enum ocfs2_alloc_restarted why = RESTART_NONE; 579 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 580 struct ocfs2_extent_tree et; 581 int did_quota = 0; 582 583 /* 584 * Unwritten extent only exists for file systems which 585 * support holes. 586 */ 587 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 588 589 status = ocfs2_read_inode_block(inode, &bh); 590 if (status < 0) { 591 mlog_errno(status); 592 goto leave; 593 } 594 fe = (struct ocfs2_dinode *) bh->b_data; 595 596 restart_all: 597 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 598 599 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 600 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 601 &data_ac, &meta_ac); 602 if (status) { 603 mlog_errno(status); 604 goto leave; 605 } 606 607 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 608 handle = ocfs2_start_trans(osb, credits); 609 if (IS_ERR(handle)) { 610 status = PTR_ERR(handle); 611 handle = NULL; 612 mlog_errno(status); 613 goto leave; 614 } 615 616 restarted_transaction: 617 trace_ocfs2_extend_allocation( 618 (unsigned long long)OCFS2_I(inode)->ip_blkno, 619 (unsigned long long)i_size_read(inode), 620 le32_to_cpu(fe->i_clusters), clusters_to_add, 621 why, restart_func); 622 623 status = dquot_alloc_space_nodirty(inode, 624 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 625 if (status) 626 goto leave; 627 did_quota = 1; 628 629 /* reserve a write to the file entry early on - that we if we 630 * run out of credits in the allocation path, we can still 631 * update i_size. */ 632 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 633 OCFS2_JOURNAL_ACCESS_WRITE); 634 if (status < 0) { 635 mlog_errno(status); 636 goto leave; 637 } 638 639 prev_clusters = OCFS2_I(inode)->ip_clusters; 640 641 status = ocfs2_add_inode_data(osb, 642 inode, 643 &logical_start, 644 clusters_to_add, 645 mark_unwritten, 646 bh, 647 handle, 648 data_ac, 649 meta_ac, 650 &why); 651 if ((status < 0) && (status != -EAGAIN)) { 652 if (status != -ENOSPC) 653 mlog_errno(status); 654 goto leave; 655 } 656 ocfs2_update_inode_fsync_trans(handle, inode, 1); 657 ocfs2_journal_dirty(handle, bh); 658 659 spin_lock(&OCFS2_I(inode)->ip_lock); 660 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 661 spin_unlock(&OCFS2_I(inode)->ip_lock); 662 /* Release unused quota reservation */ 663 dquot_free_space(inode, 664 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 665 did_quota = 0; 666 667 if (why != RESTART_NONE && clusters_to_add) { 668 if (why == RESTART_META) { 669 restart_func = 1; 670 status = 0; 671 } else { 672 BUG_ON(why != RESTART_TRANS); 673 674 status = ocfs2_allocate_extend_trans(handle, 1); 675 if (status < 0) { 676 /* handle still has to be committed at 677 * this point. */ 678 status = -ENOMEM; 679 mlog_errno(status); 680 goto leave; 681 } 682 goto restarted_transaction; 683 } 684 } 685 686 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 687 le32_to_cpu(fe->i_clusters), 688 (unsigned long long)le64_to_cpu(fe->i_size), 689 OCFS2_I(inode)->ip_clusters, 690 (unsigned long long)i_size_read(inode)); 691 692 leave: 693 if (status < 0 && did_quota) 694 dquot_free_space(inode, 695 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 696 if (handle) { 697 ocfs2_commit_trans(osb, handle); 698 handle = NULL; 699 } 700 if (data_ac) { 701 ocfs2_free_alloc_context(data_ac); 702 data_ac = NULL; 703 } 704 if (meta_ac) { 705 ocfs2_free_alloc_context(meta_ac); 706 meta_ac = NULL; 707 } 708 if ((!status) && restart_func) { 709 restart_func = 0; 710 goto restart_all; 711 } 712 brelse(bh); 713 bh = NULL; 714 715 return status; 716 } 717 718 /* 719 * While a write will already be ordering the data, a truncate will not. 720 * Thus, we need to explicitly order the zeroed pages. 721 */ 722 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 723 struct buffer_head *di_bh) 724 { 725 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 726 handle_t *handle = NULL; 727 int ret = 0; 728 729 if (!ocfs2_should_order_data(inode)) 730 goto out; 731 732 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 733 if (IS_ERR(handle)) { 734 ret = -ENOMEM; 735 mlog_errno(ret); 736 goto out; 737 } 738 739 ret = ocfs2_jbd2_file_inode(handle, inode); 740 if (ret < 0) { 741 mlog_errno(ret); 742 goto out; 743 } 744 745 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 746 OCFS2_JOURNAL_ACCESS_WRITE); 747 if (ret) 748 mlog_errno(ret); 749 ocfs2_update_inode_fsync_trans(handle, inode, 1); 750 751 out: 752 if (ret) { 753 if (!IS_ERR(handle)) 754 ocfs2_commit_trans(osb, handle); 755 handle = ERR_PTR(ret); 756 } 757 return handle; 758 } 759 760 /* Some parts of this taken from generic_cont_expand, which turned out 761 * to be too fragile to do exactly what we need without us having to 762 * worry about recursive locking in ->write_begin() and ->write_end(). */ 763 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 764 u64 abs_to, struct buffer_head *di_bh) 765 { 766 struct address_space *mapping = inode->i_mapping; 767 struct page *page; 768 unsigned long index = abs_from >> PAGE_SHIFT; 769 handle_t *handle; 770 int ret = 0; 771 unsigned zero_from, zero_to, block_start, block_end; 772 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 773 774 BUG_ON(abs_from >= abs_to); 775 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); 776 BUG_ON(abs_from & (inode->i_blkbits - 1)); 777 778 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh); 779 if (IS_ERR(handle)) { 780 ret = PTR_ERR(handle); 781 goto out; 782 } 783 784 page = find_or_create_page(mapping, index, GFP_NOFS); 785 if (!page) { 786 ret = -ENOMEM; 787 mlog_errno(ret); 788 goto out_commit_trans; 789 } 790 791 /* Get the offsets within the page that we want to zero */ 792 zero_from = abs_from & (PAGE_SIZE - 1); 793 zero_to = abs_to & (PAGE_SIZE - 1); 794 if (!zero_to) 795 zero_to = PAGE_SIZE; 796 797 trace_ocfs2_write_zero_page( 798 (unsigned long long)OCFS2_I(inode)->ip_blkno, 799 (unsigned long long)abs_from, 800 (unsigned long long)abs_to, 801 index, zero_from, zero_to); 802 803 /* We know that zero_from is block aligned */ 804 for (block_start = zero_from; block_start < zero_to; 805 block_start = block_end) { 806 block_end = block_start + i_blocksize(inode); 807 808 /* 809 * block_start is block-aligned. Bump it by one to force 810 * __block_write_begin and block_commit_write to zero the 811 * whole block. 812 */ 813 ret = __block_write_begin(page, block_start + 1, 0, 814 ocfs2_get_block); 815 if (ret < 0) { 816 mlog_errno(ret); 817 goto out_unlock; 818 } 819 820 821 /* must not update i_size! */ 822 ret = block_commit_write(page, block_start + 1, 823 block_start + 1); 824 if (ret < 0) 825 mlog_errno(ret); 826 else 827 ret = 0; 828 } 829 830 /* 831 * fs-writeback will release the dirty pages without page lock 832 * whose offset are over inode size, the release happens at 833 * block_write_full_page(). 834 */ 835 i_size_write(inode, abs_to); 836 inode->i_blocks = ocfs2_inode_sector_count(inode); 837 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 838 inode->i_mtime = inode->i_ctime = current_time(inode); 839 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 840 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 841 di->i_mtime_nsec = di->i_ctime_nsec; 842 if (handle) { 843 ocfs2_journal_dirty(handle, di_bh); 844 ocfs2_update_inode_fsync_trans(handle, inode, 1); 845 } 846 847 out_unlock: 848 unlock_page(page); 849 put_page(page); 850 out_commit_trans: 851 if (handle) 852 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 853 out: 854 return ret; 855 } 856 857 /* 858 * Find the next range to zero. We do this in terms of bytes because 859 * that's what ocfs2_zero_extend() wants, and it is dealing with the 860 * pagecache. We may return multiple extents. 861 * 862 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 863 * needs to be zeroed. range_start and range_end return the next zeroing 864 * range. A subsequent call should pass the previous range_end as its 865 * zero_start. If range_end is 0, there's nothing to do. 866 * 867 * Unwritten extents are skipped over. Refcounted extents are CoWd. 868 */ 869 static int ocfs2_zero_extend_get_range(struct inode *inode, 870 struct buffer_head *di_bh, 871 u64 zero_start, u64 zero_end, 872 u64 *range_start, u64 *range_end) 873 { 874 int rc = 0, needs_cow = 0; 875 u32 p_cpos, zero_clusters = 0; 876 u32 zero_cpos = 877 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 878 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 879 unsigned int num_clusters = 0; 880 unsigned int ext_flags = 0; 881 882 while (zero_cpos < last_cpos) { 883 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 884 &num_clusters, &ext_flags); 885 if (rc) { 886 mlog_errno(rc); 887 goto out; 888 } 889 890 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 891 zero_clusters = num_clusters; 892 if (ext_flags & OCFS2_EXT_REFCOUNTED) 893 needs_cow = 1; 894 break; 895 } 896 897 zero_cpos += num_clusters; 898 } 899 if (!zero_clusters) { 900 *range_end = 0; 901 goto out; 902 } 903 904 while ((zero_cpos + zero_clusters) < last_cpos) { 905 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 906 &p_cpos, &num_clusters, 907 &ext_flags); 908 if (rc) { 909 mlog_errno(rc); 910 goto out; 911 } 912 913 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 914 break; 915 if (ext_flags & OCFS2_EXT_REFCOUNTED) 916 needs_cow = 1; 917 zero_clusters += num_clusters; 918 } 919 if ((zero_cpos + zero_clusters) > last_cpos) 920 zero_clusters = last_cpos - zero_cpos; 921 922 if (needs_cow) { 923 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 924 zero_clusters, UINT_MAX); 925 if (rc) { 926 mlog_errno(rc); 927 goto out; 928 } 929 } 930 931 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 932 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 933 zero_cpos + zero_clusters); 934 935 out: 936 return rc; 937 } 938 939 /* 940 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 941 * has made sure that the entire range needs zeroing. 942 */ 943 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 944 u64 range_end, struct buffer_head *di_bh) 945 { 946 int rc = 0; 947 u64 next_pos; 948 u64 zero_pos = range_start; 949 950 trace_ocfs2_zero_extend_range( 951 (unsigned long long)OCFS2_I(inode)->ip_blkno, 952 (unsigned long long)range_start, 953 (unsigned long long)range_end); 954 BUG_ON(range_start >= range_end); 955 956 while (zero_pos < range_end) { 957 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; 958 if (next_pos > range_end) 959 next_pos = range_end; 960 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 961 if (rc < 0) { 962 mlog_errno(rc); 963 break; 964 } 965 zero_pos = next_pos; 966 967 /* 968 * Very large extends have the potential to lock up 969 * the cpu for extended periods of time. 970 */ 971 cond_resched(); 972 } 973 974 return rc; 975 } 976 977 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 978 loff_t zero_to_size) 979 { 980 int ret = 0; 981 u64 zero_start, range_start = 0, range_end = 0; 982 struct super_block *sb = inode->i_sb; 983 984 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 985 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 986 (unsigned long long)zero_start, 987 (unsigned long long)i_size_read(inode)); 988 while (zero_start < zero_to_size) { 989 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 990 zero_to_size, 991 &range_start, 992 &range_end); 993 if (ret) { 994 mlog_errno(ret); 995 break; 996 } 997 if (!range_end) 998 break; 999 /* Trim the ends */ 1000 if (range_start < zero_start) 1001 range_start = zero_start; 1002 if (range_end > zero_to_size) 1003 range_end = zero_to_size; 1004 1005 ret = ocfs2_zero_extend_range(inode, range_start, 1006 range_end, di_bh); 1007 if (ret) { 1008 mlog_errno(ret); 1009 break; 1010 } 1011 zero_start = range_end; 1012 } 1013 1014 return ret; 1015 } 1016 1017 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1018 u64 new_i_size, u64 zero_to) 1019 { 1020 int ret; 1021 u32 clusters_to_add; 1022 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1023 1024 /* 1025 * Only quota files call this without a bh, and they can't be 1026 * refcounted. 1027 */ 1028 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); 1029 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1030 1031 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1032 if (clusters_to_add < oi->ip_clusters) 1033 clusters_to_add = 0; 1034 else 1035 clusters_to_add -= oi->ip_clusters; 1036 1037 if (clusters_to_add) { 1038 ret = ocfs2_extend_allocation(inode, oi->ip_clusters, 1039 clusters_to_add, 0); 1040 if (ret) { 1041 mlog_errno(ret); 1042 goto out; 1043 } 1044 } 1045 1046 /* 1047 * Call this even if we don't add any clusters to the tree. We 1048 * still need to zero the area between the old i_size and the 1049 * new i_size. 1050 */ 1051 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1052 if (ret < 0) 1053 mlog_errno(ret); 1054 1055 out: 1056 return ret; 1057 } 1058 1059 static int ocfs2_extend_file(struct inode *inode, 1060 struct buffer_head *di_bh, 1061 u64 new_i_size) 1062 { 1063 int ret = 0; 1064 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1065 1066 BUG_ON(!di_bh); 1067 1068 /* setattr sometimes calls us like this. */ 1069 if (new_i_size == 0) 1070 goto out; 1071 1072 if (i_size_read(inode) == new_i_size) 1073 goto out; 1074 BUG_ON(new_i_size < i_size_read(inode)); 1075 1076 /* 1077 * The alloc sem blocks people in read/write from reading our 1078 * allocation until we're done changing it. We depend on 1079 * i_mutex to block other extend/truncate calls while we're 1080 * here. We even have to hold it for sparse files because there 1081 * might be some tail zeroing. 1082 */ 1083 down_write(&oi->ip_alloc_sem); 1084 1085 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1086 /* 1087 * We can optimize small extends by keeping the inodes 1088 * inline data. 1089 */ 1090 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1091 up_write(&oi->ip_alloc_sem); 1092 goto out_update_size; 1093 } 1094 1095 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1096 if (ret) { 1097 up_write(&oi->ip_alloc_sem); 1098 mlog_errno(ret); 1099 goto out; 1100 } 1101 } 1102 1103 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1104 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1105 else 1106 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1107 new_i_size); 1108 1109 up_write(&oi->ip_alloc_sem); 1110 1111 if (ret < 0) { 1112 mlog_errno(ret); 1113 goto out; 1114 } 1115 1116 out_update_size: 1117 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1118 if (ret < 0) 1119 mlog_errno(ret); 1120 1121 out: 1122 return ret; 1123 } 1124 1125 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) 1126 { 1127 int status = 0, size_change; 1128 int inode_locked = 0; 1129 struct inode *inode = d_inode(dentry); 1130 struct super_block *sb = inode->i_sb; 1131 struct ocfs2_super *osb = OCFS2_SB(sb); 1132 struct buffer_head *bh = NULL; 1133 handle_t *handle = NULL; 1134 struct dquot *transfer_to[MAXQUOTAS] = { }; 1135 int qtype; 1136 int had_lock; 1137 struct ocfs2_lock_holder oh; 1138 1139 trace_ocfs2_setattr(inode, dentry, 1140 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1141 dentry->d_name.len, dentry->d_name.name, 1142 attr->ia_valid, attr->ia_mode, 1143 from_kuid(&init_user_ns, attr->ia_uid), 1144 from_kgid(&init_user_ns, attr->ia_gid)); 1145 1146 /* ensuring we don't even attempt to truncate a symlink */ 1147 if (S_ISLNK(inode->i_mode)) 1148 attr->ia_valid &= ~ATTR_SIZE; 1149 1150 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1151 | ATTR_GID | ATTR_UID | ATTR_MODE) 1152 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1153 return 0; 1154 1155 status = setattr_prepare(dentry, attr); 1156 if (status) 1157 return status; 1158 1159 if (is_quota_modification(inode, attr)) { 1160 status = dquot_initialize(inode); 1161 if (status) 1162 return status; 1163 } 1164 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1165 if (size_change) { 1166 /* 1167 * Here we should wait dio to finish before inode lock 1168 * to avoid a deadlock between ocfs2_setattr() and 1169 * ocfs2_dio_end_io_write() 1170 */ 1171 inode_dio_wait(inode); 1172 1173 status = ocfs2_rw_lock(inode, 1); 1174 if (status < 0) { 1175 mlog_errno(status); 1176 goto bail; 1177 } 1178 } 1179 1180 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); 1181 if (had_lock < 0) { 1182 status = had_lock; 1183 goto bail_unlock_rw; 1184 } else if (had_lock) { 1185 /* 1186 * As far as we know, ocfs2_setattr() could only be the first 1187 * VFS entry point in the call chain of recursive cluster 1188 * locking issue. 1189 * 1190 * For instance: 1191 * chmod_common() 1192 * notify_change() 1193 * ocfs2_setattr() 1194 * posix_acl_chmod() 1195 * ocfs2_iop_get_acl() 1196 * 1197 * But, we're not 100% sure if it's always true, because the 1198 * ordering of the VFS entry points in the call chain is out 1199 * of our control. So, we'd better dump the stack here to 1200 * catch the other cases of recursive locking. 1201 */ 1202 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1203 dump_stack(); 1204 } 1205 inode_locked = 1; 1206 1207 if (size_change) { 1208 status = inode_newsize_ok(inode, attr->ia_size); 1209 if (status) 1210 goto bail_unlock; 1211 1212 if (i_size_read(inode) >= attr->ia_size) { 1213 if (ocfs2_should_order_data(inode)) { 1214 status = ocfs2_begin_ordered_truncate(inode, 1215 attr->ia_size); 1216 if (status) 1217 goto bail_unlock; 1218 } 1219 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1220 } else 1221 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1222 if (status < 0) { 1223 if (status != -ENOSPC) 1224 mlog_errno(status); 1225 status = -ENOSPC; 1226 goto bail_unlock; 1227 } 1228 } 1229 1230 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1231 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1232 /* 1233 * Gather pointers to quota structures so that allocation / 1234 * freeing of quota structures happens here and not inside 1235 * dquot_transfer() where we have problems with lock ordering 1236 */ 1237 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1238 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1239 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1240 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1241 if (IS_ERR(transfer_to[USRQUOTA])) { 1242 status = PTR_ERR(transfer_to[USRQUOTA]); 1243 goto bail_unlock; 1244 } 1245 } 1246 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1247 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1248 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1249 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1250 if (IS_ERR(transfer_to[GRPQUOTA])) { 1251 status = PTR_ERR(transfer_to[GRPQUOTA]); 1252 goto bail_unlock; 1253 } 1254 } 1255 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1256 2 * ocfs2_quota_trans_credits(sb)); 1257 if (IS_ERR(handle)) { 1258 status = PTR_ERR(handle); 1259 mlog_errno(status); 1260 goto bail_unlock; 1261 } 1262 status = __dquot_transfer(inode, transfer_to); 1263 if (status < 0) 1264 goto bail_commit; 1265 } else { 1266 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1267 if (IS_ERR(handle)) { 1268 status = PTR_ERR(handle); 1269 mlog_errno(status); 1270 goto bail_unlock; 1271 } 1272 } 1273 1274 setattr_copy(inode, attr); 1275 mark_inode_dirty(inode); 1276 1277 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1278 if (status < 0) 1279 mlog_errno(status); 1280 1281 bail_commit: 1282 ocfs2_commit_trans(osb, handle); 1283 bail_unlock: 1284 if (status && inode_locked) { 1285 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1286 inode_locked = 0; 1287 } 1288 bail_unlock_rw: 1289 if (size_change) 1290 ocfs2_rw_unlock(inode, 1); 1291 bail: 1292 1293 /* Release quota pointers in case we acquired them */ 1294 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1295 dqput(transfer_to[qtype]); 1296 1297 if (!status && attr->ia_valid & ATTR_MODE) { 1298 status = ocfs2_acl_chmod(inode, bh); 1299 if (status < 0) 1300 mlog_errno(status); 1301 } 1302 if (inode_locked) 1303 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1304 1305 brelse(bh); 1306 return status; 1307 } 1308 1309 int ocfs2_getattr(const struct path *path, struct kstat *stat, 1310 u32 request_mask, unsigned int flags) 1311 { 1312 struct inode *inode = d_inode(path->dentry); 1313 struct super_block *sb = path->dentry->d_sb; 1314 struct ocfs2_super *osb = sb->s_fs_info; 1315 int err; 1316 1317 err = ocfs2_inode_revalidate(path->dentry); 1318 if (err) { 1319 if (err != -ENOENT) 1320 mlog_errno(err); 1321 goto bail; 1322 } 1323 1324 generic_fillattr(inode, stat); 1325 /* 1326 * If there is inline data in the inode, the inode will normally not 1327 * have data blocks allocated (it may have an external xattr block). 1328 * Report at least one sector for such files, so tools like tar, rsync, 1329 * others don't incorrectly think the file is completely sparse. 1330 */ 1331 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1332 stat->blocks += (stat->size + 511)>>9; 1333 1334 /* We set the blksize from the cluster size for performance */ 1335 stat->blksize = osb->s_clustersize; 1336 1337 bail: 1338 return err; 1339 } 1340 1341 int ocfs2_permission(struct inode *inode, int mask) 1342 { 1343 int ret, had_lock; 1344 struct ocfs2_lock_holder oh; 1345 1346 if (mask & MAY_NOT_BLOCK) 1347 return -ECHILD; 1348 1349 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); 1350 if (had_lock < 0) { 1351 ret = had_lock; 1352 goto out; 1353 } else if (had_lock) { 1354 /* See comments in ocfs2_setattr() for details. 1355 * The call chain of this case could be: 1356 * do_sys_open() 1357 * may_open() 1358 * inode_permission() 1359 * ocfs2_permission() 1360 * ocfs2_iop_get_acl() 1361 */ 1362 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1363 dump_stack(); 1364 } 1365 1366 ret = generic_permission(inode, mask); 1367 1368 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); 1369 out: 1370 return ret; 1371 } 1372 1373 static int __ocfs2_write_remove_suid(struct inode *inode, 1374 struct buffer_head *bh) 1375 { 1376 int ret; 1377 handle_t *handle; 1378 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1379 struct ocfs2_dinode *di; 1380 1381 trace_ocfs2_write_remove_suid( 1382 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1383 inode->i_mode); 1384 1385 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1386 if (IS_ERR(handle)) { 1387 ret = PTR_ERR(handle); 1388 mlog_errno(ret); 1389 goto out; 1390 } 1391 1392 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1393 OCFS2_JOURNAL_ACCESS_WRITE); 1394 if (ret < 0) { 1395 mlog_errno(ret); 1396 goto out_trans; 1397 } 1398 1399 inode->i_mode &= ~S_ISUID; 1400 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1401 inode->i_mode &= ~S_ISGID; 1402 1403 di = (struct ocfs2_dinode *) bh->b_data; 1404 di->i_mode = cpu_to_le16(inode->i_mode); 1405 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1406 1407 ocfs2_journal_dirty(handle, bh); 1408 1409 out_trans: 1410 ocfs2_commit_trans(osb, handle); 1411 out: 1412 return ret; 1413 } 1414 1415 static int ocfs2_write_remove_suid(struct inode *inode) 1416 { 1417 int ret; 1418 struct buffer_head *bh = NULL; 1419 1420 ret = ocfs2_read_inode_block(inode, &bh); 1421 if (ret < 0) { 1422 mlog_errno(ret); 1423 goto out; 1424 } 1425 1426 ret = __ocfs2_write_remove_suid(inode, bh); 1427 out: 1428 brelse(bh); 1429 return ret; 1430 } 1431 1432 /* 1433 * Allocate enough extents to cover the region starting at byte offset 1434 * start for len bytes. Existing extents are skipped, any extents 1435 * added are marked as "unwritten". 1436 */ 1437 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1438 u64 start, u64 len) 1439 { 1440 int ret; 1441 u32 cpos, phys_cpos, clusters, alloc_size; 1442 u64 end = start + len; 1443 struct buffer_head *di_bh = NULL; 1444 1445 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1446 ret = ocfs2_read_inode_block(inode, &di_bh); 1447 if (ret) { 1448 mlog_errno(ret); 1449 goto out; 1450 } 1451 1452 /* 1453 * Nothing to do if the requested reservation range 1454 * fits within the inode. 1455 */ 1456 if (ocfs2_size_fits_inline_data(di_bh, end)) 1457 goto out; 1458 1459 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1460 if (ret) { 1461 mlog_errno(ret); 1462 goto out; 1463 } 1464 } 1465 1466 /* 1467 * We consider both start and len to be inclusive. 1468 */ 1469 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1470 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1471 clusters -= cpos; 1472 1473 while (clusters) { 1474 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1475 &alloc_size, NULL); 1476 if (ret) { 1477 mlog_errno(ret); 1478 goto out; 1479 } 1480 1481 /* 1482 * Hole or existing extent len can be arbitrary, so 1483 * cap it to our own allocation request. 1484 */ 1485 if (alloc_size > clusters) 1486 alloc_size = clusters; 1487 1488 if (phys_cpos) { 1489 /* 1490 * We already have an allocation at this 1491 * region so we can safely skip it. 1492 */ 1493 goto next; 1494 } 1495 1496 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1497 if (ret) { 1498 if (ret != -ENOSPC) 1499 mlog_errno(ret); 1500 goto out; 1501 } 1502 1503 next: 1504 cpos += alloc_size; 1505 clusters -= alloc_size; 1506 } 1507 1508 ret = 0; 1509 out: 1510 1511 brelse(di_bh); 1512 return ret; 1513 } 1514 1515 /* 1516 * Truncate a byte range, avoiding pages within partial clusters. This 1517 * preserves those pages for the zeroing code to write to. 1518 */ 1519 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1520 u64 byte_len) 1521 { 1522 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1523 loff_t start, end; 1524 struct address_space *mapping = inode->i_mapping; 1525 1526 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1527 end = byte_start + byte_len; 1528 end = end & ~(osb->s_clustersize - 1); 1529 1530 if (start < end) { 1531 unmap_mapping_range(mapping, start, end - start, 0); 1532 truncate_inode_pages_range(mapping, start, end - 1); 1533 } 1534 } 1535 1536 static int ocfs2_zero_partial_clusters(struct inode *inode, 1537 u64 start, u64 len) 1538 { 1539 int ret = 0; 1540 u64 tmpend = 0; 1541 u64 end = start + len; 1542 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1543 unsigned int csize = osb->s_clustersize; 1544 handle_t *handle; 1545 1546 /* 1547 * The "start" and "end" values are NOT necessarily part of 1548 * the range whose allocation is being deleted. Rather, this 1549 * is what the user passed in with the request. We must zero 1550 * partial clusters here. There's no need to worry about 1551 * physical allocation - the zeroing code knows to skip holes. 1552 */ 1553 trace_ocfs2_zero_partial_clusters( 1554 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1555 (unsigned long long)start, (unsigned long long)end); 1556 1557 /* 1558 * If both edges are on a cluster boundary then there's no 1559 * zeroing required as the region is part of the allocation to 1560 * be truncated. 1561 */ 1562 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1563 goto out; 1564 1565 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1566 if (IS_ERR(handle)) { 1567 ret = PTR_ERR(handle); 1568 mlog_errno(ret); 1569 goto out; 1570 } 1571 1572 /* 1573 * If start is on a cluster boundary and end is somewhere in another 1574 * cluster, we have not COWed the cluster starting at start, unless 1575 * end is also within the same cluster. So, in this case, we skip this 1576 * first call to ocfs2_zero_range_for_truncate() truncate and move on 1577 * to the next one. 1578 */ 1579 if ((start & (csize - 1)) != 0) { 1580 /* 1581 * We want to get the byte offset of the end of the 1st 1582 * cluster. 1583 */ 1584 tmpend = (u64)osb->s_clustersize + 1585 (start & ~(osb->s_clustersize - 1)); 1586 if (tmpend > end) 1587 tmpend = end; 1588 1589 trace_ocfs2_zero_partial_clusters_range1( 1590 (unsigned long long)start, 1591 (unsigned long long)tmpend); 1592 1593 ret = ocfs2_zero_range_for_truncate(inode, handle, start, 1594 tmpend); 1595 if (ret) 1596 mlog_errno(ret); 1597 } 1598 1599 if (tmpend < end) { 1600 /* 1601 * This may make start and end equal, but the zeroing 1602 * code will skip any work in that case so there's no 1603 * need to catch it up here. 1604 */ 1605 start = end & ~(osb->s_clustersize - 1); 1606 1607 trace_ocfs2_zero_partial_clusters_range2( 1608 (unsigned long long)start, (unsigned long long)end); 1609 1610 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1611 if (ret) 1612 mlog_errno(ret); 1613 } 1614 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1615 1616 ocfs2_commit_trans(osb, handle); 1617 out: 1618 return ret; 1619 } 1620 1621 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1622 { 1623 int i; 1624 struct ocfs2_extent_rec *rec = NULL; 1625 1626 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1627 1628 rec = &el->l_recs[i]; 1629 1630 if (le32_to_cpu(rec->e_cpos) < pos) 1631 break; 1632 } 1633 1634 return i; 1635 } 1636 1637 /* 1638 * Helper to calculate the punching pos and length in one run, we handle the 1639 * following three cases in order: 1640 * 1641 * - remove the entire record 1642 * - remove a partial record 1643 * - no record needs to be removed (hole-punching completed) 1644 */ 1645 static void ocfs2_calc_trunc_pos(struct inode *inode, 1646 struct ocfs2_extent_list *el, 1647 struct ocfs2_extent_rec *rec, 1648 u32 trunc_start, u32 *trunc_cpos, 1649 u32 *trunc_len, u32 *trunc_end, 1650 u64 *blkno, int *done) 1651 { 1652 int ret = 0; 1653 u32 coff, range; 1654 1655 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1656 1657 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1658 /* 1659 * remove an entire extent record. 1660 */ 1661 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1662 /* 1663 * Skip holes if any. 1664 */ 1665 if (range < *trunc_end) 1666 *trunc_end = range; 1667 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1668 *blkno = le64_to_cpu(rec->e_blkno); 1669 *trunc_end = le32_to_cpu(rec->e_cpos); 1670 } else if (range > trunc_start) { 1671 /* 1672 * remove a partial extent record, which means we're 1673 * removing the last extent record. 1674 */ 1675 *trunc_cpos = trunc_start; 1676 /* 1677 * skip hole if any. 1678 */ 1679 if (range < *trunc_end) 1680 *trunc_end = range; 1681 *trunc_len = *trunc_end - trunc_start; 1682 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1683 *blkno = le64_to_cpu(rec->e_blkno) + 1684 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1685 *trunc_end = trunc_start; 1686 } else { 1687 /* 1688 * It may have two following possibilities: 1689 * 1690 * - last record has been removed 1691 * - trunc_start was within a hole 1692 * 1693 * both two cases mean the completion of hole punching. 1694 */ 1695 ret = 1; 1696 } 1697 1698 *done = ret; 1699 } 1700 1701 int ocfs2_remove_inode_range(struct inode *inode, 1702 struct buffer_head *di_bh, u64 byte_start, 1703 u64 byte_len) 1704 { 1705 int ret = 0, flags = 0, done = 0, i; 1706 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1707 u32 cluster_in_el; 1708 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1709 struct ocfs2_cached_dealloc_ctxt dealloc; 1710 struct address_space *mapping = inode->i_mapping; 1711 struct ocfs2_extent_tree et; 1712 struct ocfs2_path *path = NULL; 1713 struct ocfs2_extent_list *el = NULL; 1714 struct ocfs2_extent_rec *rec = NULL; 1715 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1716 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1717 1718 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1719 ocfs2_init_dealloc_ctxt(&dealloc); 1720 1721 trace_ocfs2_remove_inode_range( 1722 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1723 (unsigned long long)byte_start, 1724 (unsigned long long)byte_len); 1725 1726 if (byte_len == 0) 1727 return 0; 1728 1729 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1730 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1731 byte_start + byte_len, 0); 1732 if (ret) { 1733 mlog_errno(ret); 1734 goto out; 1735 } 1736 /* 1737 * There's no need to get fancy with the page cache 1738 * truncate of an inline-data inode. We're talking 1739 * about less than a page here, which will be cached 1740 * in the dinode buffer anyway. 1741 */ 1742 unmap_mapping_range(mapping, 0, 0, 0); 1743 truncate_inode_pages(mapping, 0); 1744 goto out; 1745 } 1746 1747 /* 1748 * For reflinks, we may need to CoW 2 clusters which might be 1749 * partially zero'd later, if hole's start and end offset were 1750 * within one cluster(means is not exactly aligned to clustersize). 1751 */ 1752 1753 if (ocfs2_is_refcount_inode(inode)) { 1754 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1755 if (ret) { 1756 mlog_errno(ret); 1757 goto out; 1758 } 1759 1760 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1761 if (ret) { 1762 mlog_errno(ret); 1763 goto out; 1764 } 1765 } 1766 1767 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1768 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1769 cluster_in_el = trunc_end; 1770 1771 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1772 if (ret) { 1773 mlog_errno(ret); 1774 goto out; 1775 } 1776 1777 path = ocfs2_new_path_from_et(&et); 1778 if (!path) { 1779 ret = -ENOMEM; 1780 mlog_errno(ret); 1781 goto out; 1782 } 1783 1784 while (trunc_end > trunc_start) { 1785 1786 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1787 cluster_in_el); 1788 if (ret) { 1789 mlog_errno(ret); 1790 goto out; 1791 } 1792 1793 el = path_leaf_el(path); 1794 1795 i = ocfs2_find_rec(el, trunc_end); 1796 /* 1797 * Need to go to previous extent block. 1798 */ 1799 if (i < 0) { 1800 if (path->p_tree_depth == 0) 1801 break; 1802 1803 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1804 path, 1805 &cluster_in_el); 1806 if (ret) { 1807 mlog_errno(ret); 1808 goto out; 1809 } 1810 1811 /* 1812 * We've reached the leftmost extent block, 1813 * it's safe to leave. 1814 */ 1815 if (cluster_in_el == 0) 1816 break; 1817 1818 /* 1819 * The 'pos' searched for previous extent block is 1820 * always one cluster less than actual trunc_end. 1821 */ 1822 trunc_end = cluster_in_el + 1; 1823 1824 ocfs2_reinit_path(path, 1); 1825 1826 continue; 1827 1828 } else 1829 rec = &el->l_recs[i]; 1830 1831 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1832 &trunc_len, &trunc_end, &blkno, &done); 1833 if (done) 1834 break; 1835 1836 flags = rec->e_flags; 1837 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1838 1839 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1840 phys_cpos, trunc_len, flags, 1841 &dealloc, refcount_loc, false); 1842 if (ret < 0) { 1843 mlog_errno(ret); 1844 goto out; 1845 } 1846 1847 cluster_in_el = trunc_end; 1848 1849 ocfs2_reinit_path(path, 1); 1850 } 1851 1852 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1853 1854 out: 1855 ocfs2_free_path(path); 1856 ocfs2_schedule_truncate_log_flush(osb, 1); 1857 ocfs2_run_deallocs(osb, &dealloc); 1858 1859 return ret; 1860 } 1861 1862 /* 1863 * Parts of this function taken from xfs_change_file_space() 1864 */ 1865 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1866 loff_t f_pos, unsigned int cmd, 1867 struct ocfs2_space_resv *sr, 1868 int change_size) 1869 { 1870 int ret; 1871 s64 llen; 1872 loff_t size; 1873 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1874 struct buffer_head *di_bh = NULL; 1875 handle_t *handle; 1876 unsigned long long max_off = inode->i_sb->s_maxbytes; 1877 1878 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1879 return -EROFS; 1880 1881 inode_lock(inode); 1882 1883 /* 1884 * This prevents concurrent writes on other nodes 1885 */ 1886 ret = ocfs2_rw_lock(inode, 1); 1887 if (ret) { 1888 mlog_errno(ret); 1889 goto out; 1890 } 1891 1892 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1893 if (ret) { 1894 mlog_errno(ret); 1895 goto out_rw_unlock; 1896 } 1897 1898 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1899 ret = -EPERM; 1900 goto out_inode_unlock; 1901 } 1902 1903 switch (sr->l_whence) { 1904 case 0: /*SEEK_SET*/ 1905 break; 1906 case 1: /*SEEK_CUR*/ 1907 sr->l_start += f_pos; 1908 break; 1909 case 2: /*SEEK_END*/ 1910 sr->l_start += i_size_read(inode); 1911 break; 1912 default: 1913 ret = -EINVAL; 1914 goto out_inode_unlock; 1915 } 1916 sr->l_whence = 0; 1917 1918 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1919 1920 if (sr->l_start < 0 1921 || sr->l_start > max_off 1922 || (sr->l_start + llen) < 0 1923 || (sr->l_start + llen) > max_off) { 1924 ret = -EINVAL; 1925 goto out_inode_unlock; 1926 } 1927 size = sr->l_start + sr->l_len; 1928 1929 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1930 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1931 if (sr->l_len <= 0) { 1932 ret = -EINVAL; 1933 goto out_inode_unlock; 1934 } 1935 } 1936 1937 if (file && should_remove_suid(file->f_path.dentry)) { 1938 ret = __ocfs2_write_remove_suid(inode, di_bh); 1939 if (ret) { 1940 mlog_errno(ret); 1941 goto out_inode_unlock; 1942 } 1943 } 1944 1945 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1946 switch (cmd) { 1947 case OCFS2_IOC_RESVSP: 1948 case OCFS2_IOC_RESVSP64: 1949 /* 1950 * This takes unsigned offsets, but the signed ones we 1951 * pass have been checked against overflow above. 1952 */ 1953 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1954 sr->l_len); 1955 break; 1956 case OCFS2_IOC_UNRESVSP: 1957 case OCFS2_IOC_UNRESVSP64: 1958 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1959 sr->l_len); 1960 break; 1961 default: 1962 ret = -EINVAL; 1963 } 1964 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1965 if (ret) { 1966 mlog_errno(ret); 1967 goto out_inode_unlock; 1968 } 1969 1970 /* 1971 * We update c/mtime for these changes 1972 */ 1973 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1974 if (IS_ERR(handle)) { 1975 ret = PTR_ERR(handle); 1976 mlog_errno(ret); 1977 goto out_inode_unlock; 1978 } 1979 1980 if (change_size && i_size_read(inode) < size) 1981 i_size_write(inode, size); 1982 1983 inode->i_ctime = inode->i_mtime = current_time(inode); 1984 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1985 if (ret < 0) 1986 mlog_errno(ret); 1987 1988 if (file && (file->f_flags & O_SYNC)) 1989 handle->h_sync = 1; 1990 1991 ocfs2_commit_trans(osb, handle); 1992 1993 out_inode_unlock: 1994 brelse(di_bh); 1995 ocfs2_inode_unlock(inode, 1); 1996 out_rw_unlock: 1997 ocfs2_rw_unlock(inode, 1); 1998 1999 out: 2000 inode_unlock(inode); 2001 return ret; 2002 } 2003 2004 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 2005 struct ocfs2_space_resv *sr) 2006 { 2007 struct inode *inode = file_inode(file); 2008 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2009 int ret; 2010 2011 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 2012 !ocfs2_writes_unwritten_extents(osb)) 2013 return -ENOTTY; 2014 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 2015 !ocfs2_sparse_alloc(osb)) 2016 return -ENOTTY; 2017 2018 if (!S_ISREG(inode->i_mode)) 2019 return -EINVAL; 2020 2021 if (!(file->f_mode & FMODE_WRITE)) 2022 return -EBADF; 2023 2024 ret = mnt_want_write_file(file); 2025 if (ret) 2026 return ret; 2027 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2028 mnt_drop_write_file(file); 2029 return ret; 2030 } 2031 2032 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2033 loff_t len) 2034 { 2035 struct inode *inode = file_inode(file); 2036 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2037 struct ocfs2_space_resv sr; 2038 int change_size = 1; 2039 int cmd = OCFS2_IOC_RESVSP64; 2040 2041 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2042 return -EOPNOTSUPP; 2043 if (!ocfs2_writes_unwritten_extents(osb)) 2044 return -EOPNOTSUPP; 2045 2046 if (mode & FALLOC_FL_KEEP_SIZE) 2047 change_size = 0; 2048 2049 if (mode & FALLOC_FL_PUNCH_HOLE) 2050 cmd = OCFS2_IOC_UNRESVSP64; 2051 2052 sr.l_whence = 0; 2053 sr.l_start = (s64)offset; 2054 sr.l_len = (s64)len; 2055 2056 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2057 change_size); 2058 } 2059 2060 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2061 size_t count) 2062 { 2063 int ret = 0; 2064 unsigned int extent_flags; 2065 u32 cpos, clusters, extent_len, phys_cpos; 2066 struct super_block *sb = inode->i_sb; 2067 2068 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2069 !ocfs2_is_refcount_inode(inode) || 2070 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2071 return 0; 2072 2073 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2074 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2075 2076 while (clusters) { 2077 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2078 &extent_flags); 2079 if (ret < 0) { 2080 mlog_errno(ret); 2081 goto out; 2082 } 2083 2084 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2085 ret = 1; 2086 break; 2087 } 2088 2089 if (extent_len > clusters) 2090 extent_len = clusters; 2091 2092 clusters -= extent_len; 2093 cpos += extent_len; 2094 } 2095 out: 2096 return ret; 2097 } 2098 2099 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2100 { 2101 int blockmask = inode->i_sb->s_blocksize - 1; 2102 loff_t final_size = pos + count; 2103 2104 if ((pos & blockmask) || (final_size & blockmask)) 2105 return 1; 2106 return 0; 2107 } 2108 2109 static int ocfs2_prepare_inode_for_refcount(struct inode *inode, 2110 struct file *file, 2111 loff_t pos, size_t count, 2112 int *meta_level) 2113 { 2114 int ret; 2115 struct buffer_head *di_bh = NULL; 2116 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2117 u32 clusters = 2118 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2119 2120 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2121 if (ret) { 2122 mlog_errno(ret); 2123 goto out; 2124 } 2125 2126 *meta_level = 1; 2127 2128 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2129 if (ret) 2130 mlog_errno(ret); 2131 out: 2132 brelse(di_bh); 2133 return ret; 2134 } 2135 2136 static int ocfs2_prepare_inode_for_write(struct file *file, 2137 loff_t pos, size_t count, int wait) 2138 { 2139 int ret = 0, meta_level = 0, overwrite_io = 0; 2140 struct dentry *dentry = file->f_path.dentry; 2141 struct inode *inode = d_inode(dentry); 2142 struct buffer_head *di_bh = NULL; 2143 loff_t end; 2144 2145 /* 2146 * We start with a read level meta lock and only jump to an ex 2147 * if we need to make modifications here. 2148 */ 2149 for(;;) { 2150 if (wait) 2151 ret = ocfs2_inode_lock(inode, NULL, meta_level); 2152 else 2153 ret = ocfs2_try_inode_lock(inode, 2154 overwrite_io ? NULL : &di_bh, meta_level); 2155 if (ret < 0) { 2156 meta_level = -1; 2157 if (ret != -EAGAIN) 2158 mlog_errno(ret); 2159 goto out; 2160 } 2161 2162 /* 2163 * Check if IO will overwrite allocated blocks in case 2164 * IOCB_NOWAIT flag is set. 2165 */ 2166 if (!wait && !overwrite_io) { 2167 overwrite_io = 1; 2168 if (!down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem)) { 2169 ret = -EAGAIN; 2170 goto out_unlock; 2171 } 2172 2173 ret = ocfs2_overwrite_io(inode, di_bh, pos, count); 2174 brelse(di_bh); 2175 di_bh = NULL; 2176 up_read(&OCFS2_I(inode)->ip_alloc_sem); 2177 if (ret < 0) { 2178 if (ret != -EAGAIN) 2179 mlog_errno(ret); 2180 goto out_unlock; 2181 } 2182 } 2183 2184 /* Clear suid / sgid if necessary. We do this here 2185 * instead of later in the write path because 2186 * remove_suid() calls ->setattr without any hint that 2187 * we may have already done our cluster locking. Since 2188 * ocfs2_setattr() *must* take cluster locks to 2189 * proceed, this will lead us to recursively lock the 2190 * inode. There's also the dinode i_size state which 2191 * can be lost via setattr during extending writes (we 2192 * set inode->i_size at the end of a write. */ 2193 if (should_remove_suid(dentry)) { 2194 if (meta_level == 0) { 2195 ocfs2_inode_unlock(inode, meta_level); 2196 meta_level = 1; 2197 continue; 2198 } 2199 2200 ret = ocfs2_write_remove_suid(inode); 2201 if (ret < 0) { 2202 mlog_errno(ret); 2203 goto out_unlock; 2204 } 2205 } 2206 2207 end = pos + count; 2208 2209 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2210 if (ret == 1) { 2211 ocfs2_inode_unlock(inode, meta_level); 2212 meta_level = -1; 2213 2214 ret = ocfs2_prepare_inode_for_refcount(inode, 2215 file, 2216 pos, 2217 count, 2218 &meta_level); 2219 } 2220 2221 if (ret < 0) { 2222 mlog_errno(ret); 2223 goto out_unlock; 2224 } 2225 2226 break; 2227 } 2228 2229 out_unlock: 2230 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2231 pos, count, wait); 2232 2233 brelse(di_bh); 2234 2235 if (meta_level >= 0) 2236 ocfs2_inode_unlock(inode, meta_level); 2237 2238 out: 2239 return ret; 2240 } 2241 2242 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2243 struct iov_iter *from) 2244 { 2245 int rw_level; 2246 ssize_t written = 0; 2247 ssize_t ret; 2248 size_t count = iov_iter_count(from); 2249 struct file *file = iocb->ki_filp; 2250 struct inode *inode = file_inode(file); 2251 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2252 int full_coherency = !(osb->s_mount_opt & 2253 OCFS2_MOUNT_COHERENCY_BUFFERED); 2254 void *saved_ki_complete = NULL; 2255 int append_write = ((iocb->ki_pos + count) >= 2256 i_size_read(inode) ? 1 : 0); 2257 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2258 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2259 2260 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, 2261 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2262 file->f_path.dentry->d_name.len, 2263 file->f_path.dentry->d_name.name, 2264 (unsigned int)from->nr_segs); /* GRRRRR */ 2265 2266 if (!direct_io && nowait) 2267 return -EOPNOTSUPP; 2268 2269 if (count == 0) 2270 return 0; 2271 2272 if (nowait) { 2273 if (!inode_trylock(inode)) 2274 return -EAGAIN; 2275 } else 2276 inode_lock(inode); 2277 2278 /* 2279 * Concurrent O_DIRECT writes are allowed with 2280 * mount_option "coherency=buffered". 2281 * For append write, we must take rw EX. 2282 */ 2283 rw_level = (!direct_io || full_coherency || append_write); 2284 2285 if (nowait) 2286 ret = ocfs2_try_rw_lock(inode, rw_level); 2287 else 2288 ret = ocfs2_rw_lock(inode, rw_level); 2289 if (ret < 0) { 2290 if (ret != -EAGAIN) 2291 mlog_errno(ret); 2292 goto out_mutex; 2293 } 2294 2295 /* 2296 * O_DIRECT writes with "coherency=full" need to take EX cluster 2297 * inode_lock to guarantee coherency. 2298 */ 2299 if (direct_io && full_coherency) { 2300 /* 2301 * We need to take and drop the inode lock to force 2302 * other nodes to drop their caches. Buffered I/O 2303 * already does this in write_begin(). 2304 */ 2305 if (nowait) 2306 ret = ocfs2_try_inode_lock(inode, NULL, 1); 2307 else 2308 ret = ocfs2_inode_lock(inode, NULL, 1); 2309 if (ret < 0) { 2310 if (ret != -EAGAIN) 2311 mlog_errno(ret); 2312 goto out; 2313 } 2314 2315 ocfs2_inode_unlock(inode, 1); 2316 } 2317 2318 ret = generic_write_checks(iocb, from); 2319 if (ret <= 0) { 2320 if (ret) 2321 mlog_errno(ret); 2322 goto out; 2323 } 2324 count = ret; 2325 2326 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); 2327 if (ret < 0) { 2328 if (ret != -EAGAIN) 2329 mlog_errno(ret); 2330 goto out; 2331 } 2332 2333 if (direct_io && !is_sync_kiocb(iocb) && 2334 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { 2335 /* 2336 * Make it a sync io if it's an unaligned aio. 2337 */ 2338 saved_ki_complete = xchg(&iocb->ki_complete, NULL); 2339 } 2340 2341 /* communicate with ocfs2_dio_end_io */ 2342 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2343 2344 written = __generic_file_write_iter(iocb, from); 2345 /* buffered aio wouldn't have proper lock coverage today */ 2346 BUG_ON(written == -EIOCBQUEUED && !direct_io); 2347 2348 /* 2349 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2350 * function pointer which is called when o_direct io completes so that 2351 * it can unlock our rw lock. 2352 * Unfortunately there are error cases which call end_io and others 2353 * that don't. so we don't have to unlock the rw_lock if either an 2354 * async dio is going to do it in the future or an end_io after an 2355 * error has already done it. 2356 */ 2357 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2358 rw_level = -1; 2359 } 2360 2361 if (unlikely(written <= 0)) 2362 goto out; 2363 2364 if (((file->f_flags & O_DSYNC) && !direct_io) || 2365 IS_SYNC(inode)) { 2366 ret = filemap_fdatawrite_range(file->f_mapping, 2367 iocb->ki_pos - written, 2368 iocb->ki_pos - 1); 2369 if (ret < 0) 2370 written = ret; 2371 2372 if (!ret) { 2373 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2374 if (ret < 0) 2375 written = ret; 2376 } 2377 2378 if (!ret) 2379 ret = filemap_fdatawait_range(file->f_mapping, 2380 iocb->ki_pos - written, 2381 iocb->ki_pos - 1); 2382 } 2383 2384 out: 2385 if (saved_ki_complete) 2386 xchg(&iocb->ki_complete, saved_ki_complete); 2387 2388 if (rw_level != -1) 2389 ocfs2_rw_unlock(inode, rw_level); 2390 2391 out_mutex: 2392 inode_unlock(inode); 2393 2394 if (written) 2395 ret = written; 2396 return ret; 2397 } 2398 2399 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2400 struct iov_iter *to) 2401 { 2402 int ret = 0, rw_level = -1, lock_level = 0; 2403 struct file *filp = iocb->ki_filp; 2404 struct inode *inode = file_inode(filp); 2405 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2406 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2407 2408 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, 2409 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2410 filp->f_path.dentry->d_name.len, 2411 filp->f_path.dentry->d_name.name, 2412 to->nr_segs); /* GRRRRR */ 2413 2414 2415 if (!inode) { 2416 ret = -EINVAL; 2417 mlog_errno(ret); 2418 goto bail; 2419 } 2420 2421 if (!direct_io && nowait) 2422 return -EOPNOTSUPP; 2423 2424 /* 2425 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2426 * need locks to protect pending reads from racing with truncate. 2427 */ 2428 if (direct_io) { 2429 if (nowait) 2430 ret = ocfs2_try_rw_lock(inode, 0); 2431 else 2432 ret = ocfs2_rw_lock(inode, 0); 2433 2434 if (ret < 0) { 2435 if (ret != -EAGAIN) 2436 mlog_errno(ret); 2437 goto bail; 2438 } 2439 rw_level = 0; 2440 /* communicate with ocfs2_dio_end_io */ 2441 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2442 } 2443 2444 /* 2445 * We're fine letting folks race truncates and extending 2446 * writes with read across the cluster, just like they can 2447 * locally. Hence no rw_lock during read. 2448 * 2449 * Take and drop the meta data lock to update inode fields 2450 * like i_size. This allows the checks down below 2451 * generic_file_read_iter() a chance of actually working. 2452 */ 2453 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, 2454 !nowait); 2455 if (ret < 0) { 2456 if (ret != -EAGAIN) 2457 mlog_errno(ret); 2458 goto bail; 2459 } 2460 ocfs2_inode_unlock(inode, lock_level); 2461 2462 ret = generic_file_read_iter(iocb, to); 2463 trace_generic_file_read_iter_ret(ret); 2464 2465 /* buffered aio wouldn't have proper lock coverage today */ 2466 BUG_ON(ret == -EIOCBQUEUED && !direct_io); 2467 2468 /* see ocfs2_file_write_iter */ 2469 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2470 rw_level = -1; 2471 } 2472 2473 bail: 2474 if (rw_level != -1) 2475 ocfs2_rw_unlock(inode, rw_level); 2476 2477 return ret; 2478 } 2479 2480 /* Refer generic_file_llseek_unlocked() */ 2481 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2482 { 2483 struct inode *inode = file->f_mapping->host; 2484 int ret = 0; 2485 2486 inode_lock(inode); 2487 2488 switch (whence) { 2489 case SEEK_SET: 2490 break; 2491 case SEEK_END: 2492 /* SEEK_END requires the OCFS2 inode lock for the file 2493 * because it references the file's size. 2494 */ 2495 ret = ocfs2_inode_lock(inode, NULL, 0); 2496 if (ret < 0) { 2497 mlog_errno(ret); 2498 goto out; 2499 } 2500 offset += i_size_read(inode); 2501 ocfs2_inode_unlock(inode, 0); 2502 break; 2503 case SEEK_CUR: 2504 if (offset == 0) { 2505 offset = file->f_pos; 2506 goto out; 2507 } 2508 offset += file->f_pos; 2509 break; 2510 case SEEK_DATA: 2511 case SEEK_HOLE: 2512 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2513 if (ret) 2514 goto out; 2515 break; 2516 default: 2517 ret = -EINVAL; 2518 goto out; 2519 } 2520 2521 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2522 2523 out: 2524 inode_unlock(inode); 2525 if (ret) 2526 return ret; 2527 return offset; 2528 } 2529 2530 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, 2531 struct file *file_out, loff_t pos_out, 2532 loff_t len, unsigned int remap_flags) 2533 { 2534 struct inode *inode_in = file_inode(file_in); 2535 struct inode *inode_out = file_inode(file_out); 2536 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); 2537 struct buffer_head *in_bh = NULL, *out_bh = NULL; 2538 bool same_inode = (inode_in == inode_out); 2539 loff_t remapped = 0; 2540 ssize_t ret; 2541 2542 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 2543 return -EINVAL; 2544 if (!ocfs2_refcount_tree(osb)) 2545 return -EOPNOTSUPP; 2546 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 2547 return -EROFS; 2548 2549 /* Lock both files against IO */ 2550 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); 2551 if (ret) 2552 return ret; 2553 2554 /* Check file eligibility and prepare for block sharing. */ 2555 ret = -EINVAL; 2556 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || 2557 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) 2558 goto out_unlock; 2559 2560 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 2561 &len, remap_flags); 2562 if (ret < 0 || len == 0) 2563 goto out_unlock; 2564 2565 /* Lock out changes to the allocation maps and remap. */ 2566 down_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2567 if (!same_inode) 2568 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, 2569 SINGLE_DEPTH_NESTING); 2570 2571 /* Zap any page cache for the destination file's range. */ 2572 truncate_inode_pages_range(&inode_out->i_data, 2573 round_down(pos_out, PAGE_SIZE), 2574 round_up(pos_out + len, PAGE_SIZE) - 1); 2575 2576 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, 2577 inode_out, out_bh, pos_out, len); 2578 up_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2579 if (!same_inode) 2580 up_write(&OCFS2_I(inode_out)->ip_alloc_sem); 2581 if (remapped < 0) { 2582 ret = remapped; 2583 mlog_errno(ret); 2584 goto out_unlock; 2585 } 2586 2587 /* 2588 * Empty the extent map so that we may get the right extent 2589 * record from the disk. 2590 */ 2591 ocfs2_extent_map_trunc(inode_in, 0); 2592 ocfs2_extent_map_trunc(inode_out, 0); 2593 2594 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); 2595 if (ret) { 2596 mlog_errno(ret); 2597 goto out_unlock; 2598 } 2599 2600 out_unlock: 2601 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); 2602 return remapped > 0 ? remapped : ret; 2603 } 2604 2605 const struct inode_operations ocfs2_file_iops = { 2606 .setattr = ocfs2_setattr, 2607 .getattr = ocfs2_getattr, 2608 .permission = ocfs2_permission, 2609 .listxattr = ocfs2_listxattr, 2610 .fiemap = ocfs2_fiemap, 2611 .get_acl = ocfs2_iop_get_acl, 2612 .set_acl = ocfs2_iop_set_acl, 2613 }; 2614 2615 const struct inode_operations ocfs2_special_file_iops = { 2616 .setattr = ocfs2_setattr, 2617 .getattr = ocfs2_getattr, 2618 .permission = ocfs2_permission, 2619 .get_acl = ocfs2_iop_get_acl, 2620 .set_acl = ocfs2_iop_set_acl, 2621 }; 2622 2623 /* 2624 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2625 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2626 */ 2627 const struct file_operations ocfs2_fops = { 2628 .llseek = ocfs2_file_llseek, 2629 .mmap = ocfs2_mmap, 2630 .fsync = ocfs2_sync_file, 2631 .release = ocfs2_file_release, 2632 .open = ocfs2_file_open, 2633 .read_iter = ocfs2_file_read_iter, 2634 .write_iter = ocfs2_file_write_iter, 2635 .unlocked_ioctl = ocfs2_ioctl, 2636 #ifdef CONFIG_COMPAT 2637 .compat_ioctl = ocfs2_compat_ioctl, 2638 #endif 2639 .lock = ocfs2_lock, 2640 .flock = ocfs2_flock, 2641 .splice_read = generic_file_splice_read, 2642 .splice_write = iter_file_splice_write, 2643 .fallocate = ocfs2_fallocate, 2644 .remap_file_range = ocfs2_remap_file_range, 2645 }; 2646 2647 const struct file_operations ocfs2_dops = { 2648 .llseek = generic_file_llseek, 2649 .read = generic_read_dir, 2650 .iterate = ocfs2_readdir, 2651 .fsync = ocfs2_sync_file, 2652 .release = ocfs2_dir_release, 2653 .open = ocfs2_dir_open, 2654 .unlocked_ioctl = ocfs2_ioctl, 2655 #ifdef CONFIG_COMPAT 2656 .compat_ioctl = ocfs2_compat_ioctl, 2657 #endif 2658 .lock = ocfs2_lock, 2659 .flock = ocfs2_flock, 2660 }; 2661 2662 /* 2663 * POSIX-lockless variants of our file_operations. 2664 * 2665 * These will be used if the underlying cluster stack does not support 2666 * posix file locking, if the user passes the "localflocks" mount 2667 * option, or if we have a local-only fs. 2668 * 2669 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2670 * so we still want it in the case of no stack support for 2671 * plocks. Internally, it will do the right thing when asked to ignore 2672 * the cluster. 2673 */ 2674 const struct file_operations ocfs2_fops_no_plocks = { 2675 .llseek = ocfs2_file_llseek, 2676 .mmap = ocfs2_mmap, 2677 .fsync = ocfs2_sync_file, 2678 .release = ocfs2_file_release, 2679 .open = ocfs2_file_open, 2680 .read_iter = ocfs2_file_read_iter, 2681 .write_iter = ocfs2_file_write_iter, 2682 .unlocked_ioctl = ocfs2_ioctl, 2683 #ifdef CONFIG_COMPAT 2684 .compat_ioctl = ocfs2_compat_ioctl, 2685 #endif 2686 .flock = ocfs2_flock, 2687 .splice_read = generic_file_splice_read, 2688 .splice_write = iter_file_splice_write, 2689 .fallocate = ocfs2_fallocate, 2690 .remap_file_range = ocfs2_remap_file_range, 2691 }; 2692 2693 const struct file_operations ocfs2_dops_no_plocks = { 2694 .llseek = generic_file_llseek, 2695 .read = generic_read_dir, 2696 .iterate = ocfs2_readdir, 2697 .fsync = ocfs2_sync_file, 2698 .release = ocfs2_dir_release, 2699 .open = ocfs2_dir_open, 2700 .unlocked_ioctl = ocfs2_ioctl, 2701 #ifdef CONFIG_COMPAT 2702 .compat_ioctl = ocfs2_compat_ioctl, 2703 #endif 2704 .flock = ocfs2_flock, 2705 }; 2706