1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * file.c 4 * 5 * File open, close, extend, truncate 6 * 7 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/capability.h> 11 #include <linux/fs.h> 12 #include <linux/types.h> 13 #include <linux/slab.h> 14 #include <linux/highmem.h> 15 #include <linux/pagemap.h> 16 #include <linux/uio.h> 17 #include <linux/sched.h> 18 #include <linux/splice.h> 19 #include <linux/mount.h> 20 #include <linux/writeback.h> 21 #include <linux/falloc.h> 22 #include <linux/quotaops.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 26 #include <cluster/masklog.h> 27 28 #include "ocfs2.h" 29 30 #include "alloc.h" 31 #include "aops.h" 32 #include "dir.h" 33 #include "dlmglue.h" 34 #include "extent_map.h" 35 #include "file.h" 36 #include "sysfile.h" 37 #include "inode.h" 38 #include "ioctl.h" 39 #include "journal.h" 40 #include "locks.h" 41 #include "mmap.h" 42 #include "suballoc.h" 43 #include "super.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "quota.h" 47 #include "refcounttree.h" 48 #include "ocfs2_trace.h" 49 50 #include "buffer_head_io.h" 51 52 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 53 { 54 struct ocfs2_file_private *fp; 55 56 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 57 if (!fp) 58 return -ENOMEM; 59 60 fp->fp_file = file; 61 mutex_init(&fp->fp_mutex); 62 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 63 file->private_data = fp; 64 65 return 0; 66 } 67 68 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 69 { 70 struct ocfs2_file_private *fp = file->private_data; 71 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 72 73 if (fp) { 74 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 75 ocfs2_lock_res_free(&fp->fp_flock); 76 kfree(fp); 77 file->private_data = NULL; 78 } 79 } 80 81 static int ocfs2_file_open(struct inode *inode, struct file *file) 82 { 83 int status; 84 int mode = file->f_flags; 85 struct ocfs2_inode_info *oi = OCFS2_I(inode); 86 87 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 88 (unsigned long long)oi->ip_blkno, 89 file->f_path.dentry->d_name.len, 90 file->f_path.dentry->d_name.name, mode); 91 92 if (file->f_mode & FMODE_WRITE) { 93 status = dquot_initialize(inode); 94 if (status) 95 goto leave; 96 } 97 98 spin_lock(&oi->ip_lock); 99 100 /* Check that the inode hasn't been wiped from disk by another 101 * node. If it hasn't then we're safe as long as we hold the 102 * spin lock until our increment of open count. */ 103 if (oi->ip_flags & OCFS2_INODE_DELETED) { 104 spin_unlock(&oi->ip_lock); 105 106 status = -ENOENT; 107 goto leave; 108 } 109 110 if (mode & O_DIRECT) 111 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 112 113 oi->ip_open_count++; 114 spin_unlock(&oi->ip_lock); 115 116 status = ocfs2_init_file_private(inode, file); 117 if (status) { 118 /* 119 * We want to set open count back if we're failing the 120 * open. 121 */ 122 spin_lock(&oi->ip_lock); 123 oi->ip_open_count--; 124 spin_unlock(&oi->ip_lock); 125 } 126 127 file->f_mode |= FMODE_NOWAIT; 128 129 leave: 130 return status; 131 } 132 133 static int ocfs2_file_release(struct inode *inode, struct file *file) 134 { 135 struct ocfs2_inode_info *oi = OCFS2_I(inode); 136 137 spin_lock(&oi->ip_lock); 138 if (!--oi->ip_open_count) 139 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 140 141 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 142 oi->ip_blkno, 143 file->f_path.dentry->d_name.len, 144 file->f_path.dentry->d_name.name, 145 oi->ip_open_count); 146 spin_unlock(&oi->ip_lock); 147 148 ocfs2_free_file_private(inode, file); 149 150 return 0; 151 } 152 153 static int ocfs2_dir_open(struct inode *inode, struct file *file) 154 { 155 return ocfs2_init_file_private(inode, file); 156 } 157 158 static int ocfs2_dir_release(struct inode *inode, struct file *file) 159 { 160 ocfs2_free_file_private(inode, file); 161 return 0; 162 } 163 164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 165 int datasync) 166 { 167 int err = 0; 168 struct inode *inode = file->f_mapping->host; 169 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 170 struct ocfs2_inode_info *oi = OCFS2_I(inode); 171 journal_t *journal = osb->journal->j_journal; 172 int ret; 173 tid_t commit_tid; 174 bool needs_barrier = false; 175 176 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 177 oi->ip_blkno, 178 file->f_path.dentry->d_name.len, 179 file->f_path.dentry->d_name.name, 180 (unsigned long long)datasync); 181 182 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 183 return -EROFS; 184 185 err = file_write_and_wait_range(file, start, end); 186 if (err) 187 return err; 188 189 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 190 if (journal->j_flags & JBD2_BARRIER && 191 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 192 needs_barrier = true; 193 err = jbd2_complete_transaction(journal, commit_tid); 194 if (needs_barrier) { 195 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 196 if (!err) 197 err = ret; 198 } 199 200 if (err) 201 mlog_errno(err); 202 203 return (err < 0) ? -EIO : 0; 204 } 205 206 int ocfs2_should_update_atime(struct inode *inode, 207 struct vfsmount *vfsmnt) 208 { 209 struct timespec64 now; 210 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 211 212 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 213 return 0; 214 215 if ((inode->i_flags & S_NOATIME) || 216 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) 217 return 0; 218 219 /* 220 * We can be called with no vfsmnt structure - NFSD will 221 * sometimes do this. 222 * 223 * Note that our action here is different than touch_atime() - 224 * if we can't tell whether this is a noatime mount, then we 225 * don't know whether to trust the value of s_atime_quantum. 226 */ 227 if (vfsmnt == NULL) 228 return 0; 229 230 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 231 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 232 return 0; 233 234 if (vfsmnt->mnt_flags & MNT_RELATIME) { 235 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 236 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 237 return 1; 238 239 return 0; 240 } 241 242 now = current_time(inode); 243 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 244 return 0; 245 else 246 return 1; 247 } 248 249 int ocfs2_update_inode_atime(struct inode *inode, 250 struct buffer_head *bh) 251 { 252 int ret; 253 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 254 handle_t *handle; 255 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 256 257 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 258 if (IS_ERR(handle)) { 259 ret = PTR_ERR(handle); 260 mlog_errno(ret); 261 goto out; 262 } 263 264 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 265 OCFS2_JOURNAL_ACCESS_WRITE); 266 if (ret) { 267 mlog_errno(ret); 268 goto out_commit; 269 } 270 271 /* 272 * Don't use ocfs2_mark_inode_dirty() here as we don't always 273 * have i_mutex to guard against concurrent changes to other 274 * inode fields. 275 */ 276 inode->i_atime = current_time(inode); 277 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 278 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 279 ocfs2_update_inode_fsync_trans(handle, inode, 0); 280 ocfs2_journal_dirty(handle, bh); 281 282 out_commit: 283 ocfs2_commit_trans(osb, handle); 284 out: 285 return ret; 286 } 287 288 int ocfs2_set_inode_size(handle_t *handle, 289 struct inode *inode, 290 struct buffer_head *fe_bh, 291 u64 new_i_size) 292 { 293 int status; 294 295 i_size_write(inode, new_i_size); 296 inode->i_blocks = ocfs2_inode_sector_count(inode); 297 inode->i_ctime = inode->i_mtime = current_time(inode); 298 299 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 300 if (status < 0) { 301 mlog_errno(status); 302 goto bail; 303 } 304 305 bail: 306 return status; 307 } 308 309 int ocfs2_simple_size_update(struct inode *inode, 310 struct buffer_head *di_bh, 311 u64 new_i_size) 312 { 313 int ret; 314 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 315 handle_t *handle = NULL; 316 317 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 318 if (IS_ERR(handle)) { 319 ret = PTR_ERR(handle); 320 mlog_errno(ret); 321 goto out; 322 } 323 324 ret = ocfs2_set_inode_size(handle, inode, di_bh, 325 new_i_size); 326 if (ret < 0) 327 mlog_errno(ret); 328 329 ocfs2_update_inode_fsync_trans(handle, inode, 0); 330 ocfs2_commit_trans(osb, handle); 331 out: 332 return ret; 333 } 334 335 static int ocfs2_cow_file_pos(struct inode *inode, 336 struct buffer_head *fe_bh, 337 u64 offset) 338 { 339 int status; 340 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 341 unsigned int num_clusters = 0; 342 unsigned int ext_flags = 0; 343 344 /* 345 * If the new offset is aligned to the range of the cluster, there is 346 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 347 * CoW either. 348 */ 349 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 350 return 0; 351 352 status = ocfs2_get_clusters(inode, cpos, &phys, 353 &num_clusters, &ext_flags); 354 if (status) { 355 mlog_errno(status); 356 goto out; 357 } 358 359 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 360 goto out; 361 362 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 363 364 out: 365 return status; 366 } 367 368 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 369 struct inode *inode, 370 struct buffer_head *fe_bh, 371 u64 new_i_size) 372 { 373 int status; 374 handle_t *handle; 375 struct ocfs2_dinode *di; 376 u64 cluster_bytes; 377 378 /* 379 * We need to CoW the cluster contains the offset if it is reflinked 380 * since we will call ocfs2_zero_range_for_truncate later which will 381 * write "0" from offset to the end of the cluster. 382 */ 383 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 384 if (status) { 385 mlog_errno(status); 386 return status; 387 } 388 389 /* TODO: This needs to actually orphan the inode in this 390 * transaction. */ 391 392 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 393 if (IS_ERR(handle)) { 394 status = PTR_ERR(handle); 395 mlog_errno(status); 396 goto out; 397 } 398 399 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 400 OCFS2_JOURNAL_ACCESS_WRITE); 401 if (status < 0) { 402 mlog_errno(status); 403 goto out_commit; 404 } 405 406 /* 407 * Do this before setting i_size. 408 */ 409 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 410 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 411 cluster_bytes); 412 if (status) { 413 mlog_errno(status); 414 goto out_commit; 415 } 416 417 i_size_write(inode, new_i_size); 418 inode->i_ctime = inode->i_mtime = current_time(inode); 419 420 di = (struct ocfs2_dinode *) fe_bh->b_data; 421 di->i_size = cpu_to_le64(new_i_size); 422 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 423 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 424 ocfs2_update_inode_fsync_trans(handle, inode, 0); 425 426 ocfs2_journal_dirty(handle, fe_bh); 427 428 out_commit: 429 ocfs2_commit_trans(osb, handle); 430 out: 431 return status; 432 } 433 434 int ocfs2_truncate_file(struct inode *inode, 435 struct buffer_head *di_bh, 436 u64 new_i_size) 437 { 438 int status = 0; 439 struct ocfs2_dinode *fe = NULL; 440 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 441 442 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 443 * already validated it */ 444 fe = (struct ocfs2_dinode *) di_bh->b_data; 445 446 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 447 (unsigned long long)le64_to_cpu(fe->i_size), 448 (unsigned long long)new_i_size); 449 450 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 451 "Inode %llu, inode i_size = %lld != di " 452 "i_size = %llu, i_flags = 0x%x\n", 453 (unsigned long long)OCFS2_I(inode)->ip_blkno, 454 i_size_read(inode), 455 (unsigned long long)le64_to_cpu(fe->i_size), 456 le32_to_cpu(fe->i_flags)); 457 458 if (new_i_size > le64_to_cpu(fe->i_size)) { 459 trace_ocfs2_truncate_file_error( 460 (unsigned long long)le64_to_cpu(fe->i_size), 461 (unsigned long long)new_i_size); 462 status = -EINVAL; 463 mlog_errno(status); 464 goto bail; 465 } 466 467 down_write(&OCFS2_I(inode)->ip_alloc_sem); 468 469 ocfs2_resv_discard(&osb->osb_la_resmap, 470 &OCFS2_I(inode)->ip_la_data_resv); 471 472 /* 473 * The inode lock forced other nodes to sync and drop their 474 * pages, which (correctly) happens even if we have a truncate 475 * without allocation change - ocfs2 cluster sizes can be much 476 * greater than page size, so we have to truncate them 477 * anyway. 478 */ 479 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 480 truncate_inode_pages(inode->i_mapping, new_i_size); 481 482 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 483 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 484 i_size_read(inode), 1); 485 if (status) 486 mlog_errno(status); 487 488 goto bail_unlock_sem; 489 } 490 491 /* alright, we're going to need to do a full blown alloc size 492 * change. Orphan the inode so that recovery can complete the 493 * truncate if necessary. This does the task of marking 494 * i_size. */ 495 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 496 if (status < 0) { 497 mlog_errno(status); 498 goto bail_unlock_sem; 499 } 500 501 status = ocfs2_commit_truncate(osb, inode, di_bh); 502 if (status < 0) { 503 mlog_errno(status); 504 goto bail_unlock_sem; 505 } 506 507 /* TODO: orphan dir cleanup here. */ 508 bail_unlock_sem: 509 up_write(&OCFS2_I(inode)->ip_alloc_sem); 510 511 bail: 512 if (!status && OCFS2_I(inode)->ip_clusters == 0) 513 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 514 515 return status; 516 } 517 518 /* 519 * extend file allocation only here. 520 * we'll update all the disk stuff, and oip->alloc_size 521 * 522 * expect stuff to be locked, a transaction started and enough data / 523 * metadata reservations in the contexts. 524 * 525 * Will return -EAGAIN, and a reason if a restart is needed. 526 * If passed in, *reason will always be set, even in error. 527 */ 528 int ocfs2_add_inode_data(struct ocfs2_super *osb, 529 struct inode *inode, 530 u32 *logical_offset, 531 u32 clusters_to_add, 532 int mark_unwritten, 533 struct buffer_head *fe_bh, 534 handle_t *handle, 535 struct ocfs2_alloc_context *data_ac, 536 struct ocfs2_alloc_context *meta_ac, 537 enum ocfs2_alloc_restarted *reason_ret) 538 { 539 int ret; 540 struct ocfs2_extent_tree et; 541 542 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 543 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 544 clusters_to_add, mark_unwritten, 545 data_ac, meta_ac, reason_ret); 546 547 return ret; 548 } 549 550 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 551 u32 clusters_to_add, int mark_unwritten) 552 { 553 int status = 0; 554 int restart_func = 0; 555 int credits; 556 u32 prev_clusters; 557 struct buffer_head *bh = NULL; 558 struct ocfs2_dinode *fe = NULL; 559 handle_t *handle = NULL; 560 struct ocfs2_alloc_context *data_ac = NULL; 561 struct ocfs2_alloc_context *meta_ac = NULL; 562 enum ocfs2_alloc_restarted why = RESTART_NONE; 563 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 564 struct ocfs2_extent_tree et; 565 int did_quota = 0; 566 567 /* 568 * Unwritten extent only exists for file systems which 569 * support holes. 570 */ 571 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 572 573 status = ocfs2_read_inode_block(inode, &bh); 574 if (status < 0) { 575 mlog_errno(status); 576 goto leave; 577 } 578 fe = (struct ocfs2_dinode *) bh->b_data; 579 580 restart_all: 581 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 582 583 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 584 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 585 &data_ac, &meta_ac); 586 if (status) { 587 mlog_errno(status); 588 goto leave; 589 } 590 591 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 592 handle = ocfs2_start_trans(osb, credits); 593 if (IS_ERR(handle)) { 594 status = PTR_ERR(handle); 595 handle = NULL; 596 mlog_errno(status); 597 goto leave; 598 } 599 600 restarted_transaction: 601 trace_ocfs2_extend_allocation( 602 (unsigned long long)OCFS2_I(inode)->ip_blkno, 603 (unsigned long long)i_size_read(inode), 604 le32_to_cpu(fe->i_clusters), clusters_to_add, 605 why, restart_func); 606 607 status = dquot_alloc_space_nodirty(inode, 608 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 609 if (status) 610 goto leave; 611 did_quota = 1; 612 613 /* reserve a write to the file entry early on - that we if we 614 * run out of credits in the allocation path, we can still 615 * update i_size. */ 616 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 617 OCFS2_JOURNAL_ACCESS_WRITE); 618 if (status < 0) { 619 mlog_errno(status); 620 goto leave; 621 } 622 623 prev_clusters = OCFS2_I(inode)->ip_clusters; 624 625 status = ocfs2_add_inode_data(osb, 626 inode, 627 &logical_start, 628 clusters_to_add, 629 mark_unwritten, 630 bh, 631 handle, 632 data_ac, 633 meta_ac, 634 &why); 635 if ((status < 0) && (status != -EAGAIN)) { 636 if (status != -ENOSPC) 637 mlog_errno(status); 638 goto leave; 639 } 640 ocfs2_update_inode_fsync_trans(handle, inode, 1); 641 ocfs2_journal_dirty(handle, bh); 642 643 spin_lock(&OCFS2_I(inode)->ip_lock); 644 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 645 spin_unlock(&OCFS2_I(inode)->ip_lock); 646 /* Release unused quota reservation */ 647 dquot_free_space(inode, 648 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 649 did_quota = 0; 650 651 if (why != RESTART_NONE && clusters_to_add) { 652 if (why == RESTART_META) { 653 restart_func = 1; 654 status = 0; 655 } else { 656 BUG_ON(why != RESTART_TRANS); 657 658 status = ocfs2_allocate_extend_trans(handle, 1); 659 if (status < 0) { 660 /* handle still has to be committed at 661 * this point. */ 662 status = -ENOMEM; 663 mlog_errno(status); 664 goto leave; 665 } 666 goto restarted_transaction; 667 } 668 } 669 670 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 671 le32_to_cpu(fe->i_clusters), 672 (unsigned long long)le64_to_cpu(fe->i_size), 673 OCFS2_I(inode)->ip_clusters, 674 (unsigned long long)i_size_read(inode)); 675 676 leave: 677 if (status < 0 && did_quota) 678 dquot_free_space(inode, 679 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 680 if (handle) { 681 ocfs2_commit_trans(osb, handle); 682 handle = NULL; 683 } 684 if (data_ac) { 685 ocfs2_free_alloc_context(data_ac); 686 data_ac = NULL; 687 } 688 if (meta_ac) { 689 ocfs2_free_alloc_context(meta_ac); 690 meta_ac = NULL; 691 } 692 if ((!status) && restart_func) { 693 restart_func = 0; 694 goto restart_all; 695 } 696 brelse(bh); 697 bh = NULL; 698 699 return status; 700 } 701 702 /* 703 * While a write will already be ordering the data, a truncate will not. 704 * Thus, we need to explicitly order the zeroed pages. 705 */ 706 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 707 struct buffer_head *di_bh, 708 loff_t start_byte, 709 loff_t length) 710 { 711 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 712 handle_t *handle = NULL; 713 int ret = 0; 714 715 if (!ocfs2_should_order_data(inode)) 716 goto out; 717 718 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 719 if (IS_ERR(handle)) { 720 ret = -ENOMEM; 721 mlog_errno(ret); 722 goto out; 723 } 724 725 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); 726 if (ret < 0) { 727 mlog_errno(ret); 728 goto out; 729 } 730 731 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 732 OCFS2_JOURNAL_ACCESS_WRITE); 733 if (ret) 734 mlog_errno(ret); 735 ocfs2_update_inode_fsync_trans(handle, inode, 1); 736 737 out: 738 if (ret) { 739 if (!IS_ERR(handle)) 740 ocfs2_commit_trans(osb, handle); 741 handle = ERR_PTR(ret); 742 } 743 return handle; 744 } 745 746 /* Some parts of this taken from generic_cont_expand, which turned out 747 * to be too fragile to do exactly what we need without us having to 748 * worry about recursive locking in ->write_begin() and ->write_end(). */ 749 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 750 u64 abs_to, struct buffer_head *di_bh) 751 { 752 struct address_space *mapping = inode->i_mapping; 753 struct page *page; 754 unsigned long index = abs_from >> PAGE_SHIFT; 755 handle_t *handle; 756 int ret = 0; 757 unsigned zero_from, zero_to, block_start, block_end; 758 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 759 760 BUG_ON(abs_from >= abs_to); 761 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); 762 BUG_ON(abs_from & (inode->i_blkbits - 1)); 763 764 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh, 765 abs_from, 766 abs_to - abs_from); 767 if (IS_ERR(handle)) { 768 ret = PTR_ERR(handle); 769 goto out; 770 } 771 772 page = find_or_create_page(mapping, index, GFP_NOFS); 773 if (!page) { 774 ret = -ENOMEM; 775 mlog_errno(ret); 776 goto out_commit_trans; 777 } 778 779 /* Get the offsets within the page that we want to zero */ 780 zero_from = abs_from & (PAGE_SIZE - 1); 781 zero_to = abs_to & (PAGE_SIZE - 1); 782 if (!zero_to) 783 zero_to = PAGE_SIZE; 784 785 trace_ocfs2_write_zero_page( 786 (unsigned long long)OCFS2_I(inode)->ip_blkno, 787 (unsigned long long)abs_from, 788 (unsigned long long)abs_to, 789 index, zero_from, zero_to); 790 791 /* We know that zero_from is block aligned */ 792 for (block_start = zero_from; block_start < zero_to; 793 block_start = block_end) { 794 block_end = block_start + i_blocksize(inode); 795 796 /* 797 * block_start is block-aligned. Bump it by one to force 798 * __block_write_begin and block_commit_write to zero the 799 * whole block. 800 */ 801 ret = __block_write_begin(page, block_start + 1, 0, 802 ocfs2_get_block); 803 if (ret < 0) { 804 mlog_errno(ret); 805 goto out_unlock; 806 } 807 808 809 /* must not update i_size! */ 810 ret = block_commit_write(page, block_start + 1, 811 block_start + 1); 812 if (ret < 0) 813 mlog_errno(ret); 814 else 815 ret = 0; 816 } 817 818 /* 819 * fs-writeback will release the dirty pages without page lock 820 * whose offset are over inode size, the release happens at 821 * block_write_full_page(). 822 */ 823 i_size_write(inode, abs_to); 824 inode->i_blocks = ocfs2_inode_sector_count(inode); 825 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 826 inode->i_mtime = inode->i_ctime = current_time(inode); 827 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 828 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 829 di->i_mtime_nsec = di->i_ctime_nsec; 830 if (handle) { 831 ocfs2_journal_dirty(handle, di_bh); 832 ocfs2_update_inode_fsync_trans(handle, inode, 1); 833 } 834 835 out_unlock: 836 unlock_page(page); 837 put_page(page); 838 out_commit_trans: 839 if (handle) 840 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 841 out: 842 return ret; 843 } 844 845 /* 846 * Find the next range to zero. We do this in terms of bytes because 847 * that's what ocfs2_zero_extend() wants, and it is dealing with the 848 * pagecache. We may return multiple extents. 849 * 850 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 851 * needs to be zeroed. range_start and range_end return the next zeroing 852 * range. A subsequent call should pass the previous range_end as its 853 * zero_start. If range_end is 0, there's nothing to do. 854 * 855 * Unwritten extents are skipped over. Refcounted extents are CoWd. 856 */ 857 static int ocfs2_zero_extend_get_range(struct inode *inode, 858 struct buffer_head *di_bh, 859 u64 zero_start, u64 zero_end, 860 u64 *range_start, u64 *range_end) 861 { 862 int rc = 0, needs_cow = 0; 863 u32 p_cpos, zero_clusters = 0; 864 u32 zero_cpos = 865 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 866 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 867 unsigned int num_clusters = 0; 868 unsigned int ext_flags = 0; 869 870 while (zero_cpos < last_cpos) { 871 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 872 &num_clusters, &ext_flags); 873 if (rc) { 874 mlog_errno(rc); 875 goto out; 876 } 877 878 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 879 zero_clusters = num_clusters; 880 if (ext_flags & OCFS2_EXT_REFCOUNTED) 881 needs_cow = 1; 882 break; 883 } 884 885 zero_cpos += num_clusters; 886 } 887 if (!zero_clusters) { 888 *range_end = 0; 889 goto out; 890 } 891 892 while ((zero_cpos + zero_clusters) < last_cpos) { 893 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 894 &p_cpos, &num_clusters, 895 &ext_flags); 896 if (rc) { 897 mlog_errno(rc); 898 goto out; 899 } 900 901 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 902 break; 903 if (ext_flags & OCFS2_EXT_REFCOUNTED) 904 needs_cow = 1; 905 zero_clusters += num_clusters; 906 } 907 if ((zero_cpos + zero_clusters) > last_cpos) 908 zero_clusters = last_cpos - zero_cpos; 909 910 if (needs_cow) { 911 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 912 zero_clusters, UINT_MAX); 913 if (rc) { 914 mlog_errno(rc); 915 goto out; 916 } 917 } 918 919 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 920 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 921 zero_cpos + zero_clusters); 922 923 out: 924 return rc; 925 } 926 927 /* 928 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 929 * has made sure that the entire range needs zeroing. 930 */ 931 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 932 u64 range_end, struct buffer_head *di_bh) 933 { 934 int rc = 0; 935 u64 next_pos; 936 u64 zero_pos = range_start; 937 938 trace_ocfs2_zero_extend_range( 939 (unsigned long long)OCFS2_I(inode)->ip_blkno, 940 (unsigned long long)range_start, 941 (unsigned long long)range_end); 942 BUG_ON(range_start >= range_end); 943 944 while (zero_pos < range_end) { 945 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; 946 if (next_pos > range_end) 947 next_pos = range_end; 948 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 949 if (rc < 0) { 950 mlog_errno(rc); 951 break; 952 } 953 zero_pos = next_pos; 954 955 /* 956 * Very large extends have the potential to lock up 957 * the cpu for extended periods of time. 958 */ 959 cond_resched(); 960 } 961 962 return rc; 963 } 964 965 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 966 loff_t zero_to_size) 967 { 968 int ret = 0; 969 u64 zero_start, range_start = 0, range_end = 0; 970 struct super_block *sb = inode->i_sb; 971 972 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 973 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 974 (unsigned long long)zero_start, 975 (unsigned long long)i_size_read(inode)); 976 while (zero_start < zero_to_size) { 977 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 978 zero_to_size, 979 &range_start, 980 &range_end); 981 if (ret) { 982 mlog_errno(ret); 983 break; 984 } 985 if (!range_end) 986 break; 987 /* Trim the ends */ 988 if (range_start < zero_start) 989 range_start = zero_start; 990 if (range_end > zero_to_size) 991 range_end = zero_to_size; 992 993 ret = ocfs2_zero_extend_range(inode, range_start, 994 range_end, di_bh); 995 if (ret) { 996 mlog_errno(ret); 997 break; 998 } 999 zero_start = range_end; 1000 } 1001 1002 return ret; 1003 } 1004 1005 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1006 u64 new_i_size, u64 zero_to) 1007 { 1008 int ret; 1009 u32 clusters_to_add; 1010 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1011 1012 /* 1013 * Only quota files call this without a bh, and they can't be 1014 * refcounted. 1015 */ 1016 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); 1017 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1018 1019 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1020 if (clusters_to_add < oi->ip_clusters) 1021 clusters_to_add = 0; 1022 else 1023 clusters_to_add -= oi->ip_clusters; 1024 1025 if (clusters_to_add) { 1026 ret = ocfs2_extend_allocation(inode, oi->ip_clusters, 1027 clusters_to_add, 0); 1028 if (ret) { 1029 mlog_errno(ret); 1030 goto out; 1031 } 1032 } 1033 1034 /* 1035 * Call this even if we don't add any clusters to the tree. We 1036 * still need to zero the area between the old i_size and the 1037 * new i_size. 1038 */ 1039 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1040 if (ret < 0) 1041 mlog_errno(ret); 1042 1043 out: 1044 return ret; 1045 } 1046 1047 static int ocfs2_extend_file(struct inode *inode, 1048 struct buffer_head *di_bh, 1049 u64 new_i_size) 1050 { 1051 int ret = 0; 1052 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1053 1054 BUG_ON(!di_bh); 1055 1056 /* setattr sometimes calls us like this. */ 1057 if (new_i_size == 0) 1058 goto out; 1059 1060 if (i_size_read(inode) == new_i_size) 1061 goto out; 1062 BUG_ON(new_i_size < i_size_read(inode)); 1063 1064 /* 1065 * The alloc sem blocks people in read/write from reading our 1066 * allocation until we're done changing it. We depend on 1067 * i_mutex to block other extend/truncate calls while we're 1068 * here. We even have to hold it for sparse files because there 1069 * might be some tail zeroing. 1070 */ 1071 down_write(&oi->ip_alloc_sem); 1072 1073 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1074 /* 1075 * We can optimize small extends by keeping the inodes 1076 * inline data. 1077 */ 1078 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1079 up_write(&oi->ip_alloc_sem); 1080 goto out_update_size; 1081 } 1082 1083 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1084 if (ret) { 1085 up_write(&oi->ip_alloc_sem); 1086 mlog_errno(ret); 1087 goto out; 1088 } 1089 } 1090 1091 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1092 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1093 else 1094 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1095 new_i_size); 1096 1097 up_write(&oi->ip_alloc_sem); 1098 1099 if (ret < 0) { 1100 mlog_errno(ret); 1101 goto out; 1102 } 1103 1104 out_update_size: 1105 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1106 if (ret < 0) 1107 mlog_errno(ret); 1108 1109 out: 1110 return ret; 1111 } 1112 1113 int ocfs2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 1114 struct iattr *attr) 1115 { 1116 int status = 0, size_change; 1117 int inode_locked = 0; 1118 struct inode *inode = d_inode(dentry); 1119 struct super_block *sb = inode->i_sb; 1120 struct ocfs2_super *osb = OCFS2_SB(sb); 1121 struct buffer_head *bh = NULL; 1122 handle_t *handle = NULL; 1123 struct dquot *transfer_to[MAXQUOTAS] = { }; 1124 int qtype; 1125 int had_lock; 1126 struct ocfs2_lock_holder oh; 1127 1128 trace_ocfs2_setattr(inode, dentry, 1129 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1130 dentry->d_name.len, dentry->d_name.name, 1131 attr->ia_valid, attr->ia_mode, 1132 from_kuid(&init_user_ns, attr->ia_uid), 1133 from_kgid(&init_user_ns, attr->ia_gid)); 1134 1135 /* ensuring we don't even attempt to truncate a symlink */ 1136 if (S_ISLNK(inode->i_mode)) 1137 attr->ia_valid &= ~ATTR_SIZE; 1138 1139 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1140 | ATTR_GID | ATTR_UID | ATTR_MODE) 1141 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1142 return 0; 1143 1144 status = setattr_prepare(&init_user_ns, dentry, attr); 1145 if (status) 1146 return status; 1147 1148 if (is_quota_modification(inode, attr)) { 1149 status = dquot_initialize(inode); 1150 if (status) 1151 return status; 1152 } 1153 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1154 if (size_change) { 1155 /* 1156 * Here we should wait dio to finish before inode lock 1157 * to avoid a deadlock between ocfs2_setattr() and 1158 * ocfs2_dio_end_io_write() 1159 */ 1160 inode_dio_wait(inode); 1161 1162 status = ocfs2_rw_lock(inode, 1); 1163 if (status < 0) { 1164 mlog_errno(status); 1165 goto bail; 1166 } 1167 } 1168 1169 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); 1170 if (had_lock < 0) { 1171 status = had_lock; 1172 goto bail_unlock_rw; 1173 } else if (had_lock) { 1174 /* 1175 * As far as we know, ocfs2_setattr() could only be the first 1176 * VFS entry point in the call chain of recursive cluster 1177 * locking issue. 1178 * 1179 * For instance: 1180 * chmod_common() 1181 * notify_change() 1182 * ocfs2_setattr() 1183 * posix_acl_chmod() 1184 * ocfs2_iop_get_acl() 1185 * 1186 * But, we're not 100% sure if it's always true, because the 1187 * ordering of the VFS entry points in the call chain is out 1188 * of our control. So, we'd better dump the stack here to 1189 * catch the other cases of recursive locking. 1190 */ 1191 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1192 dump_stack(); 1193 } 1194 inode_locked = 1; 1195 1196 if (size_change) { 1197 status = inode_newsize_ok(inode, attr->ia_size); 1198 if (status) 1199 goto bail_unlock; 1200 1201 if (i_size_read(inode) >= attr->ia_size) { 1202 if (ocfs2_should_order_data(inode)) { 1203 status = ocfs2_begin_ordered_truncate(inode, 1204 attr->ia_size); 1205 if (status) 1206 goto bail_unlock; 1207 } 1208 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1209 } else 1210 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1211 if (status < 0) { 1212 if (status != -ENOSPC) 1213 mlog_errno(status); 1214 status = -ENOSPC; 1215 goto bail_unlock; 1216 } 1217 } 1218 1219 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1220 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1221 /* 1222 * Gather pointers to quota structures so that allocation / 1223 * freeing of quota structures happens here and not inside 1224 * dquot_transfer() where we have problems with lock ordering 1225 */ 1226 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1227 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1228 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1229 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1230 if (IS_ERR(transfer_to[USRQUOTA])) { 1231 status = PTR_ERR(transfer_to[USRQUOTA]); 1232 transfer_to[USRQUOTA] = NULL; 1233 goto bail_unlock; 1234 } 1235 } 1236 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1237 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1238 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1239 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1240 if (IS_ERR(transfer_to[GRPQUOTA])) { 1241 status = PTR_ERR(transfer_to[GRPQUOTA]); 1242 transfer_to[GRPQUOTA] = NULL; 1243 goto bail_unlock; 1244 } 1245 } 1246 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1247 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1248 2 * ocfs2_quota_trans_credits(sb)); 1249 if (IS_ERR(handle)) { 1250 status = PTR_ERR(handle); 1251 mlog_errno(status); 1252 goto bail_unlock_alloc; 1253 } 1254 status = __dquot_transfer(inode, transfer_to); 1255 if (status < 0) 1256 goto bail_commit; 1257 } else { 1258 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1260 if (IS_ERR(handle)) { 1261 status = PTR_ERR(handle); 1262 mlog_errno(status); 1263 goto bail_unlock_alloc; 1264 } 1265 } 1266 1267 setattr_copy(&init_user_ns, inode, attr); 1268 mark_inode_dirty(inode); 1269 1270 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1271 if (status < 0) 1272 mlog_errno(status); 1273 1274 bail_commit: 1275 ocfs2_commit_trans(osb, handle); 1276 bail_unlock_alloc: 1277 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1278 bail_unlock: 1279 if (status && inode_locked) { 1280 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1281 inode_locked = 0; 1282 } 1283 bail_unlock_rw: 1284 if (size_change) 1285 ocfs2_rw_unlock(inode, 1); 1286 bail: 1287 1288 /* Release quota pointers in case we acquired them */ 1289 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1290 dqput(transfer_to[qtype]); 1291 1292 if (!status && attr->ia_valid & ATTR_MODE) { 1293 status = ocfs2_acl_chmod(inode, bh); 1294 if (status < 0) 1295 mlog_errno(status); 1296 } 1297 if (inode_locked) 1298 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1299 1300 brelse(bh); 1301 return status; 1302 } 1303 1304 int ocfs2_getattr(struct user_namespace *mnt_userns, const struct path *path, 1305 struct kstat *stat, u32 request_mask, unsigned int flags) 1306 { 1307 struct inode *inode = d_inode(path->dentry); 1308 struct super_block *sb = path->dentry->d_sb; 1309 struct ocfs2_super *osb = sb->s_fs_info; 1310 int err; 1311 1312 err = ocfs2_inode_revalidate(path->dentry); 1313 if (err) { 1314 if (err != -ENOENT) 1315 mlog_errno(err); 1316 goto bail; 1317 } 1318 1319 generic_fillattr(&init_user_ns, inode, stat); 1320 /* 1321 * If there is inline data in the inode, the inode will normally not 1322 * have data blocks allocated (it may have an external xattr block). 1323 * Report at least one sector for such files, so tools like tar, rsync, 1324 * others don't incorrectly think the file is completely sparse. 1325 */ 1326 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1327 stat->blocks += (stat->size + 511)>>9; 1328 1329 /* We set the blksize from the cluster size for performance */ 1330 stat->blksize = osb->s_clustersize; 1331 1332 bail: 1333 return err; 1334 } 1335 1336 int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode, 1337 int mask) 1338 { 1339 int ret, had_lock; 1340 struct ocfs2_lock_holder oh; 1341 1342 if (mask & MAY_NOT_BLOCK) 1343 return -ECHILD; 1344 1345 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); 1346 if (had_lock < 0) { 1347 ret = had_lock; 1348 goto out; 1349 } else if (had_lock) { 1350 /* See comments in ocfs2_setattr() for details. 1351 * The call chain of this case could be: 1352 * do_sys_open() 1353 * may_open() 1354 * inode_permission() 1355 * ocfs2_permission() 1356 * ocfs2_iop_get_acl() 1357 */ 1358 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1359 dump_stack(); 1360 } 1361 1362 ret = generic_permission(&init_user_ns, inode, mask); 1363 1364 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); 1365 out: 1366 return ret; 1367 } 1368 1369 static int __ocfs2_write_remove_suid(struct inode *inode, 1370 struct buffer_head *bh) 1371 { 1372 int ret; 1373 handle_t *handle; 1374 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1375 struct ocfs2_dinode *di; 1376 1377 trace_ocfs2_write_remove_suid( 1378 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1379 inode->i_mode); 1380 1381 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1382 if (IS_ERR(handle)) { 1383 ret = PTR_ERR(handle); 1384 mlog_errno(ret); 1385 goto out; 1386 } 1387 1388 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1389 OCFS2_JOURNAL_ACCESS_WRITE); 1390 if (ret < 0) { 1391 mlog_errno(ret); 1392 goto out_trans; 1393 } 1394 1395 inode->i_mode &= ~S_ISUID; 1396 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1397 inode->i_mode &= ~S_ISGID; 1398 1399 di = (struct ocfs2_dinode *) bh->b_data; 1400 di->i_mode = cpu_to_le16(inode->i_mode); 1401 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1402 1403 ocfs2_journal_dirty(handle, bh); 1404 1405 out_trans: 1406 ocfs2_commit_trans(osb, handle); 1407 out: 1408 return ret; 1409 } 1410 1411 static int ocfs2_write_remove_suid(struct inode *inode) 1412 { 1413 int ret; 1414 struct buffer_head *bh = NULL; 1415 1416 ret = ocfs2_read_inode_block(inode, &bh); 1417 if (ret < 0) { 1418 mlog_errno(ret); 1419 goto out; 1420 } 1421 1422 ret = __ocfs2_write_remove_suid(inode, bh); 1423 out: 1424 brelse(bh); 1425 return ret; 1426 } 1427 1428 /* 1429 * Allocate enough extents to cover the region starting at byte offset 1430 * start for len bytes. Existing extents are skipped, any extents 1431 * added are marked as "unwritten". 1432 */ 1433 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1434 u64 start, u64 len) 1435 { 1436 int ret; 1437 u32 cpos, phys_cpos, clusters, alloc_size; 1438 u64 end = start + len; 1439 struct buffer_head *di_bh = NULL; 1440 1441 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1442 ret = ocfs2_read_inode_block(inode, &di_bh); 1443 if (ret) { 1444 mlog_errno(ret); 1445 goto out; 1446 } 1447 1448 /* 1449 * Nothing to do if the requested reservation range 1450 * fits within the inode. 1451 */ 1452 if (ocfs2_size_fits_inline_data(di_bh, end)) 1453 goto out; 1454 1455 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1456 if (ret) { 1457 mlog_errno(ret); 1458 goto out; 1459 } 1460 } 1461 1462 /* 1463 * We consider both start and len to be inclusive. 1464 */ 1465 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1466 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1467 clusters -= cpos; 1468 1469 while (clusters) { 1470 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1471 &alloc_size, NULL); 1472 if (ret) { 1473 mlog_errno(ret); 1474 goto out; 1475 } 1476 1477 /* 1478 * Hole or existing extent len can be arbitrary, so 1479 * cap it to our own allocation request. 1480 */ 1481 if (alloc_size > clusters) 1482 alloc_size = clusters; 1483 1484 if (phys_cpos) { 1485 /* 1486 * We already have an allocation at this 1487 * region so we can safely skip it. 1488 */ 1489 goto next; 1490 } 1491 1492 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1493 if (ret) { 1494 if (ret != -ENOSPC) 1495 mlog_errno(ret); 1496 goto out; 1497 } 1498 1499 next: 1500 cpos += alloc_size; 1501 clusters -= alloc_size; 1502 } 1503 1504 ret = 0; 1505 out: 1506 1507 brelse(di_bh); 1508 return ret; 1509 } 1510 1511 /* 1512 * Truncate a byte range, avoiding pages within partial clusters. This 1513 * preserves those pages for the zeroing code to write to. 1514 */ 1515 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1516 u64 byte_len) 1517 { 1518 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1519 loff_t start, end; 1520 struct address_space *mapping = inode->i_mapping; 1521 1522 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1523 end = byte_start + byte_len; 1524 end = end & ~(osb->s_clustersize - 1); 1525 1526 if (start < end) { 1527 unmap_mapping_range(mapping, start, end - start, 0); 1528 truncate_inode_pages_range(mapping, start, end - 1); 1529 } 1530 } 1531 1532 /* 1533 * zero out partial blocks of one cluster. 1534 * 1535 * start: file offset where zero starts, will be made upper block aligned. 1536 * len: it will be trimmed to the end of current cluster if "start + len" 1537 * is bigger than it. 1538 */ 1539 static int ocfs2_zeroout_partial_cluster(struct inode *inode, 1540 u64 start, u64 len) 1541 { 1542 int ret; 1543 u64 start_block, end_block, nr_blocks; 1544 u64 p_block, offset; 1545 u32 cluster, p_cluster, nr_clusters; 1546 struct super_block *sb = inode->i_sb; 1547 u64 end = ocfs2_align_bytes_to_clusters(sb, start); 1548 1549 if (start + len < end) 1550 end = start + len; 1551 1552 start_block = ocfs2_blocks_for_bytes(sb, start); 1553 end_block = ocfs2_blocks_for_bytes(sb, end); 1554 nr_blocks = end_block - start_block; 1555 if (!nr_blocks) 1556 return 0; 1557 1558 cluster = ocfs2_bytes_to_clusters(sb, start); 1559 ret = ocfs2_get_clusters(inode, cluster, &p_cluster, 1560 &nr_clusters, NULL); 1561 if (ret) 1562 return ret; 1563 if (!p_cluster) 1564 return 0; 1565 1566 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster); 1567 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset; 1568 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS); 1569 } 1570 1571 static int ocfs2_zero_partial_clusters(struct inode *inode, 1572 u64 start, u64 len) 1573 { 1574 int ret = 0; 1575 u64 tmpend = 0; 1576 u64 end = start + len; 1577 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1578 unsigned int csize = osb->s_clustersize; 1579 handle_t *handle; 1580 loff_t isize = i_size_read(inode); 1581 1582 /* 1583 * The "start" and "end" values are NOT necessarily part of 1584 * the range whose allocation is being deleted. Rather, this 1585 * is what the user passed in with the request. We must zero 1586 * partial clusters here. There's no need to worry about 1587 * physical allocation - the zeroing code knows to skip holes. 1588 */ 1589 trace_ocfs2_zero_partial_clusters( 1590 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1591 (unsigned long long)start, (unsigned long long)end); 1592 1593 /* 1594 * If both edges are on a cluster boundary then there's no 1595 * zeroing required as the region is part of the allocation to 1596 * be truncated. 1597 */ 1598 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1599 goto out; 1600 1601 /* No page cache for EOF blocks, issue zero out to disk. */ 1602 if (end > isize) { 1603 /* 1604 * zeroout eof blocks in last cluster starting from 1605 * "isize" even "start" > "isize" because it is 1606 * complicated to zeroout just at "start" as "start" 1607 * may be not aligned with block size, buffer write 1608 * would be required to do that, but out of eof buffer 1609 * write is not supported. 1610 */ 1611 ret = ocfs2_zeroout_partial_cluster(inode, isize, 1612 end - isize); 1613 if (ret) { 1614 mlog_errno(ret); 1615 goto out; 1616 } 1617 if (start >= isize) 1618 goto out; 1619 end = isize; 1620 } 1621 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1622 if (IS_ERR(handle)) { 1623 ret = PTR_ERR(handle); 1624 mlog_errno(ret); 1625 goto out; 1626 } 1627 1628 /* 1629 * If start is on a cluster boundary and end is somewhere in another 1630 * cluster, we have not COWed the cluster starting at start, unless 1631 * end is also within the same cluster. So, in this case, we skip this 1632 * first call to ocfs2_zero_range_for_truncate() truncate and move on 1633 * to the next one. 1634 */ 1635 if ((start & (csize - 1)) != 0) { 1636 /* 1637 * We want to get the byte offset of the end of the 1st 1638 * cluster. 1639 */ 1640 tmpend = (u64)osb->s_clustersize + 1641 (start & ~(osb->s_clustersize - 1)); 1642 if (tmpend > end) 1643 tmpend = end; 1644 1645 trace_ocfs2_zero_partial_clusters_range1( 1646 (unsigned long long)start, 1647 (unsigned long long)tmpend); 1648 1649 ret = ocfs2_zero_range_for_truncate(inode, handle, start, 1650 tmpend); 1651 if (ret) 1652 mlog_errno(ret); 1653 } 1654 1655 if (tmpend < end) { 1656 /* 1657 * This may make start and end equal, but the zeroing 1658 * code will skip any work in that case so there's no 1659 * need to catch it up here. 1660 */ 1661 start = end & ~(osb->s_clustersize - 1); 1662 1663 trace_ocfs2_zero_partial_clusters_range2( 1664 (unsigned long long)start, (unsigned long long)end); 1665 1666 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1667 if (ret) 1668 mlog_errno(ret); 1669 } 1670 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1671 1672 ocfs2_commit_trans(osb, handle); 1673 out: 1674 return ret; 1675 } 1676 1677 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1678 { 1679 int i; 1680 struct ocfs2_extent_rec *rec = NULL; 1681 1682 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1683 1684 rec = &el->l_recs[i]; 1685 1686 if (le32_to_cpu(rec->e_cpos) < pos) 1687 break; 1688 } 1689 1690 return i; 1691 } 1692 1693 /* 1694 * Helper to calculate the punching pos and length in one run, we handle the 1695 * following three cases in order: 1696 * 1697 * - remove the entire record 1698 * - remove a partial record 1699 * - no record needs to be removed (hole-punching completed) 1700 */ 1701 static void ocfs2_calc_trunc_pos(struct inode *inode, 1702 struct ocfs2_extent_list *el, 1703 struct ocfs2_extent_rec *rec, 1704 u32 trunc_start, u32 *trunc_cpos, 1705 u32 *trunc_len, u32 *trunc_end, 1706 u64 *blkno, int *done) 1707 { 1708 int ret = 0; 1709 u32 coff, range; 1710 1711 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1712 1713 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1714 /* 1715 * remove an entire extent record. 1716 */ 1717 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1718 /* 1719 * Skip holes if any. 1720 */ 1721 if (range < *trunc_end) 1722 *trunc_end = range; 1723 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1724 *blkno = le64_to_cpu(rec->e_blkno); 1725 *trunc_end = le32_to_cpu(rec->e_cpos); 1726 } else if (range > trunc_start) { 1727 /* 1728 * remove a partial extent record, which means we're 1729 * removing the last extent record. 1730 */ 1731 *trunc_cpos = trunc_start; 1732 /* 1733 * skip hole if any. 1734 */ 1735 if (range < *trunc_end) 1736 *trunc_end = range; 1737 *trunc_len = *trunc_end - trunc_start; 1738 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1739 *blkno = le64_to_cpu(rec->e_blkno) + 1740 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1741 *trunc_end = trunc_start; 1742 } else { 1743 /* 1744 * It may have two following possibilities: 1745 * 1746 * - last record has been removed 1747 * - trunc_start was within a hole 1748 * 1749 * both two cases mean the completion of hole punching. 1750 */ 1751 ret = 1; 1752 } 1753 1754 *done = ret; 1755 } 1756 1757 int ocfs2_remove_inode_range(struct inode *inode, 1758 struct buffer_head *di_bh, u64 byte_start, 1759 u64 byte_len) 1760 { 1761 int ret = 0, flags = 0, done = 0, i; 1762 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1763 u32 cluster_in_el; 1764 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1765 struct ocfs2_cached_dealloc_ctxt dealloc; 1766 struct address_space *mapping = inode->i_mapping; 1767 struct ocfs2_extent_tree et; 1768 struct ocfs2_path *path = NULL; 1769 struct ocfs2_extent_list *el = NULL; 1770 struct ocfs2_extent_rec *rec = NULL; 1771 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1772 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1773 1774 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1775 ocfs2_init_dealloc_ctxt(&dealloc); 1776 1777 trace_ocfs2_remove_inode_range( 1778 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1779 (unsigned long long)byte_start, 1780 (unsigned long long)byte_len); 1781 1782 if (byte_len == 0) 1783 return 0; 1784 1785 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1786 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1787 byte_start + byte_len, 0); 1788 if (ret) { 1789 mlog_errno(ret); 1790 goto out; 1791 } 1792 /* 1793 * There's no need to get fancy with the page cache 1794 * truncate of an inline-data inode. We're talking 1795 * about less than a page here, which will be cached 1796 * in the dinode buffer anyway. 1797 */ 1798 unmap_mapping_range(mapping, 0, 0, 0); 1799 truncate_inode_pages(mapping, 0); 1800 goto out; 1801 } 1802 1803 /* 1804 * For reflinks, we may need to CoW 2 clusters which might be 1805 * partially zero'd later, if hole's start and end offset were 1806 * within one cluster(means is not exactly aligned to clustersize). 1807 */ 1808 1809 if (ocfs2_is_refcount_inode(inode)) { 1810 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1811 if (ret) { 1812 mlog_errno(ret); 1813 goto out; 1814 } 1815 1816 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1817 if (ret) { 1818 mlog_errno(ret); 1819 goto out; 1820 } 1821 } 1822 1823 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1824 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1825 cluster_in_el = trunc_end; 1826 1827 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1828 if (ret) { 1829 mlog_errno(ret); 1830 goto out; 1831 } 1832 1833 path = ocfs2_new_path_from_et(&et); 1834 if (!path) { 1835 ret = -ENOMEM; 1836 mlog_errno(ret); 1837 goto out; 1838 } 1839 1840 while (trunc_end > trunc_start) { 1841 1842 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1843 cluster_in_el); 1844 if (ret) { 1845 mlog_errno(ret); 1846 goto out; 1847 } 1848 1849 el = path_leaf_el(path); 1850 1851 i = ocfs2_find_rec(el, trunc_end); 1852 /* 1853 * Need to go to previous extent block. 1854 */ 1855 if (i < 0) { 1856 if (path->p_tree_depth == 0) 1857 break; 1858 1859 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1860 path, 1861 &cluster_in_el); 1862 if (ret) { 1863 mlog_errno(ret); 1864 goto out; 1865 } 1866 1867 /* 1868 * We've reached the leftmost extent block, 1869 * it's safe to leave. 1870 */ 1871 if (cluster_in_el == 0) 1872 break; 1873 1874 /* 1875 * The 'pos' searched for previous extent block is 1876 * always one cluster less than actual trunc_end. 1877 */ 1878 trunc_end = cluster_in_el + 1; 1879 1880 ocfs2_reinit_path(path, 1); 1881 1882 continue; 1883 1884 } else 1885 rec = &el->l_recs[i]; 1886 1887 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1888 &trunc_len, &trunc_end, &blkno, &done); 1889 if (done) 1890 break; 1891 1892 flags = rec->e_flags; 1893 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1894 1895 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1896 phys_cpos, trunc_len, flags, 1897 &dealloc, refcount_loc, false); 1898 if (ret < 0) { 1899 mlog_errno(ret); 1900 goto out; 1901 } 1902 1903 cluster_in_el = trunc_end; 1904 1905 ocfs2_reinit_path(path, 1); 1906 } 1907 1908 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1909 1910 out: 1911 ocfs2_free_path(path); 1912 ocfs2_schedule_truncate_log_flush(osb, 1); 1913 ocfs2_run_deallocs(osb, &dealloc); 1914 1915 return ret; 1916 } 1917 1918 /* 1919 * Parts of this function taken from xfs_change_file_space() 1920 */ 1921 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1922 loff_t f_pos, unsigned int cmd, 1923 struct ocfs2_space_resv *sr, 1924 int change_size) 1925 { 1926 int ret; 1927 s64 llen; 1928 loff_t size, orig_isize; 1929 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1930 struct buffer_head *di_bh = NULL; 1931 handle_t *handle; 1932 unsigned long long max_off = inode->i_sb->s_maxbytes; 1933 1934 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1935 return -EROFS; 1936 1937 inode_lock(inode); 1938 1939 /* 1940 * This prevents concurrent writes on other nodes 1941 */ 1942 ret = ocfs2_rw_lock(inode, 1); 1943 if (ret) { 1944 mlog_errno(ret); 1945 goto out; 1946 } 1947 1948 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1949 if (ret) { 1950 mlog_errno(ret); 1951 goto out_rw_unlock; 1952 } 1953 1954 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1955 ret = -EPERM; 1956 goto out_inode_unlock; 1957 } 1958 1959 switch (sr->l_whence) { 1960 case 0: /*SEEK_SET*/ 1961 break; 1962 case 1: /*SEEK_CUR*/ 1963 sr->l_start += f_pos; 1964 break; 1965 case 2: /*SEEK_END*/ 1966 sr->l_start += i_size_read(inode); 1967 break; 1968 default: 1969 ret = -EINVAL; 1970 goto out_inode_unlock; 1971 } 1972 sr->l_whence = 0; 1973 1974 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1975 1976 if (sr->l_start < 0 1977 || sr->l_start > max_off 1978 || (sr->l_start + llen) < 0 1979 || (sr->l_start + llen) > max_off) { 1980 ret = -EINVAL; 1981 goto out_inode_unlock; 1982 } 1983 size = sr->l_start + sr->l_len; 1984 1985 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1986 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1987 if (sr->l_len <= 0) { 1988 ret = -EINVAL; 1989 goto out_inode_unlock; 1990 } 1991 } 1992 1993 if (file && should_remove_suid(file->f_path.dentry)) { 1994 ret = __ocfs2_write_remove_suid(inode, di_bh); 1995 if (ret) { 1996 mlog_errno(ret); 1997 goto out_inode_unlock; 1998 } 1999 } 2000 2001 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2002 switch (cmd) { 2003 case OCFS2_IOC_RESVSP: 2004 case OCFS2_IOC_RESVSP64: 2005 /* 2006 * This takes unsigned offsets, but the signed ones we 2007 * pass have been checked against overflow above. 2008 */ 2009 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 2010 sr->l_len); 2011 break; 2012 case OCFS2_IOC_UNRESVSP: 2013 case OCFS2_IOC_UNRESVSP64: 2014 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 2015 sr->l_len); 2016 break; 2017 default: 2018 ret = -EINVAL; 2019 } 2020 2021 orig_isize = i_size_read(inode); 2022 /* zeroout eof blocks in the cluster. */ 2023 if (!ret && change_size && orig_isize < size) { 2024 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize, 2025 size - orig_isize); 2026 if (!ret) 2027 i_size_write(inode, size); 2028 } 2029 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2030 if (ret) { 2031 mlog_errno(ret); 2032 goto out_inode_unlock; 2033 } 2034 2035 /* 2036 * We update c/mtime for these changes 2037 */ 2038 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 2039 if (IS_ERR(handle)) { 2040 ret = PTR_ERR(handle); 2041 mlog_errno(ret); 2042 goto out_inode_unlock; 2043 } 2044 2045 inode->i_ctime = inode->i_mtime = current_time(inode); 2046 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 2047 if (ret < 0) 2048 mlog_errno(ret); 2049 2050 if (file && (file->f_flags & O_SYNC)) 2051 handle->h_sync = 1; 2052 2053 ocfs2_commit_trans(osb, handle); 2054 2055 out_inode_unlock: 2056 brelse(di_bh); 2057 ocfs2_inode_unlock(inode, 1); 2058 out_rw_unlock: 2059 ocfs2_rw_unlock(inode, 1); 2060 2061 out: 2062 inode_unlock(inode); 2063 return ret; 2064 } 2065 2066 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 2067 struct ocfs2_space_resv *sr) 2068 { 2069 struct inode *inode = file_inode(file); 2070 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2071 int ret; 2072 2073 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 2074 !ocfs2_writes_unwritten_extents(osb)) 2075 return -ENOTTY; 2076 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 2077 !ocfs2_sparse_alloc(osb)) 2078 return -ENOTTY; 2079 2080 if (!S_ISREG(inode->i_mode)) 2081 return -EINVAL; 2082 2083 if (!(file->f_mode & FMODE_WRITE)) 2084 return -EBADF; 2085 2086 ret = mnt_want_write_file(file); 2087 if (ret) 2088 return ret; 2089 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2090 mnt_drop_write_file(file); 2091 return ret; 2092 } 2093 2094 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2095 loff_t len) 2096 { 2097 struct inode *inode = file_inode(file); 2098 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2099 struct ocfs2_space_resv sr; 2100 int change_size = 1; 2101 int cmd = OCFS2_IOC_RESVSP64; 2102 2103 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2104 return -EOPNOTSUPP; 2105 if (!ocfs2_writes_unwritten_extents(osb)) 2106 return -EOPNOTSUPP; 2107 2108 if (mode & FALLOC_FL_KEEP_SIZE) 2109 change_size = 0; 2110 2111 if (mode & FALLOC_FL_PUNCH_HOLE) 2112 cmd = OCFS2_IOC_UNRESVSP64; 2113 2114 sr.l_whence = 0; 2115 sr.l_start = (s64)offset; 2116 sr.l_len = (s64)len; 2117 2118 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2119 change_size); 2120 } 2121 2122 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2123 size_t count) 2124 { 2125 int ret = 0; 2126 unsigned int extent_flags; 2127 u32 cpos, clusters, extent_len, phys_cpos; 2128 struct super_block *sb = inode->i_sb; 2129 2130 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2131 !ocfs2_is_refcount_inode(inode) || 2132 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2133 return 0; 2134 2135 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2136 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2137 2138 while (clusters) { 2139 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2140 &extent_flags); 2141 if (ret < 0) { 2142 mlog_errno(ret); 2143 goto out; 2144 } 2145 2146 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2147 ret = 1; 2148 break; 2149 } 2150 2151 if (extent_len > clusters) 2152 extent_len = clusters; 2153 2154 clusters -= extent_len; 2155 cpos += extent_len; 2156 } 2157 out: 2158 return ret; 2159 } 2160 2161 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2162 { 2163 int blockmask = inode->i_sb->s_blocksize - 1; 2164 loff_t final_size = pos + count; 2165 2166 if ((pos & blockmask) || (final_size & blockmask)) 2167 return 1; 2168 return 0; 2169 } 2170 2171 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode, 2172 struct buffer_head **di_bh, 2173 int meta_level, 2174 int write_sem, 2175 int wait) 2176 { 2177 int ret = 0; 2178 2179 if (wait) 2180 ret = ocfs2_inode_lock(inode, di_bh, meta_level); 2181 else 2182 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level); 2183 if (ret < 0) 2184 goto out; 2185 2186 if (wait) { 2187 if (write_sem) 2188 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2189 else 2190 down_read(&OCFS2_I(inode)->ip_alloc_sem); 2191 } else { 2192 if (write_sem) 2193 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2194 else 2195 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2196 2197 if (!ret) { 2198 ret = -EAGAIN; 2199 goto out_unlock; 2200 } 2201 } 2202 2203 return ret; 2204 2205 out_unlock: 2206 brelse(*di_bh); 2207 *di_bh = NULL; 2208 ocfs2_inode_unlock(inode, meta_level); 2209 out: 2210 return ret; 2211 } 2212 2213 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode, 2214 struct buffer_head **di_bh, 2215 int meta_level, 2216 int write_sem) 2217 { 2218 if (write_sem) 2219 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2220 else 2221 up_read(&OCFS2_I(inode)->ip_alloc_sem); 2222 2223 brelse(*di_bh); 2224 *di_bh = NULL; 2225 2226 if (meta_level >= 0) 2227 ocfs2_inode_unlock(inode, meta_level); 2228 } 2229 2230 static int ocfs2_prepare_inode_for_write(struct file *file, 2231 loff_t pos, size_t count, int wait) 2232 { 2233 int ret = 0, meta_level = 0, overwrite_io = 0; 2234 int write_sem = 0; 2235 struct dentry *dentry = file->f_path.dentry; 2236 struct inode *inode = d_inode(dentry); 2237 struct buffer_head *di_bh = NULL; 2238 u32 cpos; 2239 u32 clusters; 2240 2241 /* 2242 * We start with a read level meta lock and only jump to an ex 2243 * if we need to make modifications here. 2244 */ 2245 for(;;) { 2246 ret = ocfs2_inode_lock_for_extent_tree(inode, 2247 &di_bh, 2248 meta_level, 2249 write_sem, 2250 wait); 2251 if (ret < 0) { 2252 if (ret != -EAGAIN) 2253 mlog_errno(ret); 2254 goto out; 2255 } 2256 2257 /* 2258 * Check if IO will overwrite allocated blocks in case 2259 * IOCB_NOWAIT flag is set. 2260 */ 2261 if (!wait && !overwrite_io) { 2262 overwrite_io = 1; 2263 2264 ret = ocfs2_overwrite_io(inode, di_bh, pos, count); 2265 if (ret < 0) { 2266 if (ret != -EAGAIN) 2267 mlog_errno(ret); 2268 goto out_unlock; 2269 } 2270 } 2271 2272 /* Clear suid / sgid if necessary. We do this here 2273 * instead of later in the write path because 2274 * remove_suid() calls ->setattr without any hint that 2275 * we may have already done our cluster locking. Since 2276 * ocfs2_setattr() *must* take cluster locks to 2277 * proceed, this will lead us to recursively lock the 2278 * inode. There's also the dinode i_size state which 2279 * can be lost via setattr during extending writes (we 2280 * set inode->i_size at the end of a write. */ 2281 if (should_remove_suid(dentry)) { 2282 if (meta_level == 0) { 2283 ocfs2_inode_unlock_for_extent_tree(inode, 2284 &di_bh, 2285 meta_level, 2286 write_sem); 2287 meta_level = 1; 2288 continue; 2289 } 2290 2291 ret = ocfs2_write_remove_suid(inode); 2292 if (ret < 0) { 2293 mlog_errno(ret); 2294 goto out_unlock; 2295 } 2296 } 2297 2298 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2299 if (ret == 1) { 2300 ocfs2_inode_unlock_for_extent_tree(inode, 2301 &di_bh, 2302 meta_level, 2303 write_sem); 2304 meta_level = 1; 2305 write_sem = 1; 2306 ret = ocfs2_inode_lock_for_extent_tree(inode, 2307 &di_bh, 2308 meta_level, 2309 write_sem, 2310 wait); 2311 if (ret < 0) { 2312 if (ret != -EAGAIN) 2313 mlog_errno(ret); 2314 goto out; 2315 } 2316 2317 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2318 clusters = 2319 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2320 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2321 } 2322 2323 if (ret < 0) { 2324 if (ret != -EAGAIN) 2325 mlog_errno(ret); 2326 goto out_unlock; 2327 } 2328 2329 break; 2330 } 2331 2332 out_unlock: 2333 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2334 pos, count, wait); 2335 2336 ocfs2_inode_unlock_for_extent_tree(inode, 2337 &di_bh, 2338 meta_level, 2339 write_sem); 2340 2341 out: 2342 return ret; 2343 } 2344 2345 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2346 struct iov_iter *from) 2347 { 2348 int rw_level; 2349 ssize_t written = 0; 2350 ssize_t ret; 2351 size_t count = iov_iter_count(from); 2352 struct file *file = iocb->ki_filp; 2353 struct inode *inode = file_inode(file); 2354 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2355 int full_coherency = !(osb->s_mount_opt & 2356 OCFS2_MOUNT_COHERENCY_BUFFERED); 2357 void *saved_ki_complete = NULL; 2358 int append_write = ((iocb->ki_pos + count) >= 2359 i_size_read(inode) ? 1 : 0); 2360 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2361 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2362 2363 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, 2364 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2365 file->f_path.dentry->d_name.len, 2366 file->f_path.dentry->d_name.name, 2367 (unsigned int)from->nr_segs); /* GRRRRR */ 2368 2369 if (!direct_io && nowait) 2370 return -EOPNOTSUPP; 2371 2372 if (count == 0) 2373 return 0; 2374 2375 if (nowait) { 2376 if (!inode_trylock(inode)) 2377 return -EAGAIN; 2378 } else 2379 inode_lock(inode); 2380 2381 /* 2382 * Concurrent O_DIRECT writes are allowed with 2383 * mount_option "coherency=buffered". 2384 * For append write, we must take rw EX. 2385 */ 2386 rw_level = (!direct_io || full_coherency || append_write); 2387 2388 if (nowait) 2389 ret = ocfs2_try_rw_lock(inode, rw_level); 2390 else 2391 ret = ocfs2_rw_lock(inode, rw_level); 2392 if (ret < 0) { 2393 if (ret != -EAGAIN) 2394 mlog_errno(ret); 2395 goto out_mutex; 2396 } 2397 2398 /* 2399 * O_DIRECT writes with "coherency=full" need to take EX cluster 2400 * inode_lock to guarantee coherency. 2401 */ 2402 if (direct_io && full_coherency) { 2403 /* 2404 * We need to take and drop the inode lock to force 2405 * other nodes to drop their caches. Buffered I/O 2406 * already does this in write_begin(). 2407 */ 2408 if (nowait) 2409 ret = ocfs2_try_inode_lock(inode, NULL, 1); 2410 else 2411 ret = ocfs2_inode_lock(inode, NULL, 1); 2412 if (ret < 0) { 2413 if (ret != -EAGAIN) 2414 mlog_errno(ret); 2415 goto out; 2416 } 2417 2418 ocfs2_inode_unlock(inode, 1); 2419 } 2420 2421 ret = generic_write_checks(iocb, from); 2422 if (ret <= 0) { 2423 if (ret) 2424 mlog_errno(ret); 2425 goto out; 2426 } 2427 count = ret; 2428 2429 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); 2430 if (ret < 0) { 2431 if (ret != -EAGAIN) 2432 mlog_errno(ret); 2433 goto out; 2434 } 2435 2436 if (direct_io && !is_sync_kiocb(iocb) && 2437 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { 2438 /* 2439 * Make it a sync io if it's an unaligned aio. 2440 */ 2441 saved_ki_complete = xchg(&iocb->ki_complete, NULL); 2442 } 2443 2444 /* communicate with ocfs2_dio_end_io */ 2445 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2446 2447 written = __generic_file_write_iter(iocb, from); 2448 /* buffered aio wouldn't have proper lock coverage today */ 2449 BUG_ON(written == -EIOCBQUEUED && !direct_io); 2450 2451 /* 2452 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2453 * function pointer which is called when o_direct io completes so that 2454 * it can unlock our rw lock. 2455 * Unfortunately there are error cases which call end_io and others 2456 * that don't. so we don't have to unlock the rw_lock if either an 2457 * async dio is going to do it in the future or an end_io after an 2458 * error has already done it. 2459 */ 2460 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2461 rw_level = -1; 2462 } 2463 2464 if (unlikely(written <= 0)) 2465 goto out; 2466 2467 if (((file->f_flags & O_DSYNC) && !direct_io) || 2468 IS_SYNC(inode)) { 2469 ret = filemap_fdatawrite_range(file->f_mapping, 2470 iocb->ki_pos - written, 2471 iocb->ki_pos - 1); 2472 if (ret < 0) 2473 written = ret; 2474 2475 if (!ret) { 2476 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2477 if (ret < 0) 2478 written = ret; 2479 } 2480 2481 if (!ret) 2482 ret = filemap_fdatawait_range(file->f_mapping, 2483 iocb->ki_pos - written, 2484 iocb->ki_pos - 1); 2485 } 2486 2487 out: 2488 if (saved_ki_complete) 2489 xchg(&iocb->ki_complete, saved_ki_complete); 2490 2491 if (rw_level != -1) 2492 ocfs2_rw_unlock(inode, rw_level); 2493 2494 out_mutex: 2495 inode_unlock(inode); 2496 2497 if (written) 2498 ret = written; 2499 return ret; 2500 } 2501 2502 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2503 struct iov_iter *to) 2504 { 2505 int ret = 0, rw_level = -1, lock_level = 0; 2506 struct file *filp = iocb->ki_filp; 2507 struct inode *inode = file_inode(filp); 2508 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2509 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2510 2511 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, 2512 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2513 filp->f_path.dentry->d_name.len, 2514 filp->f_path.dentry->d_name.name, 2515 to->nr_segs); /* GRRRRR */ 2516 2517 2518 if (!inode) { 2519 ret = -EINVAL; 2520 mlog_errno(ret); 2521 goto bail; 2522 } 2523 2524 if (!direct_io && nowait) 2525 return -EOPNOTSUPP; 2526 2527 /* 2528 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2529 * need locks to protect pending reads from racing with truncate. 2530 */ 2531 if (direct_io) { 2532 if (nowait) 2533 ret = ocfs2_try_rw_lock(inode, 0); 2534 else 2535 ret = ocfs2_rw_lock(inode, 0); 2536 2537 if (ret < 0) { 2538 if (ret != -EAGAIN) 2539 mlog_errno(ret); 2540 goto bail; 2541 } 2542 rw_level = 0; 2543 /* communicate with ocfs2_dio_end_io */ 2544 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2545 } 2546 2547 /* 2548 * We're fine letting folks race truncates and extending 2549 * writes with read across the cluster, just like they can 2550 * locally. Hence no rw_lock during read. 2551 * 2552 * Take and drop the meta data lock to update inode fields 2553 * like i_size. This allows the checks down below 2554 * generic_file_read_iter() a chance of actually working. 2555 */ 2556 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, 2557 !nowait); 2558 if (ret < 0) { 2559 if (ret != -EAGAIN) 2560 mlog_errno(ret); 2561 goto bail; 2562 } 2563 ocfs2_inode_unlock(inode, lock_level); 2564 2565 ret = generic_file_read_iter(iocb, to); 2566 trace_generic_file_read_iter_ret(ret); 2567 2568 /* buffered aio wouldn't have proper lock coverage today */ 2569 BUG_ON(ret == -EIOCBQUEUED && !direct_io); 2570 2571 /* see ocfs2_file_write_iter */ 2572 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2573 rw_level = -1; 2574 } 2575 2576 bail: 2577 if (rw_level != -1) 2578 ocfs2_rw_unlock(inode, rw_level); 2579 2580 return ret; 2581 } 2582 2583 /* Refer generic_file_llseek_unlocked() */ 2584 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2585 { 2586 struct inode *inode = file->f_mapping->host; 2587 int ret = 0; 2588 2589 inode_lock(inode); 2590 2591 switch (whence) { 2592 case SEEK_SET: 2593 break; 2594 case SEEK_END: 2595 /* SEEK_END requires the OCFS2 inode lock for the file 2596 * because it references the file's size. 2597 */ 2598 ret = ocfs2_inode_lock(inode, NULL, 0); 2599 if (ret < 0) { 2600 mlog_errno(ret); 2601 goto out; 2602 } 2603 offset += i_size_read(inode); 2604 ocfs2_inode_unlock(inode, 0); 2605 break; 2606 case SEEK_CUR: 2607 if (offset == 0) { 2608 offset = file->f_pos; 2609 goto out; 2610 } 2611 offset += file->f_pos; 2612 break; 2613 case SEEK_DATA: 2614 case SEEK_HOLE: 2615 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2616 if (ret) 2617 goto out; 2618 break; 2619 default: 2620 ret = -EINVAL; 2621 goto out; 2622 } 2623 2624 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2625 2626 out: 2627 inode_unlock(inode); 2628 if (ret) 2629 return ret; 2630 return offset; 2631 } 2632 2633 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, 2634 struct file *file_out, loff_t pos_out, 2635 loff_t len, unsigned int remap_flags) 2636 { 2637 struct inode *inode_in = file_inode(file_in); 2638 struct inode *inode_out = file_inode(file_out); 2639 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); 2640 struct buffer_head *in_bh = NULL, *out_bh = NULL; 2641 bool same_inode = (inode_in == inode_out); 2642 loff_t remapped = 0; 2643 ssize_t ret; 2644 2645 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 2646 return -EINVAL; 2647 if (!ocfs2_refcount_tree(osb)) 2648 return -EOPNOTSUPP; 2649 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 2650 return -EROFS; 2651 2652 /* Lock both files against IO */ 2653 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); 2654 if (ret) 2655 return ret; 2656 2657 /* Check file eligibility and prepare for block sharing. */ 2658 ret = -EINVAL; 2659 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || 2660 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) 2661 goto out_unlock; 2662 2663 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 2664 &len, remap_flags); 2665 if (ret < 0 || len == 0) 2666 goto out_unlock; 2667 2668 /* Lock out changes to the allocation maps and remap. */ 2669 down_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2670 if (!same_inode) 2671 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, 2672 SINGLE_DEPTH_NESTING); 2673 2674 /* Zap any page cache for the destination file's range. */ 2675 truncate_inode_pages_range(&inode_out->i_data, 2676 round_down(pos_out, PAGE_SIZE), 2677 round_up(pos_out + len, PAGE_SIZE) - 1); 2678 2679 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, 2680 inode_out, out_bh, pos_out, len); 2681 up_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2682 if (!same_inode) 2683 up_write(&OCFS2_I(inode_out)->ip_alloc_sem); 2684 if (remapped < 0) { 2685 ret = remapped; 2686 mlog_errno(ret); 2687 goto out_unlock; 2688 } 2689 2690 /* 2691 * Empty the extent map so that we may get the right extent 2692 * record from the disk. 2693 */ 2694 ocfs2_extent_map_trunc(inode_in, 0); 2695 ocfs2_extent_map_trunc(inode_out, 0); 2696 2697 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); 2698 if (ret) { 2699 mlog_errno(ret); 2700 goto out_unlock; 2701 } 2702 2703 out_unlock: 2704 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); 2705 return remapped > 0 ? remapped : ret; 2706 } 2707 2708 const struct inode_operations ocfs2_file_iops = { 2709 .setattr = ocfs2_setattr, 2710 .getattr = ocfs2_getattr, 2711 .permission = ocfs2_permission, 2712 .listxattr = ocfs2_listxattr, 2713 .fiemap = ocfs2_fiemap, 2714 .get_acl = ocfs2_iop_get_acl, 2715 .set_acl = ocfs2_iop_set_acl, 2716 .fileattr_get = ocfs2_fileattr_get, 2717 .fileattr_set = ocfs2_fileattr_set, 2718 }; 2719 2720 const struct inode_operations ocfs2_special_file_iops = { 2721 .setattr = ocfs2_setattr, 2722 .getattr = ocfs2_getattr, 2723 .permission = ocfs2_permission, 2724 .get_acl = ocfs2_iop_get_acl, 2725 .set_acl = ocfs2_iop_set_acl, 2726 }; 2727 2728 /* 2729 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2730 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2731 */ 2732 const struct file_operations ocfs2_fops = { 2733 .llseek = ocfs2_file_llseek, 2734 .mmap = ocfs2_mmap, 2735 .fsync = ocfs2_sync_file, 2736 .release = ocfs2_file_release, 2737 .open = ocfs2_file_open, 2738 .read_iter = ocfs2_file_read_iter, 2739 .write_iter = ocfs2_file_write_iter, 2740 .unlocked_ioctl = ocfs2_ioctl, 2741 #ifdef CONFIG_COMPAT 2742 .compat_ioctl = ocfs2_compat_ioctl, 2743 #endif 2744 .lock = ocfs2_lock, 2745 .flock = ocfs2_flock, 2746 .splice_read = generic_file_splice_read, 2747 .splice_write = iter_file_splice_write, 2748 .fallocate = ocfs2_fallocate, 2749 .remap_file_range = ocfs2_remap_file_range, 2750 }; 2751 2752 const struct file_operations ocfs2_dops = { 2753 .llseek = generic_file_llseek, 2754 .read = generic_read_dir, 2755 .iterate = ocfs2_readdir, 2756 .fsync = ocfs2_sync_file, 2757 .release = ocfs2_dir_release, 2758 .open = ocfs2_dir_open, 2759 .unlocked_ioctl = ocfs2_ioctl, 2760 #ifdef CONFIG_COMPAT 2761 .compat_ioctl = ocfs2_compat_ioctl, 2762 #endif 2763 .lock = ocfs2_lock, 2764 .flock = ocfs2_flock, 2765 }; 2766 2767 /* 2768 * POSIX-lockless variants of our file_operations. 2769 * 2770 * These will be used if the underlying cluster stack does not support 2771 * posix file locking, if the user passes the "localflocks" mount 2772 * option, or if we have a local-only fs. 2773 * 2774 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2775 * so we still want it in the case of no stack support for 2776 * plocks. Internally, it will do the right thing when asked to ignore 2777 * the cluster. 2778 */ 2779 const struct file_operations ocfs2_fops_no_plocks = { 2780 .llseek = ocfs2_file_llseek, 2781 .mmap = ocfs2_mmap, 2782 .fsync = ocfs2_sync_file, 2783 .release = ocfs2_file_release, 2784 .open = ocfs2_file_open, 2785 .read_iter = ocfs2_file_read_iter, 2786 .write_iter = ocfs2_file_write_iter, 2787 .unlocked_ioctl = ocfs2_ioctl, 2788 #ifdef CONFIG_COMPAT 2789 .compat_ioctl = ocfs2_compat_ioctl, 2790 #endif 2791 .flock = ocfs2_flock, 2792 .splice_read = generic_file_splice_read, 2793 .splice_write = iter_file_splice_write, 2794 .fallocate = ocfs2_fallocate, 2795 .remap_file_range = ocfs2_remap_file_range, 2796 }; 2797 2798 const struct file_operations ocfs2_dops_no_plocks = { 2799 .llseek = generic_file_llseek, 2800 .read = generic_read_dir, 2801 .iterate = ocfs2_readdir, 2802 .fsync = ocfs2_sync_file, 2803 .release = ocfs2_dir_release, 2804 .open = ocfs2_dir_open, 2805 .unlocked_ioctl = ocfs2_ioctl, 2806 #ifdef CONFIG_COMPAT 2807 .compat_ioctl = ocfs2_compat_ioctl, 2808 #endif 2809 .flock = ocfs2_flock, 2810 }; 2811